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Appendix A. Detailed presentation of the parametric framework, discussion and proofs 

on some properties of the indices 

 

A.1. On the distinctiveness associated with Rao's quadratic entropy 

A community-level measure of expected FP-distinctiveness may be obtained as the weighted 

average of species-level distinctiveness for the entire assemblage 
1

N

j jj
D p D


  . D is 

high if the most abundant species have the highest FP-distinctiveness. Considering the most 

extreme scenario, D attains its maximum value when a single species, say j, is maximally 

dissimilar from all others (e.g., for 
ijd  bounded in [0, 1], dij = 1 for all i ≠ j and dik tending to 0 

for all i,k ≠ j) and dominates in abundance (i.e., pj tends to 1 and pi tends to zero for all i ≠ j). 

As such, in general, D is not directly interpretable as an index of FP-diversity as it does not 

increase with the range of different functional traits or phylogenetic positions that all 

individuals from all species in the assemblage have.  However, D is interpretable as an index 

of FP-diversity in the special case where species always have equal abundance (i.e., 

1/  jp N j  ). Indeed in that special case D is simply the average dissimilarity between two 

species (excluding the comparison of a species with itself), usually named in the literature as 

the mean pairwise distance (MPD) in a phylogenetic context:  11 1

ij
N N d

N Ni j
MPD

 
   (e.g. 

Webb, 2000). 

 

A.2. On the parametric index K  

 

Functions 
j  and 

jO  associated with Rao's quadratic entropy can be traced back to the same 

moment of the generalized diversity K  of Ricotta and Szeidl (2006). For 2  , if the 

species are treated as maximally distinct from each other (i.e., dij = 1 for all i ≠ j), the 

generalized effective FP-originality function 
1(1 ) ( 1)j jO      (with 

1

N

j j ijj
p s


 ) 

reduces to the Simpson rarity (1 )j jp   , whereas if the species are not treated as 

maximally distinct from each other, we get the effective FP-originality function of the Rao 

quadratic diversity (1 )j jO   . For any value of α, considering that species are treated as 

maximally distinct from each other, jO  reduces to a parametric version of the Simpson rarity 

function    11 1jp     .   

 

For α tending to 1 (Ricotta and Szeidl, 2006),  

1
ln

N

j jj
K p 


  

This limit differs from that of index K   for which 

 
1

| |1 1 1
ln

N N

j c j c jj c
K p u p





  
    

 

K  can be also seen as a particular application of a weighted version of the generalized 

diversity of Patil and Taillie (1982) or equivalently of a parametric generalization of the 

‘weighted Gini-Simpson index of diversity’ developed by Guiasu and Guiasu (2010). Indeed, 

apart from the Rao quadratic diversity, another diversity index has been proposed as a 

generalization of the Simpson index by Guiasu and Guiasu (2010, 2012) under the name of 

‘weighted Gini-Simpson index of diversity’: 
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1
(1 )

N

w j j jj
G w p p


           (A.1) 

 

where the species-specific weights 
jw  ( 1,2,..., )j N  are non-negative real numbers which 

may reflect the ecological importance, rarity, or economic value of the species in a given 

assemblage (Guiasu and Guiasu 2010). Compared with Rao’s quadratic diversity, the Gw 

index usually does not conform to the requirement proposed by Leinster and Cobbold (2012) 

that diversity should not change if a given species j is replaced by two identical species with 

the same total abundance of j (see section A.6. below). However, it may satisfy this 

requirement for specific definitions of the wj as shown below. 

 

If 
j jw D  the weighted Gini-Simpson index becomes Rao’s diversity: 

1 1
(1 ) (1 )

N N

j j j j jj j
Q D p p p 

 
     . That is, Rao’s quadratic diversity can be also 

interpreted as a particular formulation of the Simpson index in which the single-species 

contributions (1 )j jp p  to community-level diversity are weighted by their species-level FP-

distinctiveness 
jD . 

 

The  ‘weighted Gini-Simpson index of diversity’ can be further used to relate the generalized 

diversity of Ricotta and Szeidl (2006) to a weighted version of the generalized diversity of 

Patil and Taillie (1982) proposed here for the first time: 

 
1

1

1

1

N j

w j jj

p
G w p












 


          (A.2) 

         

If the weights 
jw  in Eq. A.2 are selected as the ratio between two commensurate rarity 

functions such that 1 1(1 ) (1 )j j j jw D p        , Eq. A.2 becomes the generalized 

diversity of Ricotta and Szeidl (2006) as 
1 11 1

1 11 1

j j
N Np

j j jj j
D p p

 

 

  

  
  , where jD  is 

the parametric measure of species-level FP-distinctiveness that links the weighted diversity of 

Patil and Taillie ( wG ) to K . For example, for α tending to 1, Eq. A.2 tends to a weighted 

version of the Shannon entropy (Shannon 1948), first introduced in information theory by 

Belis and Guiasu (1968): 
1

ln
N

w j j jj
H w p p


  . By selecting the values of jw  in 

wH  as 

   ln lnj j jw p   , we obtain 
1

ln
N

j jj
p 


 , which is the Shannon-like expression of 

the generalized diversity of Ricotta and Szeidl (2006) for α tending to 1. 

 

A.3. On the phylogenetic diversity index 
α
Y 

 

Let dij be defined as the sum of branch lengths on the shortest path from tip j to its most recent 

common ancestor with species i. 
 ,R ij

ij bb C j
d L


 , with Rij the most recent common ancestor 

between species i and j and C(j, Rij) the set of branches between j and Rij. Let 1 /ij ijs d H   

be the similarity between i and j with H ≥ maxij(dij). Consider species j and  
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H
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



  
   
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
  

 

1

1 ,R

1

1 1

1

ij

N
b

ii b C j
N

jj

L
p

H
K p









 



 
  
  



 
  

In 
 1 ,Rij

N b
ii b C j

L
p

H   , each branch on the path from j to root (i.e., in C(j, root)) is multiplied 

by the sum of relative abundances of all species that do not descend from it, that is to say by 1 

minus the sum of relative abundances of the species descending from it: 

   
   1 ,R ,root ,root

1
ij

N jb b b
i b bi b C j b C j b C j

HL L L
p p p

H H H H   
        

This yields, 

  
1

,root

1

1 1

1

j b
H L

bH Hb C jN

jj

p
K Y p



 









  
  




  

  

 

A.4. The use of asymmetrical dissimilarities and non-ultrametric trees 

 

Q and K  were originally developed for symmetric dissimilarities between species (i.e., 

dij=dji) and 
α
I for ultrametric phylogenetic trees (i.e., trees with constant distance from tip to 

root). However, our framework is actually still valid if Q, K  and K   are applied to 

asymmetric dissimilarities (i.e. dij may be different from dji) and 
α
Y and 

α
I to non-ultrametric 

phylogenetic trees. The links between the five indices and their associated components of 

rarity, distinctiveness and originality also still hold with asymmetric dissimilarities and non-

ultrametric trees. As far as we are aware, Hendrickson and Ehrlich (1971) developed the first 

version of what will be named later quadratic diversity by Rao (1982). Hendrickson and 

Ehrlich (1971) considered as an example of symmetric interspecies differences the extent of 

niche non-overlap, relative to the combined niche of the species. In this context, asymmetric 

distances could be envisaged for example if say 80% of the functional niche of a species i 

overlap with that of species j although the functional niche of species j is larger and only say 

10% of its functional niche overlap with that of species i. Using non-ultrametric phylogenetic 

trees may also be useful if the evolutionary rates are not constant among lineages as in that 

case phylogenetic diversity measures computed from a non-ultrametric tree could yield results 

different than those expected if they were applied to an ultrametric tree (e.g., Gonzalez, 2010).  

 

A.5. About equivalent numbers of species. 

 

Consider an observed community of N species characterized by their relative abundances (pi) 

and FP-dissimilarities between them (dij). Consider also a theoretical community with E 

species that have equal relative abundances and that have a FP-dissimilarity from each other 

equal to dmax, with dmax ≥ maxij(dij). dmax is considered to be the maximum possible FP-

dissimilarities between two species. dmax can be set equal to the maximum observed FP-

dissimilarity in the community or in reference to a larger community or to all species of a 

clade, even those not observed in the community. Transforming a diversity index into species 
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equivalents corresponds to finding E such that the diversity of the theoretical community is 

equal to that of the observed community.  

 

Applied to 
1 1

N N

i j iji j
Q p p d

 
   this gives: 

max1 1, 1 1

1 1E E N N

i j iji j j i i j
d p p d

E E    
     

max 1 1

1 N N

i j iji j

E
d p p d

E  


    

1 1
max

1

1
N N ij

i ji j

E
d

p p
d 

 

 
 

1 1
max

1

1
N N ij

i ji j

E
d

p p
d 

 
 
 

 
 

 

 

The function that links E with Q is 

E=1/(1-Q/dmax) 

It is a monotonically increasing function. Thus using E or Q does not change the way 

assemblages are ranked from the least to the most diverse. 

 

Applied to 
 

1

1

1

1

1

N

i ijN i

jj

p s
K p














 




  it gives: 

 
1

1 1

1 1

1
1 11

1 1

N

i ijE N i

jj j

p s
E p

E





 



 

 

 
  

 


   

 
1

1 1 1

1
1 1

N N

j i ijj i
p p s

E







  

 
    

 
   

 
1

11

1 1
1 1

N N

j i ijj i
E p p s

 

 

  
     

  
   

 
1

11

1 1

N N

j i ijj i
E p p s

 

 

 
    

   

 

The function that links this new definition of E with K  is 

     
1

1

1 1E K



    for α ≥ 0, α ≠ 1 

and 

 expE K  for α = 1 

Using E or K  does not change the way assemblages are ranked from the least to the most 

diverse.  
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Applied to 
 

1 1

| |1

1

1

1

N

N c j c jc

jj

u p
K p







 

 




 




 , it yields: 

   1

1 11
max | |1

1 1

1 11

1 1

N

E N c j c jE c

jj j

d u p
p

E





 



 



 

 
 

 


   

   1

1 11
max | |1 1

1 1
N N

j c j c jj cE
d p u p




 

 
       

 1

1 | 11
|1 1

max

1 1
N N c j

j c jj cE

u
p p

d





 

 
       

 

1

1
1 | 1

|1 1
max

1 1
N N c j

j c jj c

u
E p p

d





 

 

 
     

 
   

1

1
1 1| | 1

|1 1 1
max max

1
N N Nc j c j

j c jj c c

u u
E p p

d d





  

  

  
     

  
    

1

1
1 | 1

|1 1
max max

max
1





 

 

  
     

  
 

N Ni ij c j

j c jj c

d u
E p p

d d
 

 

The function that links this new definition of E with K   is 

 
 

1
1

max

1 1
K

E
d




 

   
 

 

Using E or K   does not change the way assemblages are ranked from the least to the most 

diverse. 

 

Similarly with a phylogenetic tree, the theoretical community is considered to be composed of 

E evenly abundant species that are located at the tips of a star-shaped phylogenetic tree, with a 

single internal node (the root) and branches that connect tips directly to this node with a 

length of H (with H ≥ Hj, the sum of branch length on the path from tip j to root in the real 

tree). As in the main text, C(j, root) is the set of nodes between species j and the root of the 

phylogenetic tree; b is a branch of the tree, Lb its length, and pb the sum of relative abundance 

of all species descending from it. 

With index Y , it yields 

 

  1

1

1
,root

1 1

1 111

1 1

j b
H L

bH Hb C jE NE
jj j

p
p

E





 







 

  
  

 


   

  1

1
1

1 ,root
1 1 1 j b

N H L

j bH Hj b C jE
p p







 

 
      

 
   

  1

1
1

1 ,root
1 1 1 j b

N H L

j bH Hj b C jE
p p







 

 
      

 
   
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  
1

1 1

1 ,root
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j bH Hj b C j
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  

 

  
       

  
   

  
1

1 1

1 ,root
1 j b

N H L

j bH Hj b C j
E p p

  

 

 
    

 
   

 

With 
 

1

1 ,root

1

1

N b
j bj b C j

p
I p L








 

 
  

 
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 
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1 11
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E
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
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


  
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
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
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


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 
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 
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  1

11

1 ,root
1 1
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H







 

 
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 
   
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1
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L
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H







 

  
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  
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 

1

1
1

1 1 ,root
1







  

 
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N Nj b
j j bj j b C j

H L
E p p p

H H
 

 

1

1
1

1 ,root
1

N j b
j bj b C j

H L
E p p

H H







 

  
     

  
   

As for K  , K  , the functions that transform Y  and I  in equivalent numbers of species 

are monotonically increasing meaning that applying them does not change the way 

assemblages are ranked from the least to the most diverse. 

 

A.6. On species splitting 

 

Leinster and Cobbold (2012) advocated the development of FP-diversity indices that respect 

the following property: diversity should not change if a given species j is replaced by two 

identical species k and l with the same total abundance of j (i.e., j k lp p p  ). Rao quadratic 

diversity fulfills this property (Leinster and Cobbold, 2012). 

 

Like for quadratic diversity, the parametric generalizations K , K  , Y  and I  also fulfill 

the requirement that diversity should not change if a given species j is replaced by two 

identical species with the same total abundance of j. 

 

Proof that K  is unchanged if a species is replaced by two identical species with the same 

total abundance: 
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Consider that any species j is split in two identical species k and l with 1kj lj kls s s   ,  

ij ik ils s s   for all i and  j k lp p p  . Let CN be the set of species that includes species j 

but not k and l and CN+1 the alternative set of N+1 species that includes species k and l but not 

j.  

Because 
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p s p s p s
   

     

and  

 
1

1

1

N
i iji C

j

p s
p














=

   
1 1

1 1

1 1

1 1

N N
i ik i ili C i C

k l

p s p s
p p

 

 

 

 

 
 

  
 

 
 

In addition for any species h ≠ j,  

 

1

,

, ,

1

N N

N

N

i ih i ih j jhi C i C i j

i ih k kh l lhi C i k l

i ihi C

p s p s p s

p s p s p s

p s



  

 

 

 

  



 





 

and thus 

   
1 1

1
1 1

1 1

N N
i ih i ihi C i C

h h

p s p s
p p

 

 

 

  
 

  
 

 
 

□ 

 

Proof that K   is unchanged if a species is replaced by two identical species with the same 

total abundance: 

 
1 1

| |1

1

1

1

N

N c j c jc

jj

u p
K p







 

 




 




  

 

Consider that species j is split in two identical species k and l with 0kj lj kld d d   ,  

ij ik ild d d   for all i and  j k lp p p  . As above, let CN be the set of species that includes 

species j but not k and l and CN+1 the alternative set of N+1 species that includes species k and 

l but not j. 

Then, for any c, |c ju  in CN  is equal to 1| 1|c k c lu u   in CN+1 because l can be defined as the 

most similar species to k  (1|k = l) and similarly 1|l = k . As k and l are similar, 1| 1| 0k lu u  . 

For any c > 1, 1| | |c j c k c lp p p    and 1| 1| 2| 1| 2|j j k l k k l lp p p p p p p p       . This yields 
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   

 

   

 

1 11 1

| | 1| 1|1 1

1

| |2

1 1

| | 1| 1|2

1

| |1

1 1

1

1 1

1

N N

c j c j c k c kc c

N

c k c kc

N

c k c k k kc

N

c k c kc

u p u p

u p

u p u p

u p

 



 



  

  





 







  

 

   

 

 







 

similarly, 

 

   
1 1 1

| | | |1 1
1 1

N N

c j c j c l c lc c
u p u p   

 
     

 

which yields 

     
1 1 11 1 1

| | | | | |1 1 1
1 1 1

1 1 1

N N N

c j c j c k c k c l c lc c c

j k l

u p u p u p
p p p

  

  

    

  
  

    
  

  
 

 

In addition for any species h ≠ j, say that in CN, j is n
th

 most similar species to h. Then in CN+1, 

we can set k and l the n
th

 and n+1
th

 most similar species to h, respectively, as dkl=0. Also, for 

c < n+1 
|c hu  and pc|h in CN  are equal to 

|c hu  and pc|h in  CN+1 , respectively, for c > n+1 
|c hu  

and pc|h in CN  are equal to 
1|c hu  and pc+1|h in  CN+1 , respectively, and 

1| 0n hu    in CN+1. This 

implies that  

 

 
1 1

| |1
1

1

N

c h c hc

h

u p
p





 








 in CN 

is equal to 

 1

| |1
1

1

N

c h c hc

h

u p
p














 in CN+1 

□ 

 

Proof that aY  is unchanged if a species is replaced by two identical species with the same 

total abundance: 

  
1

,root

1

1

1

bL

bHb C jN

jj

p
Y p














 




  

Consider that species j is split in two identical species k and l. Then C(j, root)=C(k, root)=C(l, 

root) meaning that, as they are considered identical, the three species would theoretically be 

located on the same terminal node (tip) in the phylogenetic tree. Because j k lp p p  , 

replacing species j by species k and l leave the pb values unchanged for all b ϵ C(j, root) 

(equivalently  C(k, root), equivalently C(l, root)) and also for all other branches of the 

phylogenetic tree. 

□ 

 

Proof that aI  is unchanged if a species is replaced by two identical species with the same total 

abundance: 

 

1

1 ,root

1

1

a
Na b

j bj b C j

p
I p L

a



 

 
  

 
   
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Consider the same notations as in the proof above. Then 

 

 

   

1

,root

1 1

,root ,root

1

1

1 1

1 1

a

b
j bb C j

a a

b b
k b l bb C k b C l

p
p L

a

p p
p L p L

a a





 

 

 
 

 

    
    

    



 

  

□ 
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