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Abstract
Answering connectivity queries in real algebraic sets is a fundamental problem in effective real

algebraic geometry that finds many applications in e.g. robotics where motion planning issues are
topical. This computational problem is tackled through the computation of so-called roadmaps
which are real algebraic subsets of the set V under study, of dimension at most one, and which
have a connected intersection with all semi-algebraically connected components of V . Algorithms
for computing roadmaps rely on statements establishing connectivity properties of some well-chosen
subsets of V , assuming that V is bounded.

In this paper, we extend such connectivity statements by dropping the boundedness assumption
on V . This exploits properties of so-called generalized polar varieties, which are critical loci of V for
some well-chosen polynomial maps.

1 Introduction
Let Q be a real field of real closure R and let C be its algebraic closure (one can think about Q, R
and C instead, for the sake of understanding) and let n ≥ 0 be an integer. An algebraic set of V ⊂ Cn

defined over Q is the solution set in Cn to a system of polynomial equations with coefficients in Q. A
real algebraic set defined over Q is the set of solutions in Rn to a system of polynomial equations with
coefficients in Q. It is also the real trace V ∩Rn of an algebraic set V ⊂ Cn. Real algebraic sets have
finitely many connected components [7, Theorem 2.4.4.]. Counting these connected components [14, 19]
or answering connectivity queries over V ∩Rn [17] finds many applications in e.g. robotics [8, 12].

Following [8, 10], such computational issues are tackled by computing a real algebraic subset of
V ∩Rn, defined over Q, which has dimension at most one and a connected intersection with all connected
components of V and contains the input query points. Such a subset has been called by Canny in [8] a
roadmap of V .

The effective construction of roadmaps, given a defining system for V , relies on connectivity state-
ments which allow one to define real algebraic subsets of V ∩Rn, of smaller dimension than the one of
V ∩Rn and that have a connected intersection with the connected components of V ∩Rn. Such existing
statements in the literature make the assumption that V has finitely many singular points and V ∩Rn

is bounded. In this paper, we focus on the problem of obtaining similar statements by dropping the
boundedness assumption. We start by recalling the state-of-the-art connectivity statement which allows
us to introduce some material we need to state our main result.
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and innovative training network program under the Marie Skłodowska-Curie grant agreement No 813211 (POEMA) and
the Grant FA8665-20-1-7029 of the EOARD-AFOSR. The third author was supported by an NSERC Discovery Grant.

1



State-of-the-art overview. We start by introducing some terminology. Recall that an algebraic set
V ⊂ Cn is the set of solutions of a finite system of polynomials equations. It can be uniquely decomposed
into finitely many irreducible components. When all these components have the same dimension d, we say
that V is d-equidimensional. Those points y ∈ V at which the Jacobian matrix of a finite set of generators
of its associated ideal have rank n − d are called regular points and the set of those points is denoted
by reg(V ). The others are called singular points; the set of singular points of V (its singular locus) is
denoted by sing(V ) and is an algebraic subset of V . We refer to [18] for definitions and propositions
about algebraic sets.

A semi-algebraic set S ⊂ Rn is the set of solutions of a finite system of polynomial equations and
inequalities. We say that S is semi-algebraically connected if for any y,y′ ∈ S, y and y′ can be connected
by a semi-algebraic path in S, that is a continuous semi-algebraic function γ : [0, 1]→ S such that γ(0) = y
and γ(1) = y′. A semi-algebraic set S can be decomposed into finitely many semi-algebraically connected
components which are semi-algebraically connected semi-algebraic sets that are both closed and open in
S. Finally, for a semi-algebraic set S ⊂ Rn, we denote by S its closure for the Euclidean topology on
Rn. We refer to [4] and [7] for definitions and propositions about semi-algebraic sets and functions.

Let 0 ≤ d ≤ n and V ⊂ Cn be a d-equidimensional algebraic set such that sing(V ) is finite. For
1 ≤ i ≤ n, let πi be the canonical projection:

πi : (y1, . . . ,yn) 7−→ (y1, . . . ,yi)

For a polynomial map ϕ : Cn → Cm a point y ∈ V is a critical point of ϕ if y ∈ reg(V ) and dyϕ is
not a submersion, that is

dyϕ(TyV ) ( Cm,

where dyϕ is the differential of ϕ at y. We will denote by W ◦(ϕ, V ) the set of the critical points of ϕ
on V . A critical value is the image of a critical point. We will note K(ϕ, V ) = W ◦(ϕ, V )∪ sing(V ). The
points of K(ϕ, V ) are called the singular points of ϕ on V . Figure 1 show example of such critical loci.

x1 x2

Z

W ◦(π1, Z)
x1 x2

Z

W ◦(x2
1 + x2

2, Z)

Figure 1: Real trace of the critical locus on a sphere Z for: the projection on the first coordinate π1
(left); the polynomial map associated to x21 + x22 ∈ R[x1, x2, x3] (right).

For 1 ≤ i ≤ d we denote by W (πi, V ) the i-th polar variety defined as the Zariski closure of the
critical locus W ◦(πi, V ) of the restriction of πi to V . Further, we extend this definition by considering
ϕ = (ϕ1, . . . , ϕn) ⊂ Q[x1, . . . , xn] and, for 1 ≤ i ≤ n, the map

ϕi : Cn −→ Ci

y 7→ (ϕ1(y), . . . , ϕi(y))
(1)
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Following the ideas of [1, 2, 3] we denote similarly W (ϕi, V ) the i-th generalized polar variety defined
as the Zariski closure of the critical locus W ◦(ϕi, V ) of the restriction of ϕi to V . We recall below [15,
Theorem 14] (see also [6, Proposition 3.3] for a slight variant of it), making use of polar varieties to
establish connectivity statements.

For 2 ≤ i ≤ d, assume that the following holds:

• V ∩Rn is bounded;

• W (πi, V ) is either empty or (i− 1)-equidimensional and smooth outside sing(V );

• W (π1,W (πi, V )) is finite;

• for any y ∈ Ci−1, π−1i−1(y) ∩ V is either empty or (d− i+ 1)-equidimensional.

Let
Ki = W (π1,W (πi, V )) ∪ sing(V ) and Fi = π−1i−1(πi−1(Ki)) ∩ V.

Then, the real trace of W (πi, V )∪Fi has a non-empty and semi-algebraically connected intersection with
each semi-algebraically connected component of V ∩Rn.

For the special case i = 2, this result has been originally proved in [8, 9]. A variant of this, again
assuming i = 2, is given for general semi-algebraic sets in [10, 11].

In this paper, we focus on real algebraic sets. By dropping the restriction i = 2, the result in [15,
Theorem 14] allows one more freedom in the choice of i in the design of roadmap algorithms to obtain
better complexity. The rationale is as follows.

Restricting to i = 2, one expects (up to some linear change of variables or other technical manipu-
lations) to retrieve a situation where W (π2, V ) has dimension at most 1 and F2 to has dimension d− 1
(see e.g. [15, Lemma 31]). To obtain a roadmap for V ∩Rn one is led to call recursively the roadmap
algorithm, which applies [15, Theorem 14], on systems defining the Fi’s. Hence, the depth of the recur-
sion is n. Besides, letting D be the maximum degree of input equations defining V , roughly speaking
each recursive call requires (nD)O(n) arithmetic operations in Q while the size of the input data grows
by (nD)O(n) according to [15, Proposition 33]. Consequently, one obtains roadmap algorithms using
(nD)O(n2) arithmetic operations in Q.

In [15], using a baby steps/giant steps strategy, the authors shown that one can take i '
√
d and then

have a depth of the recursion '
√
d. It is also proved that each recursive step needed to compute systems

encoding Ki and Fi require at most (nD)O(n) arithmetic operations in Q while the size of the input data
grows by (nD)O(n). All in all, up to some technical details that we skip for the sake of conciseness, one
obtains roadmap algorithms using (nD)O(n

√
n) arithmetic operations in Q. Finally in [16], it is shown

how to apply [15, Theorem 14] with i ' d
2 so that the depth of the recursion becomes ' log2(d). Hence,

proceeding as in [15], an algorithm using (nD)6n log2(d) arithmetic operations in Q is obtained in [16].
Dropping the boundedness assumption in this solving scheme is done in [5, 6] using infinitesimal

deformation techniques. The algorithms proposed use respectively (nD)O(n
√
n) and (nD)O(n log2(n))

arithmetic operations in Q. This induces a growth of intermediate data; also the obtained algorithm is
not polynomial in its output size. Generalizing [16] to non-bounded situations requires a new connectivity
statement dropping the boundedness assumption on V ∩Rn. This is the main new result of this paper.

Main result. We start with some notations and assumptions. Let V ⊂ Cn be an algebraic set defined
over Q and d > 0 be an integer. We say that V satisfies assumption (A) when

(A) V is d-equidimensional and its singular locus sing(V ) is finite.

Let Z be a subset of Cn, U ⊂ R and f ∈ R[x1, . . . , xn]. With a slight abuse of notation, we still
denote by f the polynomial map y ∈ Cn 7→ f(y) ∈ C. We write Z|f∈U = Z∩f−1(U)∩Rn. In particular
if u ∈ R we note

Z|f<u = Z|f∈]−∞,u[, Z|f≤u = Z|f∈]−∞,u] and Z|f=u = Z|f∈{u}.

Now, let ϕ = (ϕ1, . . . , ϕn) ⊂ Q[x1, . . . , xn] and ϕi be the induced map defined as in (1) for 1 ≤ i ≤ n.
Recall that we say that a map ψ : Y ⊂ Rn → Z ⊂ Rm is a proper map if, for every closed (for Euclidean
topology) and bounded subset Z ′ ⊂ Z, ψ−1(Z ′) is a closed and bounded subset of Y .

We say that ϕ satisfies assumption (P) when
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(P) the restriction of the map ϕ1 to V ∩Rn is proper and bounded from below.

We denote by Wi = W (ϕi, V ) the Zariski closure of the set of critical points of the restriction of ϕi
to V . For 2 ≤ i ≤ d, we say that (ϕ, i) satisfies assumption (B) when

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩ϕ−1i−1(y) is either empty or (d− i+ 1)-equidimensional.

Note that when B1 holds, sing(Wi) and critical loci of polynomial maps restricted to Wi are well-
defined. Let S ⊂W (ϕ1,Wi), we say that it satisfies assumption (C) when

(C1) S is finite;

(C2) S intersects every semi-algebraically connected component of W (ϕ1,Wi) ∩Rn.

Finally, using a construction similar to the one used in [15, Theorem 14], we let

Ki = W (ϕ1, V ) ∪ S ∪ sing(V ) and Fi = ϕ−1i−1(ϕi−1(Ki)) ∩ V.

Theorem 1.1. For 2 ≤ i ≤ d and under the assumptions (A), (B), (C) and (P), the subset Wi ∪ Fi
has a non-empty and semi-algebraically connected intersection with each semi-algebraically connected
component of V ∩Rn.

Theorem 1.1 allows one to design an algorithm for computing roadmaps on real algebraic sets whose
real counterpart may not be bounded in kind of a straightforward way. Let us describe briefly how this
would work. Let V be an equidimensional algebraic set; assume that sing(V ) is finite. Take

ϕ1 =

n∑
k=1

(xk − ak)2 and for 2 ≤ j ≤ n ϕj =

n∑
k=1

bj,kxk,

where a = (a1, . . . ,an) ∈ Qn and for 2 ≤ j ≤ n, bj = (bj,1, . . . , bj,n) ∈ Qn. Then assumption (P) holds
and according to [2, 3] for a wise choice of a and b one could hope to satisfy the dimensional properties
of assumption (B).

Finally, constructing the set S by a sampling algorithm (for instance [4, Chap. 13]), one can apply
Theorem 1.1 to V and ϕ. Hence, applying recursively this procedure and Theorem 1.1 to polynomial
systems defining Wi and Fi one obtains a roadmap for V ∩Rn. It should be noted that, since Fi ∩Rn

is bounded (by assumption (P)), the algorithm of [16] directly computes a roadmap of it. Then it is
enough to operate the recursive calls on the generalized polar varieties.

However, in regard of [2, 3] proving that assumption (B) holds for some generic choice of a and b
needs more effort. It is the purpose of a future article, together with the full study of the algorithm
described above.

Example 1. Let us apply the above process on an example. Let V = V (g) ⊂ C3 where g = x31 +
x32 + x33 − x1 − x2 − x3 − 1 ∈ Q[x1, x2, x3]. Since V is a hypersurface, it is 2-equidimensional and since
sing(V ) = ∅, V satisfies (A).

Let ϕ = (x21 + x22 + x23, x1, x2) ⊂ Q[x1, x2, x3]. As the restriction of ϕ1 to Rn is the square of the
Euclidean norm, (P) is satisfied. Since 2 ≤ i ≤ d, necessarily i = 2. Then we will see later that one can
write

W2 = V (f, 3x22x3 − 3x2x
2
3 + x2 − x3).

One checks that W2 is 1-equidimensional and has no singular point as well, so that (ϕ, 2) satisfies (B1).
Let K2 = W ◦(ϕ1,W2), it is a finite set of cardinal 11. Besides, for any α ∈ C,

V ∩ϕ−11 (α) = V (f, x21 + x22 + x23 − α)

is either empty or an equidimensional algebraic set of dimension 1. Therefore, (ϕ, 2) satisfies (B). Finally,
since W ◦(ϕ1,W2) ∩ R3 is a finite set, assumption (C) holds vacuously. Indeed the points stand here for
the connected components.

In conclusion, by Theorem 1.1, W2 ∪ F2 is a 1-roadmap of (V, ∅). Figure 2 illustrates this example.
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Figure 2: An illustration of Example 1. The real trace V ∩ R3 is plotted twice as a grid. On the left,
W2∩R3 is represented as red lines, and the crosses represent all the real points of K2. Then, on the right,
we replaced the points of K2 by the fibers of F2 ∩ R3 (black lines), to repair the connectivity failures of
W2 ∩ R3. In particular, F2 ∩ R3 connects the semi-algebraically connected components of W2 ∩ R3 that
lie in the same semi-algebraically connected component of V ∩ R3.

2 Preliminaries
Basic properties of algebraic sets. Recall that given a finite set of polynomials g ⊂ C[x1, . . . , xn]
we denote by V (g) ⊂ Cn the algebraic set defined by the vanishing locus of g. For y ∈ Cn, we denote
by Jacy(g) the Jacobian matrix of g evaluated at y. Conversely, given an algebraic set V ⊂ Cn, we
denote by I(V ) the ideal of V , that is the ideal of C[x1, . . . , xn] of polynomials vanishing on V . Such an
ideal is finitely generated by Hilbert basis theorem.

Let X ⊂ Cn and Y ⊂ Cm be algebraic sets and K ⊂ C be a subfield. A map α : X → Y is a regular
map defined over K if there exists (f1, . . . , fm) ⊂ K[x1, . . . , xn] such that α(y) = (f1(y), . . . , fm(y)) for
all y ∈ X. A regular map α : X → Y is an isomorphism defined over K if there exists a regular map
β : Y → X, defined over K, such that α ◦ β = idY and β ◦ α = idX , where idZ : Z → Z is the identity
map on Z. We refer to [18] for further details on these notions. The following result is straightforward.

Lemma 2.1. Let Y ⊂ Cn and Z ⊂ Cm be two algebraic sets. Let α : Y → Z be an isomorphism of
algebraic sets defined over R. Then the semi-algebraically connected subsets of Y ∩Rn and Z ∩Rm are
in correspondence through α.

Critical points of a polynomial map. The following lemma from [16, Lemma A.2] provides an
algebraic characterization of critical points.

Lemma 2.2 (Rank characterization). Let Z ⊂ Cn be a d-equidimensional algebraic set and g =
(g1, . . . , gp) be generators of I(Z). Let ϕ : Z → Cm be a polynomial map, then the following holds.

W ◦(ϕ, Z) = {y ∈ Z | rank(Jacy(g)) = n− d and rank(Jacy([g,ϕ])) < n− d+m} ;

K(ϕ, Z) = {y ∈ Z | rank(Jacy([g,ϕ])) < n− d+m}.

Let us present a direct consequence of this result, which gives a more effective criterion for the singular
points of a polynomial map. Let ϕ = (ϕ1, . . . , ϕn) ⊂ C[x1, . . . , xn] and ϕi be the deduced map defined
as in (1) for 1 ≤ i ≤ n.

Lemma 2.3. Let Z ⊂ Cn be a d-equidimensional variety and g be a finite set of generators of I(Z).
Then for 1 ≤ i ≤ n, K(ϕi, Z) is the algebraic subset of Z defined by the vanishing of g and the

(p+ i)-minors of Jac([g,ϕi]), where p = n− d.
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Proof. One directly deduces from Lemma 2.2 that K(ϕi, Z) is exactly the intersection of Z, the zero-set
of g, with the set of points y ∈ Cn where rank(Jacy([g,ϕi])) < p+ i. But, by elementary linear algebra,
the latter set is the zero-set of the (p+i)-minors of Jac([g,ϕi]), which are polynomial ofC[x1, . . . , xn].

Definition 2.4 (Polar variety). Let Z ⊂ Cn be a d-equidimensional algebraic set, and let 1 ≤ i ≤ n.
We denote by W (ϕi, Z) the Zariski closure of W ◦(ϕi, Z). It is called a generalized polar variety of Z.
Remark that

W ◦(ϕi, Z) ⊂ W (ϕi, Z) ⊂ K(ϕi, Z) ⊂ Z

by minimality of the Zariski closure. Hence K(ϕi, Z) = W (ϕi, Z) ∪ sing(Z) but the union is not
necessarily disjoint.

3 Connectivity and critical values
In this section we consider for n ≥ 1 an equidimensional algebraic set Z ⊂ Cn of dimension d > 0. We
are going to prove two main connectivity results on the semi-algebraically connected components of Z
through some polynomial map. These results, along with the idea of Morse theory, will be essential in
the proof of Theorem 1.1. Most of the results presented here are generalizations of those present in [15,
Section 3.] in the unbounded case, replacing projections by suitable polynomial maps.

3.1 Connectivity changes at critical values
The main result of this paragraph is to prove the following proposition which deals with the connec-
tivity changes of semi-algebraically connected components when restricting close to singular values of a
polynomial map.

Proposition 3.1. Let ϕ : Cn → C a regular map defined over R. Let A ⊂ Rk be a semi-algebraically
connected semi-algebraic set, and u ∈ R and

γ : A→ Z|ϕ≤u −
(
Z|ϕ=u ∩K(ϕ, Z)

)
be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected component
B of Z|ϕ<u such that γ(A) ⊂ B.

Notation. In this paragraph we fix ϕ : Cn → C a regular (polynomial) map defined over R. With a
slight abuse of notation, a polynomial of C[x1, . . . , xn] associated to ϕ will be denoted equally.

We start by proving an extended version of [15, Lemma 6]. This can be seen as the foundation stone
of all the connectivity results presented in this paper. Recall that an open Euclidean neighborhood of a
point y ∈ Rn is any subset of Rn, that contains y and is open for the Euclidean topology on Rn.

Lemma 3.2. Let y = (y1, . . . ,yn) be in Z ∩Rn −K(ϕ, Z). Then, there exists a map α : Z → Cn+1,
such that the following holds :

a) there exist open Euclidean neighborhoods N ′ ⊂ Rd of πd(α(y)) and N ⊂ Rn+1 of α(y), and there
exists a continuous semi-algebraic map f : N ′ → Rn+1−d such that:

α(Z) ∩N =
{

(z′,f(z′)) | z′ ∈ N ′
}

;

b) α : Z → α(Z) is an isomorphism of algebraic sets defined over R;

c) ϕ ◦α−1 = π1 on α(Z).

Proof. Let Oy ⊂ Rn be an open Euclidean neighborhood of y such that there exists g = (g1, . . . , gn−d)
in C[x1, . . . , xn], such that Z ∩ Oy = V (g) ∩ Oy. Such a Oy is given by [7, Proposition 3.3.10] since
y ∈ reg(Z). Moreover Jacy(g) has full rank n − d and since y /∈ W (ϕ, Z) there exists a non-zero
(n − d + 1)-minor of Jacy([g,ϕ]) by Lemma 2.3. Therefore, there exists a permutation σ of {1, . . . , n}
such that the matrix [

∂g
∂xσ(i)

(y)
∂ϕ

∂xσ(i)
(y)

]
d≤j≤n
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is invertible. Let x0 be a new variable, and let

h = (g̃, ϕ̃) =
(
g(σ−1 · (x1, . . . , xn)), ϕ(σ−1 · (x1, . . . , xn))− x0

)
⊂ R[x0, x1, . . . , xn],

where τ · (x1, . . . , xn) = (xτ(1), . . . , xτ(n)) for any permutation τ of {1, . . . , n}. Hence,

V (h) ∩ (R×Oy) =
{

(ϕ(y), σ · y) | y ∈ Z ∩Oy

}
⊂ Rn+1.

According to the chain rule, for any 1 ≤ j ≤ n and z ∈ Rn,

∂g̃

∂xj
(ϕ(z), z) =

∂g

∂xσ(j)
(σ−1 · z) and

∂ϕ̃

∂xj
(ϕ(z), z) =

∂ϕ

∂xσ(j)
(σ−1 · z).

Hence, for Jac(f , i) the Jacobian matrix of f with respect to (xi+1, . . . , xn), and ỹ = (ϕ(y), σ · y),

Jacỹ(h, d− 1) =

[
Jacỹ(g̃, d− 1)
Jacỹ(ϕ̃, d− 1)

]
=

[
∂g

∂xσ(i)
(y)

∂ϕ
∂xσ(i)

(y)

]
d≤j≤n

,

which is invertible by assumption on σ.
Therefore, applying the semi-algebraic implicit function theorem [4, Th 3.30] to h, there is an open

Euclidean neighborhood N ′ ⊂ Rd of (ϕ(y),y′) where y′ = (yσ(`), 1 ≤ ` ≤ d − 1), an open Euclidean
neighborhood N ′′ ⊂ Rn−d+1 of y′′ = (yσ(`), d ≤ ` ≤ n) and a map f = (f1, . . . , fn−d+1) ∈ S∞(N ′, N ′′)
(since ϕ and the gi’s are polynomials) such that:

∀ z = (z′, z′′) ∈ N ′ ×N ′′,
[
h(z) = 0⇐⇒ z′′ = f(z′)

]
Then, let N = (N ′ ×N ′′) ∩ (R× σ ·Oy) ⊂ Rn+1, the previous assertion becomes:{

(ϕ(z), σ · z) | z ∈ Z
}
∩N =

{
(z′,f(z′)) | z′ ∈ N ′

}
(2)

Finally, we claim that taking α : z ∈ Z 7→ (ϕ(z), σ · z) ends the proof. Indeed, by equation (2),
assertion a) immediately holds since N ′ and N are Euclidean open neighborhood of πd(α(y)) and α(y)
respectively. Further, one checks that α is a Zariski isomorphism, of inverse σ−1 after projecting on the
last n coordinates, which proves b). Finally, one sees that π1 × α = ϕ so that c) holds as well.

Remark. The previous lemma shows in particular that Z ∩ Rn − K(ϕ, Z) is a Nash manifold (see [4,
Section 3.4]) of dimension d i.e. which is locally S∞-diffeomorphic to Rd.

Lemma 3.3. Let y be in Z ∩ Rn − K(ϕ, Z) and u = ϕ(y). Then there exists an open Euclidean
neighborhood N(y) of y such that the following holds:

a) N(y) is semi-algebraically connected;

b) (Z ∩N(y))|ϕ<u is non-empty and semi-algebraically connected;

c) (Z ∩N(y))|ϕ=u is contained in (Z ∩N(y)|ϕ<u.

This result is illustrated by Figure 3.

Proof. Let α, N ′, N and f be obtained by applying Lemma 3.2. Let F : z′ ∈ N ′ 7→ (z′,f(z′)) ∈ N . Let
ε > 0 be such that

B = B (πd(α(y)), ε) ⊂ N ′ ⊂ Rd

where B (πd(α(y)), ε) is the open ball of Rd with radius ε and center πd(α(y)). We claim that taking
N(y) = α−1(F (B)) is enough to prove the result.

First F (B) is open, semi-algebraic and semi-algebraically connected since F is an open continuous
map on B . Then, by assumptions on α, together with Lemma 2.1, α−1(F (B)) is a semi-algebraically
connected open neighborhood of y. Hence N(y) satisfies statement a).

Indeed, F is an S∞-diffeomorphism from N ′ to α(Z) ∩N of inverse πd and B ⊂ N ′.
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))π1<y1

N(y)Zπ1<y1

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))π1<y1

N(y)

Zπ1<y1

Figure 3: Illustration of Lemma 3.3 where ϕ = π1, u = y1 and Z is isomorphic to V (x21 + x22 − 1) ×
V (x2 + x21). On the left, y is not critical and one sees that it satisfies all the statements. On the right
y is critical, and (Z ∩N(y))|π1<y1

is disconnected. Note that in both cases, y1 is a critical value.

Besides, remark that F (B) ⊂ α(Z), so that

(α(Z) ∩ F (B))|π1<u = F (B)|π1<u = F (B|π1<u)

as π1(F (z′)) = π1(z′) for z′ ∈ N ′. Since π1(α(y)) = ϕ(y) = u, the semi-algebraic set B|π1<u is non-
empty and semi-algebraically connected (since B is convex), and so is its image through F by [4, Section
3.2]. But remark that for all X ⊂ R,

(Z ∩N(y))|ϕ∈X = α−1
(
(α(Z) ∩ F (B))|π1∈X

)
= α−1 ◦ F (B|π1∈X), (3)

since ϕ ◦ α−1 = π1. Therefore, by Lemma 2.1, (Z ∩ N(y))|ϕ<u is non-empty and semi-algebraically
connected as claimed in statement b).

To prove assertion c), remark that B|π1=u is contained in B|π1<u, so that α−1◦F (B|π1=u) is contained
in α−1 ◦ F (B|π1<u). Since F and α−1 are continuous,

α−1 ◦ F
(
B|π1<u

)
⊂ α−1 ◦ F

(
B|π1<u

)
.

Finally by (3)
(Z ∩N(y))|ϕ=u ⊂ (Z ∩N(y)|ϕ<u.

Lemma 3.4. Let y be in Z ∩Rn −K(ϕ, Z), let u = ϕ(y) and let N(y) as in Lemma 3.3. Then, there
exists a unique semi-algebraically connected component By of Z|ϕ<u such that y ∈ By. Moreover,

(Z ∩N(y))|ϕ<u ⊂ By.

This lemma is illustrated in Figure 4.

Proof. By the second item of Lemma 3.3, (Z ∩ N(y))|ϕ<u is non-empty and semi-algebraically con-
nected. Then it is contained in a semi-algebraically connected component By of Z|ϕ<u. Since the
semi-algebraically connected components of Z|ϕ<u are pairwise disjoint, By is well defined and unique.
Moreover by Lemma 3.3,

y ∈ (Z ∩N(y))|ϕ<u ⊂ By.
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x1

π−1
1 (y1)

Z ∩Rn

y

(Z ∩N(y))<y1

N(y)By

x1

π−1
1 (y1)

Z ∩Rny(Z ∩N(y))<y1

N(y)

By

B′y

Figure 4: Illustration of Lemma 3.4 where ϕ = π1, u = y1 and Z is isomorphic to V (x21 + x22 − 1) ×
V (x2 +x21). On the left y is not critical and one sees that y ∈ By and (Z ∩N(y))|π1<y1

⊂ By. However
on the right, y is critical, and one observes that y belongs to both By and B′y, and, in addition, that
(Z ∩N(y))|π1<y1

is not contained in any of these components. Note that in both cases, y1 is a critical
value.

Finally, suppose that there exists another connected component B′ of Z|ϕ<u such that y ∈ B′. Then y
belongs to the closure of B′, so that N(y)∩B′ 6= ∅, since N(y) is a neighborhood of y. Thus B′∩By 6= ∅
and since they are both semi-algebraically connected component of the same set, B′ = By.

Let us see a geometric consequence of this result. The following lemma shows that if u is the least
element of R such that the hypersurface ϕ−1({u}) intersects a semi-algebraically connected component
C of Z ∩ Rn, then this intersection consists entirely of singular points of ϕ on Z. It is illustrated by
Figure 5.

Lemma 3.5. Let y ∈ Z ∩Rn with u = ϕ(y) and let C be the semi-algebraically connected component
of Z|ϕ≤u containing y. If C|ϕ<u = ∅ then C = C|ϕ=u ⊂ K(ϕ, Z). In particular, y ∈ K(ϕ, Z).

Proof. If C|ϕ<u = ∅, since C ⊂ Z|ϕ≤u then C = C|ϕ=u holds. Let us prove the contrapositive of the rest
of the lemma. Suppose that C|ϕ=u 6⊂ K(ϕ, Z), and let

z ∈ C|ϕ=u −K(ϕ, Z).

Let Bz be the semi-algebraically connected component of Z|ϕ<u obtained by applying Lemma 3.4. Since
Bz contains z and is a semi-algebraically connected set of Z|ϕ≤u, then Bz ⊂ C. Hence C|ϕ<u contains
(Bz)|ϕ<u = Bz, which is then not empty.

We prove now an important consequence of the previous lemma. It is a fundamental property of
generalized polar varieties and motivates their introduction among the ingredients of a roadmap.

Proposition 3.6. Let u ∈ R and let B be a bounded semi-algebraically connected component of Z|ϕ<u.
Then B ∩K(ϕ, Z) 6= ∅.

Proof. Since ϕ is a semi-algebraic continuous map and B is semi-algebraic, then ϕ(B) is a closed and
bounded semi-algebraic set by [4, Theorem 3.23]. In particular, ϕ reaches its minimum ϕ(z) on B and
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x1

x2
x3

TyZ

Z|π1≤u

π1(TyZ)

Z ∩ R3 TyZ = π−1
1 (−r)

ϕ−1(ϕ(y))

Z ∩ R3

C|ϕ=ϕ(y)

y = (−r, 0, 0)
0

dyϕ = −2rπ1

r

x1 x2

x3

Figure 5: Illustration of Lemma 3.5 in two cases. On the left, ϕ = π1 and Z ∩R3 is a torus. One sees
that when the plane is tangent to the algebraic set, its intersection with the axis of x is reduced to a
point. On the right, ϕ is the square of the Euclidean norm, and Z is a cylinder. Here the differential
of ϕ at the critical point (−r, 0, 0) is collinear to π1. The same observations as in the first case can be
done.

since ∅ 6= B ⊂ Z|ϕ<u,then ϕ(z) < u. But B is a semi-algebraically connected component of Z|ϕ<u, in
particular, it is closed in Z|ϕ<u, so that

B −B ⊂ Z|ϕ=u.

Therefore z ∈ B and asB|ϕ<ϕ(z) is empty (z is a minimizer), B|ϕ=ϕ(z) and z is inK(ϕ, Z) by Lemma 3.5.
Finally z ∈ B ∩K(ϕ, Z), and the latter is non-empty.

We are now able to prove a weaker version of Proposition 3.1, which is illustrated in Figure 6. It
deals with the particular case when the map has value in some fiber Z|ϕ=u, where u ∈ R.

Lemma 3.7. Let u ∈ R and A ⊂ Rk be a semi-algebraically connected set. Let

γ : A −→ Z|ϕ=u −K(ϕ, Z)

be a continuous semi-algebraic map. Then there exists a unique semi-algebraically connected component
B of Z|ϕ<u such that γ(A) ⊂ B.

Proof. Let a ∈ A and y = γ(a), by assumption, y ∈ Z|ϕ=u −K(ϕ, Z). Then by Lemmas 3.3 and 3.4,
there exist an open neighborhood N(y) of y and a semi-algebraically connected component By of Z|ϕ<u
such that

(Z ∩N(y))|ϕ=u ⊂ (Z ∩N(y))|ϕ<u ⊂ By.

Hence for every z ∈ (Z ∩N(y))|ϕ=u −K(ϕ, Z), z ∈ By so that Bz = By by application of Lemma 3.4.
Since γ is a continuous semi-algebraic map, there exists an open semi-algebraic neighborhood N ′(a) of
a such that

γ(N ′(a)) ⊂ (Z ∩N(y))|ϕ=u −K(ϕ, Z).

Hence the map a 7→ Bγ(a) is constant on N(a).
Since A is semi-algebraically connected, this map is actually globally constant on A and we note B

the constant value that it takes on this set. Thus, by Lemma 3.4, for all a ∈ A, γ(a) ∈ Bγ(a) = B,
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x1

Z ∩ Rn

γ(A)

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

γ(A)

Z|π1=u ∩K(π1, Z)

B′B

Z|π1=u

Figure 6: Illustration of the proof of Proposition 3.1 where ϕ = π1 and Z is isomorphic to V (x21 +
x22− 1)×V (x2 + x21) in two cases. On the left the γ(A)∩ (Z|π1=u ∩K(π1, Z)) = ∅ and on the right, this
intersection is non-empty.

that is γ(A) ⊂ B. Besides, if B′ is another semi-algebraically connected component of Z|ϕ<u such that
γ(A) ⊂ B′, then for all a ∈ A,

γ(a) ∈ B ∩B′ ∩ Z|ϕ=u −K(ϕ, Z),

so that B = B′ by uniqueness in Lemma 3.4.

We can now prove the main proposition by sticking together all the pieces. The points of the map
that belong to the fiber Z|ϕ=u are managed by Lemma 3.7, while the remaining ones, in Z|ϕ<u, are more
convenient to deal with. This proof is illustrated by Figure 7.

Proof of Proposition 3.1. Since γ is semi-algebraic and continuous, γ(A) is semi-algebraically connected.
Hence, if γ(A) ⊂ Z|ϕ<u, it is contained in a unique semi-algebraically connected component B of Z|ϕ<u
and we are done.

We assume now that γ(A) 6⊂ Z|ϕ<u. Let G = γ−1(Z|ϕ=u). It is a closed subset of A since Z|ϕ=u is
closed in Z|ϕ≤u and γ is continuous. Then, let G1, . . . , GN be the semi-algebraically connected compo-
nents of G, they are closed in A since they are closed in G, which is closed in A. Besides, let H1, . . . ,HM

be the semi-algebraically connected components of A − G. They are open in A since they are open in
A−G , which is open in A.

Let B : A → P(Z|ϕ<u) be a map, where P(Z|ϕ<u) is the power set of Z|ϕ<u. The family formed
by both G1, . . . , GN and H1, . . . HM is a partition of A. Then one can define B by defining it on this
partition.

Hi : Since Hi ⊂ A − G, γ(Hi) ⊂ Z|ϕ<u and γ(Hi) is semi-algebraically connected as γ is continuous.
Then, there exists a unique semi-algebraically connected component Bi of Z|ϕ<u such that γ(Hi) ⊂
Bi ⊂ Bi.

Gi : Since Gi is semi-algebraically connected and γ(Gi) ⊂ Z|ϕ=u − K(ϕ, Z), Lemma 3.7 with A =
Gi states that there is a unique semi-algebraically connected component B′i of Z|ϕ<u such that
γ(Gi) ⊂ B′i.

Therefore, for all a ∈ A, let B such that

B(a) =

{
Bi if a ∈ Hi

B′i if a ∈ Gi
so that γ(a) ∈ B(a).
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Let us show that B is locally constant, that is, for every a ∈ A, there exists an open Euclidean neigh-
borhood N(a) ⊂ A of a, such that for all a′ ∈ N(a), B(a′) = B(a). Then, we will conclude by
connectedness. Let a ∈ A and 1 ≤ i ≤ max(M,N).

• If a ∈ Hi, since Hi is open in A, there exists an open Euclidean neighborhood N(a) of a contained
in Hi. By construction, for all a′ ∈ N(a), B(a′) = B(a). Moreover, since Hi is semi-algebraically
connected, this also proves that B is actually contant on Hi, let B(Hi) be this constant value.

• Else a ∈ Gi, since the Gj ’s are closed in A, then a does not belong to the closure of any other Gj ,
j 6= i. However, the set

J =
{

1 ≤ j ≤M | a ∈ Hj

}
is not empty. By construction, γ(a) ∈ B(a) and by definition of J , for every j ∈ J , γ(a) ∈ B(Hj).
But, by Lemma 3.4 applied with y = γ(a), such a semi-algebraically connected component is
unique. Hence for all j ∈ J , B(Hj) = B(a). One can then take N(a) = B(a, r) with r > 0 such
that this open ball intersects either the Hj ’s for j ∈ J or Gi, and only them.

Finally, we proved that B is locally constant. Since A is semi-algebraically connected, B is globally
constant on A. Denoting by B this constant value, we have γ(A) ⊂ B as claimed. Besides if B′ is another
semi-algebraically connected component of Z|ϕ<u such that γ(A) ⊂ B′, then in particular B∩B′ contains
γ(G1) ⊂ Z|ϕ=u −K(ϕ, Z), so that B = B′ by Lemma 3.7.

x1

Z ∩ Rn

G1

H1 H2

B

Z|π1=u

Z|π1=u ∩K(π1, Z)

x1

Z ∩ Rn

Z|π1=u ∩K(π1, Z)

G1

H1 H2

B′B

Z|π1=u

Figure 7: Illustration of the proof of Proposition 3.1 with ϕ = π1 and Z is isomorphic to V (x21 + x22 −
1)×V (x2 + x21) in two cases. The intersection γ(A)∩ (Z|π1=u ∩K(π1, Z)) is empty on the left while, on
the right, it is not.

We then deduce the following consequence on the semi-algebraically connected components of Z with
respect to ϕ. This result is illustrated in Figure 8.

Corollary 3.8. Let ϕ : Cn → C be a regular map defined over R and Z ⊂ Cn be an equidimensional
algebraic set of positive dimension. Let u ∈ R such that Z|ϕ=u ∩ K(ϕ, Z) = ∅ and let C be a semi-
algebraically connected component of Z|ϕ≤u. Then, C|ϕ<u is a semi-algebraically connected component
of Z|ϕ<u.

Proof. Let γ be the inclusion map γ : C ↪→ Z|ϕ≤u. Since Z|ϕ=u∩K(ϕ, Z) = ∅, γ satisfies the assumptions
of Proposition 3.1 with A = C. Then there exists a unique semi-algebraically connected component B
of Z|ϕ<u such that C ⊂ B, so that C|ϕ<u ⊂ B|ϕ<u = B.
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First, since Z|ϕ=u ∩ K(ϕ, Z) = ∅ by assumption, in particular C|ϕ=u 6⊂ K(ϕ, Z). Then by con-
trapositive of Lemma 3.5, C|ϕ<u is not empty. Hence, since B is a semi-algebraically connected set of
Z|ϕ≤u, containing C|ϕ<u, then B is contained in the semi-algebraically connected component C of Z|ϕ≤u.
Finally B ⊂ Z|ϕ<u ∩ C = C|ϕ<u and C|ϕ<u = B, which is a semi-algebraically connected component of
Z|ϕ<u.

x1

π−1
1 (u)

Z ∩ RnCπ1<u

C

x1

π−1
1 (u)

Z ∩ Rn

Cπ1<u

C

Figure 8: Illustration of Corollary 3.8 where ϕ = π1 and Z is isomorphic to V (x21+x22−1)×V (x2+x21).
On the left Z|π1=u ∩ K(π1, Z) = ∅ and one sees that C|π1<u is still a semi-algebraically connected
component of Z|π1<u. On the right Z|π1=u ∩K(π1, Z) 6= ∅ and one sees that C|π1<u is disconnected.

3.2 Fibration and critical values
As in [15, Section 3.2] we are going to use a Nash version of Thom’s isotopy lemma, stated in [13]. We
refer to [4, Section 3.5] for the definitions of Nash diffeomorphisms, manifolds and submersions together
with their properties.

Proposition 3.9. Let ϕ : Cn → C be a regular map defined over R and A ⊂ ϕ−1((−∞, w)) ∩Rn be
a semi-algebraically connected semi-algebraic set. Let v < w such that A|ϕ∈(v,w) is a non-empty Nash
manifold, bounded, closed in ϕ−1((v, w)) ∩Rn and such that ϕ is a submersion on A|ϕ∈(v,w). Then for
all u ∈ [v, w), A|ϕ≤u is non-empty and semi-algebraically connected.

Proof. We first prove that ϕ : A|ϕ∈(v,w) → (v, w) is a proper surjective submersion. Since A|ϕ∈(v,w) is
bounded and ϕ is semi-algebraic and continuous, ϕ : A|ϕ∈(v,w) → (v, w) is a proper map. Let us prove
that ϕ is also surjective on A|ϕ∈(v,w) that is

ϕ(A|ϕ∈(v,w)) = (v, w).

By assumption, ϕ is a submersion from A|ϕ∈(v,w) to (v, w). Then by the semi-algebraic inverse
function theorem [4, Proposition 3.29], ϕ is an open map. Besides, as A|ϕ∈(v,w) is closed and bounded,
there exists a closed and bounded semi-algebraic set X ⊂ Rn such that A|ϕ∈(v,w) = X ∩ ϕ−1((v, w)) =
X|ϕ∈(v,w). Then

ϕ(A|ϕ∈(v,w)) = ϕ(X|ϕ∈(v,w)) = ϕ(X) ∩ (v, w).

Since X is bounded and closed, ϕ(X) is closed and bounded by [4, Theorem 3.23]. Hence, ϕ(A|ϕ∈(v,w))
is both open and closed in (v, w). Since (v, w) is semi-algebraically connected, ϕ(A|ϕ∈(v,w)) = (v, w).
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By the Nash version of Thom’s isotopy lemma [13, Theorem 2.4], since the map ϕ : A|ϕ∈(v,w) → (v, w)
is a proper surjective submersion, it is a globally trivial fibration. Hence, for ζ ∈ (v, w), there exists a
Nash diffeomorphism Ψ of the form

Ψ: A|ϕ∈(v,w) −→ (v, w)×A|ϕ=ζ

y 7−→ ( ϕ(y) , ψ(y) )
.

We now proceed to prove the main statement of the proposition. There are, at first sight, two different
situations to consider: whether u > v or u = v (see Figure 9). Thanks to Puiseux series, we actually
prove them simultaneously.

Take u ∈ [v, w); we prove that A|ϕ≤u is non-empty and semi-algebraically connected. To prove that
A|ϕ=u is non-empty, we consider z ∈ A|ϕ=ζ and the map

γ : [0, 1) → A|ϕ∈(v,w)

t 7→ Ψ−1(tu+ (1− t)ζ,z).

This map is well defined and continuous, since Ψ is a Nash diffeomorphism from A|ϕ∈(v,w) to (v, w) ×
A|ϕ=ζ , and satisfies ϕ(γ(t)) = tu+(1−t)ζ for every t ∈ [0, 1). Moreover γ is a bounded map as A|ϕ∈(v,w)

is bounded by assumption. Then, by [4, Proposition 3.21], γ can be continuously extended to [0, 1]. Then
ϕ(γ(t)) = tu+ (1− t)ζ is continuous on [0, 1], and ϕ(γ(1)) = u. Finally γ(1) ∈ A|ϕ≤u and A|ϕ≤u is not
empty.

We prove now that A|ϕ≤u is semi-algebraically connected. Consider two points y and y′ in A|ϕ≤u.
Since A is semi-algebraically connected by assumption, there exists a continuous path γ : [0, 1]→ A such
that γ(0) = y and γ(1) = y′. Let us construct, from γ, another path that lies in A|ϕ≤u.

Let ε be an infinitesimal, and let R′ = R〈ε〉 be the field of algebraic Puiseux series in ε (see [4, Section
2.6]). We denote by A′, (v, w)′,Ψ′, ψ′,ϕ′ and γ′ the extensions of respectively A, (v, w),Ψ, ψ,ϕ and γ to
R′ in the sense of [4, Proposition 2.108]. According to [4, Exercice 2.110], Ψ′ : A′|ϕ∈(v,w)′ → (v, w)′×A′|ϕ=ζ

is a bijective map. Then let g′ : [0, 1]′ ⊂ R′ → A′ be such that

g′(t) = γ′(t) if ϕ′(γ′(t)) ≤ u+ ε,

g′(t) = Ψ′−1(u+ ε, ψ′(γ′(t))) if u+ ε ≤ ϕ′(γ′(t)) < w.

This map is well defined since u+ ε ∈ (v, w) and if ϕ′(γ′(t)) = u+ ε, then Ψ′−1(u+ ε, ψ′(γ′(t))) = γ′(t).
Moreover g′ is a continuous semi-algebraic map since by [4, Exercice 3.4], Ψ′−1, ψ′ and γ′ are continuous
semi-algebraic maps.

Finally one observes that g′ is bounded over R. Indeed if ϕ′(γ′(t)) ≤ u+ ε, then g′(t) = γ(t), which
is continuous on [0, 1]′ and then bounded over R. Else ϕ′(γ′(t)) ∈ (v, w) and g′(t) ∈ A′|ϕ∈(v,w)′ , which
is bounded over R by [4, Proposition 3.19] since A|ϕ∈(v,w) is. Hence, its image G′ = g′([0, 1]′) is a semi-
algebraically connected semi-algebraic set, bounded over R and contained in A′|ϕ≤u+ε.

Let G = limεG
′. By [4, Proposition 12.49], G is a closed and bounded semi-algebraic set. Then,

since ϕ is a continuous semi-algebraic map defined over G, by [4, Lemma 3.24] for all z′ ∈ G′,

ϕ(limε z
′) = limεϕ(z′) ≤ limε (u+ ε) = u

So that G is contained in A|ϕ≤u. In addition, since G′ is semi-algebraically connected and bounded
over R, then by [4, Proposition 12.49], G is semi-algebraically connected and contains y = limε g(0) and
y′ = limε g(1). We deduce that there exists, inside G, a semi-algebraic path connecting y to y′ in A|ϕ≤u,
which ends the proof.

The following result is a consequence of Proposition 3.9 as it deals with a particular case. An
illustration of this statement can be found in Figure 10.

Corollary 3.10. Let Z ⊂ Cn be an equidimensional algebraic set of positive dimension and let ϕ : Cn →
C be a regular map defined over R and proper on Z ∩ Rn. Let v < w be in R such that Z|ϕ∈(v,w] ∩
K(ϕ, Z) = ∅, and let C be a semi-algebraically connected component of Z|ϕ≤w. Then, C|ϕ≤v is a semi-
algebraically connected component of Z|ϕ≤v.
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Figure 9: Illustration of the two cases covered by the proof of Proposition 3.9 where ϕ = π1 and Z is
isomorphic to V (x21 + x22 − 1)× V (x2 + x21). The two cases are quite similar according to these figures.
One sees that Ψ connects all the slices A|π1=u for u ∈ (v, w)′. This diffeomorphism allows to transform
the problematic parts (not in A|π1≤u) of the initial path γ (in green), into another path g (in red), that
lies in A|π1=u ⊂ A|π1≤u.

Proof. As C|ϕ<w = C ∩ϕ−1((−∞, w)) ∩Rn, we are going to use Proposition 3.1 with A = C|ϕ<w.
First we need to prove that C|ϕ<w is a non-empty semi-algebraically connected semi-algebraic set.

Since Z|ϕ=w ∩ K(ϕ, Z) = ∅, by Corollary 3.8 C|ϕ<w is a semi-algebraically connected component of
Z|ϕ<w. Hence it is non-empty and semi-algebraically connected.

Then, we need to prove that C|ϕ∈(v,w) is a non-empty Nash manifold, bounded and closed in
ϕ−1((v, w)) ∩Rn. Suppose first that C|ϕ∈(v,w) = ∅. Then

C|ϕ≤v ∪ C|ϕ=w = C and C|ϕ≤v ∩ C|ϕ=w = ∅.

Since C is semi-algebraically connected, either C|ϕ≤v or C|ϕ=w is empty (as they are both closed in C).
In both cases our conclusion follows. It remains to tackle the case where C|ϕ∈(v,w) is not empty, which
we assume to hold from now on.

We prove that C|ϕ∈(v,w) is bounded. Observe that C|ϕ∈(v,w) ⊂ C|ϕ∈[v,w] = C ∩ Rn ∩ ϕ−1([v, w]).
Recall that ϕ is proper on Z ∩Rn by assumption, and thus on C ∩Rn. Hence, C|ϕ∈[v,w] is bounded.
Besides C|ϕ∈(v,w) is closed in ϕ−1((v, w)) ∩Rn as

C|ϕ∈(v,w) = C ∩ϕ−1((v, w)) ∩Rn,

and C is closed in Rn as it is closed in the closed set Z|ϕ≤w. Since C|ϕ∈(v,w) ∩K(ϕ, Z) = ∅ then by [7,
Proposition 3.3.11], C|ϕ∈(v,w) is a Nash manifold of dimension dim(Z).

To apply Proposition 3.1, it remains to prove that ϕ is a Nash submersion on C|ϕ∈(v,w). Let y ∈
C|ϕ∈(v,w). Since y /∈ sing(Z), then TyC|ϕ∈(v,w) = TyZ ∩Rn according to [7, Proposition 3.3.11]. Since
C|ϕ∈(v,w) ∩K(ϕ, Z) = ∅, dyϕ is onto on TyZ and since dimZ > 0, the image dyϕ(TyZ) is C. Hence

dyϕ(TyC|ϕ∈(v,w)) = R.

We just established that all the assumptions of Proposition 3.9 are satisfied. One can then apply it
to C|ϕ<w and conclude that C|ϕ≤v is non-empty and semi-algebraically connected. Finally, since C
is a semi-algebraically connected component of Z|ϕ≤w, any semi-algebraically connected component of
Z|ϕ≤v contained in C is contained in C|ϕ≤v. Thus C|ϕ≤v is a semi-algebraically connected component
of Z|ϕ≤v.
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Figure 10: Illustration of Corollary 3.10 where ϕ = π1 and Z is isomorphic to V (x21+x22−1)×V (x2+x21)
in two cases. On the left Z|π1∈(v,w) ∩K(π1, Z) = ∅ and we see that C|π1≤v is still a semi-algebraically
connected component of Z|π1≤v. On the right Z|π1∈(v,w) ∩ K(π1, Z) contains a point and we see that
C|π1≤v is semi-algebraically disconnected.

4 Proof of the main connectivity result
Recall that ϕ = (ϕ1, . . . , ϕn) ⊂ R[x1, . . . , xn] and for 1 ≤ i ≤ n,ϕi : y 7→ (ϕ1(y), . . . , ϕi(y)). We denote
by Wi = W (ϕi, V ) the Zariski closure of the set of critical points of the restriction of ϕi to V and recall
that

Ki = W (ϕ1, V ) ∪ S ∪ sing(V ) and Fi = ϕ−1i−1(ϕi−1(Ki)) ∩ V,

where S is a subset of W (ϕ1,Wi). We suppose that the following assumptions holds:

(A) V is d-equidimensional and its singular locus sing(V ) is finite;

(P) the restriction of the map ϕ1 to V ∩Rn is proper and bounded from below;

(B1) Wi is either empty or (i− 1)-equidimensional and smooth outside sing(V );

(B2) for any y = (y1, . . . ,yi) ∈ Ci, V ∩ϕ−1i−1(y) is either empty or (d− i+ 1)-equidimensional;

(C1) S is finite;

(C2) S intersects every semi-algebraically connected component of W (ϕ1,Wi) ∩Rn.

Then the goal of this section is to prove that, Wi ∪ Fi intersects each semi-algebraically connected
component of V ∩Rn and their intersection is semi-algebraically connected. Let R = Fi ∪Wi.

We prove that the following so-called roadmap property holds:

RM: “For any semi-algebraically connected component C of V ∩Rn, the set C ∩R is non-empty and
semi-algebraically connected.”,

by proving a truncated version of RM and show that is is enough. For u ∈ R let

RM(u): “For any semi-algebraically connected component C of V|ϕ1≤u, the set C ∩R is non-empty and
semi-algebraically connected.”.

Lemma 4.1. If RM(u) holds for all u ∈ R, then RM holds.
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Proof. Let C be a semi-algebraically connected component of V ∩Rn. Since C is non-empty and semi-
algebraically connected, there exist y and y′ in C, and a semi-algebraic path γ : [0, 1] → C connecting
them. Let

u = max{ϕ1(γ(t)), t ∈ [0, 1]} ∈ R.

Such a maximum u exists by continuity of γ and ϕ1 since [0, 1] is closed and bounded. Then γ([0, 1]) ⊂
V|ϕ1≤u. Since γ([0, 1]) is semi-algebraically connected, there exists a (unique) semi-algebraically con-
nected component B of V|ϕ1≤u containing γ([0, 1]). In particular, B contains y and y′. Since RM(u)
holds by assumption, then B∩R is non-empty. But as y ∈ B∩C and B is semi-algebraically connected,
then C contains B. Finally, C ∩R contains B ∩R and the former is non-empty.

We can suppose now, in addition, that y and y′ are in C∩R, and let B be defined as above. Then, y
and y′ are in B ∩R, which is semi-algebraically connected by RM(u). Therefore y and y′ are connected
by a semi-algebraic path in B ∩R. Since B ⊂ C, y and y′ are semi-algebraically connected in C ∩R.
In conclusion, C ∩R is semi-algebraically connected and RM holds.

Remark. The previous lemma trivially holds in the case of [15, Theorem 14], since V ∩Rn is assumed
to be bounded. Indeed, in this case, considering u = maxy∈V ∩Rn ϕ1(y), one has V|ϕ1≤u = V ∩Rn.

4.1 Restoring connectivity
Before proving RM(u) for all u ∈ R, we need to prove the following result, which constitutes the core
of the proof of Theorem 1.1. This proposition shows that the connectivity property of our roadmap
candidate is satisfied when u is increasing towards singular points of ϕ1 on V . This is ensured by the
addition of the fibers Fi.

Proposition 4.2. Let u ∈ R and C be a semi-algebraically connected component of V|ϕ1≤u such that
C|ϕ1<u

is non-empty. Let B be a semi-algebraically connected component of C|ϕ1<u
, then:

1. B ∩ (Fi ∪Wi) is non-empty;

2. Any point y ∈ B ∩ (Fi ∪Wi) can be connected to a point z ∈ B ∩ (Fi ∪Wi) by a semi-algebraic
path in B ∩ (Fi ∪Wi).

Let us begin with a technical lemma:

Lemma 4.3. Let K be a real closed field containing R and K be its algebraic closure. Let Z ⊂ K
n
be

a d-equidimensional algebraic set, where d > 0. Assume that for any z ∈ K
i−1

,

Z ∩ϕ−1i−1(z) is either empty or (d− i+ 1)-equidimensional.

Let B be a bounded semi-algebraically connected component of Z ∩ Kn and let y ∈ B. Let H be
the semi-algebraically connected component of B ∩ ϕ−1i−1(ϕi−1(y)) containing y. Then, the intersection
H ∩K(ϕi, Z) is not empty.

Proof. Let Y = Z ∩ϕ−1i−1(ϕi−1(y)). By assumption, Y is an equidimensional algebraic set of dimension
d − i + 1. Besides, H is a bounded semi-algebraically connected component of Y ∩ Kn, since B is a
bounded semi-algebraically connected component of Z ∩Kn.

Recall that ϕ = (ϕ1, . . . , ϕn). Then ϕi(H) ⊂ R is a closed and bounded semi-algebraic set by [4,
Theorem 3.23]. In particular, ϕi reaches its minimum on H. Let z ∈ H be such that ϕi(z) = minϕi(H),
so that H|ϕi<ϕi(z) is empty. Then, by Lemma 3.5,

z ∈ H ∩K(ϕi, Y ).

Let g ⊂ K[x1, . . . , xn] be a sequence of generators of I(Z), so that Y = V (g,ϕi−1 −ϕi−1(y)). Since Y
is (d− i+ 1)-equidimensional, Lemma 2.2 establishes that z is such that

rank

 Jacz(g)
Jacz(ϕi−1)

Jacz(ϕi)

 < n− (d− (i− 1)) + 1.
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Since ϕi = (ϕi−1, ϕi), one deduces that

rank

[
Jacz(g)
Jacz(ϕi)

]
< n− d+ i,

which means that z ∈ H∩K(ϕi, Z). Finally, the latter set is non-empty and the statement is proved.

Notation. For the rest of the subsection let u, C and B as defined in Proposition 4.2.

Let us deal with one particular case of the second item of Proposition 4.2.

Lemma 4.4. Let y be in B ∩Fi. Then, there exists a point z ∈ B ∩ (Fi ∪Wi) and a semi-algebraic path
in B ∩ (Fi ∪Wi) connecting y to z.

Proof. Let y ∈ B ∩ Fi, we assume that y /∈ B so that ϕ1(y) = u, otherwise taking z = y would end
the proof. Since y ∈ B, by the curve selection lemma [4, Th. 3.22], there exists a semi-algebraic path
γ : [0, 1] → Rn such that γ(0) = y and γ(t) ∈ B for all t ∈ (0, 1]. Let ε be an infinitesimal, R′ = R 〈ε〉
be the field of algebraic Puiseux series and ψ = (ψ1, . . . , ψn) be the semi-algebraic germ of γ at the
right of the origin (see [4, Section 3.3]). According to [4, Theorem 3.17], we can identify ψ with an
element of (R′)n. With some notation abuse we will denote them equally. Hence by [4, Proposition
3.21], limε ψ = y. Let finally

H = ext(B,R′) ∩ϕ−1i−1(ϕi−1(ψ)) ⊂ (R′)n

where ext(B,R′) is the extension of B to R′ and ϕj for 1 ≤ j ≤ n, with some notation abuse, still
denote the extension of ϕj to R′.

Since γ((0, 1)) ⊂ B, then, by [4, Proposition 3.19], ψ ∈ ext(B,R′). Hence ψ ∈ H and H is non-empty.
Moreover B is bounded since ϕ1 : V ∩Rn → R is a proper map bounded below by assumption (P). Then
[4, Proposition 3.19] states that ext(B,R′) and then H are bounded over R. Hence the map limε is well
defined on H and

y ∈ limεH = {limε y
′, y′ ∈ H} ⊂ Rn.

Finally, as ϕi−1 is semi-algebraic and continuous, limεH is contained in B∩ϕ−1i−1(ϕi−1(y)) by [4, Lemma
3.24]. But y ∈ Fi, so that

ϕ−1i−1(ϕi−1(y)) ⊂ ϕ−1i−1(ϕi−1(Ki)),

and finally limεH is actually in B ∩ Fi.
Let H1 be the semi-algebraically connected component of H containing ψ. By [4, Proposition 5.24],

limεH1 is the semi-algebraically connected component of limεH containing y. Actually, we just proved
that every w in limεH1 can be semi-algebraically connected to y into B ∩ Fi. We find now some
w ∈ limεH1 that can be connected to a point z ∈ B ∩ (Fi ∪Wi) to end the proof. Such a w must be
the origin of a germ of semi-algebraic functions that lives in B ∩ (Wi ∪ Fi).

By assumption (A) V is d-equidimensional. By assumption (B2), for all z ∈ V , the algebraic set
V ∩ϕ−1i−1(ϕi−1(z)) is (d− i+ 1)-equidimensional. Then, if we denote by C′ the algebraic closure of R′,
it is an algebraic closed extension of C, so that the algebraic sets of (C′)n

Z =
{
z ∈ (C′)n | ∀h ∈ I(V ), h(z) = 0

}
and Z ∩ϕ−1i−1(ϕi−1(ψ)))

are equidimensional of dimension respectively d and (d − i + 1). Since B is a semi-algebraically con-
nected component of V|ϕ1<u

, then, by [4, Proposition 5.24], ext(B,R′) is a semi-algebraically connected
component of

ext(V|ϕ1<u
,R′) = ext(V ∩Rn,R′)|ϕ1<u

= Z|ϕ1<u
,

by [4, Transfer Principle, Th. 2.98]. Then, since H1 is a semi-algebraically connected component of
H = ext(B,R′) ∩ϕ−1i−1(ϕi−1(ψ)), one can apply Lemma 4.3 on Z with K = R′. Hence

H1 ∩K(ϕi, Z) 6= ∅.

By Lemma 2.3, K(ϕi, Z) is defined over R as V and ϕi are. Then, by [4, Transfer Principle, Th. 2.98],

K(ϕi, Z) ∩ (R′)n = ext(K(ϕi, V ) ∩Rn,R′),
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Figure 11: Illustration of proof of Lemma 4.4 with ϕ1 = π1 and V is isomorphic to V (x21 + x22 −
1) × V (x2 + x21). Elements of H1 can be seen as curves of infinitesimal lengths, starting from a point
of limεH1, and lying in B. Here, limεH1 is the set of points that share the same first coordinate than
y. Hence, the above proof consisted in choosing a ζ in H1, that lives “inside” Wi ∪ sing(V ) (actually in
ext(Wi ∪ sing(V ),R〈ε〉)).

so that
∅ ( H1 ∩ ext(K(ϕi, V ) ∩Rn,R′) ⊂ ext(B ∩K(ϕi, V ),R′).

Therefore let ζ ∈ ext(B ∩K(ϕi, V ),R′), let w = limε ζ and τ be a representative of ζ on (0, t0) where
t0 > 0. By [4, Proposition 3.21], we can continuously extend τ to 0 such that τ(0) = w. Besides for all
t ∈ (0, t0),

τ(t) ∈ B ∩K(ϕi, V ) ⊂ B ∩ (Wi ∪ Fi).

Then τ([0, t0)) ⊂ B ∩ (Fi ∪Wi) so that

w ∈ B ∩ (Fi ∪Wi) and z = τ(t0/2) ∈ B ∩ (Fi ∪Wi).

Besides, since w ∈ limεH1 we have seen that it can be connected to y a semi-algebraic path in B∩ (Fi∪
Wi). In the end, there exist two consecutive paths into B ∩ (Fi ∪Wi), connecting y to w, and w to
z ∈ B ∩R (namely τ).

We can now prove Proposition 4.2. This proof is illustrated by Figure 11.

Proof of Proposition 4.2. Let B be a semi-algebraically connected component of C|ϕ1<u
. Since ϕ1 is a

proper map bounded from below on V ∩Rn by assumption P, C|ϕ1<u
, and then B, are bounded. Then

applying Proposition 3.6 shows that:

∅ ( B ∩K(ϕ1, V ) ⊂ B ∩ Fi ⊂ B ∩ (Fi ∪Wi).

The first item is then proved. Let y ∈ B ∩ (Fi ∪Wi). To prove the second item, one only needs to
consider the case where y ∈ B ∩ (Wi − Fi) according to Lemma 4.4. Moreover one can assume that
y /∈ B and then ϕ1(y) = u, otherwise, taking z = y, would end the proof.

Let D be the semi-algebraically connected component of (Wi)|ϕ1≤u containing y, one considers two
disjoint cases.

1. If D 6⊂ B, there exists y′ ∈ D such that y′ /∈ B. Then let γ : [0, 1] → D such that γ(0) = y and
γ(1) = y′. Hence, if

t1 = max{t ∈ [0, 1) | γ(t) ∈ B},
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then γ(t1) ∈ K(ϕ1, V ) by contrapositive of statement c) of Lemma 3.3. Since K(ϕ1, V ) ⊂ Fi, we
can apply Lemma 4.4 to γ(t1) and find z ∈ B ∩ (Fi ∪Wi) that is connected to γ(t1) and then to y
by a semi-algebraic path in B ∩ (Fi ∪Wi).

2. If D ⊂ B , we claim that there exists some z ∈ D ∩ Fi. Indeed since D is a semi-algebraically
connected component of (Wi)|ϕ1≤u and ϕ1 is a proper map, D is bounded. Then by Proposition 3.6
there exists y′ ∈ D ∩K(ϕ1,Wi). If y′ ∈ sing(Wi) then y′ ∈ sing(V ) by assumption B1 and taking
z = y′ ∈ Fi one concludes as in the first item.

Else y′ ∈ W (ϕ1,Wi), so let E be the semi-algebraically connected component of W (ϕ1,Wi)
containing y′. Since ϕ1(W (ϕ1,Wi)) is finite by Sard’s lemma, ϕ1(E) = {ϕ1(y′)}, so that
E ⊂ (Wi)|ϕ1≤u. Hence, since E is semi-algebraically connected, E ⊂ D. By assumption C2,
there exists z ∈ E ∩ S, so that z ∈ D ∩ S ⊂ D ∩ Fi and we are done.

S Then we can connect y to z inside D ⊂ B ∩Wi and since z ∈ D ∩ Fi ⊂ B ∩ Fi we can connect
similarly z to some z′ ∈ B ∩ (Fi ∪Wi) inside B ∩ Fi by Lemma 4.4. Putting things together, y is
connected to some z′ ∈ B ∩ (Fi ∪Wi) by a semi-algebraic path in B ∩ Fi.

Corollary 4.5. Let u ∈ R such that for all u′ < u, RM(u′) holds. Let C be a semi-algebraically
connected component of V|ϕ1≤u such that C|ϕ1<u

is non-empty. If B is a semi-algebraically connected
component of C|ϕ1<u

, then B ∩R is non-empty and semi-algebraically connected.

Proof. Let y and y′ be in B ∩R. According to Proposition 4.2, they can respectively be connected to
some z and z′ in B ∩R, by a semi-algebraic path in B ∩R. As B is semi-algebraically connected, there
exists a semi-algebraic path γ : [0, 1]→ B connecting z to z′. Let

u′ = max
{
ϕ1(γ(t)) | t ∈ [0, 1]

}
,

so that γ([0, 1]) ⊂ V|ϕ1≤u′ . Such a u′ exists by continuity of γ, and satisfies u′ < u, as [0, 1] is closed and
bounded.

Let B′ be the semi-algebraically connected component of B|ϕ1≤u′ that contains γ([0, 1]). Since B′ is
also a semi-algebraically connected component of V|ϕ1≤u′ , property RM(u′) states that B′ ∩R is non-
empty and semi-algebraically connected. Then, as z and z′ are in B′ ∩R, they can be connected by a
semi-algebraic path in B′ ∩R, and then, in B ∩R. Thus y and y′ are connected by a semi-algebraic
path in B ∩R and we are done.

4.2 Recursive proof of the truncated roadmap property
In order to prove that RM(u) holds for all u ∈ R, one can consider two disjoint cases: whether u is a real
singular value of ϕ1, that is u ∈ ϕ1(Ki), or not. The following lemma allows us to proceed by induction.

Lemma 4.6. The set ϕ1(Ki) is non-empty and finite.

Proof. According to the algebraic version of Sard’s theorem [16, Proposition B.2.], the set of critical
values of ϕ1 on V is an algebraic set of C of dimension 0. Then, it is either empty or non-empty but
finite. Hence, ϕ1(Ki) is either empty or non-empty but finite, as S, sing(V ) and P are, by assumption.
Moreover since ϕ1 is a proper map bounded from below on V ∩Rn by assumption (P), for any u ∈ R,
Z|ϕ<u is bounded. Then, since V is not empty, by Proposition 3.6 the sets K(ϕ1, V ) and then ϕ1(Ki)
are not empty.

We denote by v1 < . . . < v` the points of ϕ1(Ki ∩Rn) and, in addition, let v`+1 = +∞. We proceed
by proving the two following steps.

Step 1: Let u ∈ R, if RM(u′) holds for all u′ < u, then RM(u) holds.

Step 2: Let j ∈ {1, . . . , `}, if RM(vj) holds, then for all u ∈ (vj , vj+1), RM(u) holds.

Remark that, by Lemma 3.5, v1 = minV ∩Rn ϕ1, since V ∩Rn is closed. Then for u′ < v1, V|ϕ≤u′ = ∅
and RM(u′) trivially holds. Hence, proving these two steps is enough to prove RM(u) for all u in R, by
an immediate induction.
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Proposition 4.7 (Step 1). Let u ∈ R. Assume that for all u′ < u, RM(u′) holds. Then RM(u) holds.

The proof of this proposition is illustrated by Figure 12.

Proof. Let u ∈ R be such that for all u′ < u, RM(u′) holds and let C be a semi-algebraically connected
component of V|ϕ1≤u. We have to prove that C ∩R is non-empty and semi-algebraically connected.

If C|ϕ1<u
is empty, then, by Lemma 3.5, C ⊂ K(ϕ1, V ). But the points of K(ϕ1, V ) are either in Wi

or in sing(V ) ⊂ Fi. Hence K(ϕ1, V ) ⊂ R and C ∩R = C, which is non-empty and semi-algebraically
connected by definition.

From now on, C|ϕ1<u
is supposed to be non-empty and let B1, . . . , Br be its semi-algebraically

connected components. According to Corollary 4.5, for all 1 ≤ j ≤ r, Bj ∩R is non-empty and semi-
algebraically connected. Then, as Bj ⊂ C,

Bj ∩R ⊂ C ∩R

for every 1 ≤ j ≤ r, and C ∩R is non-empty.
Let us now prove that C ∩ R is semi-algebraically connected. Let y and y′ in C ∩ R. As C is

semi-algebraically connected, there exists a semi-algebraically continuous map γ : [0, 1] → C such that
γ(0) = y and γ(1) = y′. Now let

G = γ−1(C|ϕ1=u
∩K(ϕ1, V )) and H = [0, 1]−G.

We denote by G1, . . . , GN the connected components of G and H1, . . . ,HM those of H. The sets Hj for
1 ≤ j ≤ M are open intervals of [0, 1], and we note `j = inf(Hj) and rj = sup(Hj). Since γ(G) already
lies in C ∩R, let us establish that for every 1 ≤ j ≤ M , γ(`j) and γ(rj) can be connected by another
semi-algebraic path τj in C ∩R.

Let 1 ≤ j ≤M , then γ(Hj) ∩ (C|ϕ1=u
∩K(ϕ1, V )) = ∅ by definition. Moreover, γ(Hj) ⊂ C so that

γ(Hj) ∩ (V|ϕ1=u
∩K(ϕ1, V )) = ∅.

Hence, since Hj is connected, there exists, by Proposition 3.1, a unique semi-algebraically connected
component B of V|ϕ1<u

such that γ(Hj) ⊂ B. But γ(Hj) ⊂ C, so that B and thus B is actually
contained in C. Therefore, B is actually a semi-algebraically connected component of C|ϕ1<u

and there
exists 1 ≤ k ≤ r such that B = Bk. At this step γ(Hj) ⊂ Bk, so that

γ([`j , rj ]) = γ(Hj) ⊂ γ(Hj) ⊂ Bk,

and both γ(`j) and γ(rj) are in Bk. Remark that both `j and rj are in G, so that both γ(`j) and γ(rj)
are in K(ϕ1, V ) ⊂ Fi ⊂ R. Thus, both γ(`j) and γ(rj) are in Bk ∩R. According to Corollary 4.5, they
can be connected by a semi-algebraic path τj : [0, 1]→ Bk ∩R ⊂ C ∩R.

In conclusion, we have proved that for 1 ≤ j ≤ M , γ(`j) and γ(rj) can be connected by a semi-
algebraic path τj in C ∩ R. Therefore the semi-algebraic sub-paths γ|Hj can be replaced by the τj ’s,
which lie in C ∩R. Moreover, for all 1 ≤ j ≤ N

γ(Gj) ⊂ C ∩R.

Since the Hj ’s and Gj ’s form a partition of [0, 1], by putting together alternatively the τj ’s and the γ|Gj ’s,
one obtains a semi-algebraic path in C ∩R connecting y = γ(0) to y′ = γ(1). And we are done.

Proposition 4.8 (Step 2). Let j ∈ {1, . . . , `}, if RM(vj) holds, then for all u ∈ (vj , vj+1), RM(u)
holds.

The proof of this proposition is illustrated by Figure 13.

Proof. Let j ∈ {0, . . . , `} and u ∈ (vj , vj+1). Let C be a semi-algebraically connected component of
V|ϕ1≤u; we have to prove that C ∩R is non-empty and semi-algebraically connected.

Let us first prove that C|ϕ1≤vj ∩R is non-empty and semi-algebraically connected. By assumption
(A), V is an equidimensional algebraic set of positive dimension, and by assumption (P), the restriction
of ϕ1 to V ∩Rn is a proper map bounded below. Moreover, as ϕ1 (K(ϕ1, V ) ∩Rn) ⊂ {v1, . . . , v`}, then

V|ϕ1∈(vj ,u] ∩K(ϕ1, V ) = ∅.
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Figure 12: Illustration of proof of Proposition 4.7 with ϕ1 = π1 and V is isomorphic to V (x21 + x22 −
1)× V (x2 + x21). Here, only y′ belongs to C|π1=u ∩K(π1, V ). Then we replace the path γ = γ|H1

by a
path τ1 that lies in the intersection of the roadmap and the semi-algebraically connected component C.

Then using Corollary 3.10, one deduces that C|ϕ1≤vj is a semi-algebraically connected component of
V|ϕ1≤vj . Hence, by property RM(vj), the set C|ϕ1≤vj ∩R is non-empty and semi-algebraically connected.
In particular, C ∩R is non-empty.

Let us now prove that C ∩R is semi-algebraically connected. Let y be in C ∩R. According to the
previous paragraph, one just need to be able to connect y to a point z of C|ϕ1≤vj ∩R by a semi-algebraic
path in C ∩R and then apply RM(vj). First, if y ∈ C|ϕ1≤vj ∩R, there is nothing to do. Suppose now
that y ∈ C|ϕ1∈(vj ,u] ∩R. We claim that actually

y ∈ C ∩Wi.

Indeed, if y ∈ C ∩ Fi, then ϕi−1(y) ∈ ϕi−1(Ki) and ϕ1(y) would be one of the v1, . . . , v`.
Let D be the semi-algebraically connected component of (C∩Wi)|ϕ1≤u containing y. Remark that D

is a semi-algebraically connected component of (Wi)|ϕ1≤u, as it contains y and is contained in C. Since
ϕ1(W (ϕ1,Wi)) is finite by Sard’s lemma, then ϕ1(W (ϕ1,Wi)) = ϕ1(S). Hence

(vj , u) ∩ϕ1(W (ϕ1,Wi)) = ∅.

Since Wi is equidimensional and smooth outside sing(V ), then by Corollary 3.10, D|ϕ1≤vj is a semi-
algebraically connected component of (Wi)|ϕ1≤vj . Therefore, let z ∈ D|ϕ1≤vj . Since D is semi-
algebraically connected, there exists a semi-algebraic path, connecting y ∈ D ⊂ C ∩R to

z ∈ D|ϕ1≤vj ⊂ C|ϕ1≤vj ∩R

in D ⊂ C ∩R. We are done.
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Figure 13: Illustration of proof of Proposition 4.8 with ϕ1 = π1 and V is isomorphic to V (x21 + x22 −
1)× V (x2 + x21). We connect the points y and y′ in C ∩Wi to respectively z and z′ in C|π1≤vj . Then
we are reduced to the case of Step 1.
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