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THE COMPLETENESS OF THE GENERALIZED EIGENFUNCTIONS AND
AN UPPER BOUND FOR THE COUNTING FUNCTION OF THE

TRANSMISSION EIGENVALUE PROBLEM FOR MAXWELL EQUATIONS

JEAN FORNEROD AND HOAI-MINH NGUYEN

Abstract. Cakoni and Nguyen recently proposed very general conditions on the coefficients
of Maxwell equations for which they established the discreteness of the set of eigenvalues of
the transmission eigenvalue problem and studied their locations. In this paper, we establish the
completeness of the generalized eigenfunctions and derive an optimal upper bound for the counting
function under these conditions, assuming additionally that the coefficients are twice continuously
differentiable. The approach is based on the spectral theory of Hilbert-Schmidt operators.

1. Introduction

Let Ω ⊂ R3 be a bounded domain of class C3. Let ε, µ, µ̂, ε̂ ∈ [L∞(Ω)]3×3 be symmetric and
uniformly elliptic. A complex number ω ∈ C is called a transmission eigenvalue if there exists a
non-zero solution (E,H, Ê, Ĥ) ∈ [L2(Ω)]12 of the following Cauchy problem:

(1.1)

{
∇× E = iωµH in Ω,

∇×H = −iωεE in Ω,

{
∇× Ê = iωµ̂Ĥ in Ω,

∇× Ĥ = −iωε̂Ê in Ω,

(1.2) (Ê − E)× ν = 0 on ∂Ω, and (Ĥ −H)× ν = 0 on ∂Ω.

Here and in what follows, ν denotes the unit, outward, normal vector to ∂Ω.
The transmission eigenvalue problem, proposed by Kirsch [16] and Colton and Monk [11], has

been an active research topic in the inverse scattering theory for inhomogeneous media. It has a
connection with the injectivity of the relative scattering operator. Transmission eigenvalues are
related to interrogating frequencies for which there is an incident field that is not scatterered by
the medium. We refer the reader to [6] for a recent and self-contained introduction to the topic.

Cakoni and Nguyen [9] have recently studied the transmission eigenvalue problem for Maxwell
equations in a very general setting. Under the assumption that ε, µ, ε̂, µ̂ are of class C1 in a
neighborhood of the boundary, they proposed the following condition:

(1.3) ε, µ, ε̂, µ̂ are isotropic on ∂Ω, and ε 6= ε̂, µ 6= µ̂, ε/µ 6= ε̂/µ̂ on ∂Ω

(see Remark 4 for the convention used in (1.3)). Under this assumption, Cakoni and Nguyen
showed that the set of eigenvalues λj of system (1.1)-(1.2) is discrete. In studying the location of
the eigenvalues under this condition, they showed that, for every γ > 0, there exists ω0 > 0 such
that if ω ∈ C with |=(ω2)| ≥ γ|ω|2 and |ω| ≥ ω0, then ω is not a transmission eigenvalue. Their
analysis is inspired and guided by the famous work of Agmon, Douglis, and Nirenberg [2, 3] on
complementing boundary conditions.

In this paper, we further study spectral properties of the transmission eigenvalue problem under
assumption (1.3) given above. More precisely, we establish the completeness of the generalized
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2 JEAN FORNEROD AND H.-M. NGUYEN

eigenfunctions and derive an optimal upper bound for the counting function of the transmission
eigenvalues.

Before stating our results, as in [9], we denote

(1.4) H(Ω) :=
{

(u, v, û, v̂) ∈ [L2(Ω)]12 : div(εu) = div(µv) = div(ε̂û) = div(µ̂v̂) = 0 in Ω

and ε̂û · ν − εu · ν = µ̂v̂ · ν − µv · ν = 0 on ∂Ω
}
.

The functional space H(Ω), which plays a role in both the analysis in [9] as well as in this paper,
is a Hilbert space with the standard [L2(Ω)]12-scalar product. One of the motivations for the
definition ofH(Ω) is the fact that if (E,H, Ê, Ĥ) ∈ [L2(Ω)]12 is an eigenfunction of the transmission
eigenvalue problem, i.e., a solution of (1.1) and (1.2) for some ω ∈ C, then (E,H, Ê, Ĥ) ∈ H(Ω)
except for ω = 0. The other motivation is on the compactness of Tk defined below.

The first main result of this paper is on the completeness of the generalized eigenfunctions. We
have

Theorem 1.1. Assume that ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 and (1.3) holds. The space spanned by the
generalized eigenfunctions is complete in H(Ω), i.e., the space spanned by them is dense in H(Ω).

Remark 1. See also Remark 7 for a discussion of another version of Theorem 1.1.

Remark 2. The space spanned by the generalized eigenfunctions corresponding to a given trans-
mission eigenvalue is of finite dimension. This follows from the compactness of the operator Tk
(see (1.11) below). As a consequence of Theorem 1.1, the number of transmission eigenvalues is
infinite and the space spanned by the transmission eigenfunctions is of infinite dimension.

The second main result of this paper is on an upper bound for the counting function N . This
function is defined by, for t > 0,

(1.5) N (t) := #
{
j : |λj | ≤ t

}
.

Concerning the behavior of N (t) for a large value of t, we have

Theorem 1.2. Assume that ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 and (1.3) holds. There exists a constant c > 0
such that, for t > 1,

(1.6) N (t) ≤ ct3.

Theorem 1.2, complementary to Theorem 1.1, gives an upper bound for the density of the
distribution of the transmission eigenvalues. This upper bound is optimal in the sense that it has
the same order as the standard Weyl laws for the Maxwell equations [35, 30].

Some comments on Theorem 1.1 and Theorem 1.2 are in order. The generalized eigenfunctions
associated with λj , considered in Theorem 1.1, are understood as the generalized eigenfunctions
of the operator Tk, defined in (1.11) below, corresponding to the eigenvalue (iλj − k)−1 of Tk.
One can show that it is independent of k as long as Tk is well-defined (and compact). In the
conclusion of Theorem 1.2, the multiplicity of eigenvalues is taken into account. The meaning of
the multiplicity λj is understood as the multiplicity of the eigenvalue (iλj − k)−1 of the operator
Tk. Again, this is independent of k. These points follow from [1, Theorem 12.4] after applying
Lemma 3.1 on the modified resolvent of Tk. The multiplicity and the generalized eigenfunctions
corresponding to λj are then understood as the multiplicity of (iλj − k)−1 and the generalized
eigenfunctions corresponding to (iλj − k)−1 both corresponding to Tk from now on.



THE TRANSMISSION EIGENVALUE PROBLEM FOR MAXWELL EQUATIONS 3

We recall here the definition of a generalized eigenfunction and the multiplicity of its corre-
sponding eigenvalue, see e.g. [1, Definition 12.5], for the convenience of the reader.

Definition 1.1. Let A : H → H be a linear and bounded operator on a Hilbert space H. Let λ be
an eigenvalue of A. An element v ∈ H \ {0} is a called a generalized eigenfunction of A if there
exists a positive integer m such that

(1.7) (λ−A)mv = 0.

The multiplicity of the eigenvalue λ is defined as the dimension of the set
⋃
m∈N∗ Ker(λ−A)m.

The study of the transmission eigenvalue problem for Maxwell’s equations is not as complete
as for the scalar case, which is discussed briefly below. Before [9], the discreteness results could
be found in [14, 8] (see also [10]) where the case of µ = ε̂ = µ̂ = I, and ε − I invertible in a
neighborhood ∂Ω was considered. Concerning the other aspects, Cakoni, Gintides, and Haddar
[7] studied the existence of real transmission eigenvalues, and Haddar and Meng [15] studied the
completeness of eigenfunctions for the setting related to the one in [8] mentioned above. In the
isotropic case, under the assumption µ = µ̂ and εµ 6= ε̂µ̂, Vodev recently derived a parabolic
eigenvalue-free region [34].

The structure of the spectrum of the transmission eigenvalue problem is better understood in
the case of scalar inhomogeneous Helmholtz equations in Ω of Rd with d ≥ 2. Let A1 and A2 be
two (d× d) symmetric, uniformly elliptic, matrix-valued functions and Σ1 and Σ2 be two bounded
positive functions all defined in Ω. The state-of-the-art results on the discreteness of transmission
eigenvalues are given in [24]. In particular, the authors showed that the transmission eigenvalue
problem corresponding to the pairs (A1,Σ1) and (A2,Σ2) has a discrete spectrum if the coefficients
are smooth only near the boundary, and

i) A1(x), A2(x) satisfy the complementing boundary condition with respect to ν(x) for all
x ∈ ∂Ω, i.e., for all x ∈ ∂Ω and for all ξ ∈ Rd \ {0} with ξ · ν = 0, we have

(A2ν · ν)(A2ξ · ξ)− (A2ν · ξ)2 6= (A1ν, ν)(A1ξ · ξ)− (A1ν · ξ)2,

ii) (A1ν · ν)Σ1 6= (A2ν · ν)Σ2 for all x ∈ ∂Ω.
Assume i) and ii) and A1, A2,Σ1,Σ2 are continuous in Ω̄, the Weyl laws for eigenvalues and the
completeness of the generalized eigenfunctions in [L2(Ω)]2 were recently established by Nguyen and
(Q. H.) Nguyen [25]. Previous results on discreteness can be found in [4, 17, 31] and references
therein. Completeness of transmission eigenfunctions and estimates on the counting function were
studied by Robbiano [28, 29] for C∞ boundary and coefficients, and for the case A1 = A2 = I.
Again in C∞ isotropic setting, Vodev [32], [33] proved the sharpest known results on eigenvalue
free zones and Weyl’s law with an estimate for the remainder.

The Cauchy problem also naturally appears in the context of negative-index materials after
using reflections as initiated in [18] (see also [20]). The well-posedness and the limiting absorption
principle for the Helmholtz equation with sign-changing coefficients were developed by Nguyen
[19] using the Fourier and multiplier approach. Similar problems for the Maxwell equations were
studied by Nguyen and Sil [26]. Both papers [19], [26] deal with the stability question of negative
index materials, and are the starting point for the analysis of the transmission eigenvalue problems
in [24, 25, 9]. Other aspects and applications of negative-index materials as well as the stability and
instability the Cauchy problem (1.1) and (1.2) are discussed in [20, 22, 23, 21] and the references
therein.

The starting point and key feature of the analysis in [9] is the following result [9, Propositions
4.1 and 4.2]:



4 JEAN FORNEROD AND H.-M. NGUYEN

Theorem 1.3 (Cakoni & Nguyen). Assume that ε, µ, ε̂, µ̂ ∈ [C1(Ω̄)]3×3 and (1.3) holds, and let
γ > 0. There exist two constants k0 ≥ 1 and C > 0 such that for k ∈ C with |=(k2)| ≥ γ|k|2
and |k| ≥ k0, for every (Je, Jm, Ĵe, Ĵm) ∈ [L2(Ω)]12, there exists a unique solution (E,H, Ê, Ĥ) ∈
[L2(Ω)]12 of

(1.8)

{
∇× E = kµH + Je in Ω,

∇×H = −kεE + Jm in Ω,

{
∇× Ê = kµ̂Ĥ + Ĵe in Ω,

∇× Ĥ = −kε̂Ê + Ĵm in Ω,

(1.9) (Ê − E)× ν = 0 on ∂Ω, and (Ĥ −H)× ν = 0 on ∂Ω.

Moreover, if (Je, Jm, Ĵe, Ĵm) ∈ [H(div,Ω)]4 with (Je · ν− Ĵe · ν, Jm · ν− Ĵm · ν) ∈ [H1/2(∂Ω)]2, then

(1.10) |k| ‖(E,H, Ê, Ĥ)‖L2(Ω) + ‖(E,H, Ê, Ĥ)‖H1(Ω) ≤ C‖(Je, Jm, Ĵe, Ĵm)‖L2(Ω)

+
C

|k|
‖(div Je, div Jm,div Ĵe, div Ĵm)‖L2(Ω) +

C

|k|
‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H1/2(∂Ω).

We recall that the space H(div,Ω) is defined by

H(div,Ω) = {u ∈ [L2(Ω)]3 : div(u) ∈ L2(Ω)}.

Remark 3. In [9], the coefficients are assumed to be of class C1 near the boundary, and a variant
of (1.10), where the ‖ · ‖H1(Ω) is replaced by ‖ · ‖H1(D∩Ω) for some neighborhood D of ∂Ω (see
[9, (4.4) of Proposition 4.1]), was established. Nevertheless, under the smoothness assumption
considered here, (1.10) follows immediately by the same analysis.

Fix k ∈ C such that the conclusions in Theorem 1.3 hold. One can then define the operator Tk
as follows:

(1.11)
Tk : H(Ω) → H(Ω)

(Je,Jm, Ĵe, Ĵm) 7→ (E,H, Ê, Ĥ),

where (E,H, Ê, Ĥ) is the unique solution of, with (Je, Jm, Ĵe, Ĵm) = (µJm,−εJe, µ̂Ĵm,−ε̂Ĵe),

(1.12)

{
∇× E = kµH + Je in Ω,

∇×H = −kεE + Jm in Ω,

{
∇× Ê = kµ̂Ĥ + Ĵe in Ω,

∇× Ĥ = −kε̂Ê + Ĵm in Ω,

(1.13) (Ê − E)× ν = 0 on ∂Ω, and (Ĥ −H)× ν = 0 on ∂Ω.

From (1.10) and the compactness criterion related to the Maxwell equations, one can derive that
Tk is compact. It is easy to check that ω is an eigenvalue of the transmission eigenvalue problem if
and only if (iω−k)−1 is an eigenvalue of Tk. The discreteness of the eigenvalues of the transmission
eigenvalue problem then follows from the discreteness of the eigenvalues of Tk.

In this paper, to derive further spectral properties of the transmission eigenvalue problem, we
develop the analysis in [9] in order to be able to apply the spectral theory of Hilbert-Schmidt
operators. This strategy was previously used in the acoustic setting [25]. To this end, we establish
a regularity result (see Theorem 2.1) for solutions given in Theorem 1.3. In addition to this, one
of the main ingredients in the proof of Theorem 1.1 is the density of the range of the map Tk in
H(Ω) with respect to the [L2(Ω)]12-norm (see Proposition 3.2). The proof of Theorem 1.1 is also
given in a way which does not involve any extra topological property of Ω than its connectivity
(see Step 2 of the proof of Proposition 3.2).
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The paper is organized as follows. In Section 2, we establish the regularity result on the trans-
mission eigenvalue problem. The last two sections are devoted to the proof of Theorem 1.1 and
Theorem 1.2, respectively.

2. A regularity result for the transmission eigenvalue problem

The following regularity result for the Maxwell transmission eigenvalue problem is the main
result of this section (compare with Theorem 1.3).

Theorem 2.1. Let ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 be symmetric, and let γ > 0. Assume that there exist
Λ ≥ 1 and Λ1 > 0 such that

(2.1) Λ−1 ≤ ε, µ, ε̂, µ̂ ≤ Λ in Ω, ‖(ε, µ, ε̂, µ̂)‖C2(Ω̄) ≤ Λ,

(2.2) ε, µ, ε̂, µ̂ are isotropic on ∂Ω,

and, for x ∈ ∂Ω,

(2.3) |ε(x)− ε̂(x)| ≥ Λ1, |µ(x)− µ̂(x)| ≥ Λ1, |ε(x)/µ(x)− ε̂(x)/µ̂(x)| ≥ Λ1.

There exist two constants k0 ≥ 1 and C > 0 such that, for k ∈ C with |=(k2)| ≥ γ|k|2 and |k| ≥ k0,
the conclusion of Theorem 1.3 holds for (Je, Jm, Ĵe, Ĵm) ∈ [L2(Ω)]12. Moreover, for Je, Jm, Ĵe, Ĵm ∈
[H1(Ω)]3 with div Je,div Jm, div Ĵe,div Ĵm ∈ H1(Ω) and Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν ∈ H3/2(∂Ω),
we have

(2.4) ‖(E,H, Ê, Ĥ)‖H2(Ω) + |k|‖(E,H, Ê, Ĥ)‖H1(Ω) + |k|2 ‖(E,H, Ê, Ĥ)‖L2(Ω)

≤ C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(Ω) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(Ω)

+ C‖(div Je,div Jm, div Ĵe,div Ĵm)‖L2(Ω) +
C

|k|
‖(div Je, div Jm,div Ĵe, div Ĵm)‖H1(Ω)

+ C‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H1/2(∂Ω) +
C

|k|
‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H3/2(∂Ω),

for some positive constant C depending only on Ω, Λ, Λ1, and γ.

Remark 4. The convention used in (1.3), and in (2.3) are as follows. A 3 × 3 matrix-valued
function M defined in a subset O ⊂ R3 is called isotropic at x ∈ O if it is proportional to the
identity matrix at x, i.e., M(x) = mI for some scalar m = m(x), where I denotes the 3 × 3
identity matrix. In this case, for notational ease, we also denote m(x) by M(x). If M is isotropic
for x ∈ O, then M is said to be isotropic in O. Condition (1.3) and (2.3) are understood under
the convention m(x) = M(x).

Denote
R3

+ =
{
x = (x1, x2, x3) ∈ R3; x3 > 0

}
and

R3
0 =

{
x = (x1, x2, x3) ∈ R3; x3 = 0

}
.

One of the main ingredients of the proof of Theorem 2.1 is the following lemma, which is a variant
of [9, Corollary 3.1] (see also Remark 5).
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Lemma 2.1. Let γ > 0, k ∈ C with |=(k2)| ≥ γ|k|2, and |k| ≥ 1, and let ε, µ, ε̂, µ̂ ∈ [C1(R̄3
+)]3×3

be symmetric, uniformly elliptic. Let Λ ≥ 1 be such that

Λ−1 ≤ ε, µ, ε̂, µ̂ ≤ Λ in B1 ∩ R3
+ and ‖(ε, µ, ε̂, µ̂)‖C1(R3

+∩B1) ≤ Λ.

Assume that ε(0), ε̂(0), µ(0), µ̂(0) are isotropic, and for some Λ1 ≥ 0

|ε(0)− ε̂(0)| ≥ Λ1, |µ(0)− µ̂(0)| ≥ Λ1, and |ε(0)/µ(0)− ε̂(0)/µ̂(0)| ≥ Λ1.

Let Je, Jm, Ĵe, Ĵm ∈ [L2(R3
+)]3, and assume that (E,H, Ê, Ĥ) ∈ [L2(R3)]12 be a solution of the

system1

(2.5)

{
∇× E = kµH + Je in R3

+,

∇×H = −kεE + Jm in R3
+,

{
∇× Ê = kµ̂Ĥ + Ĵe in R3

+,

∇× Ĥ = −kε̂Ê + Ĵm in R3
+,

(2.6) (Ê − E)× e3 = 0 on R3
0, and (Ĥ −H)× e3 = 0 on R3

0.

There exist 0 < r0 < 1 and k0 > 1 depending only on γ, Λ, and Λ1 such that if the supports of
E, H, Ê, Ĥ are in Br0 ∩ R3

+, then, for |k| > k0,
i)

(2.7) |k| ‖(E,H, Ê, Ĥ)‖L2(R3
+) ≤ C‖(Je, Jm, Ĵe, Ĵm)‖L2(R3

+).

ii) if Je, Jm, Ĵe, Ĵm ∈ H(div,R3
+) and Je,3 − Ĵe,3, Jm,3 − Ĵm,3 ∈ H1/2(R3

0), then

(2.8) ‖(E,H, Ê, Ĥ)‖H1(R3
+) + |k| ‖(E,H, Ê, Ĥ)‖L2(R3

+) ≤ C
(
‖(Je, Jm, Ĵe, Ĵm)‖L2(R3

+)

+
1

|k|
‖(div Je, div Jm,div Ĵe, div Ĵm)‖L2(R3

+) +
1

|k|
‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3

0)

)
.

iii) assume in addition that ε, µ, ε̂, µ̂ ∈ [C2(R̄3
+)]3×3 and

‖(ε, µ, ε̂, µ̂)‖C2(R3
+∩B1) ≤ Λ.

Then, if Je, Jm, Ĵe, Ĵm ∈ [H1(R3
+)]3, div Je,div Jm,div Ĵe,div Ĵm ∈ H1(R3

+), and Je,3 −
Ĵe,3, Jm,3 − Ĵm,3 ∈ H3/2(R3

0), we have

‖(E,H, Ê, Ĥ)‖H2(R3
+) + |k|‖(E,H, Ê, Ĥ)‖H1(R3

+) + |k|2 ‖(E,H, Ê, Ĥ)‖L2(R3
+)(2.9)

≤C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(R3
+) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(R3

+)

+ C‖(div Je,div Jm, div Ĵe,div Ĵm)‖L2(R3
+) +

C

|k|
‖(div Je,div Jm, div Ĵe,div Ĵm)‖H1(R3

+)

+ C‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3
0) +

C

|k|
‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H3/2(R3

0).

Here C denotes a positive constant depending only on γ, Λ, and Λ1.

Remark 5. Parts i) and ii) are from [9, Corollary 3.1], which are restated here for the convenience
of the reader. The new material is in part iii).

1Here and in what follows e3 = (0, 0, 1).
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Proof. We only prove iii) (see Remark 5). The idea of the proof is as follows. To derive (2.9),
we first differentiate the system with respect to xj for j = 1, 2 and then derive the corresponding
estimates for (∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ) using i) and ii). After that, we use the system of (E,H) and
(Ê, Ĥ) to obtain similar estimates for (∂x3E, ∂x3H, ∂x3Ê, ∂x3Ĥ). This strategy is quite standard
at least in the regularity theory of second elliptic equations, see e.g. [5]. The main goal of the
process is to keep track of the dependence on |k|. The details are now given.

Fix k0 and r0 such that i) and ii) hold. By ii), we have

(2.10) ‖(E,H, Ê, Ĥ)‖H1(R3
+) + |k|‖(E,H, Ê, Ĥ)‖L2(R3

+)

≤ C
(
‖(Je, Jm, Ĵe, Ĵm)‖L2(R3

+) +
1

|k|
‖(div Je, div Jm,div Ĵe, div Ĵm)‖L2(R3

+)

+
1

|k|
‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3

0)

)
.

Let j = 1, 2. Differentiating (2.5) and (2.6) with respect to xj , we obtain{
∇× ∂xjE = kµ∂xjH + Je in R3

+,

∇× ∂xjH = −kε∂xjE + Jm in R3
+,

{
∇× ∂xj Ê = kµ̂∂xjĤ + Ĵe in R3

+,

∇× ∂xjĤ = −kε̂∂xj Ê + Ĵm in R3
+,

(∂xj Ê − ∂xjE)× e3 = 0 on R3
0, and (∂xjĤ − ∂xjH)× e3 = 0 on R3

0,

where
Je = ∂xjJe + k(∂xjµ)H, Jm = ∂xjJm − k(∂xjε)E,

Ĵe = ∂xj Ĵe + k(∂xj µ̂)Ĥ, Ĵm = ∂xj Ĵm − k(∂xj ε̂)Ê.

Applying ii) to (∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ), we deduce that

‖(∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ)‖H1(R3
+) + |k|‖(∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ)‖L2(R3

+) ≤ C(R1 +R2),(2.11)

where

R1 =‖(∂xjJe, ∂xjJm, ∂xj Ĵe, ∂xj Ĵm)‖L2(R3
+)(2.12)

+
1

|k|
‖(div ∂xjJe, div ∂xjJm, div ∂xj Ĵe, div ∂xj Ĵm)‖L2(R3

+)

+
1

|k|
‖(∂xjJe,3 − ∂xj Ĵe,3, ∂xjJm,3 − ∂xj Ĵm,3)‖H1/2(R3

0),

and

(2.13) R2 = |k|‖(E,H, Ê, Ĥ)‖L2(R3
+) + ‖(E,H, Ê, Ĥ)‖H1(R3

+) + ‖(E,H, Ê, Ĥ)‖H1/2(R3
0).

Combing (2.10), (2.12), and (2.13), we derive from (2.11) that

(2.14) ‖(∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ)‖H1(R3
+) + |k|‖(∂xjE, ∂xjH, ∂xj Ê, ∂xjĤ)‖L2(R3

+)

≤ the RHS of (2.9).
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On the other hand, from the system of (E,H), we have, in R3
+,

(2.15) ∂x3E2 = ∂x2E3 − k(µH)1 − Je,1, ∂x3E1 = ∂x1E3 + k(µH)2 + Je,2 and

∂x3

 3∑
j=1

ε3jEj

 = −
2∑
`=1

3∑
j=1

∂x`ε`jEj +
1

k
div(Jm).

Combining (2.10), (2.14), and (2.15), and using the fact that ε33 ≥ Λ−1, one has

(2.16) ‖E‖H2(R3
+) + |k|‖E‖H1(R3

+) + |k|2 ‖E‖L2(R3
+) ≤ the RHS of (2.9).

Similarly, one obtains

(2.17) ‖(H, Ê, Ĥ)‖H2(R3
+) + |k|‖(H, Ê, Ĥ)‖H1(R3

+) + |k|2 ‖(H, Ê, Ĥ)‖L2(R3
+) ≤ the RHS of (2.9).

The conclusion of Lemma 2.1 follows from (2.14), (2.16), and (2.17). �

We are ready to give

Proof of Theorem 2.1. Let K be a compact subset of Ω. Fix ϕ ∈ C2
c (Ω) such that ϕ = 1 in K.

Set
(Eϕ, Hϕ, Êϕ, Ĥϕ) = ϕ(E,H, Ê, Ĥ) in Ω.

From the system of (E,H, Ê, Ĥ), we have

(2.18)

{
∇× Eϕ = kµHϕ + Jϕ,e in Ω,

∇×Hϕ = −kεEϕ + Jϕ,m in Ω,

{
∇× Êϕ = kµ̂Ĥϕ + Ĵϕ,e in Ω,

∇× Ĥϕ = −kε̂Êϕ + Ĵϕ,m in Ω,

(2.19) (Êϕ − Eϕ)× ν = 0 on ∂Ω, and (Ĥϕ −Hϕ)× ν = 0 on ∂Ω.

Here, in Ω,

Jϕ,e = ∇ϕ× E + ϕJe, Jϕ,m = ∇ϕ×H + ϕJm, Ĵϕ,e = ∇ϕ× Ê + ϕĴe, Ĵϕ,m = ∇ϕ× Ĥ + ϕĴm.

Differentiating the system of (Eϕ, Hϕ, Êϕ, Ĥϕ) with respect to xj (1 ≤ j ≤ 3) and applying
Theorem 1.3, we obtain, as in the proof of Lemma 2.1,

‖(Eϕ, Hϕ, Êϕ, Ĥϕ)‖H2(Ω) ≤ C|k|‖(Jϕ,e, Jϕ,m, Ĵϕ,e, Ĵϕ,m)‖L2(Ω) + C‖(Jϕ,e, Jϕ,m, Ĵϕ,e, Ĵϕ,m)‖H1(Ω)

+C‖(div Jϕ,e,div Jϕ,m,div Ĵϕ,e,div Ĵϕ,m)‖L2(Ω)+
C

|k|
‖(div Jϕ,e, div Jϕ,m, div Ĵϕ,e, div Ĵϕ,m)‖H1(Ω).

This implies

(2.20) ‖(Eϕ, Hϕ, Êϕ, Ĥϕ)‖H2(Ω) ≤ C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(Ω) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(Ω)

+ C‖(div Je,div Jm, div Ĵe,div Ĵm)‖L2(Ω) +
C

|k|
‖(div Je, div Jm,div Ĵe, div Ĵm)‖H1(Ω)

+ C|k|‖(E,H, Ê, Ĥ)‖L2(Ω) + C‖(E,H, Ê, Ĥ)‖H1(Ω).

Applying Theorem 1.3 again, we derive from (2.20) that

(2.21) ‖(Eϕ, Hϕ, Êϕ, Ĥϕ)‖H2(Ω) + |k|‖(Eϕ, Hϕ, Êϕ, Ĥϕ)‖H1(Ω)

+ |k|2‖(Eϕ, Hϕ, Êϕ, Ĥϕ)‖L2(Ω) ≤ the RHS of (2.4).
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The conclusion of Theorem 2.1 now follows from (2.21) and Lemma 2.1 via local charts. The
proof is complete. �

3. Completeness of the generalized eigenfunctions - Proof of Theorem 1.1

To establish the completeness of the generalized eigenfunctions, we use Theorem 2.1 and apply
the theory of Hilbert-Schmidt operators. To this end, we first recall

Definition 3.1. Let H be a separable Hilbert space, and let (φk)
∞
k=1 be an orthogonal basis. A

bounded, linear operator T : H → H is Hilbert-Schmidt if its finite double norm

~T~ :=

( ∞∑
k=1

‖T(φk)‖2H

)1/2

< +∞.

Remark 6. The definition of ~T~ does not depend on the choice of (φk), see e.g. [1, Chapter 12].

Using Theorem 2.1, we can establish the following result.

Proposition 3.1. Assume that ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 and (1.3) holds, and let γ > 0. Let k0 ≥ 1
and C > 0 be constants such that for k ∈ C with |=(k2)| ≥ γ|k|2 and |k| ≥ k0, the conclusions of
Theorem 2.1 hold. Then, for such a complex number k,

(3.1) ‖T 2
k (J )‖H2(Ω) + |k|‖T 2

k (J )‖H1(Ω) + |k|2‖T 2
k (J )‖L2(Ω)

≤ C‖J ‖L2(Ω) ∀J = (Je,Jm, Ĵe, Ĵm) ∈ H(Ω).

Consequently,
i) T 2

k is a Hilbert-Schmidt operator defined in H(Ω); moreover,

(3.2) ~T 2
k ~ ≤ C

|k|1/2
,

for some positive constant C, independent of k.
ii) For θ ∈ R with |=(e2iθ)| > 0, eiθ is a direction of minimal growth of the modified resolvent

of T 2
k .

For the convenience of the reader, we recall briefly here some notions associated to the concept
of the minimal growth. Let A be a continuous, linear transformation from a Hilbert space H
into itself. The modified resolvent set ρm(A) of A is the set of all λ ∈ C \ {0} such that I − λA
is bijective (and continuous). If λ ∈ ρm(A), then the map Aλ := A(I − λA)−1 is the modified
resolvent of A (see [1, Definition 12.3]). For θ ∈ R, eiθ is a direction of minimal growth of the
modified resolvent of A if for some a > 0, the following two facts hold for all r > a: i) reiθ is in
the modified resolvent set ρm(A) of A and ii) ‖Areiθ‖ ≤ C/r (see [1, Definition 12.6]).

Another key ingredient of the proof of Theorem 1.1 is:

Proposition 3.2. Assume that ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 and (1.3) holds. Let k ∈ C be such that
the conclusion of Theorem 2.1 holds. We have

Tk(H(Ω))
L2(Ω)

= H(Ω).

The rest of this section containing three subsections. In the first subsection, we give the proof
of Proposition 3.1. The proofs of Proposition 3.2 and Theorem 1.1 are given in the last two
subsections, respectively.
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3.1. Proof of Proposition 3.1. We first state and prove a lemma used in the proof of Proposi-
tion 3.1.

Lemma 3.1. Let k, s ∈ C be such that Tk, Tk+s : H(Ω)→ H(Ω) are bounded. We have
i) If Tk is compact, then s ∈ ρm(Tk).
ii) Assume s ∈ ρm(Tk). Then

(3.3) Tk(I − sTk)−1 = (I − sTk)−1Tk = Tk+s.

Proof of Lemma 3.1. We begin with assertion i). Since Tk is compact, it suffices to prove that
I − sTk is injective. Indeed, let (E,H, Ê, Ĥ) ∈ H(Ω) be a solution of the equation I − sTk = 0.
One can check that (E,H, Ê, Ĥ) = Tk+s(0) = 0. Assertion i) follows.

We next establish ii). Let J = (Je,Jm, Ĵe, Ĵm) ∈ H(Ω) be arbitrary. Set

(3.4) (E,H, Ê, Ĥ) = Tk+s(J ),

(3.5) J 1 = (J 1
e ,J 1

m, Ĵ 1
e , Ĵ 1

m) = (I − sTk)−1(J ),

(3.6) (E1, H1, Ê1, Ĥ1) = Tk(J 1).

We claim that
(E1, H1, Ê1, Ĥ1) = (E,H, Ê, Ĥ),

which implies Tk(I − sTk)−1 = Tk+s since J is arbitrary.
To prove the claim, we will show that (E1, H1, Ê1, Ĥ1) and (E,H, Ê, Ĥ) satisfy the same Cauchy

problem. We have

(3.7) ∇× E (3.4)
= (k + s)µH + µJm,

∇× E1 (3.6)
= kµH1 + µJ 1

m,

J 1 − J (3.5)
= sTk(J1)

(3.6)
= s(E1, H1, Ê1, Ĥ1).

This implies
∇× E1 = (k + s)µH1 + µJm,

(compare with (3.7)). Similarly, we can derive that (E1, H1, Ê1, Ĥ1) and (E,H, Ê, Ĥ) satisfy the
same system since it is clear that, on ∂Ω,

(Ê1 − E1)× ν = (Ĥ1 −H1)× ν = 0 = (Ê − E)× ν = (Ĥ −H)× ν.

The claim is proved.
Since

(I − sTk)(I − sTk)−1 = I = (I − sTk)−1(I − sTk),
and s 6= 0 by the definition of ρm(Tk), we obtain

Tk(I − sTk)−1 = (I − sTk)−1Tk.

The proof is complete. �

We are ready to give
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Proof of Proposition 3.1. Assertion (3.1) is a consequence of Theorem 1.3 and Theorem 2.1. In-
deed, as a consequence of (3.1) and Gagliardo-Nirenberg’s inequality see [12, 27], we derive, for
J ∈ H(Ω), that T 2

k (J ) ∈ [C(Ω̄)]12, and

‖T 2
k (J )‖L∞(Ω) ≤ C‖T 2

k (J )‖
3
4

H2(Ω)
‖T 2

k (J )‖
1
4

L2(Ω)
≤ C

|k|1/2
‖J ‖L2(Ω).

It follows from the theory of Hilbert-Schmidt operators, see e.g. [25, Lemma 3] 2, that T 2
k is a

Hilbert-Schmidt operator defined on H(Ω) and

~T 2
k ~ ≤ C

|k|1/2
.

We next check the assertion on the minimal growth of the modified resolvent of Tk. We have

lim
r→+∞

|=
(
(k + reiθ)2

)
|/|k + reiθ|2 = |=(e2iθ)| ≥ 2γ,

for some γ > 0. It follows, for a large enough, that k+ reiθ satisfies the conclusion of Theorem 2.1
for r > a. On the other hand, let (E,H, Ê, Ĥ) ∈ H(Ω). We first note that, for s ∈ C,

(I − sTk)(E,H, Ê, Ĥ) = 0 if and only if (E,H, Ê, Ĥ) = Tk+s(0) = 0,

provided that Tk+s is well-defined. Since Tk is compact, it follows that reiθ ∈ ρm(Tk) for r > a.
By Lemma 3.1, we also have, with s = reiθ,

Tk(I − sTk)−1 = (I − sTk)−1Tk = Tk+s.

Let s1 = ir1/2eiθ/2 and s2 = −ir1/2eiθ/2. Thus, (t− s1)(t− s2) = t2 − s for t ∈ C. One then can
check that

T 2
k (I−sT 2

k )−1 = T 2
k (I−s1Tk)−1(I−s2Tk)−1 Lemma 3.1

= Tk(I−s1Tk)−1Tk(I−s2Tk)−1 = Tk+s1Tk+s2 .

It follows from Theorem 1.3 that

‖T 2
k (I − sT 2

k )−1‖H(Ω)→H(Ω) = ‖Tk+s1Tk+s2‖H(Ω)→H(Ω)

≤ ‖Tk+s1‖H(Ω)→H(Ω)‖Tk+s2‖H(Ω)→H(Ω)

≤ C 1

|s1|
1

|s2|
=
C

|s|
.

The assertion on the minimal growth of the modified resolvent of T 2
k follows. �

3.2. Proof of Proposition 3.2. We first state and prove the following technical result, which is
used in the proof of Proposition 3.2.

Lemma 3.2. LetM∈ [C1(Ω̄)]3×3 be symmetric and uniformly elliptic. Let U ∈ [H1(Ω)]3 be such
that div(MU) = 0 in Ω. There exists a sequence (Un)n ⊂ [H1(Ω)]3 such that

(3.8) div(MUn) = 0 in Ω,

(3.9) MUn · ν =MU · ν on ∂Ω, Un × ν = 0 on ∂Ω,

and

(3.10) Un → U in [L2(Ω)]3 as n→ +∞.
2In [25, Lemma 3], the statement is on [L2(Ω)]m for some m ≥ 1, nevertheless, the proof also gives the result for

H(Ω) since H(Ω) is equipped with the [L2(Ω)]12-norm.
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Proof of Lemma 3.2. Since Ω is connected, U ∈ [H1(Ω)]3 and div(MU) = 0 in Ω, by [13, lemma
2.2], there exists Ṽ ∈ [H1(Ω)]3 such that

(3.11) div Ṽ = 0 in Ω and Ṽ =
MU · ν
Mν · ν

Mν on ∂Ω.

Set V =M−1Ṽ in Ω. One can easily check from the definition of V and (3.11) that

(3.12) div(MV ) = 0 in Ω, MV · ν =MU · ν on ∂Ω and V × ν = 0 on ∂Ω.

Set Ũ = U −V in Ω. Since div(MU) = 0 in Ω, we derive from (3.12) that div(MŨ) = 0 in Ω and
MŨ ·ν = 0 on ∂Ω. It follows from [13, Theorem 2.8] that there exists a sequence (Ũn)n ⊂ [C1

c (Ω)]3

such that

(3.13) div(Ũn) = 0 in Ω

and

(3.14) Ũn →MŨ in [L2(Ω)]3 as n→ +∞.
Set

Un =M−1Ũn + V.

We claim that the sequence (Un)n has the required properties. Indeed,

div(MUn) = div(Ũn) + div(MV )
(3.12),(3.13)

= 0 in Ω

and, since Ũn ∈ [C1
c (Ω)]3, we also have

MUn · ν = Ũn · ν +MV · ν (3.12)
= MU · ν on ∂Ω,

and
Un × ν =M−1Ũn × ν + V × ν (3.12)

= 0 on ∂Ω.

Moreover, since V ∈ [H1(Ω)]3, it follows that Un ∈ [H1(Ω)]3. By (3.14) we obtain

Un → Ũ + V = U in [L2(Ω)]3 as n→ +∞.
The proof is complete. �

We are ready to give

Proof of Proposition 3.2. Since Tk is a map from H(Ω) into H(Ω), it suffices to prove the following
two facts

(3.15) [H1(Ω)]12 ∩H(Ω) ⊂ Tk
(
H(Ω)

)L2(Ω)
,

and

(3.16) [H1(Ω)]12 ∩H(Ω) is dense in H(Ω) with respect to [L2(Ω)]12 − norm.

These will be proved in Steps 1 and 2 below.
Step 1: Proof of (3.15). Let (E,H, Ê, Ĥ) ∈ [H1(Ω)]12 ∩H(Ω). By applying Lemma 3.2 with

(M, U) equal to (ε, E), (µ,H), (ε̂, Ê), and (µ̂, Ĥ), there exists a sequence
(
(En, Hn, Ên, Ĥn)

)
n
⊂

[H1(Ω)]12 ∩H(Ω) such that

(3.17) En × ν = Hn × ν = Ên × ν = Ĥn × ν = 0 on ∂Ω,

and

(3.18) (En, Hn, Ên, Ĥn)→ (E,H, Ê, Ĥ) in [L2(Ω)]12 as n→ +∞.
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Set, in Ω,

(3.19) Jne = ∇× En − kµHn, Jnm = ∇×Hn + kεHn,

(3.20) Ĵne = ∇× Ên − kµ̂Ĥn, Ĵnm = ∇× Ĥn + kε̂Ĥn,

and define (J ne ,J nm, Ĵ ne , Ĵ nm) in Ω via (Jne , J
n
m, Ĵ

n
e , Ĵ

n
m) = (µJ nm,−εJ ne , µ̂Ĵ nm,−ε̂Ĵ ne ).

It follows that (1.12) holds with (E,H, Ê, Ĥ) and (Je, Jm, Ĵe, Ĵm) replaced by (En, Hn, Ên, Ĥn)

and (Jne , J
n
m, Ĵ

n
e , Ĵ

n
m). Since (En, Hn, Ên, Ĥn) ∈ H(Ω), it follows that

(3.21) div Jne = div Jnm = div Ĵne = div Ĵnm = 0 in Ω.

On the other hand, from (3.19) and (3.20), we have, on ∂Ω,

(Ĵne − Jne ) · ν = (∇× Ên −∇× Ên) · ν − k(µ̂Ĥn − µHn) · ν.
This implies

(3.22) (Ĵne − Jne ) · ν = 0 on ∂Ω,

since (µ̂Ĥn − µHn) · ν = 0 on ∂Ω and div∂Ω

(
(Ên −En)× ν

)
= 0 on ∂Ω by (3.17). Similarly, we

have

(3.23) (Ĵnm − Jnm) · ν = 0 on ∂Ω.

Combining (3.21), (3.22), and (3.23) yields that (J ne ,J nm, Ĵ ne , Ĵ nm) ∈ H(Ω). Consequently,

(En, Hn, Ên, Ĥn) ∈ Tk
(
H(Ω)

)
.

The conclusion of Step 1 now follows from (3.18).

Step 2: Proof of (3.16). Fix (E, H, Ê, Ĥ) ∈ H(Ω) arbitrary. There exist sequences (En)n, (Hn)n ⊂
[H2(Ω)]3 such that

(3.24) (εEn, µHn)→ (εE, µH) in [H(div,Ω)]2.

Since

div(ε̂Ê − εE) = div(µ̂Ĥ − µH) = 0 in Ω and (ε̂Ê − εE) · ν = (µ̂Ĥ − µH) · ν = 0 on ∂Ω,

by [13, Theorem 2.8], there exist sequences (Une )n, (Unm)n ⊂ [H2(Ω)]3 such that

(3.25) divUne = divUnm = 0 in Ω,

and

(3.26) (Une , U
n
m)→ (ε̂Ê − εE, µ̂Ĥ − µH) in [L2(Ω)]6 as n→ +∞.

Define Ên, Ĥn ∈ [L2(Ω)]3 via

(3.27) ε̂Ên = Une + εEn in Ω and µ̂Ĥn = Unm + µ̂Hn in Ω.

From (3.24), (3.25), and (3.26), we have

(3.28) (ε̂Ên, µ̂Ĥn)→ (ε̂Ê, µ̂Ĥ) in [H(div,Ω)]2.

Using (3.24) and (3.28), we derive from the trace theory that, as n→ +∞,

(3.29) (εEn − εE) · ν, (µHn − µH) · ν, (ε̂Ên − ε̂Ê) · ν, (µ̂Ĥn − µ̂Ĥ) · ν → 0 in H−1/2(∂Ω).

Since (ε̂Ê − εE) · ν = (µ̂Ĥ − µH) · ν = 0 on ∂Ω, we obtain

(3.30) (ε̂Ên − εEn) · ν, (µ̂Ĥn − µ̂Hn) · ν → 0, in H−1/2(∂Ω) as n→ +∞.
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Set

(3.31) αne =
1

|∂Ω|

∫
∂Ω
εEn · ν and αnm =

1

|∂Ω|

∫
∂Ω
µHn · ν,

where |∂Ω| denotes the 2-Hausdorff measure of ∂Ω. We derive that

(3.32) lim
n→+∞

αne
(3.29)

=
1

|∂Ω|

∫
∂Ω
εE · ν =

1

|∂Ω|

∫
Ω

div(εE) = 0.

Similarly, we obtain

(3.33) lim
n→+∞

αnm = 0.

Denote
H1
] (Ω) =

{
u ∈ H1(Ω) :

∫
Ω
u = 0

}
.

Let ξne , ξnm, ξ̂ne , ξ̂nm ∈ H1
] (Ω) be a solution of

(3.34)

{
−div(ε∇ξne ) = −div(εEn) in Ω,

ε∇ξne · ν = αne on ∂Ω,

{
−div(µ∇ξnm) = −div(µHn) in Ω,

µ∇ξnm · ν = αnm on ∂Ω,

(3.35){
−div(ε̂∇ξ̂ne ) = −div(ε̂Ên) in Ω,

ε̂∇ξ̂ne · ν = (ε̂Ên − εEn) · ν + αne on ∂Ω,

{
−div(µ̂∇ξ̂nm) = −div(µ̂Ĥn) in Ω,

µ̂∇ξ̂nm · ν = (µ̂Ĥn − µHn) · ν + αnm on ∂Ω.

By the definition of αne and αnm (3.31), we have

(3.36)
∫

Ω
div(εEn) =

∫
∂Ω
αne and

∫
Ω

div(µHn) =

∫
∂Ω
αnm.

It follows that ξne and ξnm are well-defined and uniquely determined. We also have∫
Ω

div(ε̂Ên)−
∫
∂Ω

(
(ε̂Ên − εEn) · ν + αne

) (3.31)
= 0

and ∫
Ω

div(µ̂Ĥn)−
∫
∂Ω

(
(µ̂Ĥn − µHn) · ν + αnm

) (3.31)
= 0.

Hence ξ̂ne and ξ̂nm are well-defined and uniquely determined as well. From the regularity theory of
elliptic equations it follows that

(3.37) (ξne , ξ
n
m, ξ̂

n
e , ξ̂

n
m) ∈ [H2(Ω)]4.

Using (3.30), (3.32), and (3.33), we derive that

(3.38) ξne , ξ
n
m, ξ̂

n
e , ξ̂

n
m → 0 in H1(Ω) as n→ +∞.

Set

(3.39) (En, Hn, Ên, Ĥn) = (En −∇ξne , Hn −∇ξnm, Ên −∇ξ̂ne , Ĥn −∇ξ̂nm) in Ω.

We have, by (3.24), and (3.28), and (3.38),

(3.40) (En, Hn, Ên, Ĥn)→ (E,H, Ê, Ĥ) in [L2(Ω)]12.

From the definition of ξne , ξnm, ξ̂nn , ξ̂nm, we have

(3.41) div(εEn) = div(ε̂Ên) = div(µHn) = div(µ̂Ĥn) = 0 in Ω,
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and, on ∂Ω,

(3.42) (ε̂Ên − εEn) · ν = (µ̂Ĥn − µHn) · ν = 0 on ∂Ω.

Combining (3.37), (3.41), and (3.42) yields

(3.43) (En, Hn, Ên, Ĥn) ∈ H(Ω) ∩ [H1(Ω)]12.

The conclusion of Step 2 now follows from (3.40).

The proof is complete. �

Remark 7. One can rewrite (1.1) and (1.2) under the following form:

(3.44)



∇×
(
µ−1(∇× E)

)
− ω2εE = 0 in Ω,

∇×
(
µ̂−1(∇× Ê)

)
− ω2ε̂Ê = 0 in Ω,

Ê × ν = E × ν on ∂Ω,(
µ̂−1(∇× Ê)

)
× ν =

(
µ−1(∇× E)

)
× ν on ∂Ω.

Then, a complex number ω ∈ C is called a transmission eigenvalue if there exists a non-zero
solution (E, Ê) ∈ [L2(Ω)]6 of (3.44). Theorem 1.1 might be translated as follows:

Completeness: Assume that ε, µ, ε̂, µ̂ ∈ [C2(Ω̄)]3×3 and (1.3) holds. The space spanned by the
generalized eigenfunctions is complete in G(Ω), i.e., the space spanned by them is dense in G(Ω),
where

(3.45) G(Ω) =
{

(u, û) ∈ [H(curl,Ω)]2; div(εu) = div(ε̂û) = 0 in Ω,

(û− u)× ν = 0 on ∂Ω,
(
µ̂−1(∇× û)

)
× ν −

(
µ−1(∇× u)

)
× ν = 0 on ∂Ω

}
Remark 8. In [15], the authors studied the completeness of generalized eigenfunctions in the
isotropic case under the assumption that

ε = µ = µ̂ = I in Ω,

ε̂ ∈ C∞(Ω̄) and ε̂ is constant different from 1 in a neighborhood of ∂Ω.

They considered the system under the form (3.44). Since ε = µ = I, their settings and ours are
different.

3.3. Proof of Theorem 1.1. Applying Proposition 3.1, one has
- T 2

k : H(Ω)→ H(Ω) is a Hilbert-Schmidt operator.
- for θ ∈ R with |=(e2iθ)| > 0, eiθ is a direction of minimal growth of the modified resolvent
of T 2

k .
Applying the theory of Hilbert-Schmidt operators, see e.g. [1, Theorem 16.4], one derives that

1) the closure of the space spanned by all generalized eigenfunctions of T 2
k is equal to T 2

k (H(Ω))
(the closures are taken with respect to the [L2(Ω)]12-norm).

On the other hand, we have
2) T 2

k (H(Ω)) = H(Ω) since

H(Ω) = Tk(H(Ω)) (by Proposition 3.2)

= TkTk(H(Ω)) (by Proposition 3.2)

= T 2
k (H(Ω)) (by the continuity of Tk).
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3) The space spanned by the generalized eigenfunctions of T 2
k associated to the non-zero eigen-

values of T 2
k is equal to the space spanned by the generalized eigenfunctions of Tk associated to

the non-zero eigenvalues of Tk. This can be done as in the last part of the proof of [1, Theorem
16.5]. Consequently, the space spanned by all generalized eigenfunctions of T 2

k is equal to the
space spanned by all generalized eigenfunctions of Tk.

The conclusion now follows from 1), 2), and 3). �

4. An upper bound for the counting function - Proof of Theorem 1.2

Let λ̃j be the non-zero eigenvalues of Tk. Note that the non-zero eigenvalue values of T 2
k , counted

according to multiplicity, are λ̃2
j (this can be proved as in the last part of the proof of [1, Theorem

16.5]). Applying the spectral theory of Hilbert-Schmidt operators, see e.g. [1, Theorem 12.14] to
T 2
k , we have

(4.1)
∑
j

|λ̃j |4 ≤ ~T 2
k ~2.

Applying i) of Proposition 3.1, we obtain∑
j

|λ̃j |4 ≤ C|k|−1.

Note that λj is an transmission eigenvalue if and only if (iλj − k)−1 is an eigenvalue of Tk, and
they have the same multiplicity. It follows that

(4.2)
∑
j

1

|iλj − k|4
≤ C|k|−1.

Note that if |λj | ≤ |k|, then |iλj − k| ≤ 2|k|. We then derive from (4.2) that
1

|k|4
∑

j:|λj |≤|k|

1 ≤ C|k|−1.

This implies
N (|k|) ≤ C|k|3.

The proof is complete. �
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