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Angular Clustering of Millimeter-Wave Propagation
Channels with Watershed Transformation

Pengfei Lyu, Aziz Benlarbi-Delaı̈, Zhuoxiang Ren, senior member, IEEE,
and Julien Sarrazin, senior member, IEEE

Abstract—An angular clustering method based on image
processing is proposed in this paper. It is used to identify
clusters in 2D representations of propagation channels. The
approach uses operations such as watershed segmentation and
is particularly well suited for clustering directional channels
obtained by beam-steering at millimeter-wave. This situation
occurs for instance with electronic beam-steering using analog
antenna arrays during beam training process or during channel
modeling measurements using either electronic or mechanical
beam-steering. In particular, the proposed technique is used
here to cluster two-dimensional power angular spectrum maps.
The proposed clustering is unsupervised and is well suited
to preserve the shape of clusters by considering the angular
connection between neighbor samples, which is useful to obtain
more accurate descriptions of channel angular properties. The
approach is found to outperform approaches based on K-Power-
Means in terms of accuracy as well as computational resources.
The technique is assessed in simulation using IEEE 802.11ad
channel model and in measurement using experiments conducted
at 60 GHz in an indoor environment.

Index Terms—propagation channel angular clustering, mil-
limeter wave, watershed transformation, 2D angular measure-
ments at 60 GHz

I. INTRODUCTION

RECENT years have witnessed a growing interest in
millimeter waves communications [1]. The spectrum

congestion in the lower part of the spectrum and the ever-
growing need of higher data rates incited the telecommuni-
cation actors to assess the suitability of mm-wave frequency
bands to support Gbps wireless communications. During the
last decade, several standards have been proposed to operate
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high data rate communications between devices for Wireless
Personal Area Network (WPAN), e.g. IEEE 802.15.3, or
Wireless Local Area Network (WLAN), e.g., IEEE 802.11ad
and more recently IEEE 802.11ay. This trend has been even
more emphasized recently with the advent of 5G. The 3GPP
release 15 has defined the use of bandwidth in the 24.25-40
GHz range [2] and the release 17 is considering frequencies in
the 52.6-71 GHz spectrum, including the 60 GHz license-free
band [3]. This profound change in the network infrastructure
is however challenging due to the number of specificities that
are inherent to operating at such high frequencies. Indeed,
mm-wave communications typically use several antennas to
achieve array gain in order to mitigate free-space attenuation
in budget link [4]. High gain antennas exhibit narrow beams
thereby leading to sparse multipath illumination [5].

In scenarios where a base station needs to address mobile
users, beamforming precoding or beam steering techniques are
required. To assess such communications, one needs direc-
tional channel models with realistic distributions of Angle-of-
Arrival (AoA) and/or Angle-of-Departure (AoD) [6]. Channel
modeling is classically performed by fitting distributions onto
features extracted from channel measurements. To obtain
AoA/AoD information, full-digital antenna arrays [7] or syn-
thetic array [8], [9] are usually employed and algorithms such
as MUSIC [9], [10], SAGE [6], [8], [11], [12], or CLEAN [13],
[14] can be used to estimate power, direction of arrival, and
Time-of-Arrival (ToA) of multipath components. The channel
can be then represented as a discrete data set of features such
as power in a 2D plane (azimuth and elevation angles [15]
or angle and ToA [8], [11]) or even a 3D plane (both angles
and ToA [6]). Each sample in this discrete data set can be
modeled by a plane wave. This representation is then clustered
and probability density function (PDF) are fitted to describe
the behavior of inter- and/or intra-clusters features, whether in
angular domain or in time domain [16].

In mm-waves, analog antenna arrays are typically preferred
over full-digital architectures or synthetic array to perform
outdoor channel measurements in order to be able to benefit
from the array gain before the analog-to-digital conversion
of the baseband signal. The procedure is then to scan the
whole angular range thanks to beam steering (either elec-
tronic [17] or mechanical [16]) or beam switching [17], and
therefore obtain a quasi-continuous channel representation in
the angular/frequency domain. The angular accuracy of this
representation depends on the beamwidth of the antenna array
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and the angular step size. Based on this representation, regular
techniques can still be applied in time domain to obtain the
ToA discrete data set while high-resolution algorithms such as
MUSIC have been adapted to operate in such a beam space
representation [18] to estimate AoA/AoD and thus form the
discrete data set [19] onto which classical channel modeling
procedures typically used in lower part of spectrum, including
clustering and PDF fitting, can be similarly applied [16].

Identifying cluster shapes in time domain is efficiently
performed using a priori knowledge, typically an exponential
decay with increasing delay [20]. While this assumption is
physically quite realistic, doing so to find clusters in the
angular domain, i.e., the power angular spectrum (PAS), is not
optimal as their shapes heavily depend on the scenario and the
environment. For instance, intra cluster angular distributions
have been variously modeled in the literature by an exponential
decay in [21], a Laplacian distribution in [16], [22], and a
Von Mise distribution in [23]. So, there is still a need of
unsupervised clustering methods that preserves real cluster
shapes to more accurately describe channel features [24]. This
is especially important to assess techniques that are sensitive
to PAS (see, e.g. [25], [26] for AoA/AoD estimation or [27]
for multi-user power allocation in massive MIMO context) or
that use PAS as a priori knowledge (see, e.g. [28] for beam
training improvement or [29], [30] for AoA/AoD estimation).
Furthermore, the clustering method should be fast enough
since to obtain statistically meaningful results, a large number
of channels is to be analyzed [24].

Most of the current propagation channel model in the liter-
ature use K-Power-Means (KPM) algorithm as the clustering
method [31]. KPM algorithm is a modified version of the
general K-Means [32] clustering method. K-Means aims to
minimize the sum of the error between the centroid and the
components in all of the clusters, by minimizing the average
Euclidean distance between data points within a cluster and
the mean of the cluster while KPM minimizes the sum of
power-weighted distances of parameter points to the centroid
associated with the parameter point [31], [33]. K-Means-based
cluster analysis has intrinsic weaknesses. Firstly, the number
of clusters has to be assumed before the operation. This
implies to fix the number of clusters based on visual inspection
[34] or to use some automatic detection process based on
a priori knowledge [35]. However, it has been observed in
[36] that when different clusters exhibit different statistics, the
automatic detection may fail. Another approach is an incre-
mental search for that appropriate number, using convergence
threshold such as cluster power with respect to total power
[8], [37] or graphical-based metrics such as silhouettes [38]
for instance, albeit at the expense of higher computational
resources. Secondly, inappropriate initial clusters lead to local
minima. To solve the initializing problem, the K-Means++
algorithm [39] was introduced to initialize the centroid of the
cluster randomly. Thirdly and importantly for this work, K-
means-based methods are among globally clustering methods
and therefore treats all features equally, regardless the actual
correlation among them. This third problem led to the fact that
the channel clusters does not reflect accurately the channel
impulse responses (CIR) exponential decrease with time in

[20] and the CIR had to be fitted with a priory known
exponential function to solve this issue [20]. However, a priory
functions destroy the unsupervised nature of K-Means. While
approaches have been proposed to weight differently features
in K-means, the weighting factors are often found empirically
and are scenario- dependent [40].

To address these shortcomings, this paper introduces the use
of image signal processing techniques to obtain an efficient
and unsupervised approach for clustering channels in angular
domain that considers the connection between neighbor sam-
ples. Indeed, not taking into account the location correlation
may result in faraway samples being grouped into the same
angular cluster which jeopardizes preserving its actual shape.
The idea is not to work on the extracted features but directly
on a quasi-continuous channel representation in 2D, namely,
the PAS along elevation and azimuth angles. This allows
for the use of a set of morphological operations borrowed
from image processing to identify clusters while preserving
their angular shape. In particular, a watershed segmentation
is performed and the potential of this approach is assessed at
60 GHz with simulations using the IEEE 802.11ad channel
model and with measurements in an indoor scenario. The
section II describes the considered scenario and the channel
representation used in this paper. The proposed clustering
algorithm is introduced in section III while the performance
is assessed in section IV by comparing the performance with
KPM and a modified version of KPM. The clustering method
is validated with measurements in section V. Finally, section
VI draws conclusions and gives some perspectives.

II. PROBLEM STATEMENT

To illustrate the clustering technique proposed in this paper
as well as to assess its performance, the scenario depicted in
Fig.1(a) is considered. An omnidirectional TX antenna and
a directional RX antenna with a beamwidth ranging from 5◦

to 29◦ scan the 2D angular space with a step fixed to 1◦.
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Fig. 1. The generation of power angular spectrum (PAS): (a) angular scanning;
(b) resulting 2D PAS grid in azimuth-elevation plane
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This situation typically occurs in mm-wave while conducting
channel modeling experiments with directional antennas [16],
[17] or during beam-training process in mm-wave communi-
cations to find the strongest link, i.e., the strongest cluster,
between a transmitter and a receiver [41], [42]. A 2D PAS
is therefore obtained such as shown in Fig.1(b). This quasi-
continuous channel representation forms an image of pixels
(i.e., the sampling cell) whose size depends on the angular
step size and whose intensity, in grayscale, depends on the
channel power in that particular direction. Imaging processing
can therefore be applied to such PAS representation to perform
efficient clustering. To generate such 2D maps as a data set
onto which the clustering is performed, the IEEE 802.11ad
directional channel model is used throughout this paper [43],
[44] for simulations. The IEEE 802.11ad is a standard for
indoor wireless communication in the 60 GHz band. Its
channel model is a time and angular clusters-based model.
The scenario considered in this paper is the conference room.

(a)

(b)

Fig. 2. Angular characteristics generated with IEEE 802.11ad channel model
for both azimuth and elevation in dB: (a) original PAS generated by channel
model noiseless; (b) PAS with AWGN and random speckles.

The PAS is obtained by the following formula:

PAS =

∫ T

0

|gt (θ, ϕ) gr (θ, ϕ)h (t, θ, ϕ) + n (t)|2dt (1)

where h(t, θ, ϕ) is the CIR. gt(θ, ϕ) and gr(θ, ϕ) are the
antenna gains of the transmitter and receiver with respectively.
n(t) is the thermal noise, Added White Gaussian Noise
(AWGN). An example of noise-free PAS generated with a
5◦ Rx beamwidth is shown in Fig.2(a). The Line-Of-Sight
(LOS) component appears at θ = ϕ = 0◦ while clusters at
other angles are due to reflections and diffractions within the
environment. In actual measurements, in addition to thermal
noise, spatial speckles are also present. They widely appear in

images obtained by synthetic aperture radar (SAR) [45], laser
[46], and millimeter wave [47]. Speckles occur because of the
stochastic coherent combination of a number of independent
waves scattered in the environment. To model this effect,
100 speckles uniformly distributed in the angular plane are
generated with identical power, equal to the PAS maximum
power. This has been found empirically relevant with the ex-
periments conducted and presented in section V. The resulting
PAS is shown in Fig.2(b). where an AWGN of SNR = 20 dB
is also added. Compared with the original PAS in Fig.2(a),
the background power is now higher and exhibits a weak
fluctuation. Adding an AWGN in the CIR in (1). results in
a spatial noise that follows a biased non-Gaussian distribution
leading to a PAS mean SNR of 21.03 dB with a standard
deviation 4 dB. Speckles occupy single pixels. Both AWGN
and speckles are to be removed to perform accurate clustering
and using a simple threshold does not perform generally well.
Next section shows how image-processing filtering techniques
can remove them efficiently before performing clustering.

III. CLUSTERING METHOD

A. Morphological Operations for Watershed
Mathematical morphology (MM) is an imaging processing

method to extract information based on set theory and lattice
theory. A grayscale image is regarded as a function f(x) that
maps a set of 2D coordinate x (pixel position) to a 3D surface
extended to the third dimension (pixel value). In the situation
in Fig.1(b), the variable x is the discrete angle vector (ϕ, θ),
where ϕ is the azimuth angle and θ is the elevation angle. The
function f(x) maps the whole angular plane to the received
power, f(x) : X2 → Y . x ∈ X2 and X2 is a 2D coordinate
set of the whole angular plane:

X2 =
{
x = (ϕ, θ) |ϕ ∈ [−π, π] , θ ∈

[
−π

2
,
π

2

]}
(2)

The generated 3D space is defined with a set X2 × Y .

X2×Y =
{
(ϕ, θ, P ) |ϕ∈ [−π, π] , θ∈

[
−π

2
,
π

2

]
, P ∈R+

}
(3)

The idea of MM is remodeling the 3D space of an image
with local functions, which are called structuring elements. A
structuring element is also a mapping to angular plane, g(x) :
X2

g → Y , where X2
g ⊆ X2. The reconstruction performed

in this paper is achieved with some basic operations that are
defined below.
Operation 1: dilation [48] f ⊕ g : X2 ⊕X2

g → Y is used to
extend the local spaces. It extracts the supremum of the sum
of f and g at each sliding position of f :

(f ⊕ g) (x) = sup {f (x− x′) + g (x′)} (4)

Operation 2: erosion [48] f ⊖ g : X2 ⊖X2
g → Y is used to

shrink the local image spaces. It extracts the infimum of the
difference of f and g at each negatively sliding position of f :

(f ⊖ g) (x) = inf {f (x + x′)− g (x′)} (5)

Operation 3: opening [48] removes bright peaks that are small
in size and break narrow connections between two bright peaks
with dilation ⊕ and erosion ⊖:

f ◦ g = (f ⊖ g)⊕ g (6)
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Operation 4: closing [48] preserves small peaks which are
brighter than the background and fills the small gaps between
bright peaks with dilation ⊕ and erosion ⊖:

f · g = (f ⊕ g)⊖ g (7)

Operation 5: Euclidean distance transformation [49] d(x, x′)
is an operation for a binary image. It assigns the value of each
pixel x in a subset A of the whole image with the Euclidean
distance between x and the nearest nonzero pixel x′ inside a
given connected domain A:

d (x, x′)=inf

{√∥∥xi−x′j
∥∥2|A⊂X2, x, x′∈ A,PA ̸=0

}
(8)

Operation 6: geodesic distance [50] dA(x, x′) is also on the
plane X2. It is the length of the shortest path linked two pixels
x and x′ in a connected space A constructed by neighbor pixels
with identical intensity level.

dA (x, x′) = inf

{√∥∥xi − x′j
∥∥2|A ⊂ X2, x, x′ ∈ A

}
(9)

Operation 7: a geodesic ball [51] ΩA(x, λ) with a center x
and radius λ is defined as a domain set x′ whose geodesic
distance dA(x, x′) to x is not larger than λ:

ΩA (x, λ) =
{

x′ ∈ A|A ⊂ X2, dA (x, x′) ≤ λ
}

(10)

Operation 8: geodesic dilation [51] is the intersection between
the geodesic ball ΩA(x, λ) and a mark domain B:

δλA (B)=
{

x′∈A|A,B⊂X2, x∈A,ΩA (x, λ)∩B ̸=∅
}

(11)

Operation 9: reconstruction [52] is a process of reshaping. If
f and g are two grayscale images defined on the same domain
and f < g, reconstruction iterates geodesic dilation δλg (f) until
convergence:

ρg (f) = ∨
λ>0

δλg (f) (12)

Operation 10: regional maxima [53] extracts a domain
Dmax(f) of a difference between f and reconstruction ρf (f)
with power tolerance ε:

Dmax (f) = f − ρf (f − ε) (13)

Operation 11: Laplacian filter [54] (2nd order derivative field)
is the difference between the external (▽+) and internal
(▽−) gradients:

∇2f = ∇+f −∇−f (14)

where
∇+f = f ⊕ g − f (15)

∇−f = f − f ⊖ g (16)

Operation 12: Zone of Influence (IZ) [55], [56] Zxλ(Ki) is
the subset of points in X2

λ at a finite geodesic distance from
the i-th intersection domain Ki and closer to Ki than any
other j-th intersection Kj .

ZXλ
(Ki)=

{
x∈X2

λ

∣∣∣∣ dXλ
(x,Ki)<+∞,

∀j ̸= i, dXλ
(x,Ki)<dXλ

(x,Kj)

}
(17)

where Ki is the i-th intersection domain between X2
λ and

f(x), Ki = f(x) ∩X2
λ.

Operation 13: Skeleton by Zone of Influence (SKIZ) [55],
[56] S(K,G) is the complement set of all the IZ with:

S (K;G) = G−
⋃
i

ZXλ
(Ki) (18)

B. Watershed Segmentation
Pixels are grouped into general segments WS that are

projection of a 3D valleys in a field f(x) onto a 2D pixel
plane. Valleys can be segmented between minima and around
local maxima. So, watershed segmentation is to find the local
minima centers and local maxima boundaries of clusters [55],
[56]. It can be linked to a problem of damming watersheds
at the maxima to avoid flooding the low basin. The domains
enclosed by the watersheds are the target clusters. To achieve
this aim, general watershed transformation algorithm in Algo-
rithm 1 is used [55], [56]. A 3D field f(x) is cut by several
angular plane X2

λ at level λ. The intersections between X2
λ

and f(x) are a set of domain K in (17). While sweeping
intensity levels from λ1 to λN , the intersection domains K
are extended with reconstruction (12). When two K contact
each other, the bound is determined as SKIZ in (18), while the
new intersections are IZ in (17). When reaching the maximum
level λN , the target cluster set WN is obtained as the collection
of final IZs, while the watershed set WS is the complement of
the clusters in the X2

λ at N . The number of level N is 255 for
a grayscale image. In PAS clustering, the λN is the maximum
of the function f(x), while the choice of total level number,
N , influences the running time of simulation.

Algorithm 1 General flow of watershed segmentation
1: W1 ← ∅, λN ← maxf(x).
2: for i = 1 to N do
3: mi+1(f)← Equation (19) at level λi with (12):

mi+1 (f) = ρKi+1

(
Ki

)
(19)

where
Kj =

[
X2

λi
∩ f (x)

]
j

(20)

Ki =

⋃
j

Kj


X2

λi

(21)

4: IZ ← Equation (17).
5: Wi ← Equation (22) with

Wi+1 =

⋃
j

IZXλi
(Kj)

⋃
mi+1 (22)

6: end for
7: Watershed WS ← Equation (23) as the final SKIZ with

(18) at the top level λN

WS = W c
N=X2

λN
−WN (23)

8: Retrun WN and WS

In order to operate the watershed algorithm in Algorithm 1,
power convex hill in Fig.2 needs to be transformed to valleys.
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Therefore, the watershed transformation is here applied onto
the Laplacian of the 2D PAS, ▽2f , as defined in (14). To be
able to apply the water segmentation described in Algorithm
1, some pretreatment of PAS is as well as some extra steps to
filter the speckles and fluctuations in Fig.2(b) to avoid over-
segmentation (i.e., artificially creating a too large number of
clusters), as described in Algorithm 2. The step 1 removes
speckles and partly smoothen the fluctuation caused by thermal
noise. In step 2, the gradient field is obtained by Laplacian
operation and its contrast is enhanced in step 3. To mitigate
the over-segmentation that typically occurs near the edge of
clusters where the fluctuation of the Laplacian of the field
is large, foreground and background markers are introduced.
The foreground markers are the local maxima of the original
PAS with (13), while the background markers are the curves
equidistant to the clusters in the foreground with (8).

Algorithm 2 Flow of watershed segmentation solving over-
segmentation problem

1: Despeckling and smoothing: remove isolated speckles
with a combination of opening (6) and closing (7);
smoothen the noised PAS with reconstruction (12) and
average filtering.

2: Extract gradient field: calculate the curvature with the
Laplacian filter ▽2f (14).

3: Enhance the contrast of gradient field: enhance contrast
with closing (7); and reconstruction (12) and average
filtering.

4: Extract the marks of foreground: get locations of M
regional power maxima of the foreground as centroid
positions using (13) on the PAS within the interval of
gradient level as tolerance ε = λi − λi−1.

5: Extract the marks of background: the marks are the
curves equidistant to the domain with curvature in the
PAS, which are the negative part of the Laplacian gradient
field. The distances of every point in the background
marker are calculated using (8) on the PAS directly.

6: Group clusters: combining the Laplacian field, marker
of foreground and marker of background, operate the
watershed segmentation with watershed transformation
Algorithm 1.

Fig.3 and Fig.4 show the process of obtaining the Laplacian
gradient field. The result of despeckling and noise smoothing
operations (step 1 in Algorithm 2) applied on the PAS in
Fig.2(b) is shown in Fig.3(a). The speckles are well removed.
Furthermore the PAS mean SNR has increased to 22.05 dB
with a reduced standard deviation of 2.75 dB showing that the
noise has been smoothened. Then, the gradient field obtained
by Laplacian filtering (step 2 in Algorithm 2)) is shown in
Fig.3(b). Expect for the LOS cluster, the edges of the other
clusters are fuzzy and this may jeopardize the watershed
transformation. Consequently, closing and reconstruction op-
erations (step 3 in Algorithm 2) enhance the contrast and most
of the valleys in the fields exhibits clear edges in Fig.3(c).

Fig.4 shows the results of the three remaining steps in
Algorithm 2. Steps 4 and 5 are specifically introduced to avoid
over-segmentation caused by the gradient field fast fluctuation

in the vicinity of cluster edges. They introduce a constraint
on IZ operation in the general watershed transformation of
Algorithm 1. The step 4 creates markers of the illuminated
foreground as local field maxima as indicated in Fig.4(a). The
number M of local maxima is automatically found thanks
to operation 13 and therefore does not need to be set a
priori. The step 5 creates background markers with as shown
watershed curves of the Euclidean distance field determined
with (8) in Fig.4(b). The foreground and background markers
are the boundary of IZ operation domain: only the elements
between the foreground and background markers are effective
to calculate IZ in (17). The clusters are finally obtained using
watershed transformation in step 6 and are shown in Fig.4(c).

(a)

(b)

(c)

Fig. 3. Process to obtain Laplacian gradient field (using the PAS example of
Fig.1): (a) PAS after despeckling and noise smoothing; (b) gradient field of
PAS obtained by Laplacian operation; (c) Laplacian field enhanced contrast.

The watershed transformation uses the combination of gra-
dient field, foreground, and background. When two intersec-
tion domains between X2

λ and f(x), namely, Ki, for the valley
marked with the foreground marker and Kj , for the valley
outside the marked valley but enclosed by the background
marker, contact with each other, two dual IZs are created by
Ki and Kj with (17). All the marked valleys in the gradient
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field are segmented, while the valleys unmarked are neglected.
Comparing the original PAS in Fig.2(a) with the clusters
in Fig. 4(c), it can be qualitatively observed that Algorithm
2 meets the original expectation of the proposed clustering
approach. One important parameter is the shape of g in (6)
and (7) that influences the denoising and smoothing operation.
g is a n×n matrix forming an angular filter of a given shape
(e.g., disk, square diamond), depending of the values of the
elements of g (0 or 1). In this study, a 3× 3 square matrix is
empirically found to perform well. Depending on parameters
such as the angular step and the beamwidth, this operator may
be adjusted to obtained optimal performance.
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Fig. 4. Results of Algorithm 2 at different steps: (a) local maxima of original
PAS as foreground markers; (b) maximum distance curves as background
markers; (c) clusters marked with different colors.

C. Clustering Comparison: modified K-Power-Means

To assess the performance of watershed, the 2D PAS are also
clustered with standard iterative K-Power-Means (KPM) [31]
in section IV. Furthermore, in order to investigate the influence
of the pre-processing steps in the modified watershed transfor-
mation introduced in Algorithm 2, similar steps are introduced
in the standard KPM as another benchmarking method, named

here modified K-Power-Means (modified KPM). In particular,
fixed local maxima replace the iterative searching for centroids
and opening and closing operations are used to remove the
speckles. Furthermore, a threshold is used to remove the
background whose value is selected using Otsu’s method [57].
Considering the sparsity of the millimeter-wave channel, the
majority of PAS pixels represents the background rather than
the clusters. Therefore, Otsu’s method extracts the power value
Pback of a PAS background by finding the pixel with highest
probability in the intensity value histogram. The threshold
Pthre is then determined using the mean value µSNR and
the standard deviation σSNR of the SNR:

Pthre =
A (B + 1)

B (A+ 1)
Pback (24)

where
10log10A = µSNR[dB]

10log10B = µSNR[dB] − 3σSNR[dB]
(25)

Here the threshold is chosen three time higher than the mean
SNR by a factor equal to three times the standard deviation
σSNR in order to remove 95% of the noise fluctuation.
The flowchart of the modified KPM algorithm is shown in
Algorithm 3. The Multipath Component Distance (MCD) in
the flow chart is the Euclidean distance used to evaluate the
difference between individual multipath components. In this
paper, the i-th parameter point is constructed with the azimuth
ϕ and elevation θ as (ϕi, θj). MCD between the i-th and j-th
points is:

MCDij =

√
(φi − φj)

2
+ (θi − θj)

2 (26)

Algorithm 3 Flowchart of modified K-Power-Means algorithm
1: Remove isolated speckles with a combination of opening

(6); smooth the noised PAS with reconstruction (12).
2: Extract locations local maxima power as centroid positions

c1(0), · · · , cK(0). Remove the isolated point noise with a
combination of opening (6) and closing (7), then smooth
it with restructuration (12).

3: Remove the background with a threshold Pthre with
Equation (24).

4: Assign MPCs to cluster centroids and store indices I(i)l :

I(i)l = argmin
k

{
Pl ·MCD

(
xl, c

(i−1)
k

)}
(27)

I(i) =
[
I(i)1 . . . I(i)L

]
, C(i)k = indices

l

(
I(i)l = k

)
(28)

5: Return Rk = [I(i), c(i)k ]

IV. SIMULATION VALIDATION

A. Simulation Conditions

One thousand realizations of the IEEE 802.11ad channel
model using the conference room scenario are generated to
compare the performance of the watershed segmentation with
KPM and Modified KPM clustering methods. Channels are
obtained considering an omnidirectional Tx antenna and an
Rx directional antenna beam-scanning across the 2D angular
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space. The maximum gain of Rx antenna is 25 dB. The
scanning step of Rx antenna is 1◦ in both elevation and
azimuth. The 2D PAS pixels size is thus 1◦ × 1◦.

B. Qualitative Comparison between Watershed and K-Power-
Means

In order to study the influence of Rx antenna radiation
pattern on clustering, Fig.5 shows the result of watershed
segmentation for the PAS with beamwidths of 5◦, 15◦, and
25◦. White closed curves are the labels for the identified
clusters, i.e., the foreground domains. The dark blue domain
is the background domain. Cluster labels clearly distinguish
adjacent foreground domains. Most of the power in the fore-
ground is gathered into clusters, and the background with weak
power intensity is clearly excluded from clusters. Intuitively,
the watershed segmentation achieves the two main purposes of
clustering: extracting the illuminated foreground from the dark
background, and distinguishing different illuminated domains.
Furthermore, clustering can clearly be achieved with different
beamwidths. Another important observation is that the cluster
shapes are well preserved.

(a)

(b)

(c)

Fig. 5. Results of watershed segmentation with antenna beamwidth of (a)
5◦; (b) 15◦; (c) 25◦.

Using the standard KPM method, the entire angular space
is divided into several polygons bounded by white straight
lines, as shown in Fig.6. In the example in Fig.6(a), the illumi-
nated foreground is roughly divided into large ranges, without
distinguishing adjacent clusters accurately. Even worse, parts
of the dark background are also enclosed into clusters. As
the antenna beamwidth increases in Fig.6(b) and (c), com-
plete high-power- intensity regions are split and arranged
into different clusters. The above phenomena manifests that
the standard KPM method is not sensitive to the correlation
between adjacent regions. The shape of the cluster is not a
polygon. So, the polygon division results in either the power
leaking from a cluster into an adjacent one, or the dark
background being included into a cluster.

(a)

(b)

(c)

Fig. 6. Results of clustering with K-Power-Means with antenna beamwidth
of (a) 5◦; (b) 15◦; (c) 25◦.

The result of modified KPM clustering is shown in Fig.7.
With a narrow beamwidth of 5◦ in Fig.7(a), most clusters
of the illuminated foreground can be identified, and the
dark background is eliminated. However, as the beamwidth
increases to 15◦, and 25◦ in Fig.7(b) and (c), respectively, the
foreground markers do not improve the straight boundaries
of the polygons in the standard KPM. Introduced foreground
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markers can find the location of certain clusters and thresholds
can remove part of the background. However, part of the
background is still enclosed into clusters, even in narrow
beam transmission. In that case, the shapes of the clusters
are only the shape of a uniform threshold instead of the
individual cluster shapes. In the case of wide beam, the
effect of threshold disappears: the adjacent clusters cannot be
distinguished robustly.

(a)

(b)

(c)

Fig. 7. Results of clustering with modified K-Power-Means with antenna
beamwidth of (a) 5◦; (b) 15◦; (c) 25◦.

C. Quantitative performance analysis of PAS Clustering

To assess the performance of the proposed clustering algo-
rithm, several criteria are analyzed. First-of-all, the number of
clusters is evaluated using the following ratio:

Numberofestimatedclusters

Numberofclustersgeneratedbychannelmodel
(29)

This ratio is shown in Fig.8(a). Some discrepancies between
the estimated and generated number of clusters are naturally
expected (i.e., the ratio (29) is not equal to 1. Since clusters’
mean angles are stochastically generated, clusters do overlap
from time to time. However, it is interesting to notice that
the three algorithms have the same trend. Narrow antenna

beams provide higher angular resolution, so a larger number
of clusters can be distinguished. As the beamwidth increases,
the clusters become larger, and the corresponding number of
clusters decreases. In wide beam transmission, the number
of clusters provided by the watershed algorithm is closer to
the number of channel clusters than the other two methods.
It is also interesting to observe that all three algorithms
overestimate the number of clusters when the beamwidth is
narrow. Indeed, each cluster contains a few rays only, and for
a given channel realization, a cluster can easily be interpreted
as several clusters if the rays are angularly sparsely separated.

5 10 15 20 25

Antenna beamwidth (
o
)

0.5

1

1.5

2

2.5

R
a
ti

o
 o

f 
c
lu

st
e
r 

n
u

m
b

e
r

KPM

Modified KPM

Watersheds

(a)

5 10 15 20 25

Antenna beamwidth (
o
)

0

5

10

15

P
o
w

e
r 

c
o
n
c
e
n
tr

a
ti

o
n
 r

a
ti

o KPM

Modified KPM

Watersheds

(b)

5 10 15 20 25

Antenna beamwidth (
o
)

0

0.2

0.4

0.6

0.8

1

C
o

re
 p

o
w

er
 k

ep
t 

ra
ti

o

KPM

Modified KPM

Watersheds

(c)

5 10 15 20 25

Antenna beamwidth (
o
)

-2

-1

0

1

2

R
u

n
n

in
g

 t
im

e 
(l

o
g

1
0
)

KPM

Modified KPM

Watersheds

(d)

Fig. 8. Performance of clustering methods: (a) cluster number ratio, (b) power
concentration ratio, (c) split cluster power ratio, and (d) running time.

The second performance criteria evaluated is the separation
between the foreground and background and can be assessed
by the ratio of the power density of all clusters C over the
power density of the whole PAS plane (after despeckling and
noise removing):∫∫

C
P (θ, ϕ) dθdϕ

/∫∫
C
dθdϕ∫∫

PAS
P (θ, ϕ) dθdϕ

/∫∫
PAS

dθdϕ
(30)

The performance is presented in Fig.8(b). Since KPM cannot
remove the background, the power of the entire PAS lies in
the foreground, which is the sum of all clusters. Therefore,
the ratio in (30) is one and is always one regardless of the
beamwidth. After adding the threshold in the modified KPM
method, the background is partially removed, and the ratio (30)
increases. However, because background components cannot
be entirely removed, some background power is also included
in the cluster and the ratio is therefore not the highest. Wa-
tershed segmentation provides the most significant separation
between the three algorithms. However, for wide antenna
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beams, the power density ratio decreases as the clustered
power density is diluted into the background.

K-Power-Means and modified KPM often split clusters,
which is an undesirable effect and the integrity of clusters
should be therefore assessed. To assess this effect, the metric
used here is the ratio of the power in the preserved illuminated
clusters over the power in the damaged illuminated clusters.
So, the first step is to determine a practical definition of a
preserved cluster. For continuous 2D PAS map, the elements
of a cluster are pixels, whose values depend on the power
intensity within that cluster. A cluster is therefore a set of
pixels with similar intensity compared with the neighbor
domain. Because the field is continuous and derivative, the 2nd
order derivative field exists. So, a cluster is enclosed by the
edge of a slope. Therefore, the edge are the elements pixels
at the boundary with highest 2nd order derivative. Because
the intensity cluster is a continuous domain, the 2nd order
derivative forms a continuous closed edge. So, the pixels
inside this closed edge belong to a preserved cluster. Pixels
belonging to cluster with discontinuous 2nd order derivative
edge belong to damaged clusters. The following metric is
subsequently defined as the ratio of the power P (θ, ϕ) inside
preserved clusters Cp over the power inside damaged clusters
Cd. As shown in Fig.8(c), the ratio of watershed segmentation
is close to one, which means that almost all the clusters
are completely preserved. In contrast, the ratios of standard
KPM and modified KPM are close to zero: the two clustering
algorithms split most of the clusters.

Finally, the algorithm running time is assessed. Nowadays,
with high-performance ray tracing tools that exhibit reasonably
realistic features, especially at millimeter waves, they can be
used for channel modeling to some extent [16], [58]. This
approach involves a large number of channel realizations
being generated and analyzed, generating a huge volume of
data [24]. Consequently, a fast clustering method is highly
desirable. The simulations have been performed with a laptop
(CPU 2.60 GHz, RAM 8.00 GB) and the obtained logarithmic
running time is shown in Fig.8(d). When the beam is wide,
the number of clusters decreases, so the required calculation
time reduces. Standard KPMs takes multiple iterations to avoid
local minima, so it needs a simulation time of two to three
orders magnitude more than the modified KPM or watershed
segmentation. While iteration is not necessary for the modified
KPM, it still needs to compute the random initial centroids,
which is time consuming. The watershed segmentation appears
to be the fastest method among the three.

V. MEASUREMENT VALIDATION

A. Measurement Scenario

To verify the effectiveness of the angular clustering method,
an experimental validation is conducted in a laboratory envi-
ronment at Sorbonne University whose floor plan is illustrated
in Fig.9. The size of the room is approximately 10.25 m ×
7.52 m. The distance between the ground and the ceiling is
2.93 m. Measurements are randomly implemented in the zones
which are marked as closed circles in Fig.9. Both Tx and
Rx are in the same zone for a given set of experiments with

distance between Tx and Rx ranging from 0.5 to 2.5 m. 100
PAS samples are measured.

7.52 m

1
0

.2
5

 m

Faraday 

anechoic 

chamber

Measuring zones

Fig. 9. Floor plan of the measuring scenario.

B. Measurement System

The measurement set-up aims at emulating a beam training
strategy as shown in Fig.10. The Tx antenna is an omni-
directional dipole antenna with 2 dB gain, while the Rx
antenna is a directional horn antenna with a 24 dB gain. The
beam training strategy in Fig.1(a) is achieved with Rx angular
scanning in vertical and horizonal directions by an azimuth
motor and an elevation motor with a 5◦ angular step in both
directions. The propagation channel is measured with a VNA.
The set-up parameters are listed in Table I and are a tradeoff
between performance and measurement time. A single PAS
measurement takes approximately 3.5 hours).

VNA

Elevation 

motor

Azimuth 

motor

Rx horn 

antenna

Tx dipole 

antenna

Fig. 10. Schematic of the experimental set-up.

C. Measurement Results

An example of measured PAS is shown in Fig.11 along
with clustering results of the three methods. Although not
as good as in simulation, it can still be visually observed
that watershed transformation grouped decently the clustered
pixels in Fig.11(a). The original K-Power-Means still fail to
cluster the pixels as seen in Fig.11(b). Similarly to simula-
tions, modified KPM outperforms K-Power-Means and can
cluster the pixels as shown in Fig.11(c). The overall lower
performance compared with simulations is mainly due to the
lower angular resolution of 5◦ step (few experimental attempts
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of 1◦-step-size measurements have confirmed this hypothesis
but the measurement duration becomes then too prohibitive: 3
days for a single PAS).

TABLE I
THE PARAMETERS OF THE PURPOSED MEASUREMENT SYSTEM

Bandwidth 8.64 GHz

Related time resolution 0.12 ns

Frequency sample number 752

Frequency resolution 11.5 MHz

Transmit power 4 dBm

Noise level -100 dBm

Dynamic range 103 dB

Noise fluctuation of S11 0.01 dB

Rx beam width (E/H plane) 10.1◦ / 13.1◦

Tx beam width (E/H plane) 360◦ / 60◦

Tx antenna gain 2 dB

Rx antenna gain 24 dB

Sampling range in azimuth [-180◦, 180◦]

Sampling range in elevation [-45◦, 90◦]

Angular sampling interval 5◦

(a)

(b)

(c)

Fig. 11. Example of measured PAS in dB with: (a) watershed segmentation-
based clusters, (b) KPM-based clusters and (c) modified KPM-based clusters.

The quantitative performance of clustering methods is
shown in Table II. Similar to simulations, watershed segmenta-
tion still concentrates more energy as the power concentration
ratio of 5.5, while the ratios of other two methods are much
lower. 35.6% of the clusters are preserved with watershed
transformation which is much higher than the 3.7% for mod-
ified KPM. Original K-Power-Means cannot preserve clusters

at all. Watershed segmentation (0.035 s) runs little faster than
modified KPM (0.067 s) and much faster than K-Power-Means
(1.58 s). In summary, the result of measurement validates that
watershed segmentation outperforms the other two methods.

TABLE II
PERFORMANCE OF CLUSTERING METHODS FOR MEASURED PAS

Performance watershed K-Power-Means Modified KPM

Power
concentration ratio

5.5 1 1.28

Split cluster
power ratio

0.356 0.0000 0.037

Running time (s) 0.035 1.58 0.067

VI. CONCLUSION

In this paper, a method based on image processing is
proposed to cluster two-dimensional angular channel represen-
tations. In particular, quasi-continuous power angular spectrum
maps obtained by beam-steering in azimuth and elevation are
used as gray-scale images onto which clustering is performed.
It is shown that watershed transformation is more suitable
than classical techniques to extract illuminated clusters from
the dark background and to separate adjacent clusters in
these 2D maps. Furthermore, the proposed approach does
preserve the shapes of clusters, which is a key criterion for
performing accurate channel angular modeling. Using results
obtained from 1000 realizations of the IEEE 802.11ad channel
at 60 GHz, it has been shown that the proposed method
significantly outperforms K-Power-Means-based algorithm in
terms of identified with respect to actual number of clusters,
total channel power captured within clusters with respect to
background, not splitting identified clusters, and computational
resources. The method has also been validated with angular
(both elevation and azimuth) channel measurements conducted
in an indoor scenario at 60 GHz using mechanical beam-
steering.

Since the proposed approach operates on a power angular
spectrum averaged over excess delay, it does not distinguish
different time clusters with similar AoA. While the time
dimension could be treated separately within already iden-
tified angular clusters, an interesting perspective consists in
extending the proposed method to three-dimensional channel
representations in order to achieve time-space clustering.
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[56] S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection,”
in Int. Workshop Image Proc., Rennes, France, 1979.

[57] N. Otsu, “Threshold selection method from gray-level histograms,” IEEE
Trans. Syst. Man Cyb., vol. 9, no. 1, pp. 62–66, 1979.

[58] J. Hejselbaek, A. Karstensen, and G. F. Pedersen, “Angular power
distribution measurements and modelling of outdoor urban environment
using ray-tracing at 2 and 18 ghz,” in Eur. Conf. Antennas Propag.,
Davos, Switzerland, April 10-15 2016.



12 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. X, SEPTEMBER 2021

Pengfei Lyu received his B.S. degree from Yanshan
University, China, in 2007, and two M.S. degrees
from Beijing University of Technology, China, in
2010 and Institut National des Sciences Appliquées
Lyon, France, in 2011, respectively. He received his
Ph.D. degree from Sorbonne Université, France, in
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