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Abstract
Objectives  QyScore® is an imaging analysis tool certified in Europe (CE marked) and the US (FDA cleared) for the auto-
matic volumetry of grey and white matter (GM and WM respectively), hippocampus (HP), amygdala (AM), and white 
matter hyperintensity (WMH). Here we compare QyScore® performances with the consensus of expert neuroradiologists.
Methods  Dice similarity coefficient (DSC) and the relative volume difference (RVD) for GM, WM volumes were calculated 
on 50 3DT1 images. DSC and the F1 metrics were calculated for WMH on 130 3DT1 and FLAIR images. For each index, we 
identified thresholds of reliability based on current literature review results. We hypothesized that DSC/F1 scores obtained using 
QyScore® markers would be higher than the threshold. In contrast, RVD scores would be lower. Regression analysis and Bland–
Altman plots were obtained to evaluate QyScore® performance in comparison to the consensus of three expert neuroradiologists.
Results  The lower bound of the DSC/F1 confidence intervals was higher than the threshold for the GM, WM, HP, AM, and 
WMH, and the higher bounds of the RVD confidence interval were below the threshold for the WM, GM, HP, and AM. 
QyScore®, compared with the consensus of three expert neuroradiologists, provides reliable performance for the automatic 
segmentation of the GM and WM volumes, and HP and AM volumes, as well as WMH volumes.
Conclusions  QyScore® represents a reliable medical device in comparison with the consensus of expert neuroradiologists. There-
fore, QyScore® could be implemented in clinical trials and clinical routine to support the diagnosis and longitudinal monitoring of 
neurological diseases.
Key Points   
• QyScore® provides reliable automatic segmentation of brain structures in comparison with the consensus of three expert 
   neuroradiologists.
• QyScore® automatic segmentation could be performed on MRI images using different vendors and protocols of acquisition.  
   In addition, the fast segmentation process saves time over manual and semi-automatic methods.
• QyScore® could be implemented in clinical trials and clinical routine to support the diagnosis and longitudinal monitoring 
   of neurological diseases.
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improving the early diagnosis of neurological disease and 
the development of effective drugs [7–9]. In addition, large-
scale multi-institutional research studies [10, 11] have 
worked in synergy for the implementation of standardized 
imaging acquisition protocols in the research environment 
and clinical setting [12, 13]. These advancements highlight a 
need for an MRI volumetric analysis tool suitable for routine 
clinical use. Few automated segmentation software are cur-
rently approved by regulatory agencies (such as the FDA) 
and therefore included in the clinical routine workflow.

To be validated and implemented in clinical practice, 
segmentation algorithms included in medical devices 
should demonstrate equal or better performance than the 
assessment performed by expert neuroradiologists. The 
present study aims to describe the comparison between 
the performance of the brain segmentation algorithms 
included in QyScore® and the manual segmentations 
or manual segmentation correction conducted by three 
expert neuroradiologists. Here we hypothesize that the 
segmentation algorithms included in QyScore® show 
reliable performance in comparison with the consensus of 
three expert neuroradiologists.

Materials and methods

QyScore® is a CE-marked and FDA-cleared software, 
developed by Qynapse (https://​www.​qynap​se.​com/), that 
provides segmentation and volumetric measurements of 
grey matter (GM), white matter (WM), hippocampus (HP), 
and amygdala (AM) from 3DT1 images, as well as white 
matter hyperintensities (WMHs) from 3DT1 and FLAIR 
images. In addition, z-scores and percentiles are obtained 
from the comparison with a large normative database of 
healthy controls. The normative database includes cogni-
tively intact individuals between the ages of 20 and 90 years, 
coming from European and North American databases [10, 
11] (https://​brain-​devel​opment.​org/​ixi-​datas​et; https://​www.​
human​conne​ctome.​org/​study/​hcp-​young-​adult). The full 
panel of MRI markers described above is quantified in 
15 min per patient. It has a user-friendly interface, includ-
ing 3D navigation of MRI images (Fig. 1). The outputs of 
the software include an electronic report and color overlays 
of the regional segmentation on the selected brain image for 
visualisation.

Populations and cohorts

The experimental validation of QyScore® was performed 
using data from different cohorts: the Alzheimer’s Disease 

Abbreviations
AD	� Alzheimer’s disease
ADNI	� Alzheimer’s Disease Neuroimaging 

Initiative
AM	� Amygdala
AVE	� Absolute volume error
DSC	� Dice similarity coefficient
FDA	� Food and Drug Administration
FLAIR	� T2 fluid attenuated inversion recovery
FTD	� Frontotemporal dementia
FTLDNI	� Frontotemporal Lobar Degeneration 

Neuroimaging Initiative
GM	� Grey matter
HC	� Healthy controls
HP	� Hippocampus
kNN	� K-nearest neighbors
MC	� Multiple sclerosis
MCI	� Mild cognitive impairment
MRI	� Magnetic resonance imaging
NINCDS/ADRD	� National Institute of Neurological and 

Communicative Disorders and Stroke 
and the Alzheimer’s Disease and 
Related Disorders Association

OASIS	� Open Access Series of Imaging 
Studies

PD	� Parkinson’s disease
PPMI	� Parkinson Progression Markers 

Initiative
RVD	� Relative volume difference
SPM12	� Statistical Parametric Mapping soft-

ware v12
SVM	� Support vector machines
WM	� White matter
WMH	� White matter hyperintensity

Introduction

Neurological disorders represent a major public health prob-
lem in Europe and the rest of the world [1]. A systematic 
analysis for the Global Burden of Disease Study 2016 showed 
that neurological disorders were the leading cause of dis-
ability-adjusted life-years (worldwide 276 million) and the 
second leading cause of death (worldwide 90 million) [2].

Magnetic resonance imaging (MRI) technology and the 
development of MRI markers of neurological diseases have 
been improved substantially in both research and clinical 
environments over the last 30 years [3]. Automated MRI 
segmentation methods have been used in addition to vis-
ual analysis and manual segmentation assessments [4–6], 

https://www.qynapse.com/
https://brain-development.org/ixi-dataset
https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult
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Neuroimaging Initiative (ADNI) [10], the Open Access 
Series of Imaging Studies (OASIS) [14], the KIKI2009/
Kirby [15], the Parkinson Progression Markers Initiative 
(PPMI) [11], the Frontotemporal Lobar Degeneration Neu-
roimaging Initiative (FTLDNI), the ANMerge dataset [16], 
and a public segmentation database of Multiple Sclerosis 
patients (LIMTS) [17]. Data from three additional cohorts 
were incorporated to enrich the sample: the Clinically Iso-
lated Syndrome–COGnitive (SCI-COG) cohort, the REAC-
TIV database, and the MEMORA cohort.

We created three different databases: one for the meas-
urement of GM and WM volumes, one for HP and AM vol-
umes, and one for WMH volumes. Subjects in each database 
were well-balanced according to age (ranging from 20 to 
90 years old), sex, scanner field strength (1.5 T/3 T), and 
type of MRI acquisition (2D/3D for FLAIR images only). 
To ensure as broad a sample as possible in terms of volu-
metric measurements, we selected a heterogeneous popula-
tion composed of healthy controls (HCs), mild cognitive 
impairment (MCI), Alzheimer’s disease (AD), Parkinson’s 
disease (PD), frontotemporal dementia (FTD), and multiple 
sclerosis (MS) patients.

The ADNI was launched in 2003 as a public–private part-
nership led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial MRI, positron emission tomography (PET), biologi-
cal markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and 
AD. For up-to-date information, see http://​adni.​loni.​usc.​edu/​
www.​adni-​info.​org.

The Open Access Series of Imaging Studies (OASIS) is 
a project aimed at making MRI data sets of the brain freely 
available to the scientific community. OASIS is made avail-
able by the Washington University Alzheimer’s Disease 
Research Center, Dr. Randy Buckner at the Howard Hughes 
Medical Institute (HHMI) at Harvard University, the Neu-
roinformatics Research Group (NRG) at Washington Uni-
versity School of Medicine, and the Biomedical Informatics 
Research Network (BIRN). It provides cross-sectional MRI 
data in young, middle aged, non-demented, and demented 
older adults [14].

FTLDNI was funded through the National Institute of 
Aging and started in 2010. The primary goals of FTLDNI 
were to identify neuroimaging modalities and methods of 
analysis for tracking frontotemporal lobar degeneration—
and to assess the value of imaging versus other biomarkers 
in diagnostic roles. The principal investigator of FTLDNI 
was Dr. Howard Rosen, MD, at the University of California, 
San Francisco. The data are the result of collaborative efforts 
at three sites in North America. For up-to-date information 
on participation and protocol, please visit http://​memory.​
ucsf.​edu/​resea​rch/​studi​es/​nifd

Clinical diagnostic criteria for each diagnosis considered 
were NINCDS/ADRDA and Clinical Dementia Rating Scale 

Fig. 1   QyScore® visual interface, including 3D image navigation and volumetric results, compared with a normative dataset of healthy indi-
viduals

http://adni.loni.usc.edu/www.adni-info.org
http://adni.loni.usc.edu/www.adni-info.org
http://memory.ucsf.edu/research/studies/nifd
http://memory.ucsf.edu/research/studies/nifd
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(CDR) = 1 for AD [14, 18]. PD was defined according to the 
features described by Marek and colleagues [11]. FTD was 
defined according to frontotemporal dementia consortium 
criteria [19] and MS, according to Polman and colleagues 
[20].

MRI data

QyScore® analysis can be performed using MRI sequences 
with recommended  acquisition parameters on 1.5- and 
3-Tesla (1.5 T and 3 T) scanners, as reported in Table 1. 
More specifically, the software retrieves DICOM MRI data 
(non-contrast 3DT1 series acquired using 1.5 T or 3 T scan-
ners and T2 fluid attenuated inversion recovery (FLAIR) 
series acquired using 3-Tesla scanners) from a DICOM 
server and sends them to an analysis server.

From the analysis server, before computing MRI analysis, 
QyScore® performs a quality check of MRI parameters to ver-
ify that the parameters are in line with the ones recommended 
(Table 1). The range of recommended parameters was selected 
for their suitability in a clinical routine setting. The analysis is 
performed if the parameters are within the “ideal” or “tolerated” 
ranges, as described in Table 1. When the acquisition parameters 
are not in line with the ones recommended, QyScore® does not 
perform the analysis. Then, QyScore® performs the automatic 
segmentation of GM, WM, HP, AM, and WMH.

For the present study, images were acquired using MRI 
scanners from different manufacturers: General Electric 
Healthcare (GE), Siemens Medical Solutions, Philips 
Medical Systems.

3D T1-weighted MRI images, used to quantify atrophy, 
were acquired either on 1.5 T or 3 T scanners, using exclu-
sively gradient-echo 3D sequences. FLAIR images, used to 
quantify white matter hyperintensities, were acquired on 3 T 
scanners either in 2D or 3D.

Automated Qyscore® imaging markers

All QyScore® imaging markers (GM, WM, HP, AM, 
and WMH volumes) are widely employed in the imag-
ing field as markers of brain atrophy [21–24] and white 
matter hyperintensities [24]. The algorithms used for 
volume calculation are based on existing segmentation 
methods, as described in detail below. Fifteen minutes are 
needed for the segmentation of all structures (less than 
10 min for T1-weighted MRI images only). Whole GM 
and WM volumes were quantified using the Statistical 
Parametric Mapping software v12 (SPM12). SPM is a 
software highly used for GM and WM segmentation both 
in research and in clinical data [25]. Hippocampus and 
AM volumes were measured using an improved version 
of SACHA (Segmentation Automatique Compétitive de 
l’Hippocampe et de l’Amygdale), a fast and fully auto-
matic hybrid segmentation tool previously described in 
detail [26, 27].

White matter hyperintensity volumes were measured 
using a method based on the WHASA (White matter Hyper-
intensities Automated Segmentation Algorithm) automatic 
segmentation method [28].

Table 1   Recommended neuroimaging parameters for analyzing QyScore® markers

T1 T2FLAIR 2D T2FLAIR 3D

Ideal Tolerated Ideal Tolerated Ideal Tolerated

Voxel size in plane (mm × mm) [1, 1] Min: [0.43, 0.43]
Max: [1.5, 1.5]

[1, 1] Min: [0.43, 0.43]
Max: [1.1, 1.1]

[1, 1] Min: [0.43, 0.43]
Max: [1.1, 1.1]

Field of view (mm) x: [152, 340]
y: [220, 340]
z: [152, 340]

x: [144, 500]
y: [170, 340]
z: [132, 340]

x: [152, 340]
y: [220, 340]
z: [152, 340]

x: [144, 500]
y: [170, 340]
z: [132, 340]

x: [152, 340]
y: [220, 340]
z: [152, 340]

x: [144, 500]
y: [170, 340]
z: [132, 340]

Slice thickness (mm) 1 Min: 0.68
Max: 2

3.3 Min: 2
Max: 5

1 Min: 0.8
Max: 2

Interslice gap (mm) 0.0 Min: − 1.0
Max: 0

0.0 Min: 0.0
Max: 1.0

0.0 Min: − 1.0
Max: 0

Interpolation No Yes No Yes No Yes
Acquisition direction Sagittal Axial, Coronal Axial Coronal, Sagittal Sagittal Axial, Coronal
Acquisition type 3D 2D with isotropic voxel 2D 2D 3D 3D
Field strength 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T
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Expert consensus on manual segmentation 
and semi‑automatic assessment of imaging 
markers

Grey matter, white matter, hippocampus, 
and amygdala volumes

Three expert neuroradiologists manually edited and cor-
rected the segmentation of GM and WM (rater’s initials: 
C.S., N.P., S.S.). First, GM and WM segmentations were 
performed using Freesurfer [29]. Then, GM and WM seg-
mentations were corrected using the software ITK-SNAP 
according to their experience. Since no protocols were found 
in the literature, we asked clinicians to check the segmenta-
tion automatically performed to identify important segmen-
tation errors, mainly at the cortex level.

Three expert neuroradiologists manually delineated HP 
and AM according to the anatomical constraints described 
by Chupin and colleagues [26].

For each marker considered (GM, WM, HP, and AM), 
we established a consensus from the corrections/segmenta-
tions obtained from the expert tracers by the Simultaneous 
Truth and Performance Level Estimation (STAPLE) algo-
rithm. The STAPLE algorithm considers a collection of 
segmentations and computes a probabilistic estimate of the 
true segmentation by estimating an optimal combination of 
the segmentations [30]. The consensus was obtained using 
the Computational Radiology Kit (CRKIT) software that 
includes the STAPLE algorithm.

White matter hyperintensity volume

Some of the data used for the validation of WHASA are 
publicly available (N = 30) [17]. We used the consensus 
derived from the WMH manual segmentation of three 
anonymous expert raters reported in the manuscript of Les-
jak and colleagues [16]. On the remaining data (N = 100), 
segmentations were first initiated using the Lesion Segmen-
tation Toolbox (LST) [31], then three expert neuroradiolo-
gists (rater’s initials: C.D., D.H., N.P.) manually corrected 
the WMH segmentation. The consensus among raters was 
obtained using the STAPLE algorithm.

Measures of reliability

The reliability measures considered for the validation of 
QyScore® imaging markers were the dice similarity coef-
ficient (DSC) and the relative volume difference (RVD) 
for GM, WM, HP and AM segmentations. The DSC, the 
absolute volume error (AVE), and the F1 metrics were 
considered for WMH segmentation. For each measure of 
reliability related to a QyScore® marker, we identified 
from the literature the performances of other segmenta-
tion methods comparable to QyScore®. As reported in 
Table 2 [26, 32–40], we averaged their performances to set 
fair values of reliability. We then considered these values 
of reliability as thresholds for the subsequent statistical 
analysis.

Dice similarity coefficient

The DSC [35] is the most frequently  used statistical 
validation metric employed to evaluate the performance 
of both the reproducibility of manual segmentations/
corrections and the spatial overlap accuracy of automated 
segmentation methods [4]. We identified from the literature 
DSC thresholds for each QyScore® marker to test our 
statistical hypothesis as reported in Table 2. The values 
identified in Table 2 are usually considered an excellent 
match between two segmentations and are in line with 
the values reported in previous studies [32]. The DSC 
threshold for WMH segmentation was defined based on 
four categories of lesions load: low (< 5 mL), medium 
(5–15 mL), high (15–30 mL), very high (> 30) mL). The 
DSC thresholds for these four categories of WMH were 
obtained by averaging the DSC values reported in the 
supplementary material of the study by Commowick [34] 
et al. for each category considered. Categories and DSC 
thresholds are described in Table 2.

Table 2   Thresholds considered for each reliability measure

Abbreviations: GM grey matter, WM white matter, HP hippocampus, 
AM amygdala, WMH white matter hyperintensity, DSC dice similar-
ity coefficient, RVD relative volume difference, AVE absolute volume 
error, SD standard deviation. Values in parentheses indicate refer-
ences

QyScore® markers Thresholds

DSC RVD (%) AVE (mL) F1

GM 0.8 9.59 – –
WM 0.8 9.18 – –
HP 0.7 31.5 – –
AM 0.7 31.5 – –
WMH low (< 5 mL) 0.27 – 2 –
WMH medium 

(5–15 mL)
0.51 – 5 –

WMH high (15–
30 mL)

0.64 – 10 –

WMH very high 
(> 30 mL)

0.67 – 15 –

WMH whole sample 0.47 – – 0.3
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The relative volume difference

We calculated the RVD between the volume of the structure 
automatically segmented and the volume obtained from the 
consensus of the three expert neuroradiologists. The RVD 
threshold (Table 2) was obtained among the different RVD 
values acquired from freeware packages widely used by 
experts and described in the manuscript of Mendrik and 
colleagues [41]. To the best of our knowledge, this study 
is the only one reporting several RVD values for GM and 
WM segmentation [41]. RVD thresholds for the HP and 
AM, reported in Table 2, represent the average of RVDs 
from a selection of studies published in the literature [36, 
37, 42–46].

The absolute volume error and the F1 score

We measured the AVE and F1 score exclusively for WMH. 
Evaluation of WMH detection relies on determining how 
many WMH have been correctly or incorrectly detected. 
The F1-score ranges from 0 to 1 and provides an idea of 
the detection performance (perfect detection: 1). It is cal-
culated from (i) the number of WMH in each segmentation 
(expert consensus and QyScore® automatic segmentation), 
(ii) the number of WMH correctly detected from the experts’ 
consensus, and (iii) the number of WMH in the automatic 
segmentation for which there is a WMH from the consensus, 
as suggested by Commowick and colleagues [34].

Thresholds for both metrics (AVE and F1 score) for 
WMH were defined using the values reported in the sup-
plementary material of the study conducted by Commowick 
and colleagues [34] (Table 2).

Statistical analysis

The validity of QyScore® imaging markers was tested in 
comparison to the consensus obtained by three experts. We 
identified thresholds of reliability measures based on the 

performances reported in the literature from other simi-
lar segmentation methods (Table 2). The null hypothesis 
was that the measures of comparison DSC/F1 scores (the 
higher, the better) were equal to/below the chosen thresh-
old—and the alternative hypothesis was that the metrics 
were higher, indicating improved accuracy when compar-
ing QyScore® with the consensus obtained by three experts. 
For DSC and F1 scores, the lower bound of the 97.5% con-
fidence interval was compared to the threshold, indicating 
that the DSC and F1 scores obtained using QyScore® were 
significantly better to the DSC and F1 scores reported in the 
literature for similar segmentation methods. For RVD and 
AVE (the lower, the better), the null hypothesis was that the 
metrics were equal to/above the threshold, and the alterna-
tive hypothesis is that the metrics were lower. The upper 
bound of the 97.5% confidence interval was compared to the 
threshold, indicating that the RVD and AVE obtained using 
QyScore® were significantly inferior to the RVD and AVE 
reported in the literature for similar segmentation methods.

Furthermore, we compared volumes obtained from the 
automated QyScore® imaging markers with the consen-
sus obtained by three experts using regression analysis and 
Bland-Altmann plots.

We used the following library in Python to perform 
statistical analysis: Scikit-learn (http://​scikit-​learn.​org/​sta-
ble/), version 0.19.1; Scipy (https://​www.​scipy.​org/), version 
0.17.0; NumPy (http://​www.​numpy.​org/), version 1.14.3; 
Nipype (https://​nipype.​readt​hedocs.​io), version 1.1.2.

Results

All 180 MRI images passed the quality control performed 
by QyScore®.

Table 3 describes the main features of each database’s 
selection criteria and the mean absolute volume of each 
QyScore® marker. Each database was furthermore consti-
tuted of HC and clinical patients as follows: GM and WM 
database (24 HC, 2 AD, 2 MS, 2 PD), HP and AM database 

Table 3   Distribution of selection criteria (sex, age, magnetic field, type) in each database and absolute volumes of QyScore® markers

Abbreviations: M men, W women, GM grey matter, WM white matter, HP hippocampus, AM amygdala, WMH white matter hyperintensity, sd 
standard deviation
*The 30 images included for the GM and WM analysis were also included in the dataset for the HP and AM analysis

Database Volumes (mL) (mean (sd)) Sex (M/W) Age mean (sd) Magnetic field 
(1.5 T/3 T)

Type (2D/3D)

GM and WM (N = 30) GM 672.67 (82.02) 16/14 53.51 (20.48) 15/15 0/30
WM 462.19 (51.85)

HP and AM (N = 50)* HP 5.83 (0.71) 27/23 52.84 (20.40) 24/26 0/50
AM 2.90 (0.43)

WMH (N = 130) 18,76 (17,62) 60/70 62.95 (19.35) 0/130 70/60

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.scipy.org/
http://www.numpy.org/
https://nipype.readthedocs.io
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(37 HC, 4 AD, 6 MS, 3 PD), WMH database (20 HC, 49 
AD, 6 FTD, 45 MS, 2 PD, 10 with MCI). The type of manu-
facturers used for the acquisition of the MRI images was 
distributed among GM and WM database (2 GE, 9 Philips, 
19 Siemens), HP and AM database (4 GE, 13 Philips, 33 
Siemens), WMH database (30 GE, 26 Philips, 74 Siemens). 
Consensus results and the contribution of each expert neu-
roradiologist EW reported in Table 4.

Validation results for GM and WM segmentations

Comparison with the experts’ consensus showed that GM 
and WM segmentations, obtained using QyScore®, dis-
played the lower bound of the DSC confidence intervals 
(GM 97.5% CI: 0.848, 0.866; WM 97.5% CI: 0.892, 0.907 
respectively) above the DSC threshold (0.8), as well as the 
higher bounds of the RVD confidence interval (GM 97.5% 
CI: 5.578, 8.464; WM 97.5% CI: 2.985, 6.425) below the 
RVD threshold (9.59% for the GM and 9.18% for the WM 
respectively). We found consistent results after the stratifica-
tion by field strength; the mean DSC for the GM was equal 
to 0.87 for 1.5 T and 0.86 for 3 T; the mean DSC for the 
WM was equal to 0.92 for 1.5 T and 0.90 for 3 T. Coefficient 
of determination was equal to 0.91 for the GM and 0.92 
for the WM (Fig. 2A), whilst the means (95% confidence 
interval (CI)) of Bland–Altman plots were − 36.51 (95% CI: 
35.39, − 108.42) for GM and 13.33 (95% CI: 63.04, − 36.38) 
for WM (Fig. 2B).

Validation results for HP and AM segmentations

HP and AM segmentations showed the lower bound of the 
DSC confidence intervals (HP 97.5% CI: 0.801, 0.818; AM 
97.5% CI: 0.763, 0.786 respectively) above the DSC thresh-
old (0.7), as well as the higher bounds of the RVD confi-
dence interval (HP 97.5% CI: 20.886, 24.648; AM 97.5% CI: 
9.203, 15.023) below the RVD threshold (31.5%). We found 
consistent results after the stratification by field strength; the 
mean DSC for the HP was equal to 0.81 for 1.5 T and 0.80 
for 3 T; the mean DSC for the AM was equal to 0.75 for 
1.5 T and 0.76 for 3 T.

Coefficient of determination was equal to 0.72 for the HP 
and 0.52 for the AM (Fig. 2A), while the means (95% CI) 
of Bland–Altman plots were − 1.63 (95% CI: − 0.93, − 3.23) 
for HP and 0.02 (95% CI: 0.86, − 0.81) for AM (Fig. 2B).

Validation results for WMH segmentations

As with the previous markers, WMH segmentations also 
satisfied the alternative hypothesis for each comparison 
considered. As reported in Table 5, for all the WMH load 
considered, the lower bound of the DSC confidence intervals 
was above the DSC threshold, and the higher bound of the 
AVE confidence interval was below the AVE threshold.

Coefficient of determination was equal to 0.97 (Fig. 2A), 
while the mean (95% CI) of Bland–Altman plot was − 2.16 
(95% CI: 11.17, − 6.84) (Fig. 2B).

Table 4   Average measures 
and standard deviations 
of overlap and volumetric 
agreement between the 
segmentation performed by 
each neuroradiologist and their 
consensus obtained using the 
STAPLE algorithm for each 
QyScore® marker

Abbreviations: GM grey matter, WM white matter, HP hippocampus, AM amygdala, WMH white mat-
ter hyperintensity, DSC dice similarity coefficient, RVD relative volume difference, AVE absolute volume 
error; values in parentheses indicate standard deviation

DICE RVD AVE F1

GM (N = 30) Manual tracer 1 0.99 (0.01) 0.18 (0.33) – –
Manual tracer 2 0.99 (0.01) 0.08 (0.06) – –
Manual tracer 3 1.00 (0.01) 0.04 (0.04) – –

WM (N = 30) Manual tracer 1 0.99 (0.01) 0.15 (0.43) – –
Manual tracer 2 0.99 (0.08) 0.09 (0.08) – –
Manual tracer 3 0.99 (0.01) 0.07 (0.07) – –

HP (N = 50) Manual tracer 1 0.98 (0.07) 1.38 (2.00) – –
Manual tracer 2 0.97 (0.01) 2.67 (3.24) – –
Manual tracer 3 0.95 (0.01) 3.85 (2.27) – –

AM (N = 50) Manual tracer 1 0.90 (0.11) 7.91 (10.59) – –
Manual tracer 2 0.86 (0.11) 12.59 (12.78) – –
Manual tracer 3 0.89 (0.11) 5.56 (6.94) – –

WMH (N = 100) Manual tracer 1 0.88 (0.12) – 2.70 (4.75) 0.83 (0.16)
Manual tracer 2 0.85 (0.18) – 2.51 (3.21) 0.70 (0.23)
Manual tracer 3 0.77 (0.21) – 1.50 (1.80) 0.62 (0.27)
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Discussion

Our results showed that the fully automatic tool, QyScore®, 
accurately measures brain imaging markers such as GM, 
WM, HP, AM, and WMH volumes. In comparison with 
the consensus of three expert neuroradiologists, QyScore® 
showed good concordance for all its imaging markers: GM, 
WM, HP, AM, and WMH—as depicted by the Bland–Alt-
man plots and similarity measures. These results support 
the reliability of QyScore® compared with the experts’ con-
sensus in segmenting brain structure essentials for detecting 
brain atrophy in several brain diseases such as Alzheimer’s, 
Parkinson’s, and multiple sclerosis. The value of reliabil-
ity indices (DSC, AVE, RVD, F1), obtained from the com-
parison between QyScore® and the consensus from three 
expert neuroradiologists, satisfied the alternative hypothesis 
for each comparison considered. Thresholds were set based 
on data present in the literature using other automatic seg-
mentation methods, suggesting that QyScore® performs 
equally to or better than other automated methods currently 
used in the research context. In addition, results obtained 
by QyScore® are consistent using T1-weighted and FLAIR 
sequences from common clinical platforms and regardless 
of field strength for T1-weighted images.

Grey matter and white matter

The performance of markers quantified using QyScore® 
is in accordance with the currently available methods for 
the automatic segmentation of brain MRI described in the 
literature.

In particular, results from the MRBrainS challenge—
comparing automatic and semi-automatic methods to seg-
ment GM and WM to the gold standard—concluded that 

SPM12 was the most robust, accurate, and fastest algorithm 
among the freeware packages evaluated [41]. A further 
study assessing whole brain and GM atrophy in multiple 
sclerosis showed for GM a DSC equal to 0.90 for SPM12 
that was significantly higher to the one found for MSmetrix 
(DSC = 0.59) [47]. The quantification of GM atrophy using 
QyScore® in a heterogeneous sample of individuals with 
different pathophysiology showed an intermediate DSC (GM 
97.5% CI: 0.848–0.866).

Hippocampus and amygdala

Regarding the HP and AM segmentation, a previous version 
of QyScore®’s algorithm using SACHA has shown better 
segmentation results compared to semi-automatic methods 
and other segmentation methods based on atlases [48]. The 
overlap between SACHA segmentation and the manual seg-
mentation (detected by the DSC) was higher compared to 
the ones obtained for Freesurfer and FSL/FIRST [33]. HP 
measurements with Freesurfer were superior to FIRST [33]; 
however, several studies reported an overestimation of HP 
volume measured using Freesurfer [33, 46, 49]. Moreover, 
SACHA showed good accuracy in detecting mild cognitive 
impairment (MCI) and AD patients [50].

White matter hyperintensities

A previous version of QyScore®’s algorithm WHASA was 
validated on clinical routine MRI images showing a high 
intra-class coefficient of correlation with manual segmenta-
tion [28], which supports our results. Furthermore, WHASA 
was previously compared to other methods such as Free-
surfer, a thresholding approach, and other methods based 
on k-nearest neighbors (kNN) and support vector machine 
(SVM) algorithms [28]. WHASA showed a better perfor-
mance than Freesurfer and the thresholding approach as 
well as a comparable performance to the one obtained from 
kNN and SVM methods [28]. The spatial overlap between 

Fig. 2   Scatterplots from regression analysis (a) and Bland–Altman 
plots (b) showing good concordance between QyScore® markers and 
the consensus from the expert raters

◂

Table 5   Thresholds of the 
reliability measures (DSC, 
AVE, F1) for each category of 
WMH as well as confidence 
intervals of WMH volumes 
measured using QyScore® 
in comparison with experts’ 
consensus

Bold numbers highlight the fact that the values were above or below the defined tresholds
Abbreviations: WMH white matter hyperintensity, DSC dice similarity coefficient, AVE absolute volume 
error, mL milliliter

QyScore® markers Thresholds QyScore® 97.5% confidence intervals

DSC AVE (mL) F1 DSC AVE (mL) F1

WMH low (< 5 mL) 0.27 2 – 0.284, 0.414 0.329, 0.666 –
WMH medium (5–15 mL) 0.51 5 – 0.647, 0.716 1.152, 2.518 –
WMH high (15–30 mL) 0.64 10 – 0.728, 0.771 2.648, 4.120 Ok –
WMH very high (> 30 mL) 0.67 15 – 0.761, 0.811 6.186, 10.417 –
WMH whole sample 0.47 – 0.3 0.616, 0.674 – 0.352, 0.3911
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WHASA segmentation and manual segmentation was higher 
compared to the spatial overlap that was found between 
established automatic methods and manual segmentation 
[51].

Implications of the use of automatic algorithms 
and medical devices in clinical routine

Several medical devices measuring brain imaging markers 
for neurological diseases are currently available [51–55]. 
However, multiple elements prevent the comparison between 
QyScore® performances and other devices due to (i) differ-
ent indices of reliability used for their validation [54], (ii) 
the use of different validation methods [53, 56], and (iii) 
heterogeneous target populations among studies (exclusively 
young healthy controls, or MS or AD patients only) [51, 
53, 54].

Volumetric MRI measures (such as the HP or GM vol-
ume) have been proposed as surrogate markers of in vivo 
brain atrophy and neurodegeneration [57, 58] and might be 
used for the early diagnosis, monitoring, and secondary out-
come in clinical trials for several neurological diseases. An 
additional advantage of measuring brain atrophy in clinical 
trials is that fewer subjects need to be included [59, 60].

In line with our evidence, a recent research study has also 
demonstrated that quantitative reports, alongside routine 
visual MRI assessment, improves sensitivity and accuracy 
for detecting volume loss in AD compared to visual assess-
ment alone [61].

Gold standard methods, such as manual tracing, are dif-
ficult, time-consuming and prone to inter- and intra-rater 
variability. In contrast, automatic methods have the obvious 
advantage of being consistent and fast compared to manual 
or semi-automatic methods [62]. For this reason, the valida-
tion of automated measures of MRI brain segmentation is 
of substantial importance to support practitioners in clinical 
settings and pharmacological companies in the context of 
new drug development [46].

Thanks to the reliability of the main results presented 
in the present manuscript, QyScore® has been considered 
suitable by regulatory bodies worldwide (CE and FDA). The 
panel of MRI markers (GM, WM, HP, AM, and WMH vol-
umes) measured by QyScore® can support clinicians in the 
diagnosis and monitoring of clinical progression of neuro-
logical diseases such as MCI and AD dementia, MS, Par-
kinson’s, and other neurodegenerative disorders. However, 
the clinicians make the final clinical decision based on their 
expert review of the QyScore® results.

The automated measure of MRI markers allowing 
fast segmentation of brain volumes and WMH (15 min) 
overcomes the time-consuming and subjective nature of 
the manual approach. QyScore® has reliable markers that 

can be implemented in clinical trials as primary/second-
ary outcomes to investigate the disease-modifying effect of 
treatments. In this regard, the HP atrophy measured using 
SACHA was already employed as the primary endpoint in a 
clinical trial aimed at investigating the efficacy of donepezil 
treatment in suspected prodromal AD patients [9].

Furthermore, QyScore® results can be incorporated into 
the clinical reports—providing additional neuroimaging 
information to clinicians that may be employed during their 
clinical and radiological assessments. QyScore® outputs can 
assist clinicians in the clinical diagnosis and monitoring, as 
well as in the choice of the most appropriate treatment in 
clinical practice.

Study limitations

Some limitations of the present study should be considered. 
The current version of the QyScore® algorithm for GM 
segmentation is not optimized for the exclusion of white 
matter lesions. In this regard, review of results is required 
before considering their use for clinical reports. This func-
tionality will be included in a future update of the software. 
QyScore® algorithms have been mainly validated on open-
source research cohorts, and further studies are ongoing in 
a clinical routine setting. A direct comparison with other 
medical devices, test–retest, and longitudinal data is also 
needed.

Conclusions

QyScore® provides reliable automatic segmentation of brain 
structures compared to the experts’ consensus and other 
semi-automatic and automatic software described in the lit-
erature. Our results support the implementation of medical 
devices, such as QyScore® using neuroimaging methods, in 
clinical routine for supporting the diagnosis and monitoring 
of brain disorders.

QyScore® markers could also be implemented in clini-
cal trials to test the efficacy of new drugs for neurological 
diseases. Reliable measures of brain atrophy and white 
matter hyperintensities, such as the ones provided by 
QyScore®, will help us move into more personalized and 
evidence-based medicine for neurological diseases. Fur-
ther retrospective and prospective validation studies, as 
well as test–retest reliability studies, are currently ongo-
ing on real-world data to demonstrate the diagnostic per-
formance and the clinical impact of using QyScore® in 
neurological disorders.
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