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Abstract — We study experimentally blast wave dynamics on a weakly interacting fluid of light.
The fluid density and velocity are measured in 1D and 2D geometries. Using a state equation
arising from the analogy between optical propagation in the paraxial approximation and the hydro-
dynamic Euler’s equation, we access the fluid hydrostatic and dynamic pressure. In the 2D configu-
ration, we observe a negative differential hydrostatic pressure after the fast expansion of a localized
over-density, which is a typical signature of a blast wave for compressible gases. Our experimental
results are compared to the Friedlander waveform hydrodynamical model (FRIEDLANDER F. G.,
Proc. R. Soc. A: Math. Phys. Sci., 186 (1946) 322). Velocity measurements are presented in
1D and 2D configurations and compared to the local speed of sound, to identify the supersonic
region of the fluid. Our findings show an unprecedented control over hydrodynamic quantities in

a paraxial fluid of light.

Copyright © 2021 EPLA

Introduction. — In classical hydrodynamics, a blast
wave is characterized by an increased pressure and flow
resulting from the rapid release of energy from a concen-
trated source [1]. The particular characteristic of a blast
wave is that it is followed by a wind of negative pressure,
which induces an attractive force back towards the origin
of the shock. Typical blast waves occur after the det-
onation of trinitrotoluene [2,3], nuclear fission [4], break
of a pressurized container [5] or heating caused by a fo-
cused pulsed laser [6]. The sudden release of energy causes
a rapid expansion, which in a three-dimensional space is
analogous to a spherical piston [7] and produces a com-
pression wave in the ambient gas. For a fast enough piston,
the compression wave develops into a shock wave which is
characterized by the rapid increase of all the physical prop-
erties of the gas, namely, the hydrostatic pressure, density
and particle velocity [8]. In 1946, Friedlander predicted
that immediately after the shock front the physical prop-
erties at a given position in space decay exponentially [9].
In this model, for 3-dimensional and 2-dimensional spaces
the hydrostatic pressure and the density are expected to
fall below the values of the ambient atmosphere leading to
a blast wind [1].

() Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.

(P)E-mail: quentin.glorieux@lkb.upmc.fr (corresponding au-
thor)

Shock waves have been studied in several contexts in
physics, including acoustics, plasma physics, ultra-cold
atomic gases [10-12] and non-linear optics [5,13-15]. In
optics, the hydrodynamics interpretation relies on the
Madelung transforms which identify the light intensity to
the fluid density and the phase gradient to the fluid veloc-
ity [16]. Recently several works have studied analytically
shock wave formation in one and two dimensions [17,18].
Optical systems allow for repeatable experiments and pre-
cise control of the experimental parameters. For ex-
ample dispersive superfluid-like shock waves have been
observed [13], as well as generation of solitons [14], shocks
in non-local media [19], shocks in disordered media [15],
analogue dam break [5] and Riemann waves [20]. How-
ever, an experimental study of blast waves has not been
done in atomic gases nor in non-linear optics systems. In
this work, we demonstrate the generation of a blast wave
in a fluid of light. Interestingly, the prediction of a blast
wind with negative pressure and density holds in a two-
dimensional space but not in 1 dimension [21]. Optical
analogue systems allow for an experimental validation of
this prediction.

In this letter, we study the formation of blast waves in
a paraxial fluid of light. We measure the time evolution of
analogue physical properties such as the hydrostatic pres-
sure, the density, the particle velocity and the dynamic
pressure at a fixed point for 1- and 2-dimensional sys-
tems. We report the observation of a negative hydrostatic
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differential pressure after a shock wave in a 2-dimensional
system and we show that the Friedlander waveform de-
scribes quantitatively our experimental results for all phys-
ical parameters. This paper is organized as follows. We
first introduce the analogy between the propagation equa-
tion of a laser beam through a non-linear medium (a warm
atomic vapor) and the hydrodynamics equation and de-
rive the relevant analogue physical properties. In the sec-
ond section of this work, we describe our experimental
setup and present our results on the density and hydro-
static pressure measurements. We highlight the striking
differences between 1- and 2-dimensional systems. Finally,
we study the time evolution of the velocity and dynamic
pressure.

Theoretical model. — We describe the propagation
of a linearly polarized monochromatic beam in a local
Kerr medium. We separate the electric field’s fast os-
cillating carrier from the slowly varying (with respect to
the laser wavelength) envelope: E = &(r,z)e!(Fz—Foct) -
complex conjugate, where k and ko are the laser wave
vectors respectively in the medium and in vacuum. Un-
der the paraxial approximation, the propagation equation
for the envelope &£ is the Non-Linear Schrodinger Equa-
tion (NLSE) [16]:

ag o 1 2 2 iXe}

(1)
where « is the extinction coefficient accounting for
losses due to absorption (see the Supplementary Mate-
rial Supplementarymaterial.pdf (SM) for more details),
and the g parameter is linked to the intensity-dependent
refractive index variation An via: g|&|° = —koAn.

The NLSE is analogous to a 2D Gross-Pitaevskii equa-
tion describing the dynamics of a quantum fluid in the
mean-field approximation. This analogy is possible by
mapping the envelope £ to the quantum fluid many-body
wave function and the axial coordinate z to an effective
evolution time. The non-linear refractive index variation
plays then the role of a repulsive photon-photon interac-
tion, since all measurements in this work are done in the
self-defocusing regime, i.e., An < 0 and therefore g > 0.
Diffraction acts as kinetic energy with the effective mass
emerging from the paraxial approximation and given by
the laser wave vector k = 8-10°m™!. Using the Madelung
transformation: £ = \/ﬁei¢, v = %V 1 ¢ one can derive
from the NLSE hydrodynamic equations [13,17], linking
the fluid’s density p with its velocity v:

v
92 + V. (PZ) = —ap, (2)
ov 1 2 cgp c 9
9z T2 Y T Vl( EEETEN AR 3)

Equation (2) is the continuity equation with a loss term
accounting for photon absorption. Equation (3) is sim-
ilar to the Euler equation without viscosity, in which

the driving force stems from interaction and the so-called
quantum pressure term due to diffraction. Establishing
the formal analogy requires, however, defining an ana-
logue pressure P to be able to re-express the right-hand
side of eq. (3) as —1/p - V P. This is possible for the
first term stemming from interactions. Using the identity
~Vip = —1/(2p)V_p? one can define the so-called bulk
hydrostatic pressure P as
c? p? 1
P = _& = _pcia

2 k2 )

where the last equality comes from ¢? = ¢? - gp/k. Equa-
tion (4) is the state equation linking the fluid hydrostatic
pressure P to its density if one neglects the quantum pres-
sure term (see the SM for more details). It is the conse-
quence of the mean-field formulation of the interaction.
It also implies that the fluid of light is compressible with
the compressibility equal to k/(c?p?g). One then gets the
analogue Euler equation:
ov 1 9 1

ajo T2 T TV
with a pressure P of dimension [density]x [speed]?. As al-
ready mentioned, the fluid dynamics can be studied by
accessing its state at different z positions, however this is
not recommended practically since imaging inside a non-
linear medium is a highly challenging task. Alternatively,
one can instead re-scale the effective time by incorporat-
ing fluid interaction [18,22]. Fluid interaction can then
be varied experimentally and the fluid dynamics can be
studied while imaging only the state at the medium out-
put plane. Re-scaling the time is based on defining the
following quantities:

(5)

1
ZNL = ———, non-linear axial length, 6
M gp(0, 1) )
£ = ZNTL, transverse healing length, (7)
cs = e speed of sound, (8)
&
P = (9)

Vp(0,L)

and substituting the time and space variables as
T = z/anp, T =1/, V. = &V.. L is the non-linear
medium length. The propagation equation then reads

= (574l

or
One can note that the dynamics of ¢ is not dissipative
anymore, due to the normalization with respect to the ex-
ponentially decaying density p(0,L) = p(0,0)exp(—al),
measured at the medium exit plane and provided a re-
definition of the interaction parameter by its average
over the propagation within the cell. This formulation
is necessary to describe accurately the experimental re-
sults of this work probing the temporal dynamics of a

(10)

i
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fluid of light by varying the strength of the optical non-
linearity and not the imaged z-plane. The effective time
T =|An(r; =0,L)|koL equals the maximal accumulated
non-linear phase. Rewriting the Madelung transformation
with the new variables, we obtain

NN S S i s_ VY _¢
P \/;e p(O,L)e’ v - Vi¢.

One gets dimensionless Euler and the continuity equa-
tions:

(11)

% -
E*FVJ_'(/)V)—O, (12)
v 1o o o [ 1 oy

N olve - m(p WVME), (13)

where the link between eq. (13) and the Euler equation
is made by neglecting the quantum pressure and defining
the dimensionless hydrostatic pressure as

-1
P=-p
5P
Finally, the dynamic pressure is defined as a vector quan-

tity by

(14)

Py = %ﬁ\ﬂﬂ. (15)
The dynamic pressure is the fluid kinetic energy flux and
accounts for the amount of pressure due to fluid motion.
The impact force on an obstacle hit by a shockwave is
proportional to its dynamic pressure. Expressed in dimen-
sionless units, the dynamic pressure gives the strength of
the convection term normalized by the pressure due to the
interactions in eq. (13). It can be computed directly from
the density and velocity measurements.

Shock waves and blast wind. — In this work, we
study the dynamics of a fluid of light disturbed by a local-
ized Gaussian over-density dp(r,0) = p; exp(—2r?/w?).
p1 is of the same magnitude as the background fluid den-
sity po and w1 quantifies the perturbation width. We can
write p(r, L) = po(r) + dp(r, L). Indeed py depends on r
having a Gaussian shape, much larger than w;. Normaliz-
ing the total density by its maximal undisturbed value one
gets p(r,7) = p(r,L)/po(0,L). Extending this definition
to pp and p1, we obtain pp bound between 0 and 1, and p;
expressing the perturbation strength with respect to the
fluid background density. We define the over-density and
the over-pressure from the pressure difference between the
case with and without perturbation:

(16)
(17)

op(r,7) = p(r,7) — /39(1‘77')7

d0P(r,7) = P(r,7) — Py(r,7),
where the over-pressure is calculated using eq. (14). To
evaluate the differential pressure AP(7), showing the in-

stantaneous difference in pressure between the perturba-
tion center and the external undisturbed area, we define

AP(1) = P(0,7) — Py(reat, 7). (18)

The differential pressure AP(7) is the most important
quantity we study in this work and we expect major differ-
ences in the non-linear perturbation dynamics between the
1D and the 2D geometries. Finally, the fluid velocity can
be measured experimentally. It requires a measurement
of the beam wavefront which is realized using off-axis in-
terferometry. Calculating numerically the gradient of the
phase, we obtain the background fluid velocity vy and the
perturbation velocity v by analyzing the images without
and with the perturbation, respectively.

Several studies have been performed in both p; < pg
and p; > po regimes, observing the Bogoliubov dis-
persion of the linearized waves created by the perturba-
tion [23-25], and the shock waves [13,18], respectively. In
this work we investigate the case p; ~ pg by analyzing the
fluid density, velocity and pressure both in the 1D and 2D
geometries. The NLSE is known to give rise to sound-like
dispersion to the low amplitude waves, governed by the
Bogoliubov theory. Here, a perturbation of the same order
(or larger) than the background results in the sound veloc-
ity variation following the local density inside the pertur-
bation. This is the prerequisite for observing shock waves,
a special type of waves changing their shape during prop-
agation towards a steepening profile. In hydrodynamics,
shock waves are usually reported as a time evolution mea-
surement of a physical quantity (pressure, density...) at a
fixed point in space. After the passage of a the shock wave
front, a blast wind (a negative differential pressure) should
be observed in 2- and 3-dimensional space. A direct phys-
ical consequence of this wind in classical hydrodynamics
is observed for example after an explosion inside an edi-
fice: the presence of glass pieces within the building is the
signature of the blast wind. In the next section we report
the time evolution as well as the time snapshots (spatial
map of a physical quantity at fixed time) typically not
accessible in classical hydrodynamics experiments.

Experimental setup. — In our experiment, we in-
vestigate the propagation of a near-resonance laser beam
through a 75 mm long warm ®°Rb vapor cell, which in-
duces effective photon-photon interactions [26]. Two con-
figurations are studied: the 2D geometry with a radially
symmetric dynamics and the 1D geometry with a back-
ground much larger along x than along y which allows for
a 1D description of non-linear wave dynamics [18]. The ex-
perimental setup is schematically visualized in fig. 1(a). A
tapered amplified diode laser beam is mode cleaned with a
polarization maintaining single-mode fiber and then split
into a background, a reference and a perturbation beams
(see the SM for details). The background beam is enlarged
with a telescope up to a waist of 2.5+ 0.5 mm along = and
0.8£0.1 mm along y in the 1D geometry, and 1.84+0.3 mm
along the radial coordinate in the 2D configuration. The
reference beam (for interferometric phase measurement) is
matched to the same dimensions. The perturbation beam
is focused to get the waist of 0.12£0.03 mm in the middle
of the cell (the corresponding Rayleigh range is 55 mm).

24001-p3
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Fig. 1: (a) Experimental setup: laser frequency performed with Saturable Absorption Spectroscopy (SAS) and a MogWave
Lambdameter. After mode cleaning with a Polarization Maintaining Single-Mode Fiber (PMSMF), the laser beam was split
into the background, bump and the reference. The background-bump interference signal was measured by cropping the overlap
area (200 pm diameter pinhole (Ph)) on a photodiode (Pd2) on the beam splitter arm complementary to the Rb vapor cell.
This signal was transformed via the PyRPL lockbox software into an error signal driving the piezoelectric mirror mount (piezo)
to lock the (Pd2) signal on a minimum. This relative phase control enables permanent constructive interference on the vapor
cell arm. (b) Over-density images obtained by image subtraction (see eq. (16)) in the 1D and 2D cases, revealing appearance of
negative over-density in the 2D case. The centered unperturbed (blue) and perturbed (red) density profiles are shown below.

The background and perturbation are recombined with a
90R:10T beam splitter such that 90% of the background
beam power is reflected towards the cell. The second arm
of the BS is sent through a 200 ym diameter pinhole into
a photodiode to stabilize the interferometer. The control
is realized by locking on local minimum acting on a piezo-
electric mirror mount with a RedPitaya FPGA run by the
PyRPL software [27]. Cell temperature is 149 £2°C lead-
ing to an atomic density of 8.3 £ 0.8 x 103 cm™3. The
cell output is imaged with a x4.2 magnifying 4-f setup
onto a camera. Sets of 4 images (background only, back-
ground with reference, background with perturbation and
finally background with both perturbation and reference)
at different input powers P ranging from 50 to 600 mW
and different laser detunings A from the 3°Rb D2 line
F = 3 — F’ transition are taken (see the SM for de-
tails). The reference beam is superimposed with other
beams with an angle of 30 milli-radians, giving rise to in-
terferograms with vertical fringes of average periodicity of
25+ 1 um. By changing the laser intensity and detuning,
we can modify the effective time 7. The associated time 7
is calculated from the nonlinear index An via the off-axis
interferometric measurement for each experimental config-
uration (P, A) (see the SM for details).

Density. — The density is an important physical pa-
rameter needed to compute the static and hydrodynamic
pressure. It is directly given by the intensity measurement.
In fig. 1(b) we present the experimental images of the over-
density 6p at time 7 = 31, using image subtraction as
described in eq. (16), in the 1D and 2D geometries, re-
spectively. From this images, as well as the corresponding
centered profiles given below, one can notice the key differ-
ence in the evolution of the bump in both geometries: the

appearance of a negative over-density after the bump’s ex-
pansion (corresponding to times above 7 > 20) in the 2D
geometry. Interestingly, this effect seems absent in the
1D case, which, on the contrary, shows clear steepening of
the perturbation front and the development of dispersive
shock waves in form of an oscillating pattern developing
beyond the shock front with effective time 7, the effect
less pronounced in the 2D case. These features have direct
consequences on the evolution of the over-pressure and the
differential pressure. The negative differential density has
a direct consequence on the sign change in the differential
pressure calculated using eq. (18).

Static pressure. — To isolate the effect of the per-
turbation on the static pressure, we compute the over-
pressure from images of the background with and without
the bump taken at same effective times 7(P,A), using
eqs. (17) and (14). The over-pressure as a function of
time 7 is shown in figs. 2(b) and (d) and profiles averaged
along y in the 1D case and radially in the 2D case are
presented in figs. 2(a) and (c) for various times.

The trajectory of a density pulse spreading with no
dispersion at the speed of sound can be expressed as
follows: r = ¢s(7) x (L/c). The coefficient can be cal-
culated using the time dependence of the sound velocity:
¢s = ¢/7/(kL) obtained from eqgs. (6) and (8). It directly
leads to 7 = kr?/L and knowing that L = 75mm and
k=8x10°mm™', one gets: 7 = 107 x 2. The coefficient
does not depend on the dimensionality of the system.

In the pressure maps (figs. 2(b) and (d)), we have added
a black dashed line following this trend: 7 = 107 x 22 (1D)
and 7 = 107 x 72 (2D). As expected, this trajectory follows
closely the shock front in the 1D geometry. The differen-
tial pressure is defined as the pressure difference between

24001-p4
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Fig. 2: Pressure analysis: ((a), (c)) over-pressure profiles evalu-
ated at different effective times 7. Each following profile shifted
vertically by 2 for better visibility. Panels (b), (d) show the
1D and 2D spatio-temporal diagrams of the over-pressure evo-
lution, respectively. The dotted black lines show an expan-
sion trajectory at the speed of sound according to 7 = kr?/L,
(k/L = 107mm™?) in both geometries. The blue dotted lines
show the same trajectories shifted horizontally by 250 pm in
the 1D (200 pum in 2D) case, used as external undisturbed area
used for the measurement of the differential pressure. Dashed
green rectangles around 7 = 40 show the presence of a second
shock due to an increasing differential pressure.

inside and outside of the shock as expressed in eq. (18).
The undisturbed pressure as a function of time is eval-
uated along the same trend line 7 = 107 X (7ext — 70)2,
translated 79 = 250 pm in 1D and 79 = 200 pm in 2D,
which corresponds to ~ 1.5 times the perturbation beam
waist (blue dashed line). In 2D, the shock front expan-
sion is slower than the calculated trajectory, as described
in [18], and the blue dashed line can therefore still be used
to define the undisturbed pressure.

The temporal evolution of the differential static pres-
sure (at = 0) is presented in fig. 3. 1D (red circles) and
2D (gray triangles) geometries are compared from 7 = 0
to 7 = 45. An important difference can be seen between
the two geometries: in the 2D situation the differential
pressure becomes negative at 7 = 20 as it goes to zero in
the 1D case. The observation of the negative pressure is
the typical signature of a blast wind. This measurement
reveals the dramatic impact of the geometry on blast wind
in a fluid of light and exemplifies the analogy with classi-
cal hydrodynamics. To quantify this analogy, we use the
Friedlander waveform model which is known to describe

12
O 1Ddifferential pressure
1F V 2D differential pressure
‘\ - - = Fit (B=11*=20)
0.8 ’\‘\ A}:’ — Pse—f/t* (1 -~ T/t*)
— \

=

AP = P(0) = P(ro.(

Fig. 3: Differential pressure calculated from eq. (18) for the 1D
(circular dots) and the 2D cases (square dots). The uncertainty
bars correspond to the statistical analysis of multiple images.
The pressure is normalized as described in the main text. The
blue line is the ambient pressure outside of the shock. The
black dashed line is the Friedlander model for a blast wave
described in eq. (19) with P; = 1 and ¢* = 20 obtained from
fit to experimental data.

the dynamics of physical quantities in a free-field (i.e., in
an open 3-dimensional space) blast wave [1]. In this model
the differential pressure follows an exponential decay of the
form

AP = Pe™ ™V (1 — 7/t%), (19)

where Py and t* are two parameters which correspond re-
spectively to the peak differential pressure immediately
behind the shock and to the time when the differential
pressure becomes negative. The period when the hydro-
static pressure is above the ambient value is known as
the positive phase, and the period when the properties
are below the ambient value is the negative phase. We
use Py = 1 (since the differential pressure is normalized)
and t* = 20 (the parameters best fitting the experimen-
tal data) and plot the corresponding model with a black
dashed line in fig. 3. An intriguing feature can also be
seen in the 2D time evolution at 7 = 40. Close to the
minimum of the negative phase, a second peak of differen-
tial pressure is observed (the single point at 7 = 40 fig. 3
is the average of several realizations with errors bars indi-
cating the standard deviation of the measurement) in our
optical analogue which is reminiscent of the second shock
observed in classical explosion. In classical blast wave dy-
namics, this second shock is believed to be a consequence
of the expansion and subsequent implosion of the detona-
tion products and source materials. Our results suggest
that this second shock might be of more general nature
than currently thought.

Velocity. — For blast waves, there are no simple ther-
modynamic relationships between the physical properties

24001-p5
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of the fluid at a fixed point [28]. This means that the tem-
poral evolution of the static pressure measured at a fixed
point is not sufficient to calculate the temporal evolution
of the velocity or the dynamic pressure from that single
measurement. To fully describe the physical properties of
a fluid in a blast wave it is necessary to independently
measure at least three of the physical properties, such as
the static pressure, the density and the fluid velocity or
the dynamic pressure. In the last section of this work, we
report the measurement of the last two physical proper-
ties, which are vector quantities.

The fluid velocity is calculated from its phase (see
eq. (11)) which is measured using off-axis interferometric
imaging. The off-axis configuration consists in the tilted
recombination of the signal beam with the reference beam
on the camera plane. This results in the set of linear
fringes evolving along the relative tilt direction and lo-
cally deformed (stretched or compressed) according to the
beams relative curvature. Using a collimated Gaussian
beam as the reference, the measured curvature is the one
of the signal beam. The acquired interferogram carries the
information on the beam phase via its amplitude modu-
lated term. This term shows spatial periodicity and in
the Fourier space it translates to two peaks shifted by a
distance proportional to the off-axis tilt angle, symmetric
with respect to the origin. By numerically calculating the
spatial spectrum and filtering one of these peaks, the in-
verse Fourier transform gives the beam complex envelope
with a spatial resolution bound by the fringe wavelength.
The measured phase is unwrapped and the contribution
due to the relative tilt is removed by subtracting the phase
ramp. The resulting phase is averaged and numerically
differentiated to get the velocity map.

Using this procedure, the off-axis interferograms of the
background fluid and of the background fluid with the
perturbation are analyzed to give access to vg(r,7) and
v(r,7), respectively. The difference of these quantities
gives the perturbation velocity vy (r, 7). The non-zero ve-
locity vg of the background fluid arises from its finite size
causing its expansion due to a non-zero pressure gradient.
The knowledge of vy is essential to calculate the effec-
tive interaction g and therefore the time 7 and the sound
velocity. Indeed, ¢9 = 7Tpo can be accessed by integrat-
ing vy over the transverse coordinate and using the fact
that ¢(7 — oo, 7) — 0. Knowing 7, the sound velocity is
cs(ri,7) =c\/Tpo(r1,7)/(koL).

The velocity maps normalized by the local sound ve-
locity (in Mach units) are presented in figs. 4(a) and (b)
for the 1D and 2D configurations, respectively. Since ve-
locity is a vector quantity, negative values correspond to a
propagation along —z direction. Figures 4(c) and (d) show
the corresponding profiles obtained for three specific times
7 = 2; 23 and 45. The maximal speed of sound at these
times is 0.18, 0.62 and 0.86 percent of the speed of light
in vacuum. Positive outward velocity, as well as zero ve-
locity at the center is observed at all times both in the 1D
and 2D cases. Whereas it is intuitively expected in the 1D

a) Mach number (1D) b)

Mach number (2D)
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Fig. 4: Fluid velocities from the off-axis interferometry.
(a), (b): space-time evolution of the Mach number with re-

spect to the background’s local speed of sound, in the 1D and
2D geometry, respectively. The dotted black line in (a) shows
the calculated trajectory of expansion at the speed of sound
(see main text). Panels (c) and (d) show the background’s
0o (blue) and total © (red) Mach number profiles, at different
times, for the 1D (z-coordinate) and 2D geometry (radial co-
ordinate), respectively. Each following profile shifted vertically
(spacing of 1) for visibility.

geometry with the differential pressure never dropping to
negative values, it also holds in the 2D case in which a neg-
ative phase for the differential pressure exists. A possible
explanation lies in the fact that when the negative phase
is reached for the differential pressure, the perturbation
has already expanded enough such that the net resulting
force is smaller due to a larger distance. It is also worth
noting that the velocity is at least 2 times larger in the 1D
geometry than in 2D, as seen by comparison of the y-axis
scales in figs. 4(c) and (d). Additionally, clear steepening
of the velocity profiles is observed in the 1D case reaching
a Mach number of 1 at the steepest position.

Dynamic pressure. — Alternatively, we can measure
the dynamic pressure to compute a third thermodynamic
quantity: the total pressure. The dynamic pressure is
also a vector quantity and can be obtained from a phase
measurement similar to fluid velocity using eq. (15). The
dynamic pressure maps are presented in figs. 5(a) and (b).
Once again figs. 5(c) and (d) show dynamic pressure pro-
files for three selected times. In 1D, the dynamic pressure
forms a steep overpressure characteristic of the shock front
which increases as a function of time. In the 2D geometry,
on the contrary, the dynamic pressure reaches a plateau
at the shock front without forming a steep overpressure
peak. This behavior is in agreement with the velocity dis-
tributions presented previously.
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Fig. 5: Dynamic pressure analysis. Panels (a) and (b) show the
spatio-temporal evolution maps of the dynamic pressure pro-
files, for the 1D (the z-component) and 2D geometry (the radial
component), respectively. Below, panels (¢) and (d) show vari-
ous superimposed dynamic pressure profiles at different times,
in 1D and 2D geometry, respectively.

Conclusion. — Relying on detailed measurements of all
thermodynamic quantities in a fluid of light blast wave,
we have demonstrated for the first time the occurence of
a blast wave in a fluid of light. We compare 1D and 2D
geometry and report the observation of a negative phase
during the blast only for the 2-dimensional case. The dif-
ferential pressure in the 2D geometry is compared to the
classical hydrodynamics of Friedlander blast-wave and we
see a very good agreement with this model. Velocity maps
and dynamic pressure are finally presented to complete the
study. Our work opens the way to precise engineering of
a fluid of light density and velocity distribution which will
prove to be a valuable tool to design new experiments
studying superfluid turbulence [29] or analogue gravity
where an excitation of a fluid of light changes from a sub-
sonic to a supersonic region.
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