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1. Introduction
Identifying all sources of disturbances to the neutral density of the Earth's thermosphere is of crucial interest for 
accurately estimating satellite drag on low Earth orbiting spacecraft and/or space debris for the computation of 
collision avoidance and mission planning (Berger et al., 2020; Vourlidas & Bruinsma, 2018). There is an increas-
ingly critical need for real-time estimates of density variation (Gondelach & Linares, 2020). The thermospheric 
neutral density varies on a long-term scale (months to years), mostly driven by changes in the UV (120–200 nm) 
and EUV (10–120 nm, following the ISO21348 definition) irradiance (Guo et al., 2007). Coronal mass ejections 
(CMEs) and stream interaction regions (SIR) causing geomagnetic storms on Earth, and solar flares are the main 
drivers of density perturbations on a time-scale of hours to days (Emmert, 2015; Krauss et al., 2015; Qian & 
Solomon, 2012). If CMEs and flares are more frequent during maxima of the solar cycle, SIRs (and their peri-
odic equivalent “co-rotating interaction region,” CIR) are the main sources of disturbances during the solar cycle 
minimum (Burns et al., 2012; Chen et al., 2012, 2014).

Earth-crossing CMEs or SIRs can generate geomagnetic storms lasting for several days. During these periods, 
magnetospheric particle precipitations and Joule heating are the main sources of atmospheric heating. As a 

Abstract The increase of energetic electromagnetic flux during solar flares and particle precipitation 
during geomagnetic activity are among the most important sources of neutral density disturbances to the Earth's 
thermosphere. However, disentangling the role of X and EUV radiation during solar flares is difficult due to 
the rarity of sufficiently isolated EUV-enhancements. Past work investigating the role of EUV-enhancements 
has been based on simulations only. This study focuses on the analysis of the response of the thermosphere to 
relatively long-lasting (between 1 and 2 days) EUV-enhancements. These events take place in isolation from 
coronal mass ejections, but often occur during the recovery phase of flare events. Using the Gravity Recovery 
and Climate Experiment and Challenging Minisatellite Payload accelerometer-derived density datasets, we 
show that the EUV-enhancements slow the thermosphere's recovery from a flare, and maintain a high level 
density perturbation “plateau” lasting several hours. The level of disturbance was found to be between 30% 
and 70% compared to the thermosphere's density without any disturbance. The duration of this plateau is long 
enough that it may be important for estimating satellite drag. Over the duration of the EUV-enhancements, Dst 
drops are also observed, indicating ring current activity. The proposed physical mechanism driving the Dst 
changes is linked to the increased production of O+ ions of ionospheric origin, which may occur over the EUV-
enhancement period.

Plain Language Summary Neutral density disturbances of the Earth's thermosphere are important 
from a satellite operation point of view, as short-term enhancements can cause increased drag effects to 
satellites in low Earth orbit, which can result, in the worst case, in necessary orbit mitigation for collision 
avoidance. The impact of X-solar radiation on the thermosphere has been studied extensively in the past, 
however there has been little to no work published specifically focusing on the EUV domain and its effects 
on the thermosphere's neutral density. Disentangling the role of X and EUV radiation is difficult due to the 
rarity of EUV-enhancements in isolation, and has been done in the past through simulations. This study 
focuses on EUV-enhancements lasting 1–2 days and occurring in absence from coronal mass ejection events. 
Often occurring after flares, we show that the main consequence of the EUV-enhancements is slowing the 
thermosphere's recovery to the density perturbation: a high level “density plateau” perturbation forms which 
lasts for several hours. Although rare, these kinds of event should be considered when estimating satellite drag, 
particularly with missions that require highly precise orbit ephemeris.
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consequence, the thermosphere expands, increasing the neutral density at high altitudes (≥500 km). The peak 
energy of CME-generated geomagnetic storms is higher than for CIR-generated storms, but the long duration of 
the Earth-crossing CIR implies that the total energy deposited during CIR can be larger than during a CME. Re-
garding the magnitude of density disturbance, a wide range of density disturbances have been reported: 20%–50% 
(Chen et al., 2012), 75% due to CIR (Lei et al., 2011), and up to 800% from severe CME-related storms (Bruins-
ma et al., 2006; Liu & Lühr, 2005). During daytime, the thermospheric density first increases at high latitudes 
in about 1 hr. Then, meridional circulation or traveling atmospheric disturbances (TADs) transport the energy 
toward lower latitudes in about 3–5 hr (Bruinsma et al., 2006; Oliveira et al., 2017; Sutton et al., 2009). The recov-
ery phase after a geomagnetic storm is mostly controlled by the diffusion rate at the lowest altitudes (Richmond 
& Lu, 2000). Case studies have shown that the recovery time varies between about 1 day to more than 4 days 
(Bruinsma et al., 2006; Chen et al., 2012; Oliveira et al., 2017).

Solar flares produce an increase in X-ray irradiance of several orders of magnitude in a few minutes. In contrast 
to CME or SIR which take a few days to propagate from the Sun to the Earth, electromagnetic radiation needs 
only 8 min to reach the Earth's atmosphere. X-radiation increases excitation, ionization and dissociation of the at-
mospheric neutral components, down to the lowest D-layer. The excess energy from these absorption mechanisms 
is responsible for the heating of the thermosphere and density increase at high altitudes. The density increase at 
400 km is approximately 10%–13% for X5-class flares (Le et al., 2012), and can reach up to 50% for strong flares 
(such as the X17 studied by Sutton et al. (2006)). Le et al. (2016) estimated from numerical modeling that den-
sity disturbances on the order of 200% from the quiet level could be reached at an altitude of 600 km from very 
strong X40-flares. These last two studies also show that the response of the thermosphere to flare forcing occurs 
between one to 4 hr, where stronger flares and higher altitudes result in faster response times, and the recovery 
time to return to quiet levels taking approximately 12 hr. Modeling by Pawlowski and Ridley (2008) have shown 
that this time is also controlled by the decay of the flare, the maximum of the density disturbance being reached 
almost at the end of the flare.

The cited papers have limited their analyses to X-ray flux variations, since their magnitude generally largely ex-
ceeds the EUV-flux, thus hiding the EUV's potential contribution to the density disturbance. However, EUV-flux 
dominates the ionization in the upper thermosphere, and induces neutral density perturbations (and temperature 
increases) above 400 km. Even in cases where the relative increase of EUV-flux is less than that of the X-radia-
tion, density perturbations can reach more than 100% compared to its quiescent level (Huang et al., 2014). Addi-
tionally, flares occurring at the solar disk center appear to be more geo-effective than those arising closer from 
the limb. This effect is attributed to the contribution of the EUV-range, which is more optically thick compare to 
the X-domain and thus more absorbed on the limb than on the disk center (Donnelly, 1976; Le et al., 2011, 2012; 
Qian et al., 2010).

During flares, EUV-radiation is emitted from the chromospheric plasma heated by the electronic precipitation 
from the reconnection site. The hydrogen Lyman-α line (λ = 121.56 nm) dominates the long-wavelength part of 
the EUV spectrum. The short-wavelength part includes several lines of highly ionized species: HeII λ30.4 nm 
formed at 8.104 K at network cell boundaries, two iron lines (FeXV λ28.4 nm and FeXVI λ33.54 nm) formed at 
higher temperature (2.106 K), and CaXVIII line λ33.54 nm formed at temperatures above 5.106 K (Dere, 1978; 
Donnelly, 1976; Moses et al., 1997; Purcell & Widing, 1972), and signal non-thermal processes.

The aim of this study is to highlight and quantify the response of thermospheric neutral density to EUV-radiation 
forcing. We concentrate our analysis on four periods showing EUV-enhancements lasting one to 2 days, maximiz-
ing the potential for analysis of EUV-enhancements that exhibit strong forcing of the thermosphere, and isolated 
enough from other solar transients to disentangle their role from other sources of perturbation (as described in 
Section 2). To our knowledge, there has been no published work analyzing these kinds of events through obser-
vational data.

The remainder of the paper is structured as follows: in Section 2, the data and analysis procedures are explained. 
Section 3 presents the analysis of the selected events. Section 4 is dedicated to a discussion on the results before 
the conclusions presented on Section 5.
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2. Data and Analysis Procedures
The EUV-fluxes were obtained from the Solar EUV Monitor (SEM) of SoHO (Judge et al., 1998). Compared to 
other instruments, SOHO/SEM presents the advantage of a continuous-time coverage for many years. The two 
channels 0.1–50 and 26–34 nm were used. The 26–34 nm channel efficiently signals temperature increase during 
solar flares and non-thermal processes in the active regions.

To optimize the chance of detecting neutral density perturbations due to EUV-enhancements, only events lasting 
at least 1 day were selected. The duration Δt was defined as the period when the EUV-flux remains above the 
defined, case-specific EUV quiet-level by more than 20%. The amplitude of the increase was not constrained, but 
only events with the same relative enhancement on the two channels of SoHO/SEM were kept. Indeed, during 
flares, we noticed that the 26–34 nm flux often increases much less than the 0.1–50 nm channel. This means that 
the short wavelengths (close to X-radiation) dominate the 0.1–50 nm range. Restricting our samples to events 
with an equivalent enhancement in the two channels has ensured that the EUV-range controls the brightening. 
These two criteria provide the best conditions for analyzing the EUV-flux's role in the disturbance of the atmos-
phere. To guarantee that the density disturbance results from EUV-forcing, we considered events as isolated 
as possible from other transients like interplanetary coronal mass ejections (ICMEs), and other geomagnetic 
activity. More precisely, the start-time of the EUV-enhancement event must be outside the period of an ICME, 
identified from the Richardson-Cane Near-Earth ICMEs list (Richardson & Cane,  2010). The interplanetary 
conditions (solar wind speed, magnetic field strength and orientation, mass flow and electron density) were also 
checked from OMNI database. To ensure a low level of geomagnetic activity, events were included in which the 
Dst remained above −50 nT (geomagnetic indices are obtained from the ISGI Webpage). Finally, EUV-enhance-
ments are likely related to the presence of active regions, and it is therefore difficult to avoid the presence of flares 
during or before the time period of the EUV-increase. However, our analysis showed that the presence of flare 
events concurrent with EUV-enhancements actually helped to highlight the role of the EUV-flux to the perturbed 
thermosphere. Therefore, no criterion was applied regarding the presence of a flare in our analysis.

The thermospheric neutral density was derived from the highly sensitive accelerometers on-board the Gravity 
Recovery And Climate Experiment A and B (GRACE; Tapley et al., 2004), and the CHAllenging Minisatellite 
Payload (CHAMP; Reigber et al., 2002) satellites, which accurately measured the non-gravitational accelerations 
acting on the spacecraft orbiting the Earth at altitudes around 500 km for the former and 400 km for the latter. 
These measurements are free from any bias and drift due to the instruments, and, consequently any temporal var-
iation is due to density perturbations acting on the spacecraft. The density data sets of CHAMP and GRACE pro-
vided by Mehta et al. (2017) were used, which cover the time period from 1 August 2002 until 31 December 2010.

The densities at a given time along a trajectory, N(t), are expressed at a fixed altitude h0, following the normali-
zation procedure described in Bruinsma et al. (2006):

𝑁𝑁(ℎ0, 𝑡𝑡) = 𝑁𝑁(ℎ)
𝑁𝑁𝑀𝑀 (ℎ0)
𝑁𝑁𝑀𝑀 (𝑧𝑧) (1)

with N being the observed density, NM the density from a model, h the altitude, and h0 the reference altitude. 
The normalization compensates for the density variations induced by the altitude variations of the spacecraft. 
Due to their large difference in altitude between the two spacecraft, h0 differs: h0 = 480 km for GRACE and 
370 km for CHAMP. Usually, a thermospheric model is employed to obtain the density NM. NRLMISE-00 (Pi-
cone et al., 2002) and DTM-2013 (Bruinsma, 2015) were tested, but their discrepancies with the observed density 
were much higher than the disturbance level we were looking for. An empirical density profile was built directly 
from the data for each event, averaging the density during quiet periods. The quiet periods encompassed several 
days before or after the event under study and excluded any geomagnetic disturbances. Throughout the remainder 
of the paper, the term “density” refers to “normalized density” and the term “neutral” will be omitted since only 
neutral density levels are concerned in this work.

The EUV-flux variations are strongly related to the presence of solar active regions. Thus, we cannot exclude that 
transients appear before the period of interest, and that EUV-brightenings start before the thermosphere recover 
its quiescent level. The density variation ΔN is then computed relative to a reference density level Nref:

Δ𝑁𝑁(𝑡𝑡) =
𝑁𝑁(𝑡𝑡) −𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
 (2)
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Therefore, Nref, which is a priori different from the quiescent level used for the normalization (Equation 1), re-
moves bias due to former forcing of the thermosphere. The procedure to deduce this reference level is specific to 
each event and will be detailed in each case.

3. Analysis
Large EUV-enhancements were infrequent events over the 8-year period of study (2002–2010), in particular in 
the 26–34 nm range. Only four events fulfilling the above conditions were found that enabled the analysis of the 
EUV-enhancements role to the thermospheric density perturbation from other solar activity. Figure 1 displays 
the two SEM EUV-channels together with the X-ray time profiles from GOES for those four events. The relevant 
characteristics for each selected period is summarized in Table 1. Following the usual terminology, an Xn flare 
corresponds to n.104 W/m2 flux in the 0.1–0.8 nm range of GOES satellite

3.1. First Event: 7 December 2006 (DOY341)

The longest EUV event of our sample started on 6 December 2006, peaked on 7 December, and returned to its 
quiet level on 8 December. The large active region (number 10930 on the NOAA catalog), located eastward of 
the central meridian (S06E31, that is 6° South from the solar equator and 31° East from the central meridian), 
was likely the origin of the electromagnetic activity. The time profile of the EUV and X radiation is shown on 
top left panel of Figure 1. The enhancement started after two X-class flares (X9.0 on 5 December and X6.5 on 
6 December, respectively DOY339 and DOY340). Le et al. (2012) did not detect any disturbance from the X9.0 
flare, attributing the lack of response to the Central Meridian Distance of the flare (S03E68). However, our den-
sity normalization procedure enables the detection of a weak density increase, initiated at high latitudes in the 

Figure 1. Time profile of the Solar EUV Monitor/X-EUV (red and blue, left ordinate-axis) and GOES/X-flux (black, right ordinate-axis) for the event of 4–10 
December 2006 (top, left), November 2003 (top, right), January 2005 (bottom, left), and 10–15 December 2006 (bottom, right). The gray areas of the January 2005 
event delineate the period of CME passages, as referenced by Richardson and Cane (2010). The vertical dashed lines indicate the interval Δt of the EUV-enhancement.
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southern hemisphere followed by a propagation toward lower latitudes (Figure 2, top row). Unfortunately, the lack 
of EUV data during this X9.0 flare precludes an analysis of possible contributions from this wavelength range.

The period over which the EUV-enhancement occurred was relatively free from other types of forcing. Over 
the duration of the EUV-enhancement, only an M1.8 flare occurred, which was not expected to produce sig-
nificant disturbances to the thermospheric density. In addition, the geomagnetic activity was low during the 
enhancement's development (Dst > −50 nT). Between 6 and 8 December, the two usual proxies for UV-flux were 
F10.7 ≈ 95SFU and F30 ≈ 59SFU.

The period of EUV-enhancement extended from DOY341 to DOY343. It is delimited by the black vertical dashed-
lines on Figures 2 and 3. It occurred during the recovery phase of the X6.5-flare, which peaked 12 hr before the 
start of the EUV increase. The flare-source active region was very close to the solar central meridian (S06W23), 
which substantially impacted the thermosphere: a density peak occurred about 3 hr after the solar X-ray maxi-
mum (Figure 3). The X-flux had almost returned to its quiet level when the EUV-flux began to increase (Figure 1, 
top left). To quantify the impact of the EUV-flux only, the contribution on the density perturbation from the X6.5-
flare had to be removed. Thus, the density recovery phase was evaluated with a decaying exponential, starting at 
the density peak (DOY340.9) and fitting the density in all latitudinal bins (shown with blue curves on Figure 3). 
The same decay rate τdecay was applied to all bins, but was satellite dependent since their altitude was different. We 
have evaluated τdecay = 1.5 days for GRACE and τdecay = 2.0 days for CHAMP. This exponential function was used 
to evaluate the reference level Nref, at the density peak-time, which enters in the computation of ΔN (Equation 2) 
(shown by crosses on Figure 3). It can be noted that in each latitudinal bin, the reference value was very close to 
the quiet level (displayed in green).

The bottom right panel of Figure 3 shows the maximum of ΔN versus latitude. The variations from one latitudinal 
bin to the other were not convincingly significant. Therefore, we defined δN as the average of (ΔN)max over lati-
tudes between ±50°, and its 1σ-standard deviation as uncertainty. CHAMP and GRACE were at almost the same 
Local Solar Time (LST, Table 2) during this event: 15:20 for GRACE and 16:30 for CHAMP. Both spacecraft 
detected a density increase in clear relation to the increase in the EUV flux, despite their altitude difference (at 
that time, GRACE orbit varied from 460 to 510 km while CHAMP orbit was confined between 350 and 380 km), 
with δN = 0.71 ± 0.07 for GRACE and 0.61 ± 0.05 for CHAMP. Interestingly, the recovery time of the density 
was much longer than after the flare forcing, which can be attributed to the long duration of the intense EUV-flux.

A density ribbon is observed on DOY343 from the two spacecraft and is thus likely a real phenomenon. Its origin 
is still unknown. In their numerical study Pawlowski and Ridley (2011) described the possibility of a second per-
turbation “bump” caused by the development of TADs. This could explain the new bump observed 7 hr after the 
X6.5-flare first density-peak but probably not the bump of DOY343, which occurred 1 day after the EUV-related 
density-peak.

Despite the weak geomagnetic activity over the period of interest, a high-density level was observed at latitudes 
above 50° on both hemispheres (see Figure 2), that is unlikely related to the EUV-flux at these high latitudes. This 
point is further discussed in Section 4.

Date

Δt 26–34 nm 0.1–50 nm

Days Total energy Imax Background Total energy Imax Background

7 December 2006 2.0 4.81 5.5 1.7 9.1 10 3.1

3 November 2003 1.5 4.78 4.4 (5.6) 2.3 9.8 8.7 (13) 4.8

17 January 2005 1.4 6.0 11 2.1 11 21 4.6

13 December 2006 1.0 1.5 3.0 1.2 2.9 6.0 2.4

Note. From left to right: date of peak flux; duration in days; total EUV energy (integral over Δt of the flux, for each range of wavelength) expressed in 1015Photon/cm2; 
peak magnitude of the flux value, in 1010Photon/cm2/s; irradiance background level prior to the enhancement, in 1010Photon/cm2/s. For the event of 2003, the peak value 
in parenthesis corresponds to the flare during the period while the other value corresponds to the average maximum – excluding the flare – during the whole period.

Table 1 
Characteristics of the EUV-Flux, Presented in Decreasing Order of Time Duration
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Figure 2. Daytime density map (color scale) w.r.t. latitude and time for the four periods studied, from top to bottom: 4–10 
December 2006 (DOY338–DOY345), 1–6 November 2003 (DOY305–DOY312), 15–20 January 2005, and 10–15 December 
2006 (DOY344–DOY349). Left column: GRACE-A (GRACE-B is similar) normalized at 480 km, and right column: 
Challenging Minisatellite Payload, normalized at 370 km. The vertical dashed lines delimit the time period of each EUV 
enhancement. The full black line displays the 26–34 nm solar flux on an arbitrary intensity scale. Note the difference on 
density scale of the maps of the two spacecraft due to their difference of altitude normalization.
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3.2. Second Event: 3 November 2003 (DOY307)

The period between 28 October to 5 November 2003 is known for its intense solar activity. Our second event of 
interest occurred during this period, beginning after a CME passing Earth and ending before an X17 flare. The 
EUV background increased at the end of an X8.3 flare (Figure 1, top right). The flare itself produced a weak 
signature in the 26–34 nm range. CHAMP and GRACE were separated by 3 hr in LST (15:40 for GRACE, 12:30 

Figure 3. Density fluctuations inside latitudinal bins (limited on the graph to the latitudinal range ± 35°) for the first event of December 2006, and GRACE. The 
density curve highlighted in green shows the period selected to determine the quiet level (used for the data normalization), which level is finally indicated with the 
green-horizontal dashed-line. The decay fit (blue curve) mimics the recovery phase from the X6.5 flare. The red curve displays the EUV-flux on an arbitrary scale. The 
last bottom-right panel displays ΔN versus latitude. ΔN corresponds to the difference between the two crosses on each latitudinal bin: the upper cross is taken at the 
peak of the density curve, while the lower cross lays on the blue curve at the same time.

Date

δN Local solar time

GRACE-A CHAMP GRACE-A CHAMP

7 December 2006 0.71 ± 0.07 0.61 ± 0.05 15:20 16:30

11 November 2003 0.51 ± 0.07 0.39 ± 0.02 15:30 12:30

17 January 2005 0.62 ± 0.07 0.54 ± 0.05 18:35 08:00

13 December 2006 −0.09 ± 0.02 −0.025 ± 0.03 15:00 16:00

Note. The value is the average of (ΔN)max over ±50° in latitude. The uncertainty correspond to the 1σ standard deviation over the same range of latitude. CHAMP, 
Challenging Minisatellite Payload; GRACE, Gravity Recovery and Climate Experiment A.

Table 2 
Summary of the Density Disturbance
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for CHAMP), yet both detected a density increase approximately 2.5 hr after the flare's peak (Figures 2 and 4). 
While the X-radiation was decreasing, the EUV continued to rise, and the density was in its recovery phase 
when a second X2.7 flare erupted. This flare showed a more pronounced increase in the two EUV ranges that 
augmented an already intense background density level. Despite its relative weakness, the X2.7 flare produced a 
noticeable density increase detected on the two spacecraft, with a time delay of about 2.5 hr. Finally, a third X3.9 
flare occurred on DOY307, slightly after the EUV background level reached its maximum. The background level 
of the two EUV ranges was therefore still high, but the flare itself did not produce any significant increase in the 
26–34 nm range, and showed only a weak increase in the other domain. This third flare may have produced a very 
weak density disturbance that can be detected on both satellite between latitude +5° and −10° (Figure 4). The 
density “plateau” observed after the end of the X3.9 in this event is particularly interesting. The plateau main-
tained a density greater than the quiet level despite the flare event and expected recovery phase ending, indicating 
that the source of this continued density forcing was the EUV radiation. As described in Section 3.1, to quantify 
the impact of the EUV radiation alone, the contribution of the second flare was removed. Its recovery phase was 
modeled with a decreasing exponential, with a single τdecay for all the latitudinal bins and a given spacecraft. We 
estimated τdecay = 1 day for GRACE and τdecay = 1.4 days for CHAMP. Notably, the recovery phase of the DOY309 
X17-flare was also accurately fitted with those values. We will discuss to this strong event at the end of this sec-
tion. The period of the plateau (from DOY307.6 to DOY308.2) is highlighted in orange on Figure 4. As can be 
seen from this figure, the density of the recovery phase quickly reached the quiet level after the beginning of the 
plateau phase, thus we set Nref = Nquiet to evaluate ΔN (Equation 2). The average density during the plateau is used 
to evaluate ΔN. The bottom right panel of Figure 4 presents ΔN as a function of the latitudinal bins. The average 
density perturbation δN reached 0.50 ± 0.02 for GRACE and 0.39 ± 0.02 for CHAMP.

Figure 4. Density fluctuations inside latitudinal bins (limited on the graph to the latitudinal range ± 35°) for the event of November 2003, for Gravity Recovery and 
Climate Experiment. The green part of the density curve highlights the period used Nquiet, while the orange part shows the plateau period. The blue curve mimics the 
recovery phase after the flare, in absence of any other forcing. The last bottom-right panel displays ΔN versus latitude.
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To complete the description of this period, we discuss the analysis of the two density increases of DOY308. 
The first bump at DOY308.5 was due to a short-lasting shock (Figure 5), the second density perturbation at 
DOY308.9 was due to an X17 flare. Note however, that although it was much stronger than the X8.3 and X2.7 of 
DOY307, the density perturbation was not much greater. As can be checked from Figure 1, the increase in the two 
EUV ranges was very limited, which can explain the limited impact of this flare on the thermospheric density.

The main conclusion from this event is that the EUV time-evolution must also be taken into account in the assess-
ment of density perturbation due to a flare, not only the X-component. The 1-day high-background level forcing 
induced a density increase of the same level as X-flare but for 12 hr, which may be long enough for a spacecraft 
to undergo an increased drag force that would affect its orbital position.

3.3. Third Event: 17 January 2005

The period between 15 and 20 January 2005 was also very active. Two CMEs passed the Earth (shown by the 
gray areas on Figure 1, bottom left) and three flares occurred: an X2.6 on 15 January, an X3.9 on 17 January, and 
an X1.3 on 19 January. Large fluxes of energetic particles arrived at the Earth on 20 January, producing ground 
level enhancement and modifications of the atmospheric components at very low altitudes (Jackman et al., 2011; 
Verronen et al., 2006). Between 17 and 19 January, F10.7 varied between 124 and 144SFU, while F30 varied 
between 76 and 82SFU. The geomagnetic activity remained low during the beginning of the EUV-event (Dst 
remained above −50 nT), but decreasing to −100 nT at the end of 18 January.

The first flare did not produce any density disturbance (see Figure 6) in spite of its central location (N15W05). 
Unfortunately, the analysis with the EUV-flux is impossible due to the lack of data during this period. The sec-
ond flare was produced by the same active region, located more westward due to solar rotation (N15W25). The 

Figure 5. Solar wind parameters (blue curves) and density fluctuation of latitudinal bin 10S-15S versus DOY for the event of 2003. From top to bottom, left to right: 
the magnitude of the magnetic field, the Bz component of the magnetic field, the solar wind bulk velocity, the electron density, the proton temperature and the proton 
density. A shock is clearly observed after the second vertical dashed line, that is, the end of the EUV event.
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increase in the two EUV-ranges was weak. Nonetheless, a density peak was observed 8 hr after the flare peak, 
which is an upper limit for a flare's impact as reported in the literature.

The EUV-enhancement duration was relatively short (1.4 days), but it showed the largest peak value and total 
energy of the four selected events of this study (Table 1). The enhancement started at 1300UT, during the de-
caying phase of the X3.8 flare. Thus, as performed for the previous events, the density disturbance due to the 
flare was removed by modeling the recovery phase with a decreasing exponential. For GRACE, the decay rate is 
τdecay = 1.4 days and 1 day for CHAMP. Figure 6 shows that the density did not return to the pre-event quiescent 
level throughout the period of EUV-enhancement. Instead, a high-level density plateau formed and remained for 
at least 12 hr. This plateau is thought to be the signature of the EUV-enhancement impact on the thermosphere. 
The fluctuations and the variation of the recovery phase with latitude render uncertain any estimate of the time 
limits of the plateau. However, since the two spacecraft observed this plateau almost simultaneously, we set its 
start-time at DOY18.3 and its end-time at the end of the EUV period (i.e., DOY18.9, before the second CME 
crossing). In contrast to the previous two events, the Nref values may have been above the quiet level and change 
during the plateau period. Thus, Nref was the value of the exponential function at the end of the plateau (or NQuiet 
if it went below this value on given latitudinal bins).

The mean variation δN was 0.62 ± 0.07 for GRACE and 0.54 ± 0.05 for CHAMP. The decay model was not 
optimal for all latitudinal bins, which may change the δN by a few percent. Figure 7 displays the density variation 
versus latitudes for CHAMP. It is interesting to note that the details of the fluctuations during the plateau phase 
are almost identical for the two spacecraft (for example on bins 15N10N or 10N05N among others), which may 

Figure 6. Density variation versus latitudes for the January 2005 and Gravity Recovery and Climate Experiment. The orange part of the density highlights the plateau 
period which serves for the evaluation of the density fluctuation attributed to the EUV-forcing. The gray areas symbolize periods of CME at Earth. The other color 
codes are equivalent as those of Figure 4.
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indicate a real response of the thermosphere to the EUV-forcing. However, the peak of density in the southern 
hemisphere (35S40S) of CHAMP (about DOY308.4) is a trough of density on GRACE. These observations are 
interesting since the spacecraft were separated by about 100 km in altitude at that time, but almost opposite in 
LST; GRACE was on the dusk side (LST 18:35) while CHAMP was on the dawn side (LST 08:00), but a detailed 
analysis is beyond the scope of the present paper.

3.4. Fourth Event: 13 December 2006 (DOY347)

The fourth and final studied event occurred on 13 December 2006. Over the period, an X3.4-flare peaked at 
0240UT on 13 December. The active region most likely at the origin of the EUV-flux enhancement was close 
to the solar central meridian (S06W23). The increase in the 26–34 nm range was weak during the flare, and the 
density fluctuations registered by both spacecraft were low (both close in LST – 15:00 for GRACE and 16:00 for 
CHAMP). The density maximum was reached about 2.5 hr after the flare peak. The EUV-flux decreased, before 
rising again, without flaring activity, and returned to its quiescent level after one day. As can be seen in Figure 8 
the density recovery from the flare was rapid. As with the other events we have analyzed, the recovery phase 
was modeled by a decaying exponential. We find a recovery time of τdecay = 0.5 days for GRACE and 0.7 days 
for CHAMP, twice as fast as the former events. Since the quiet level was reached very rapidly, we set Nref = Nquiet 
to evaluate the density due to the EUV-enhancement. For the two spacecraft, the density was even lower than 
the quiet level (Figure 8, bottom right panel), during the period DOY348-DOY349. This could be an example of 
thermospheric overcooling, as described by Zhang et al. (2019).

Figure 7. Same as Figure 6 for CHAMP.
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4. Discussion
The level of density perturbation produced and maintained by EUV-enhancements is comparable to that observed 
during flare events, and even larger solar activity. In contrast to flares, however the density recovery period is 
much longer. In three of the four cases, a well-defined density plateau formed, maintaining a high-density level 
for approximately half a day. Another consistent behavior of the events studied is the large latitudinal extension of 
the density perturbations. As noted by Liu et al. (2007), who studied the influence of X-rays on the thermosphere, 
the impact of the EUV-radiation can be felt at all latitudes, with an increase around equatorial regions. These 
longer duration and larger spatial extension perturbations are certainly important for treating satellite drag, but 
have been hitherto neglected in existing work.

The emission peak and the total energy deposited in the atmosphere are key parameters that control the density 
disturbances. Previous studies have shown that the density disturbances linearly increase in amplitude with the 
time-integrated energy and the peak amplitude in the 0.1–0.8  nm range (Le et  al.,  2015; Pawlowski & Rid-
ley, 2011). In this context, we explored the potential relationship between EUV peak for one side and time-inte-
grated energy on another side and δN. Since the EUV quiet-level also contributes to the atmosphere irradiation, it 
was included in the estimation of the peak magnitude and the integrated energy. Our results can also be compared 
with the ones of Le et al. (2012), which were obtained during flaring periods. Table 1 displays the energy inte-
grated over the duration of each event ϵ and the maximum irradiance in the two EUV channels, while Table 2 
summarizes the results of δN for the four events.

As expected, δN rises with the maximum peak intensity and the time-integrated energy (Figure 9). It seems to 
saturate for peak intensity above 5.1010 Photons/cm2/s in the 26–34 nm range, and 10.1010 Photons/cm2/s for the 
0.1–50 nm range. The same saturation effect is observed for the energy, with limits of about 5.1015 Photons/cm2 

Figure 8. Density variation versus latitudes around 13 December 2006 and GRACE. The orange part of the density highlights the plateau period which serves for the 
evaluation of the density fluctuation attributed to the EUV-forcing. The other color codes are equivalent as those of Figure 4.
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in the 26–34 nm range and 9.1015 Photons/cm2 in the 0.1–50 nm range. Due to the small number of events, the 
curves in Figure 9 cannot be considered as statistically significant. However, the results of Le et al. (2012) (ob-
tained for the range 0.1–50 nm) are within the range of our values (blue diamonds on Figure 9). Also, although 
GRACE and CHAMP were treated independently, they present similar trends despite their orbital altitude dif-
ferences. This makes us confident that the observed trend is real and highlights the need for further studies to 
identify new events.

The density disturbances are also observed at high latitudes (Figure 2), which is normally a signature of geomag-
netic activity. However, the Dst for the selected periods showed only minor geomagnetic activity (the Kp index 
was also minor to moderate), except for a short period of a few hours when it reached almost −50 nT (Figure 10). 
To check if this weak activity originated from solar wind, the dawn-to-dusk electric field Ey and the dynamic 
pressure PD were computed and compared to the evolution of Dst (Burton et al., 1975). Ey describes the injection 
rate of electrons into the ring current; a positive Ey induces a decrease of Dst. Conversely, the dynamic pressure 
PD corresponds to a loss in the ring current; an increase of PD produces to an increase of Dst. Figure 10 shows 
the time evolution Dst, Ey, and PD for the four periods studied in this paper. In each case, PD and Ey are almost 
constant during the variation period of the geomagnetic index, leading to the conclusion that the solar wind con-
ditions are unlikely to have produced the Dst decrease.

During solar flares, EUV and X-radiation increase the ionization in the D and E layers, resulting in an increase 
of the ionospheric current systems, which in turn induces variations of the geomagnetic field. This is known as 
“Solar Flare Effects” (Curto, 2020; Tsurutani et al., 2009). During the periods of study, no convincing variation of 
the H-component of the magnetic field was observed by any ground-based magnetometers (from the SuperMAG 
network) simultaneously with the EUV-enhancements.

The increase of the number density of O+ ions (and to a lesser extend a decrease of H+) within the ring current 
is also known to produce immediate and short-duration Dst drops, even with reduced density fluctuations (Dag-
lis, 1997). The large majority of O+ ions are of ionospheric origin. We conjecture that large EUV-enhancements 
produce such ions on short time-scales as it does over longer timescales (Young et al., 1982), which in turn gen-
erate the observed Dst drops. However, we are not aware of O+ density measurements for the periods considered 

Figure 9. δN versus maximum peak intensity (left) and total energy ϵ (right) for the two spacecraft and the two ranges of 
wavelength. The blue triangles display the values obtained by Le et al. (2012).
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here with the time resolution necessary to check our hypothesis, and therefore suggest future work into this area 
of research to explore this theory.

5. Conclusions
Although the impact of solar X-radiation on the thermosphere has been intensively studied, in particular from 
observational analysis during major solar flares, little work has been reported concerning the EUV domain, ex-
cept for long time variation events through simulations. On the short time-scale of a flare, disentangling the role 
of X- and EUV-enhancements is difficult, first because the X-range usually dominates the solar flux, and second 
because the two fluxes usually increase simultaneously. In this work, we have identified EUV-enhancements that 
clarify the role of X and EUV-radiation on the thermospheric density. The events are characterized by a long 
duration (above one day) and a clear enhancement in the two channels of SOHO/SEM, that is, in the 0.1–50 and 
26–34 nm channels. The flux-rise in the 26–34 nm channel provides insight into the contribution of the EUV 
domain, since the 0.1–50 nm range includes a large contribution from X-ray. We studied the variation of the 
density at the altitudes of CHAMP and GRACE (400 km for the former, 500 km for the latter). Our study shows 
that the observed EUV-enhancements produce density increases that are large and long enough to be significant 
for models of spacecraft collision avoidance. It was found that, the density perturbation levels increased with the 
UV-emission maximum. No conclusion can be drawn regarding the impact of the time-integrated energy due to 
the reduce energy range explored by our data.

Dst variations indicate the activity of the ring current. O+ ions are known to be at the origin of significant modifi-
cation of the ring current during storms periods. We conjecture that large EUV increase can also be at the origin 

Figure 10. Dst geomagnetic index (in black) versus time compared to the Ey dawn-to-dusk electric field (top panel) and dynamic pressure (bottom panel), both in blue. 
Note that the scale of Ey is reversed for comparison with the paper of Burton et al. (1975). The time range is reduced compare to the previous graphs to focus on the 
periods of interest. The vertical dashed lines indicate the time interval Δt of the EUV-enhancement.
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of O+ ions production. This aspect must still be confirmed by dedicated observations, and is an avenue of future 
work.

We focused our study on 1–2 days duration events as these were suspected to be the most favorable cases to gen-
erate density variations, which was confirmed. As a part of future work, it will be necessary to extend the survey 
to shorter duration events. The small number of events on which this analysis is based is not strongly statistically 
significant, but it displays trends in the data, especially in combination with other published work. A larger time 
period should be considered to increase the statistical significance, which will require access to larger databases 
of calibrated density measurements. The 1–2 days lasting events are infrequent, at least in isolation from CMEs, 
and require long and continuous time observational coverage to be detected.

Data Availability Statement
Neutral density data from: http://tinyurl.com/densitysets. CDAWEB: https://cdaweb.sci.gsfc.nasa.gov/index.
html/. ISGI for the Dst values: http://isgi.unistra.fr/. CLS for the F10.7 and F30: https://spaceweather.cls.fr/
services/radioflux/.
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