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Abstract

Molecular dynamics simulations were conducted to evaluate the effect of water

desaturation on ions and water density distribution and diffusion properties in a clay

mineral mesopore. Simulations were carried out using the Polarizable Ion Model (PIM)

force field. Desaturation of the pore was responsible for significant changes in localiza-

tion and mobility of water molecules and ions, especially in most unsaturated condi-

tions, for which charge overcompensation by cations adsorbed on the surface through

inner-sphere complexes were observed. While cations and anions mobility decreased

monotonously with increasing desaturation, pore-averaged diffusion coefficient of water

molecules exhibited a complex evolution with an increased diffusion coefficient value

at low desaturation level, and then a drop of this value at high desaturation level.

Water diffusion was influenced by two antagonistic processes, i.e. acceleration of water

molecules diffusion at water/air interface; and slowdown at water / clay mineral in-

terface. These observations can be put in perspective with differences in macroscopic

diffusion properties among cationic, anionic and water tracers observed in experiments

conducted on desaturated clay mineral rock samples.

Introduction

Clay minerals have a wide range of industrial applications from catalytic activities to energy

and ecological engineering. In particular, clay-rich geological formations are considered as

potential host rocks for radioactive waste repositories, and as cap-rocks for CO2 sequestration

in geological settings.1–3 Clay mineral particles are constituted of stacks of aluminosilicate

layers. In clay minerals such as smectites and illite, layers are negatively charged because of

heterovalent isomorphic substitutions taking place in their structure. This negative charge is

compensated by cations located next to the external surfaces of the particles as well as in their

interlayer spaces.4,5 At the external surfaces that are in contact with pore aqueous solution,

a structuring of the aqueous phase forms, which is commonly called electrical double layer

2



(EDL), and which differs from the bulk solvent phase. In EDL, anions and cations are not

distributed uniformly because of charge balance requirements, but also because of specific

Van der Waals interactions between the mobile species (water and ions) and the solid.6

The EDL is usually conceptually subdivided in, at least, two regions: the compact region

next to the surface, and the diffuse layer (DL) region.6–12 A reliable description of the EDL

properties is necessary to model transfers of water and aqueous solutes in clayey media

because of the strong coupling between surface electrostatic properties and fluxes of solvent

and ions.13 In the context of underground radioactive waste storage or CO2 sequestration,

unsaturated transient conditions are predicted to take place during both operation and

after-closure phases. Modeling fluid and solute transport in the presence of unsaturated

conditions is thus an important aspect to make reliable predictions of the evolution of the

above mentioned systems with time.14,15 As water and ions distribution and dynamics in

the EDL cannot be measured directly,16 atomic simulations such as molecular dynamics

simulations (MD) are widely used for the purpose of characterizing ions distributions and

dynamics in nano- and mesopores.17–44

In the present study, we investigated the evolution of the electrical double layer proper-

ties as a function of increasing desaturation, using molecular dynamics simulations, with an

emphasis on water and ion organization and mobility at mineral-water and water-air inter-

faces. However, the reliability of simulation predictions depends on the ability of the force

field, i.e. the set of parameters and equations used to calculate interactions between atoms,

to correctly describe the physics of these systems. In a previous study,45 we showed that

simulations run with a polarizable force field resulted in diffuse layer properties predictions

that were significantly different from those calculated with non polarizable force fields. In

particular, the use of a polarizable force field led to an increased order of water molecules and

ion organization at the vicinity of clay mineral surfaces compared to results obtained with

non polarizable force fields. For this reason, we conducted our simulations with a polarizable

force field.
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Materials and Methods

Systems

All unsaturated pore simulation boxes were generated on the basis of simulations previously

carried out in water saturated condition and in the presence of 0.1 mol·L−1 NaCl, for which

full information is available in our previous study.45 Simulation boxes had all the same

dimensions, i.e. 20.72× 35.88× 54.70 Å3 in the x, y and z directions respectively. Therefore,

each system was composed of an identical 4×4 montmorillonite layer unit with 0.75 charges

per unit cell, 12 sodium cations that compensated the layer charge in addition of two pairs of

Na+ and Cl− ions and n water molecules with n ranging from 72 (most unsaturated system)

to 1122 (water saturated system) (Figure S1). Desaturation was achieved by removing

water molecules from the center of the pore. Ions present initially in the removed aqueous

phase were moved back into the aqueous phases so that there was the same number of Na+

and Cl− ions in front of each surface bordering the pore. Because only water molecules were

removed during the desaturation process, NaCl concentration in the aqueous phase increased

proportionally with desaturation (Table 1). The three most unsaturated systems had 6, 12

and 18 water molecules per charge-compensating Na+ cations, which was commensurate with

the number of water molecules per cations in monohydrated, bihydrated and trihydrated

sodium montmorillonite interlayer pores respectively.43,46 The number of gas molecules in

our system can be evaluated to be less than one in the simulation boxes for 300 K and 1 bar

conditions (ideal gas law). Consequently, no oxygen or nitrogen molecules were added in the

gas phase, thus air phase was considered to be equivalent to vacuum in this study.
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Table 1: Systems description with the number of water molecules per clay min-
eral layer unit, the total number of water molecules, the percentage of water
molecules with respect to the saturated system and the concentration of NaCl
in the aqueous phase.

NH2O / unit cell NH2O NH2O / NH2O, sat (%) cNaCl (mol·L−1)

70 (saturated) 1122 100 0.10

45 720 64.1 0.15

36 576 51.3 0.19

27 432 38.5 0.25

13.5 216 19.2 0.51

9 144 12.8 0.76

4.5 72 6.4 1.53

Molecular Dynamics Force Field

The explicit consideration of polarizability can drastically change the predictions of aqueous

phase properties at mineral-water43,45,47 and at air-water interfaces.48–51 Consequently, we

used the Polarizable Ion Model (PIM) force field. This force field was initially developed

for the modeling of electrolyte solutions,52 and was extended to various clay and zeolite

minerals.43,47,53,54 In PIM, each atom is treated as a polarizable charged ball. PIM was

combined with the four-site Dang-Chang water model,55 which uses point dipoles to handle

water molecule polarizability. Because Cl− were forced to approach the clay mineral surface

with the increase of desaturation, it was necessary to add interaction parameters for Cl−

and clay mineral layer atoms in PIM (Table S1). PIM parameters fitting procedure followed

the method of Madden et al.56,57 It consisted in an iterative process on several independent

and characteristic configurations, with variation of the force field parameters (using Minuit

code58) to minimize differences between dipole and force values calculated by DFT and by

classical MD force field. These differences were measured by χ2
µ and χ2

F for dipoles and
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forces error functions respectively (Eq S1 and Eq S2 in supporting information). The values

of these error functions (0.109 and 0.572 for χ2
µ and χ2

F respectively) were of the same order of

magnitude as those obtained during previous fits of the PIM force field parameters.43,47,53,54

Simulation details

Simulations were run with the CP2K59 package. Periodic boundary conditions were used

in all directions. The cutoff radius for short-range electrostatic and repulsion-dispersion

interactions was set to 10 Å. The long-range electrostatic interactions were computed using

the Ewald method60 with an accuracy of 10−6, an α parameter of 0.35 and 11, 19 and 29 k

vectors in the x, y and z directions respectively. The SHAKE algorithm61 was used to keep

the water molecules rigid.

Unsaturated systems were first equilibrated for 3 ns in the NV T ensemble at 300 K

using a Nosé-Hoover thermostat, gradually increasing the timestep from 0.1 fs to 0.5 fs and

the thermostat constant from 10 fs to 1000 fs. The total simulation time of the production

phases for the unsaturated pores was set to 40 ns in the NV T ensemble at 300 K with a

thermostat constant of 1000 fs and with a timestep of 0.5 ns. We reduced the timestep from

1 fs for the saturated system to 0.5 fs for the unsaturated system in order to avoid numerical

errors generated by species acceleration at water-air interface. Indeed, we observed that a

timestep of 1 fs was responsible for water molecules to approach too closely from each other,

thus causing the overall energy of the system to be unstable, and stopping the simulation.

Data post-processing

Radial distribution functions, density distributions profiles perpendicular to and density

distributions maps parallel to the montmorillonite surface were averaged on the whole tra-

jectories. Diffusion coefficients were calculated on subsets of 5 ns trajectories, a procedure

which allowed to calculate standard errors. Diffusion coefficients parallel to the basal sur-

faces (xy plane), D||, were calculated as a function of the distance to the surface from Mean
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Square Displacements (MSD) and survival probability chosen as the uninterrupted residence

in the layer (methodology available in Liu et al.62 and Marry et al.9). The aqueous phase

volume was gradually reduced with the increase in water desaturation. Thereby, D|| of aque-

ous species were calculated only if the statistics, i.e. the number of the given species atoms

in a slice parallel to the surface, was sufficient. For similar statistical reasons, the evaluation

of the Cl− diffusion coefficient as a function of their distance from the surface was not car-

ried out because of their small amount (2 atoms) in the systems.Because of the presence of

periodic boundary conditions, hydrodynamic effects result in computation of diffusion coeffi-

cients that vary as a function of simulation box sizes for otherwise equivalent bulk systems.63

Simonnin et al.64 proposed an equation to correct the computed value of the diffusion co-

efficients for confined systems between two solid planes simulated in an orthorhombic box

with a square base dimension L and with a pore width H. However, to our knowledge, no

correction has been proposed in the case of an aqueous phase confined between a solid and

a gas phase. In addition, in the saturated system, this correction would account for only

5 % of the computed value for water molecules. Therefore, no correction was made to the

diffusion coefficients presented in this study.

Additional simulations with a non polarizable force field

We carried out simulations on unsaturated systems with the popular non polarizable force

field ClayFF.17 It is not in the scope of this article to conduct a comprehensive comparison

of force fields. However some of the results obtained with ClayFF reinforced the analyses

made on the systems under investigation with PIM. Full details on ClayFF simulations are

available in the SI.
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Results and discussion

Interfacial water structuration
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Figure 1: Density distribution profiles normal to clay mineral surface as a function of pore
saturation: (a) water oxygen atoms, and (b) water hydrogen atoms. The clay mineral oxygen
distributions are shown in brown, and the center of mass of the surface oxygen is represented
by a brown dotted line at z = 3.27 Å. The surface water layers are delimited by the dashed
black lines. Insets in the two panels focus on the layers located between 2.5 Å and 8 Å and
help to visualize the distributions of atoms densities next to the clay mineral surface.

Distribution profiles of oxygen (OW) and hydrogen (HW) atoms in water molecules was

subdivided in four layers (or regions) in the direction normal to the clay mineral surface

(Figure 1). In water saturated conditions, the three first layers exhibited features that were

characteristic of water structuring (density peaks), and the fourth layer, in the center of the

pore, was a bulk-like region in which OW and HW density profiles were almost flat at a

value equal to bulk water density.

In desaturated systems, a water / gas interface appeared, with water covering the surface
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of the clay mineral and gas (vacuum) staying in the middle of the pore, in agreement with

the observation that water remains at the surface and hydrates counterions of hydrophilic

charged clay minerals.9,14,44 As the system was desaturated, the interface moved closer to

the clay mineral surface, and was characterized by a progressive decrease of OW and HW

density from bulk density down to zero over a distance of about 5 Å, hereafter described as

a transition zone. Distributions of water density in the water saturated part of the system

were identical for all simulations down to 27 H2O per unit cell. OW distributions computed

for these systems exhibit a peak doublet in the first layer that is indicative of two water

populations with different orientations relative to the surface and to Na+ cations.45 Below

this threshold value, further desaturation influenced water distribution profiles at water-clay

interface. In the most unsaturated case, the decrease in intensity of OW first density peak

indicated that the clay mineral surface was partially dehydrated (Figure 1a). A similar

evolution of water structure at the interface as a function of desaturation was also observed

in previous simulations using a non polarizable force field.14 In less extreme conditions, the

density peak doublet 5.75 and 6.6 Å merged into a wide single peak (Figure 1a). A peak

doublet reappeared in the most unsaturated case, with maxima located at distances closer to

the surface (5.65 Åand 6.35 Å) than in water saturated conditions. Concomitantly, the two

HW density peaks closest to the surface drifted away about 0.1 Å from the surface as the

surface was dehydrated, suggesting a slight change in water structure at clay mineral surface.

This change in water structure was confirmed by the proportion of OW located above the

middle of the ditrigonal cavity that was higher in the most unsaturated case (Figure S2).
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Ions distributions at interface
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Figure 2: Density distribution profiles normal to clay mineral surface as a function of pore
saturation: (a) Na+, (b) Cl−, and (c) surface charge compensation in the EDL. Clay mineral
layer oxygen distributions are shown in brown, and the center of mass of surface oxygens
is represented by a brown dotted line at z = 3.27 Å. The different peaks observed on Na+

distributions are delimited by dashed black lines. Insets in panels (a) and (b) focus on the
region located between 2.5 Å and 10 Å and help to visualize the distributions of ions next to
the clay mineral surface. Inset in panel (c) focuses on the region located between 6 and 12 Å
and helps to visualize the charge overcompensation for the three most unsaturated pores.

In water saturated conditions, chloride ions were repelled from the clay mineral surfaces

and located in the middle of the pore in agreement with the expected repulsive electrostatic

interactions at negatively charged surfaces. On the opposite, sodium ions were attracted

to the surface, and formed concentration peaks (Figure 2), the intensity of which decreased

as the distance from the surface increased.45 In the presence of unsaturated conditions,

the water/gas interface pushed ions towards the surface. As a result, Cl− concentration

distribution became more and more compact, and its center of mass shifted towards the

surface with increasing desaturation levels. In the most dehydrated state, Cl− concentration
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distribution had the form of a sharp peak at about 7 Å from the surface. Anions remained

closer to the water / gas interface than cations. Two hypothesis can be formulated to explain

this observation: 1) anions are repelled from the negatively charged clay mineral surface by

electrostatic forces; and/or 2) while small hard ions like Na+ are repelled by the water /

air interface because of the repulsive interaction with their image charge,65 more polarizable

ions like Cl− experience an attractive force towards the water / air interface due to van der

Waals interactions48 (see snapshot Figure S3).

Na+ ions were pushed towards the clay mineral surface with increasing desaturation level,

leading to the growth of the Na+ concentration peaks that was the closest to the clay mineral

surface, but without much consequences on the position of Na+ concentration peaks for water

saturation conditions above 13.5 H2O per unit cell. At higher levels of desaturation, Na+

ions came closer to the surface and screened the electrostatic repulsion between Cl− and

the clay surface (Figure 2). New peaks arose, with cations standing between the negatively

charged surface and the anions. In these new concentration peaks, cations were partially

dehydrated, and they were coordinated directly to clay mineral surface atoms (see Table S2

and Table S3 for Na+ first shell coordination composition), which is an indication of the

formation of inner sphere complexes. These inner sphere cations were also observed in the

absence of anions.14 However, the presence of chloride anions increased the proportion of

inner-sphere cations, and favored their appearance at lower desaturation levels. In the most

unsaturated case, the peak the closest to the surface corresponded to cations located above

the ditrigonal cavities and the second peak corresponded to cations above surface oxygen

atoms (Figures 3 a and b). These two preferred positions had already been observed in

our previous work carried out in water saturated conditions with the ClayFF force field.45

Because the Na+-surface distance was the same, we infer that the Na+ preferred positions

with respect to the surface does not depend on the force field, despite the deformation of

the surface cavities observed with PIM.43,45,53,54

Both cations and anions density peaks in region 1 (Figure 2) were located at a same

11



distance from the surface (≈ 7 Å). Ions present in this region exhibited preferential locations

on the surface (Figures 3 c and d): Cl− ions were located above Si atoms, while Na+ ions

were located near surface oxygen atoms of the ditrigonal cavity, leaving the center of the

cavities to water molecules and Na+ inner sphere complexes. Radial distribution functions

gCl−Na and gCl−HW (Figure S4 and Figure S5) evidenced a decrease in the number of water

molecules in Cl− hydration sphere, while the number of nearest Na+ neighbors (located at a

distance of 2.8 Å from Cl−) increased to reach an average coordination number greater than

1 in the most unsaturated system (Table S4 and Table S5). Consequently, Cl− ions formed

ion pairs with Na+ ions. In order to better visualize the relationships between the different

species in very unsaturated systems (with 4.5 H2O per unit cell system or 13.5 H2O per unit

cell), distribution profiles were plotted for all species on the same graph (Figure S6).

Above mentioned changes in ions distributions have a direct influence on the electrostatic

properties within the pore. Surface charge compensation (CC) was calculated as follows:

CC = 100
LxLy
Q

∫ z

0

(CNa+(u)− CCl−(u)) du (1)

where Lx and Ly are the dimensions of the box in x and y directions, Q is the charge of

clay mineral surface in elementary charge unit (which corresponds to the total charge of the

clay mineral sheet divided by two), CNa+(z) and CCl−(z) are the concentrations of cations

and anions as a function of z in number of particles per unit volume. CC is zero at the clay

mineral surface and 100 % in the middle of the pore because the system is overall electrically

neutral and symmetric.

In the simulations carried out with the three most desaturated conditions, an overcom-

pensation of the surface charge took place in the region z = 7 Å - 10 Å (Figure 2c). In this

region, the surface and the slice of fluid closest to the surface formed a positively charged

wall, a feature that cannot be captured by simple continuum theories such as the Gouy-

Chapman model. Continuum-scale modeling of unsaturated clay mineral systems requires

thus the consideration of more elaborated models. Note that this phenomenon of overcom-
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pensation was also observed in simulations run with the non-polarizable force field ClayFF,

for which overcompensation was more pronounced with increasing NaCl salt concentrations

(Figure S7 and Table S6).
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(a) (b)

(c) (d)

Figure 3: Atomic density maps averaged over a unit cell of the clay mineral surface of (a)
Na+ in the first peak of inner-sphere cations (region 0inner−sphere), (b) Na+ in the second
peak of inner-sphere cations (region 0inner−sphere), (c) Na+ in the first peak of outer-sphere
cations (region 1outer−sphere) and (d) Cl− in the region 1outer−sphere. Si (yellow), O (red)
and H (white) clay mineral atoms were drawn to show the position of the ditrigonal surface
cavities.
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Water mobility
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Figure 4: D|| of water as a function of pore saturation. The definitions of the different layers
are given on the water atoms distribution profiles (Figure 1). The coefficients values and
associated errors are averaged values obtained of two symmetric layers.

Pore-averaged water diffusion coefficient increased from 2.23× 10−9 m2· s−1 to 2.77× 10−9 m2· s−1

with first steps of increasing desaturation (Figure 4 and Table S7). As desaturation proceeded

further, water diffusion decreased down to 1.67 × 10−9 m2· s−1 in the most unsaturated state.

This two-step evolution was driven by the relative influences of two competitive effects: (1)

water molecules at the water/air interface diffused more quickly than in the bulk;66 the pro-

portion of water molecules located at the interface in the 4th layer increased (yellow points on

Figure 4) with desaturation, and thus the average diffusion coefficient increased too; on the

contrary (2) the interactions of water molecules with cations and with the clay mineral sur-

face slowed water diffusion down; in the 1st water layer closest to the surface, water molecules
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had a diffusion coefficient of 3.5 × 10−10 m2· s−1, except for the most unsaturated states for

which the diffusion coefficient in the first layer increased to 1.5 × 10−9 m2· s−1 because of

the presence of the water/air interface located in the same layer in these conditions. This

two-step evolution of pore-averaged water diffusion coefficients as a function of desaturation

had already been observed by Churakov with a non polarizable force-field.14

Ionic species mobility
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Figure 5: D|| of sodium ions as a function of pore saturation. The definitions of the different
regions are given on the ions distribution profiles (Figure 2). The coefficient values and
associated errors are averaged values of two symmetric layers.

An increase in cation diffusion coefficient was observed near the water/air interface, similarly

to observations made for water molecules, albeit less significant (Figure 5, Table S8). The

proportion of cations near the water/air interface was much lower than that close to the clay

mineral surface. As a result, the slowdown near the clay mineral surface counterbalanced
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more efficiently the acceleration near the water/air interface, and the average diffusion co-

efficient decreased with increasing desaturation levels. In the most unsaturated system, the

diffusion coefficient was equal to 2.2 × 10−10 m2· s−1, i.e. about seven times lower that in

bulk water (DNa+ = 1.5 × 10−9 m2· s−1)63 and about five times lower than in saturated

conditions. In fact, in the conditions corresponding to 4.5 and 9 H2O per unit cell, cations

located in region 0 (inner sphere cations) were immobile, and contributed strongly to the

observed slowdown of cations diffusion.

The evolution of Cl− diffusion coefficient with saturation was similar to that observed

for cations (Figure 6, Table S9), but it exhibited a larger amplitude of variation. Indeed,

average Cl− diffusion coefficient value decreased by a factor of about eight compared to the

bulk water value (DCl− = 1.9 × 10−9 m2· s−1)63 and six compared to the water saturated

conditions. This evolution may seem surprising since anions, unlike cations, are a priori

not strongly attracted to negatively charged surfaces. Nevertheless, formation of ion pairs

in such spatially constrained conditions may be ultimately responsible for the loss of Cl−

mobility.
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Diffusion experiments have evidenced that anions diffusion is more strongly reduced than

cation diffusion in the presence of water unsaturated conditions. Numerous processes were

put forward to explain this observation, including differences in diffusion pathway disruptions

among cations anions and neutral molecules.67–71 Our study emphasizes that mechanisms

taking place at the surface, such as formation and immobilization of ion pairs, may also

be, partly, responsible for the observed differences between anions and cations diffusion

properties evolution with desaturation. As for water diffusion, our study corroborates the

fact that a limited desaturation is not responsible for a decrease of water molecules self-

diffusion coefficient. On the contrary, a limited desaturation increases its value, an effect

that is antagonistic to the effect of diffusion pathway disruption on the macroscopic effective

diffusion coefficient value. The relative influence of these two competing effects was probed by

Gimmi et al.,15 who concluded that the decline in effective water diffusion due to the increase
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in tortuosity brought about by the addition of gas in the clay matrix is not compensated by

the the increase of water mobility at the vapor-liquid interface.

Conclusion

Desaturation drastically modified the localization and the diffusion of mobile species (water

and ions) in most unsaturated conditions, corresponding to a monolayer (4.5 H2O per unit

cell), a bilayer (9 H2O per unit cell) or a trilayer of water (13.5 H2O per unit cell). In par-

ticular, cations engaged in immobile inner sphere complexes located in ditrigonal cavities,

resulting in a local overcompensation of the surface charge. In parallel, while water diffu-

sion coefficient remained relatively unaffected by the extent of desaturation, ions mobility

was greatly reduced in the most unsaturated simulation cases. The complexity of mutual

interactions between water anion-cation-clay mineral surface and water-air interface pleads

for the development of advanced continuum models to take into account desaturation effect

on transport properties in clay-rich media.
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Supporting Information Available

• Snapshots of the studied systems (saturated and unsaturated).

• Minimization functions (forces and dipoles) used in the PIM force field fitting proce-

dure.

• Cl−-Clay mineral atoms interaction parameters in PIM force field.

• Water oxygen atoms (OW) density maps in the first layer for systems 45 H2O / unit

cell and 4.5 H2O / unit cell.

• Snapshot of half a pore (36 H2O / unit cell) with focus on ionic distributions.

• Position and number of OW in the first peak of the radial distribution functions of

OW water atoms around Na+ as function of pore saturation.

• Na+ first shell coordination composition.

• Radial distribution functions and integrals of Na+ around Cl− as function of pore

saturation.

• Position and number of Na+ in the first peak of the radial distribution functions of

Na+ around Cl− as function of pore saturation.

• Radial distribution functions and integrals of HW around Cl− as function of pore

saturation.

• Position and number of HW in the first peak of the radial distribution functions of

HW around Cl− as function of pore saturation.

• Non polarizable force field simulations: simulation details description.

• Water atoms and ions distribution profiles normal to clay mineral for the 4.5 H2O per

unit cell system and the 13.5 H2O per unit cell system.
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• Description of the systems simulated with the non polarizable ClayFF force field (NH2O

/ unit cell and salt concentration).

• Clay charge compensation distribution profiles in the direction normal to the clay

mineral surface as function of pore saturation for systems simulated with the non

polarizable ClayFF force field.

• D|| of water as a function of pore saturation.

• D|| of sodium ions as a function of pore saturation.

• D|| of chloride ions as a function of pore saturation.

• Mean square displacement (MSD) of water molecules as a function of time and as a

function of distance from clay mineral surface (system: pore with 36 H2O / unit cell).
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