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ON EMERGENCE AND COMPLEXITY OF ERGODIC

DECOMPOSITIONS

PIERRE BERGER˚ AND JAIRO BOCHI˚˚

Abstract. A concept of emergence was recently introduced in [Be2] in
order to quantify the richness of possible statistical behaviors of orbits
of a given dynamical system. In this paper, we develop this concept and
provide several new definitions, results, and examples. We introduce
the notion of topological emergence of a dynamical system, which essen-
tially evaluates how big the set of all its ergodic probability measures
is. On the other hand, the metric emergence of a particular reference
measure (usually Lebesgue) quantifies how non-ergodic this measure is.
We prove fundamental properties of these two emergences, relating them
with classical concepts such as Kolmogorov’s ε-entropy of metric spaces
and quantization of measures. We also relate the two types of emer-
gences by means of a variational principle. Furthermore, we provide
several examples of dynamics with high emergence. First, we show that
the topological emergence of some standard classes of hyperbolic dy-
namical systems is essentially the maximal one allowed by the ambient.
Secondly, we construct examples of smooth area-preserving diffeomor-
phisms that are extremely non-ergodic in the sense that the metric emer-
gence of the Lebesgue measure is essentially maximal. These examples
confirm that super-polynomial emergence indeed exists, as conjectured
in [Be2]. Finally, we prove that such examples are locally generic among
smooth diffeomorphisms.
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Introduction

An unsophisticated but fruitful way of quantifying the size of a compact
metric space X goes as follows: one counts how many points can be dis-
tinguished up to error ε ą 0, and then studies the behavior of this number
Npεq as the resolution ε tends to zero. For example, if Npεq is of the order
of ε´d, for some d ą 0, then we say that X has (box-counting) dimension d.
This dimension, when it exists, is a geometric invariant of X: it is preserved
under bi-Lipschitz maps.

A similar idea can be used to define invariants of dynamical systems. One
considers how many orbits can be distinguished up to time t ą 0 and up to
a fine resolution; if this number is roughly expph ¨ tq then the dynamics has
topological entropy h. The metric entropy (also called Kolmogorov–Sinai
entropy) of an invariant probability measure can be characterized similarly:
in this case we are allowed to disregard a set of orbits of small probability.

This discretization paradigm can be used to quantify the complexity of
a dynamical system in another way, called emergence, which was recently
introduced in [Be2]. Emergence is significant when a finite number of sta-
tistics is not enough to describe the behavior of the orbit of almost every
point. In this paper, we carry out a more detailed study of the concept
of emergence, sometimes guided by analogies with the concept of entropy.
Furthermore, we provide examples of topologically generic dynamics with
high emergence, substantiating a conjecture from [Be2].

Let us note that the word emergence is used with several different mean-
ings in the scientific literature. Our use is compatible with MacKay’s view-
point, according to whom “emergence means non-unique statistical behaviour”
[MK]. He elaborates on this as follows:

“Note that emergence is very different from chaos, in which
sensitive dependence produces highly non-unique trajecto-
ries according to their initial conditions. Indeed, the nicest
forms of chaos produce unique statistical behaviors in the
basin of the attractor. The distinction is like that between
the weather and the climate. For weather we care about
individual realizations; for climate we care about statistical
averages.” [MK]

Given a continuous self-map f of a compact metric space X, emergence
distinguishes only the statistical behavior of orbits of f . So it does not
matter when a segment of orbit pf ipxqqn´1

i“0 visits a certain region of the
phase space X, but only how often. This can be quantified by a probability,
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the nth empirical measure associated to x:

efnpxq :“
1

n

n´1
ÿ

i“0

δf ipxq .

In the paradigm of ergodic theory, one focuses on the probability mea-
sures µ which are invariant : f˚µ “ µ. We denote by Mf pXq the convex,
closed subset of such measures. Then, by Birkhoff ergodic theorem, for

µ-a.e. x P X, the sequence pefnpxqqn converges to a unique measure:

ef pxq :“ lim
nÑ8

efnpxq ,

called the empirical measure associated to x. Furthermore, this measure
is almost surely ergodic, by the ergodic decomposition theorem. We recall
that a measure µ is ergodic if and only the empirical function x ÞÑ ef pxq
is µ-a.e. constant. We denote by Merg

f pXq ĂMf pXq the subset of ergodic

probability measures.
It is natural to study how many ergodic statistical behaviors a dynamical

system admits up to resolution ε (in a sense to be made precise). We are
interested in the behavior of this number as ε tends to zero. This leads us
to introduce the following notion:

Definition 0.1 (Topological Emergence). Let X be a compact metric space,
let f be a continuous self-map of X, and let d be a distance on the space of
probabilities MpXq of X so that pMpXq, dq is compact.

The topological emergence Etoppfqpεq of f is the function which asso-
ciates to ε ą 0 the minimal number of ε-balls of MpXq whose union covers
Merg

f pXq.

Of course this definition depends on how the space of measures is metrized.
There are basically two classical types of distances on the space of probabili-
ties MpXq which define the same weak topology (which is the most relevant
one in ergodic theory): the Lévy–Prokhorov distance LP, and Wasserstein
distances Wp, which depend on a parameter p P r1,8q. We will recall their
definitions in Section 1.2. For the rest of this introduction, we fix any dis-
tance d P tWp : 1 ď p ă 8u Y tLPu.

In Section 2, we will give examples of open sets of mappings with essen-
tially maximal topological emergence:

Theorem A. Let f be C1`α-mapping of a manifold which admits a basic
hyperbolic set K with box-counting dimension d. Assume that f is conformal
expanding or that f is a conservative surface diffeomorphism. Then the
topological emergence of f |K is stretched exponential with exponent d:

lim
εÑ0

log log Etoppf |Kqpεq

´ log ε
“ d .

The emergence exponent is indeed maximal, since for any such a compact
set K, the covering number of the space of probability measures MpKq is
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stretched exponential with exponent d, both for the Lévy–Prokhorov metric
LP and the Wasserstein metrics Wp; see Section 1.3 for details.

The concept of topological emergence is linked to classical ideas of size
of functional spaces developed by the Kolmogorov school (and emanating
from Hilbert’s 13th problem): see Section 1 for more details. Let us also
note that the set Mf pXq has been investigated from several (topological,
convex-analytic, . . . ) points of view for various classes of maps f , from older
works [Sig, Dow] to recent ones [GoP, GeR, BBG, BoZ, DGMR, DGR]. The
study of topological emergence expands this theme of research by imparting
a more quantitative aspect to it.

We may be only interested in physically relevant statistics, and so we
are allowed to disregard statistics that correspond to a set of orbits of zero
Lebesgue measure. This led to the following concept [Be2], initially intro-
duced for X a manifold and µ the Lebesgue measure:

Definition 0.2 (Metric Emergence). Let pX,µq be a compact metric space
X endowed with a probability measure µ, and let f be a continuous self-map
of X (not necessarily µ-preserving).

The metric emergence Eµpfq is the function that associates to ε ą 0 the
minimal number Eµpfqpεq “ N of probability measures µ1, . . . , µN so that:

(0.1) lim sup
nÑ8

ż

min
1ďiďN

dpefnpxq, µiq dµpxq ď ε .

Let us note that when µ is f -invariant, then pefnpxqqn converges to ef pxq
µ-a.e. and so (0.1) can be replaced by:

(0.2)

ż

min
1ďiďN

dpef pxq, µiq dµpxq ď ε .

As we will explain in Section 3, when the measure µ is f -invariant, metric
emergence becomes a particular case of the classic problem of quantization
(or discretization) of a measure [GrL].

Let us recall some examples of metric emergence. By definition, if pf, µq
is ergodic then ef pxq “ µ for µ-a.e. x and so its metric emergence Eµ is
identically 1 (i.e. minimal).

When X is a compact manifold M , the metric emergence will be canon-
ically considered for µ “ Leb, the Lebesgue measure of M (that is, the
probability measure corresponding to a fixed normalized smooth positive
volume form). The map f is called conservative if it leaves the Lebesgue
measure invariant. The group of conservative Cr-diffeomorphisms is denoted
by Diff r

LebpMq.
There are well-studied subsets of Diff r

LebpMq consisting of ergodic diffeo-
morphisms: uniformly hyperbolic dynamics, quasi-periodic mappings (e.g.
minimal translations of tori), and many classes of partially hyperbolic dy-
namics [BuW, ACW, Ob].
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For a while, Boltzmann’s ergodic hypothesis prevailed and typical Hamil-
tonian dynamical systems were believed to be ergodic [BiK, Dum]. However,
KAM (Kolmogorov–Arnold–Moser) theory revealed that every perturbation
of certain integrable systems displays infinitely many invariant tori filling a
set of positive Lebesgue measure, in each of which the dynamics is an er-
godic rotation. Thus the ergodic hypothesis was refuted. This phenomenon
also showed that a typical symplectic diffeomorphism is in general not er-
godic, since nearby its totally elliptic periodic points it is Hamiltonian and
smoothly approximable by an integrable system. As we will explain later
(see Corollary 5.7), the metric emergence of systems displaying KAM phe-
nomenon is at least polynomial:

(ě P ) lim inf
εÑ0

log ELebpfqpεq

´ log ε
ě 1 .

Another phenomenon, discovered by Newhouse [Ne1], is the co-existence
of infinitely many invariant open sets, each of which having an asymptoti-
cally constant empirical function, so that the corresponding probability mea-
sures can approximate any invariant ergodic measure supported on a certain
non-trivial hyperbolic compact set. This phenomenon occurs generically in
many categories of dynamical systems: see [Ne2, Dua, Buz, BoD, DNP, Bie].
The Newhouse phenomenon has been recently shown to be typical in the
sense of Kolmogorov: see [Be1, Be2].

In view of Theorem A, one might believe that the metric emergence of sys-
tems displaying Newhouse phenomenon can have super-polynomial growth.
In the paper [Be2], it is actually conjectured that super-polynomial growth
is typical in open sets of many categories of dynamical systems. We prove
one step toward this conjecture by showing (in Section 4) the existence of
a smooth (that is, C8) conservative flow with stretched exponential metric
emergence:

Theorem B. There exists a smooth conservative flow pΦtqt on the annulus
A :“ R{Z ˆ r0, 1s such that for every t ‰ 0 the emergence of f “ Φt is
stretched exponential with (maximal) exponent d “ 2:

(S expd) lim
εÑ0

log log ELebpfqpεq

´ log ε
“ d .

Remark 0.3. We recall that surface flows have zero topological entropy. Thus
the previous theorem provides an example of smooth conservative dynamics
with high emergence but zero topological entropy.

Question 0.4. Is there a smooth conservative surface map f such that:

lim inf
εÑ0

ε2 log ELebpfqpεq ą 0 ?

Actually the proof of this theorem can be adapted to show the existence
of smooth conservative flow pΦtqt of a compact manifold M of any dimension
d ě 2 such that the metric emergence of f “ Φt, t ‰ 0 satisfies (S expd).
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We recall that a conservative map is CrLeb-weakly stable if every conserva-
tive mapping in a Cr neighborhood has only hyperbolic periodic points (i.e.
points x “ fppxq for which the eigenvalues of Dfppxq have moduli differ-
ent than 1). Such mappings are conjecturally uniformly hyperbolic (and so
structurally stable): see [BeT], [Ma1, Conj. 2]. In that paper, it was shown
that any conservative surface diffeomorphism which is not weakly stable can
be C8-approximated by one with positive metric entropy. Here we obtain
a stronger emergence counterpart of this result:

Theorem C. A C8-generic, conservative, surface diffeomorphism f either
is weakly stable or has a metric emergence with lim sup stretched exponential
with exponent d “ 2:

(S expd) lim sup
εÑ0

log log ELebpfqpεq

´ log ε
“ d .

Remark 0.5. Theorem C certainly requires some appropriate degree of dif-
ferentiability, and is completely false for the C0 category – indeed, generic
volume-preserving homeomorphisms of a compact manifold are ergodic [OxU]
and therefore have minimal metric emergence.

With a relatively simple modification of the proof of the previous theorem,
we also obtain its dissipative (i.e. non conservative) counterpart:

Theorem D. For every r P r1,8s and for every surface M , there exists
a non-empty open set U Ă Diff rpMq, such that a generic map f P U has
metric emergence ELebpfq that satisfies (S expd) with d “ 2.

These results prove a weak version of Conjecture A of [Be2] for the classes
of smooth conservative and non-conservative surface diffeomorphisms. This
conjecture posits the existence of many open classes of dynamics for which
super-polynomial emergence is typical in many senses (including Kolmogorov’s).
In this regard, let us note that it is an open question whether Newhouse phe-
nomenon implies typically high emergence.

Our results also make it clear that emergence and entropy are completely
unrelated. On one hand, a uniformly hyperbolic, conservative map has
positive metric entropy but minimal metric emergence (identically equal
to 1), since the volume measure is ergodic. Furthermore, a construction of
Rees and Béguin–Crovisier–Le Roux [BCLR] yields a homeomorphism which
is uniquely ergodic (and so has minimal topological and metric emergences)
but has positive topological entropy. On the other hand, Theorem B gives
an example of conservative dynamics with stretched exponential emergence
but (as noted in Remark 0.3) with zero topological entropy and in particular
(by the entropy variational principle) with zero metric entropy.

As we will show in Section 3, the metric emergence of any invariant mea-
sure is at most the topological emergence (see Proposition 3.14). Further-
more, we will prove that the latter upper bound is asymptotically attained,
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therefore obtaining the following statement that mirrors the entropy varia-
tional principle:

Theorem E (Variational Principle for Emergence). For every continuous
self-map f of a compact metric space X, there exists an invariant probability
measure µ such that:

$

’

’

&

’

’

%

lim sup
εÑ0

log log Eµpfqpεq

´ log ε
“ lim sup

εÑ0

log log Etoppfqpεq

´ log ε
,

lim inf
εÑ0

log log Eµpfqpεq

´ log ε
“ lim inf

εÑ0

log log Etoppfqpεq

´ log ε
.

Question 0.6. Can we find an invariant measure µ such that Eµpfq „ Etoppfq
(that is, these two functions of ε are asymptotic as εÑ 0)?

Organization of the paper. In Section 1 we discuss covering numbers and
the related concepts of box-counting dimension (the exponent when covering
numbers obey a power law) and metric order (the exponent when covering
numbers obey a stretched exponential law); furthermore, we define precisely
the Wasserstein and Lévy–Prokhorov metrics on space MpXq of probability
measures on a compact metric space X, and show that the metric order
of MpXq coincides with the box-counting dimension of X (Theorem 1.3).
Since topological emergence of a dynamical system is defined as the cover-
ing number function of its set of invariant probability measures, we obtain
a simple upper bound for the growth rate of topological emergence of a dy-
namical system in terms of the dimension of the phase space. In Section 2
we exhibit classes of examples where this upper bound is attained: this is
the content of Theorem A. The proof uses elementary properties of Gibbs
measures.

In Section 3 we recall the notion of quantization of probability measures.
We define quantization numbers, which express how efficiently a measure
can be discretized, and are bounded from above by the covering numbers of
the ambient space. We show that metric emergence of an invariant measure
amounts to the quantization number function of its ergodic decomposition.
We prove Theorem E, which says that one can always find an invariant
probability measure with essentially maximal metric emergence; actually
this is deduced from a more abstract result (Theorem 3.9) on the existence
of measures with essentially maximal quantization numbers.

In Section 4 we construct an example of smooth conservative surface
diffeomorphism such that Lebesgue measure has essentially maximal metric
emergence; more precisely, we prove Theorem B. In Section 5 we prove
our results on genericity of high emergence for conservative and dissipative
surface diffeomorphisms, Theorems C and D; these proofs are relatively short
because we make use of an intermediate result used to obtain Theorem B,
namely Proposition 4.2. The proofs also use elementary versions of the KAM
theorem and the persistence of normally contracted submanifolds.
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In Appendix A we recall a characterization of metric entropy due to Ka-
tok [Ka], and show how it provides a characterization of metric entropy in
terms of quantization numbers. Katok’s theorem is used in Section 2; that
is because the proof of Theorem A uses the measure of maximal dimension
as an auxiliary device in the construction of large sufficiently separated sets
of periodic orbits.

Notation. We employ the usual notations:

‚ f „ g means f{g Ñ 1;
‚ f — g means f “ Opgq and g “ Opfq.

Acknowledgements. We are grateful to Rémi Peyre for meticulous dis-
cussions on the covering numbers of spaces of measures, and for allowing us
to include the resulting proof of Theorem 1.3 in this paper. We also thank
Viviane Baladi, Abed Bounemoura, Sylvain Crovisier, Bassam Fayad, God-
ofredo Iommi, François Ledrappier, Enrique Pujals, and Michael Shub for
insightful comments. Finally, we thank the referee for corrections and sug-
gestions.

1. Metric orders and spaces of measures

1.1. Dimension and metric order of a compact metric space. Let X
be a totally bounded space, and let ε ą 0. A subset F Ă X is called:

‚ ε-dense if X is covered by the closed balls of radius ε and centers
in F ;

‚ ε-separated if the distance between any two distinct points of F is
greater than ε.

Then we define the following numbers (which are finite by total bound-
edness):

‚ the covering number DXpεq “ DpX, εq is the minimum cardinality
of an ε-dense set;

‚ the packing number SXpεq “ SpX, εq is the maximum cardinality of
an ε-separated set;

Precise computation of these numbers is seldom possible (see the classic
[Rog] for problems of this nature). However we are only interested in the
asymptotics of these numbers as ε tends to 0, and so moderately fine esti-
mates will suffice.

Covering and packing numbers can be compared as follows:

(1.1) SXp2εq ď DXpεq ď SXpεq ;

indeed the first inequality follows from the observation that a 2ε-separated
set of cardinality n cannot be covered by less than n closed balls of radius ε,
while the second inequality follows from the fact that every maximal ε-
separated set is ε-dense.
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The upper box-counting dimension of X is defined as:

dimpXq :“ lim sup
εÑ0

logDXpεq

´ log ε
P r0,8s .

Note that by inequalities (1.1), it makes no difference if DXpεq is replaced by
SXpεq in the definition above. We define the lower box-counting dimension
dimpXq by taking lim inf instead of lim sup. If these two quantities coincide,
they are called the box-counting dimension of X and denoted by dimX. The
term Minkowski dimension is also used. For an elementary introduction and
more information, see [Fa].

The dimensions defined above are infinite when the numbers DXpεq and
SXpεq are super-polynomial with respect to ε´1. However, these functions
are often comparable to stretched exponentials; indeed many examples of
functional spaces with this property are studied in the classic work by Kol-
mogorov and Tihomirov [KoT]1. The corresponding exponent

mopXq :“ lim
εÑ0

log logDXpεq

´ log ε
“ lim

εÑ0

log logSXpεq

´ log ε
,

if it exists, is called the metric order of X, following [KoT, p. 298]. In
general we define lower and upper metric orders mopXq ď mopXq by taking
lim inf and lim sup.

Remark 1.1. A concept similar to metric order, called critical parameter
for the power-exponential scale, was introduced and studied by Kloeckner
[Kl1, Kl2]. Its definition is more akin to the Hausdorff dimension.

Remark 1.2. If Y is a subset of X then define the relative covering number
DXpY, εq as the minimal number of closed ε-balls in X whose union covers Y .
Note that:

DXpY, εq ď DpY, εq ď DXpY, ε{2q .

Therefore dimension and metric order of subsets of X can be also computed
using relative covering numbers.

1.2. Spaces of measures. Let pX, dq be a compact metric space. Let
MpXq be the space of Borel probability measures on X, endowed with
the weak topology and therefore compact. There are many different ways
of metrizing the weak topology. We will consider two types of metrics in
MpXq: the Wasserstein distances and the Lévy–Prokhorov distance (defined
below). These metrics respect the original metric on X, in the sense that
the map x ÞÑ δx (where δx is the Dirac probability measure concentrated at
the point x) becomes an isometric embedding of X into MpXq.

Given two measures µ, ν PMpXq, a transport plan (or coupling) from µ
to ν is a probability measure π on the product X ˆX such that pp1q˚π “ µ
and pp2q˚π “ ν, where p1, p2 : X ˆ X Ñ X are the canonical projections.
(We say that µ and ν are the marginals of π.) Such transport plans form

1See also [CLN, § 8.2.6] for historical context.
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a closed and therefore compact subset Πpµ, νq of MpX ˆXq. For any real
number p ě 1, the p-Wasserstein distance between µ and ν is defined as:

Wppµ, νq :“ inf
πPΠpµ,νq

ˆ
ż

XˆX
rdpx, yqspdπpx, yq

˙1{p

,

(The integral in this formula is called the cost of the transport plan π with
respect to the cost function dp. The infimum is always attained, i.e., an
optimal transport plan always exists.) It can be shown that Wp is a metric
on MpXq which induces the weak topology: see e.g. [Vil, Theorems 7.3 and
7.12].

The Lévy–Prokhorov distance between two measures µ, ν P MpXq is
denoted LPpµ, νq and is defined as the infimum of ε ą 0 such that for every
Borel set E Ă X, if VεpEq denotes the ε-neighborhood of E, then:

νpEq ď µpVεpEqq ` ε and µpEq ď νpVεpEqq ` ε .

For a proof that LP is a metric on MpXq and that induces the weak topology,
see [Bil, p. 72].

The Lévy–Prokhorov distance can also be characterized in terms of trans-
port plans: it equals the infimum of ε ą 0 such that for some π P Πpµ, νq,
the set tpx, yq P X ˆ X ; dpx, yq ą εu has π-measure less than ε; this is
Strassen’s theorem: see [Bil, p. 74] or [Vil, p. 44].

The family of Wasserstein metrics are not Lipschitz-equivalent to one
another nor to the Lévy–Prokhorov metric. On the other hand, the following
Hölder comparisons hold:

Wq ďWp ď pdiamXq
1´ q

pW
q
p
q if 1 ď q ď p;(1.2)

LP1` 1
p ďWp ď p1` pdiamXqpq

1
pLP

1
p ;(1.3)

see [Vil, p. 210], [GiS, Theorem 2].

1.3. Metric order of spaces of measures. The following result relates
the lower and upper metric orders of Wasserstein space with the lower and
upper box-counting dimensions of the underlying metric space:

Theorem 1.3. For any compact metric space X and any p ě 1, we have:

dimpXq ď mopMpXq,Wpq ď mopMpXq,Wpq ď dimpXq .

In particular the metric order mopMpXq,Wpq exists and equals the box-
counting dimension dimX whenever the latter exists.

Actually, the rightmost inequality in the theorem is a consequence of
a more precise result of Bolley–Guillin–Villani [BGV] (details will be pro-
vided below), while a variation of the leftmost inequality was obtained by
Kloeckner [Kl2, Theorem 1.3]. Here we will present a proof of the leftmost
inequality which was obtained jointly with Rémi Peyre.

Remark 1.4. The exact same statement also holds for the Lévy–Prokhorov
metric, as a consequence of [KuZ, Lemmas 1 and A1].
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Remark 1.5. Other examples where the metric order of a functional space
equals the dimension of the underlying space can be found in [KoT], namely
uniformly bounded uniformly Lipschitz functions on an interval [KoT, p. 288],
or on more general sets [KoT, p. 307].

Proof of the rightmost inequality in Theorem 1.3. By [BGV, Theorem A.1]2,
there exists C ą 0 such that:

D
`

pMpXq,Wp

˘

, εq ď pC{εqpDXpε{2q .

So:

log logD
`

pMpXq,Wpq, ε
˘

log ε´1
ď

logplogC ` log ε´1q

log ε´1

`
log 2` log ε´1

log ε´1

logDXpε{2q ` log p

logp2{εq
.

Taking lim sup as εÑ 0 we obtain mopMpXq,Wpq ď dimpXq. �

The remaining part of Theorem 1.3 will be obtained as a consequence of
a more general result that allows us to estimate the lower metric order of
other spaces of measures.

Let us say that two probability measures µ, ν on X are ε-apart if their
supports are ε-apart in the following sense:

mintdpx, yq | x P suppµ, y P supp νu ě ε .

Theorem 1.6. Let X be a compact metric space. Let C be a convex subset
of MpXq. For each ε ą 0, let ApC, εq denote the maximal number of pairwise
ε-apart measures in C. Then, for any p ě 1,

mopC,Wpq ě lim inf
εÑ0

logApC, εq
´ log ε

.

The same inequality holds for the distance LP.

Proof of the leftmost inequality in Theorem 1.3. We apply Theorem 1.6 with
C “ MpXq. If tx1, . . . , xNu is an ε-separated subset of X then the Dirac
measures δx1 , . . . , δxN are pairwise ε-apart. This observation shows that
ApMpXq, εq ě SpX, εq. The result follows. �

To prove Theorem 1.6, we will need the following elementary large-deviations
estimate (see e.g. [GrS, p. 32] for a proof):

Lemma 1.7 (Bernstein inequality). Let Hn (a random variable) be the
number of heads on n tosses of a fair coin. Then for any δ ą 0,

Prob

„

Hn

n
ď

1

2
´ δ



ď e´
π
4
δ2n .

2See [Ng, Lemma 4] for a related result.
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Proof of Theorem 1.6 (with Rémi Peyre). Fix ε ą 0, and letN :“ 8tApC, εq{8u.
Observe that ApC, εq ´ 7 ď N ď ApC, εq, and so we can find measures
ν1, . . . , νN P C that are pairwise ε-separated.

Denote

(1.4) F :“
!

f : t1, . . . , Nu Ñ t0, 1u
ˇ

ˇ

ˇ

N
ÿ

i“1

fpyq “
N

2

)

.

We endow F with the Hamming distance:

Hammpf, gq :“ #ti P t1, . . . , Nu| fpiq ‰ gpiqu

(which is always an even number between 0 and N). Let us estimate the
cardinality of a ball B of radius N{4 in F and centered at some f . If g is
an element of B, that is, k :“ 1

2Hammpf, gq ď N{8, then there are exactly k

elements of f´1pt0uq and k elements of f´1pt1uq at which g differs from f .
As both sets f´1pt0uq and f´1pt1uq have cardinality N{2, we obtain:

#B “

N{8
ÿ

k“0

ˆ

N{2

k

˙2

ď

„N{8
ÿ

k“0

ˆ

N{2

k

˙2

.

The quantity between square brackets equals 2N{2 times the probability of
obtaining at most N{8 heads on N{2 tosses of a fair coin. By Lemma 1.7,

this probability is at most e´
π
4 p

1
4q

2N
2 . So

(1.5) #B ď 2Ne´
π
4
¨ N
42 .

Choose a maximal N{4-separated subset F 1 of F . Then F 1 is N{4-dense,
that is, the balls of radius N{4 with centers in F 1 form a covering of F . The

cardinality of F itself is
`

N
N{2

˘

ě p2Nq´1{22N (by Stirling’s formula). Using

(1.5), we conclude that

(1.6) #F 1 ě
#F

#B
ě p2Nq´1{2eπN{4

3
.

Now, for each f P F 1, consider the measure:

µf :“
2

N

N
ÿ

i“1

fpiqνi ,

which by convexity belongs to C. Consider the subset F :“ tµf | f P F
1u of

C, which has the same cardinality as F 1. This set has the following property,
whose proof will be given later:

Claim 1.8. The set F is 4´1{pε-separated with respect to the Wasserstein
distance Wp.

In particular, SppC,Wpq, 4
´1{pεq ě #F 1. On the other hand, it follows

from (1.6) that #F 1 ě ecN for all sufficiently large N , where c ą 0 is a
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constant. So:

log logSppC,Wpq, 4
´1{pεq

´ logp4´1{pεq
ě

logN ` log c

´ log ε` 1
p log 4

Since N ě ApC, εq ´ 7, taking lim inf as ε Ñ 0 we obtain the conclusion of
the theorem for the Wasserstein distance Wp.

As regards the Lévy–Prokhorov distance LP, inequalities (1.3) allows us
to compare it with the W1 distance, and so Claim 1.8 implies that F is
p4p1`diamXqq´1ε-separated with respect to LP, which allows us to conclude
as before.

This completes the proof of Theorem 1.3, modulo the claim. �

Proof of Claim 1.8. Fix two distinct elements f , g of F 1, and let us estimate
Wppµf , µgq. Let Sf and Sg be the supports of µf and µg, respectively.

We claim that:

px, yq P pSf r Sgq ˆ Sg ñ dpx, yq ě ε .

Indeed, if y P Sg then y P supp νj for some j P t1, . . . , Nu such that gpjq “ 1,
while if x P Sf r Sg then x P supp νi for some i P t1, . . . , Nu such that
fpiq “ 1 and gpiq “ 0; in particular, i ‰ j. So νi and νj are ε-apart, which
guarantees that dpx, yq ě ε, as claimed.

Also note that:

µf pSfrSgq “
2

N
#
 

i P t1, . . . , Nu | fpiq “ 1, gpiq “ 0
(

“
Hammpf, gq

N
ě

1

4
,

since F is N{4-separated.
For any transport plan π from µf to µg, using the remarks above we can

estimate:
ż

XˆX
rdpx, yqspdπpx, yq “

ż

SfˆSg

p¨ ¨ ¨ q ě

ż

pSfrSgqˆSg
p¨ ¨ ¨ q

ě εpπ
`

pSf r Sgq ˆ Sg
˘

“ εpµf pSf r Sgq ě
εp

4
.

So, by definition of the Wasserstein distance, we have Wppµf , µgq ě
ε

41{p
,

completing the proof of the claim. �

2. Examples of dynamics with high topological emergence

Let f be a continuous self-map of a compact metric space X. We recall
that Merg

f pXq denotes the space of invariant ergodic probability measures.

As explained in the introduction, the topological emergence of f is the
relative covering number of Merg

f pXq (defined in Remark 1.2) endowed ei-

ther with a Wasserstein distance Wp, 1 ď p ă 8, or the Lévy-Prokhorov
distance LP, that is:

(2.1) Etoppfqpεq :“ DMpXqpM
erg
f , εq .
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We are concerned with the asymptotic behavior of this function for small ε.
Since Merg

f pXq is included in MpXq, by Theorem 1.3 and Remark 1.4 we

have:

(2.2) lim sup
εÑ0

log log Etoppfqpεq

´ log ε
“ mopMerg

f pXqq ď mopMpXqq ď dimpXq.

Sometimes, this bound is far from being optimal. For instance, when f is
uniquely ergodic, then Etoppfqpεq “ 1 does not grow at all. If f is the identity
of X, then Merg

f pXq is isometric to X, and so Etoppfqpεq is comparable to

ε´d if X has well defined box-counting dimension d.
On the other hand, Theorem A gives examples of hyperbolic compact sets

for which the above bound is optimal. Let us explain and prove them.

2.1. Conformal expanding repellers. Let M be a Riemannian manifold,
U an open subset of M and f : U ÑM be C1`α map which leaves invariant
a compact subset K of U (i.e. f´1pKq “ K). We say that pK, fq is a
conformal expanding repeller if f is conformal and expanding at K: for
each x P K, the derivative Dfpxq expands the Riemannian metric by a
scalar factor greater than 1. Then its box-counting dimension dimpKq is
well-defined, and it equals the Hausdorff dimension: see [PrU, Corol. 9.1.7].

Theorem 2.1. Let pK, fq be a conformal expanding repeller of dimension d.
Then the topological emergence of f |K is stretched exponential with expo-
nent d:

lim
εÑ0

log log Etoppf |Kqpεq

´ log ε
“ d .

Proof. First, we can assume that K is transitive since it is always a finite
disjoint union of transitive sets; moreover, up to taking an iterate of f , we
can suppose that f |K is topologically mixing – see [PrU, Thm. 3.3.8].

By standard results [PrU, §9.1], there exists an invariant ergodic prob-
ability measure µ supported on K of maximal dimension. The Lyapunov
exponent χµ :“

ş

log }Df} dµ and metric entropy hµ are related as follows:

(2.3) χµ ¨ d “ hµ , where d “ dimK .

Let ρ0 ą 0 be such that U contains the ρ0-neighborhood of K. Reduc-
ing ρ0 if necessary, there exists λ ą 1 such that f is λ-expanding on the
ρ0-neighborhood of K, in the sense that }Df´1}´1 ě λ. Then we have
the following property [PrU, §4.1]: for all x P K and all n ě 1, the con-
nected component V n

x of x in the preimage by fn of the (Riemannian)
ball Bpfnpxq, ρ0q is included in Bpx, λ´nρ0q. Moreover V n

x is sent by fn

diffeomorphically onto Bpfnpxq, ρ0q. Note that ρ0 is an expansiveness con-
stant for f |K, in the sense that if x ‰ y then there exists n ě 0 such that
dpfnpxq, fnpyqq ě ρ0.

Let d be the metric on M induced by the Riemannian structure, and for
each n ě 1, let dn denote the time-n Bowen metric on K, defined by:

dnpx, yq :“ max
0ďiăn

dpf ipxq, f ipyqq .
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By the bounded distortion property [PrU, Lemma 4.4.2], there exists a con-
stant C0 ą 1 such that for any n ě 0, if a pair of points px, yq P K ˆ U
satisfies dnpx, yq ă ρ0 then }Dfnpyq} ď C0}Df

npxq}.
Reducing ρ0 if necessary, we assume that every pair of points px, yq P

K ˆ U such that dpx, yq ă ρ0 can be joined by a unique geodesic segment
of minimal length, denoted rx, ys.

Claim 2.2. If n ě 1 and px, yq P KˆU are such that dn`1px, yq ă ρ1:“ C´2
0 ρ0

then:
dpfnpxq, fnpyqq

dpx, yq
ď C0}Df

npxq} .

Proof. Fix x P K and n ě 1. As explained above, fn maps V n
x diffeomorphi-

cally onto Bpfnpxq, ρ0q; let f´nx :“ pfn|V n
x q
´1 be its inverse. Note that V n

x

is exactly the dn`1-ball of center x and radius ρ0. Now consider y P U such
that dn`1px, yq ă ρ1 :“ C´2

0 ρ0. We have dpfnpxq, fnpyqq ă ρ1, by definition
of the Bowen metric. Consider the geodesic segment S :“ rfnpxq, fnpyqs.
Since S is contained in Bpfnpxq, ρ1q Ă Bpfnpxq, ρ0q, the curve f´nx pSq is
well-defined and is contained in V n

x . Since this curve joins x and y, we have:

dpx, yq ď lenpf´nx pSqq ď C0}Df
npxq}´1lenpSq(2.4)

ă C0}Df
npxq}´1ρ1

ď C´1
0 }Dfnpxq}´1ρ0 ,(2.5)

where the estimate (2.4) follows from the bounded distortion property and
conformality of the derivatives, and (2.5) follows from the definition of ρ1.

We claim that the geodesic segment rx, ys is contained in the interior
of V n

x . Indeed, if that is not the case, there exists a subsegment rx, zs Ă V n
x

such that z P BV n
x . On one hand, fnpzq P fnpBV n

x q Ă BBpf
npxq, ρ0q; on the

other hand, using bounded distortion again,

dpfnpxq, fnpzqq ď lenpfnprx, zsqq ď C0}Df
npxq}dpx, zq(2.6)

ď C0}Df
npxq}dpx, yq

ă ρ0 (by (2.5)),

a contradiction. This confirms that rx, ys is contained in the interior of V n
x .

We are now allowed to apply estimate (2.6) with z “ y and therefore
conclude the validity of Claim 2.2. �

Fix a small δ ą 0. By Katok’s Theorem A.2 (see the appendix), there
exists a positive number ρ ă ρ1 such that for all sufficiently large n, the
least number Nµpn, ρ, 1{2q of balls of radii ρ in the dn metric necessary to
cover a set of µ-measure ě 1{2 satisfies:

Nµpn, ρ, 1{2q ą ephµ´δqn .

For each n ě 1, let Bn be the set of points x P K such that }Dfnpxq} ď

epχµ`δqn. By Birkhoff theorem, if n is large enough then µpBnq ą 1{2. Take
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a pdn, ρq-separated set Fn Ă Bn of maximal cardinality. Then the balls of
radii ρ and centered at points in Fn cover Bn. Therefore:

(2.7) #Fn ě Nµpn, ρ, 1{2q ą ephµ´δqn ,

provided n is large enough.
By the specification property of topologically mixing repellers (see e.g.

[ViO, Prop. 11.3.1]), there exists an integer n0 ě 0 (depending on ρ) such
that for every n, each point x P Fn is shadowed by an pn`n0q-periodic point
y P K in such a way that dnpx, yq ă ρ{2. Let Gn be the set of periodic points
y obtained in this way. Note that Gn has the same cardinality as Fn. Also
note that, by bounded distortion, }Dfnpyq} ď C0}Df

npxq} ď C0e
pχµ`δqn

and so, if n is large enough,

(2.8) }Dfn`n0pyq} ď epχµ`2δqn .

Let Πn :“
Ť

kě0 f
kpGnq be the union of the orbits of the points in Gn.

By periodicity, the points y P Πn satisfy the same estimate (2.8).

Claim 2.3. The set Πn is pd, εnq-separated with εn :“ e´pχµ`3δqpn`1q, pro-
vided n is large enough.

Proof. Take a pair of distinct points y, z P Πn, and let us prove that dpy, zq ą
εn. Both points are fixed by fn`n0 , so, by expansiveness, there exists k in
the range 0 ď k ă n ` n0 such that dpfkpyq, fkpzqq ě ρ1 since ρ1 ď ρ0.
Assume that k is minimal. If k “ 0 then the desired estimate is trivial, so
consider k ą 0. Then dkpy, zq ă ρ1 and the following estimates hold:

dpy, zq ě C´1
0 dpfk´1pyq, fk´1pzqq}Dfk´1pyq}´1 (by Claim 2.2)

ě C´1
1 ρ1}Df

k´1pyq}´1 with C1 :“ C0 ¨ }Df}

ě C´1
1 ρ1}Df

n`n0pyq}´1 (since f is expanding)

ą C´1
1 ρ1 ¨ e

´pχµ`2δqn (by (2.8)).

This implies the sough inequality when n is large enough. �

So any two distinct ergodic measures supported in the finite invariant set
Πn are εn-apart (in the sense defined in Section 1.3). The number An of
such ergodic measures satisfies:

An ě
#Gn
n` n0

“
#Fn
n` n0

ě ephµ´2δqn

if n is sufficiently large (by (2.7)).
Now, given ε ą 0 sufficiently small, take n such that εn ď ε ă εn´1.

Consider the convex set C :“ Mf pKq of all f -invariant measures; then, in
the notation of Theorem 1.6, we have ApC, εq ě ApC, εnq ě An and so

logApC, εq
´ log ε

ě
logAn

´ log εn´1
ě
hµ ´ 2δ

χµ ` 3δ
.
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So Theorem 1.6 yields mopMf pKqq ě phµ´2δq{pχµ`3δq. As δ is arbitrarily
close to 0, we conclude that mopMf pKqq is at least hµ{χµ, which by (2.3)
equals d “ dimK.

As a consequence of specification (see [ViO, Thrm. 11.3.4]), the closure
of Merg

f pKq equals Mf pKq. Therefore:

mopMerg
f pKqq “ mopMf pKqq ě d .

On the other hand, mopMerg
f pKqq ď d by (2.2). So mopMerg

f pKqq “ d, as

we wanted to show. �

2.2. Hyperbolic sets of conservative surface diffeomorphisms. Let
M be a surface and let f : M ÑM be a C1`α diffeomorphism. Let K ĂM
be a hyperbolic set for f . This means that K is an invariant compact set K
and there exists an invariant splitting Es ‘ Eu of the tangent bundle TM
of M restricted to K such that the line bundles Es and Eu are respectively
contracted and expanded. In other words, there exists λ ą 1 such that for
every z P K:

#

DzfpE
s
zq “ Es

fpzq & }Dzf |E
s}´1 ą λ ,

DfzpE
uq “ Eu

fpzq & }Dzf |E
u} ą λ .

Let us assume moreover that the compact set K is locally maximal, that is,
it admits a neighborhood U such that K “

Ş

nPZ f
npUq.

Theorem 2.4. If f is conservative then the topological emergence of f |K
is stretched exponential with exponent d :“ dimpKq:

lim
εÑ0

log log Etoppf |Kqpεq

´ log ε
“ d .

Proof. First, we can assume that K is transitive since it is always a finite
disjoint union of such sets; moreover, up to taking an iterate of f , we can
consider that f |K is topologically mixing – see [KaH, Thm. 18.3.1, p. 574].

From standard results on dimension theory of hyperbolic sets (see e.g.
[Pe, Thrm. 22.2]), the box-counting dimension d :“ dimK is well defined,
and it equals ds ` du, where ds (resp. du) is the box-counting dimension of
K intersected with any local stable (resp. unstable) manifold. Moreover,
for every ‹ P tu, su, there exists an invariant ergodic probability measure µ‹

supported on K of maximal ‹-dimension. The Lyapunov exponent χµ‹ :“
ş

log }Df |E‹} dµ and the metric entropy hµ‹ are related as follows:

(2.9) χµ‹ ¨ d
‹ “ hµ‹ .

Those measures are obtained as the unique equilibrium states for the func-
tions:

ϕspxq :“ ´ log }Dfpxq|Es
x} , ϕupxq :“ log }Dfpxq|Eu

x} .
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The dynamics being consevative, the functions ϕs and ϕu are cohomologous.
Thus by uniqueness of equilibria:

µs “ µu “: µ and ´ χµs “ χµu “: χµ ,

and so by (2.9) and using d “ du ` ds:

(2.10) χµ ¨
d

2
“ hµ .

Let us fix continuous families of local stable and unstable manifolds
pW s

locpxqqxPK and pW u
locpxqqxPK , small enough to be λ´1-contracted by re-

spectively f and f´1. Furthermore, whenever x and y P K are close enough,
then W u

locpxq intersects W s
locpyq at a unique point, called the bracket of x

and y and denoted rx, ys. By local maximality of K, the point rx, ys belongs
to K.

Let d̃n denote the bilateral Bowen metric on M , defined by:

d̃npx, yq :“ max
´năiăn

dpf ipxq, f ipyqq .

We denote by du (resp. ds) the distance along the local unstable (resp. sta-
ble) manifolds. Using the contraction along the local stable and unstable
manifolds by f and f´1, we obtain:

Claim 2.5. There exists ρ0 ą 0 small and c ą 0 such that for any x ‰ y P K
which are ρ0-close, there exists k ě 1 such that d̃kpx, yq ă ρ0 ď d̃k`1px, yq
and:

dupfkpxq, fkprx, ysqq ą c ¨ ρ0 or dspf´kpxq, f´kpry, xsqq ą c ¨ ρ0 .

By the bounded distortion property [Pe, Prop. 22.1], there exists a con-
stant C0 ą 1 such that for any n ě 0 and x P K, the following estimates
hold for every y PM such that d̃npx, yq ă ρ0:

(2.11)

y PW u
locpxq ñ }Dfn|TyW

u
locpxq} ď C0}Df

n|Eu
x} ,

y PW u
locpxq XK ñ }Df´n|Es

y} ď C0}Df
´n|Es

x} ,

y PW s
locpxq ñ }Df´n|TyW

s
locpxq} ď C0}Df

´n|Es
x} ,

y PW s
locpxq XK ñ }Dfn|Eu

x} ď C0}Df
n|Eu

x} .

Using the bracket, it follows for every x, y P K such that d̃npx, yq ă ρ0:

(2.12) }Dfn|Eu
y } ď C2

0}Df
n|Eu

x} and }Df´n|Es
y} ď C2

0}Df
´n|Es

x} .

For each n ě 0, let Bn be the set of points x P K such that

}Dxf
´n|Es} ě ep´χs´δqn and }Dxf

n|Eu} ď epχu`δqn .

Again, for n large enough, by the Birkhoff ergodic Theorem we have µpBnq ą
1{2. By the same argument as in the proof of Theorem 2.1 (using Corol-
lary A.3 instead of Theorem A.2), there exists a positive number ρ ă ρ0 such

that for all sufficiently large n we can find a pd̃n, ρq-separated set Fn Ă Bn
of cardinality at least ephµ´δq2n. As before, we use specification [KaH,
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Thrm. 18.3.9] to shadow each x P Fn by a periodic point y “ f2n`2n0pyq in

such a way that d̃npx, yq ă ρ{2, where n0 ě 0 is independent of n. Let Gn be
the set of periodic points y obtained in this way; it has the same cardinality
as Fn. Since x P Bn, it follows from (2.12) that:

(2.13) }Df´n´n0 |Es
y} ě ep´χs´2δqn and }Dfn`n0 |Eu

y } ď epχu`2δqn .

provided n is large enough.
Let Πn be the union of the orbits of the points in Gn.

Claim 2.6. If n is large enough then the set Πn is pd, εnq-separated with

εn :“ e´pχµ`3δqpn`1q.

Proof. Take a pair of distinct points x, y P Πn, and let us prove that dpx, yq ą
εn. If dpx, yq ą ρ0 then there is nothing to prove. Otherwise, as both points
are fixed by f2n`2n0 , so, by Claim 2.5, there exists k with 1 ď k ď n ` n0

such that d̃kpx, yq ă ρ0 and:

dupfkpxq, fkprx, ysqq ą c ¨ ρ0 or dspf´kpxq, f´kpry, xsqq ą c ¨ ρ0 .

Let us consider the case where the first inequality holds; the other case is
similar. Putting z :“ rx, ys, we have:

dupx, zq ě C´1
0 dupfkpxq, fkpzqq ¨ }Dfk|Eu

x}
´1 (by (2.11))

ě C´1
0 ¨ c ¨ ρ0 ¨ }Df

n`n0 |Eu
x}
´1 (since Df |Eu is expanding)

ą C´1
0 ¨ c ¨ ρ0 ¨ e

´pχµ`2δqn (by (2.13)).

Since local stable and unstable manifolds are uniformly transverse, there
exists a constant C1 ą 0 such that dpx, yq ě C1 ¨ d

upx, zq. This implies:

dpx, yq ě C1 ¨ C
´1
0 ¨ c ¨ ρ0 ¨ e

´pχµ`2δqn .

It follows that dpx, yq ą εn, for n uniformly sufficiently large. �

The same argument as in the proof of Theorem 2.1 (based on Theorem 1.6
again) yields that mopMf pKqq ě 2phµ ´ 2δq{pχµ ` 3δq. As δ is arbitrarily
close to 0, we conclude that mopMf pKqq is at least 2hµ{χµ “ d “ dimK
by (2.10). It follows that mopMerg

f pKqq “ d. This completes the proof of

Theorem 2.1. �

3. Metric emergence and quantization of measures

3.1. Quantization of measures. The problem of quantization of measures
consists in approximating efficiently a given measure by another measure
with finite support: see [GrL].

Let pY, dq be a compact metric space. Consider the set of probability
measures MpY q endowed with a metric also denoted d, which can be either
a q-Wasserstein metric Wq, q P r1,8q or the Lévy–Prokhorov metric LP.
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Definition 3.1. The quantization number of a measure µ PMpY q at a scale
(or resolution) ε ą 0, denoted Qµpεq, is defined as the least integer N such
that there exists a probability measure ν with dpµ, νq ď ε and supported on
a set of cardinality N .

Here is a reformulation of the definition when a Wassertein metric is used:

Proposition 3.2. The quantization number Qµpεq for the q-Wasserstein
metric Wq is the minimal cardinality N of a set F “ tx1, . . . , xNu so that:

ż

Y
pdpx, F qqq dµpxq ď εq .

Proof. Fix ε ą 0 and let F Ă Y be a set of minimal cardinality N such that
ş

rdpx, F qsqdµpxq ď εq.
Take a measurable map h : Y Ñ F that associates to each element in

Y a closest element in F (w.r.t. the d metric). Let ν :“ h˚µ P MpY q;
this is a measure supported on F . We claim that Wqpµ, νq ď ε. Indeed,
π :“ pidˆ hq˚pµq is a transport plan from µ to ν with cost

ż

rdpx, hpxqqsqdµpxq “

ż

rdpx, F qsqdµpxq ď εq .

We have shown that Qµpεq ď N .
Let us prove the reverse inequality. Let ν P MpY q be a measure whose

support F 1 Ă Y has cardinality Qµpεq and such that Wqpµ, νq ď ε. This
means that there is a transport plan π PMpY ˆ Y q from µ to ν with cost
at most εq. Consider a disintegration of π, that is, a family pνξq of elements
of MpY q, defined for µ-almost every ξ P Y , such that π “

ş

δξ b νξdµpξq.
As the second marginal of π equals ν, whose support is the finite set F 1, it
follows that supp νξ Ă F 1 for µ-almost every ξ. Therefore:

εq ě costpπq “

ĳ

rdpξ, ηqsqdνξpηqdµpξq ě

ż

rdpξ, F 1qsqdµpξq .

This shows that N ď #F 1 “ Qµpεq. �

Here is a similar characterization of the quantization number for the case
of the Lévy–Prokhorov metric:

Proposition 3.3. The quantization number Qµpεq for the LP metric is the
least number of closed balls of radius ε that cover a set of µ-measure at least
1´ ε.

Proof. Straightforward. �

Similarly to the definition of the lower and upper box-counting dimen-
sions, following [GrL, p. 155] the lower and upper quantization dimensions
of µ PMpY q are defined as:

dimpµq :“ lim inf
εÑ0

logQµpεq

´ log ε
and dimpµq :“ lim sup

εÑ0

logQµpεq

´ log ε
.
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If these numbers coincide then they are denoted by dimpµq and called quan-
tization dimension. Furthermore, the lower and upper quantization orders
are defined as:

qopµq :“ lim inf
εÑ0

log logQµpεq

´ log ε
and qopµq :“ lim sup

εÑ0

log logQµpεq

´ log ε
.

If these numbers coincide then they are denoted by qopµq and called quan-
tization order.

Proposition 3.4. For any resolution ε ą 0, the quantization number of any
µ PMpY q is bounded from above by the covering number of Y , that is:

Qµpεq ď DY pεq .

In particular,

dimpµq ď dimpY q and dimpµq ď dimpY q ,

qopµq ď mopY q and qopµq ď mopY q .

Proof. Given an ε-dense set F of cardinality N , we can transport any mea-
sure µ P MpY q to a measure supported on F with cost ď εq with respect
to the cost function dq. This shows that Qµpεq ď DY pεq with respect to the
Wq distance. In view of Proposition 3.3, the same statement is also imme-
diate for the LP distance. Then it follows that quantization dimensions are
bounded by box-counting dimensions, and quantization orders are bounded
by metric orders. �

Example 3.5. Consider Y “ r0, 1s with the usual metric, and endow the
space Mpr0, 1sq with the metric Wq. Consider the Lebesgue measure on
r0, 1s; its quantization number is:

QLebpεq “

R

1

2pq ` 1q1{q ε

V

,

and in particular the quantization dimension is 1. Indeed, given N ě 1, the
probability measure on r0, 1s supported on N points which is Wq-closest to
Lebesgue is:

νN :“
1

N

N
ÿ

j“1

δ 2j´1
2N

, for which WqpνN ,Lebq “
1

2pq ` 1q1{qN

(see [GrL, p. 69]), so the asserted formula for QLebpεq follows.

Example 3.6. If µ is a compactly supported measure on Rd which is ab-
solutely continuous with respect to Lebesgue measure then dimpµq “ d;
actually there is a precise asymptotic formula for the quantization number
Qµpεq with respect to the Wq distance: see [GrL, p. 78, p. 52].

Example 3.7. See the paper [LiM] for the computation of the quantization di-
mension of certain self-similar measures (F -conformal measures) supported
on fractal sets defined by conformal iterated function systems; let us note
that the answer depends on the exponent q.
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Example 3.8. The metric entropy of an ergodic measure can be described in
terms of quantization numbers: see Appendix A.3.

In this paper, we are mostly interested in the situation where the quanti-
zation orders are positive, and so the quantization dimensions are infinite.

In view of Proposition 3.4, the next result yields measures with maximal
quantization order:

Theorem 3.9. Let Y be a Borel subset of a compact metric space Z. Then
there exists a probability measure µ PMpY q such that:

qopµq “ mopY q and qopµq “ mopY q .

The proof is given in Section 3.5.

3.2. Ergodic decomposition. Let X be a compact metric space and let
f : X Ñ X be a continuous map. Recall that the empirical measure at a
point x P X is defined as ef pxq :“ lim 1

n

řn´1
i“0 δf ix, when this limit exists.

By the ergodic decomposition theorem (see [DGS, § 13] or [Ma2, § II.6]),
there exists a Borel set X0 Ă X with full probability (that is, µpX0q “ 1
for every µ P Mf pXq) such that for every x P X0, the empirical measure

ef pxq is f -invariant and ergodic. So for any µ P Mf pXq, the measure

ef˚µ PMpMpXqq gives full weight to the set Merg
f pXq ĂMf pXq of ergodic

measures, and its barycenter barpef˚µq :“
ş

ν dpef˚µqpνq is µ. The probability

measure ef˚µ is called the ergodic decomposition of µ. There is a canonical

bijection Mf pXq ÑMpMerg
f pXqq, namely µ ÞÑ ef˚µ.

Remark 3.10. Generic conservative diffeomorphisms (in any topology) con-
stitute continuity points of the ergodic decomposition of Lebesgue measure:
see [AB, Thrm. B]. We will see later in Section 5.2 non-trivial examples of
continuity points w.r.t. the C8 topology.

Let us note the following property for later use:

Lemma 3.11 (Factors and ergodic decompositions). Suppose X and Y are
compact metric spaces and let f : X Ñ X and g : Y Ñ Y be continuous
maps which are semi-conjugate (g ˝ϕ “ ϕ ˝ f) via a continuous ϕ : X Ñ Y .
Let Φ: MpXq ÑMpY q be the map µ ÞÑ ϕ˚µ. Then ΦpMf pXqq ĂMgpY q,
ΦpMerg

f pXqq ĂMerg
g pY q, and:

@µ PMf pXq, eg˚pϕ˚µq “ Φ˚pe
f
˚pµqq .

When no confusion arises, we will write ϕ˚ instead of Φ, so the last

equation becomes eg˚pϕ˚µq “ ϕ˚˚pe
f
˚pµqq.

Proof. Let µ P Mf pXq and let ν :“ ϕ˚pµq. Then g˚ν “ pg ˝ ϕq˚pµq “
pϕ ˝ fq˚pµq “ ν, that is, ν PMgpY q, proving the first assertion.

Note that that if B Ă Y is a g-invariant Borel set then ϕ´1pBq is f -
invariant; it follows that ν is ergodic if µ is, proving the second assertion.
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Let µ̂ :“ ef˚pµq and ν̂ :“ eg˚pνq be the corresponding ergodic decomposi-
tions. For every Borel set B Ă Y , we have:

νpBq “ µpϕ´1pBqq “

ż

MpXq
ηpϕ´1pBqq dµ̂pηq

“

ż

MpXq
pΦpηqqpBq dµ̂pηq “

ż

MpY q
ξpBq dpΦ˚pµ̂qqpξq .

This means that ν is the barycenter of Φ˚pµ̂q. Since µ̂ gives full weight to
Merg

f pXq, the measure Φ˚pµ̂q gives full weight to Merg
g pY q, and by unique-

ness of the ergodic decomposition, it follows that Φ˚pµ̂q equals ν̂, the ergodic
decomposition of ν. �

3.3. Metric emergence. Given a continuous self-map f : X Ñ X of a
compact metric space X, we consider the set MpXq with a metric d P
tWp ; 1 ď p ă 8u Y tLPu. We have introduced in Definition 0.2 the metric
emergence of a measure µ PMpXq. In the case µ is invariant, we have the
following characterization of metric emergence:

Proposition 3.12. For every dynamics f : X Ñ X, the metric emergence
of any invariant measure µ PMf pXq equals the quantization number of the

ergodic decomposition µ̂ :“ ef˚µ (considered as a measure on MpXq ):

Eµpfqpεq “ Qµ̂pεq ,

where Qµ̂ is the quantization number of µ̂ for the metric W1 of MpMpXqq.

Proof. Combine Definition 0.2 and Proposition 3.2. �

Remark 3.13. Given a parameter q ě 1, we may define the q-emergence of
an f -invariant measure µ at scale ε ą 0 as:

E pqqµ pεq :“ min

"

N ; DF ĂMpXq with #F ď N,

ż

dpef pxq, F qqdµpxq ď εq
*

.

By Proposition 3.2, q-emergence is the quantization number of the ergodic
decomposition with respect to the metric Wq on MpMpXqq. For simplicity
we will focus our study on q “ 1.

Metric and topological emergences may be compared as follows:

Proposition 3.14. For every dynamics f : X Ñ X, the metric emergence
of any invariant measure µ PMf pXq is at most the topological emergence:

Eµpfqpεq ď Etoppfqpεq , @ε ą 0 ,

provided both emergences are computed using the same metric Wp or LP on
MpXq.

Proof. By Proposition 3.12, the metric emergence Eµpfqpεq equals the quan-

tization number Qµ̂pεq of the ergodic decomposition µ̂ :“ ef˚µ. Note that
µ̂ is a measure on Y :“ Merg

f pXq which is a Borel subset of Z :“ MpXq.
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By Proposition 3.4, Qµ̂pεq is at most the relative covering number DZpY, εq,
which equals the topological emergence Etoppfqpεq by its own definition (2.1).

�

We are now able to deduce the variational principle for emergence an-
nounced at the introduction:

Proof of Theorem E. Applying Theorem 3.9 with Y :“ Merg
f pXq, Z :“

MpXq and q “ 1, we obtain a probability measure ν P MpMerg
f pXqq such

that:
qopµq “ mopMerg

f pXqq and qopµq “ mopMerg
f pXqq .

Let µ :“
ş

MpXq ηdνpηq. Since ν gives full weight to Merg
f pXq, the measure

µ is invariant and its ergodic decomposition is ν. Bearing in mind Propo-
sition 3.12 and the definitions of lower and upper quantizations orders and
metric orders, we obtain the equalities stated in Theorem E. �

3.4. Some properties of quantization numbers. In this section we
prove a few general properties about quantization numbers that will be
needed later. To simplify matters, all quantization numbers in this section
are computed w.r.t. the W1 metric.

Lemma 3.15. For all µ1, µ2 PMpY q,

W1pµ1, µ2q ď ε ñ Qµ2p2εq ď Qµ1pεq .

Proof. Immediate. �

The next two lemmas deal with pushing forward a measure under a Lip-
schitz map, and the effect of this operation on the quantization numbers:

Lemma 3.16. Let f : pY, dq Ñ pZ, dq be a κ-Lipschitz map between compact
metric spaces. Let F : pMpY q,W1q Ñ pMpZq,W1q be the map µ ÞÑ f˚µ.
Then F is κ-Lispchitz.

Proof. Given µ1, µ2 P MpY q, consider a transport plan π P MpY ˆ Y q.
Then π̃ :“ pf ˆ fq˚pπq is a transport plan from f˚µ1 to f˚µ2 with:

costpπ̃q “

ż

dpfpxq, fpyqq dπpx, yq ď κ

ż

dpx, yq dπpx, yq “ κ costpπq .

So W1pf˚µ1, f˚µ2q ď κW1pµ1, µ2q. �

Lemma 3.17. Let pY, dq and pZ, dq be compact metric spaces. Let f : Y Ñ Z
be a κ-Lipschitz map. Given a measure µ PMpY q, consider its push-forward
ν :“ f˚µ PMpZq. Then for every ε ą 0, we have:

Qµpεq ě Qνpκεq .

Proof. Given µ P MpY q and ε ą 0, let µ̃ P MpY q be a measure supported
on n :“ Qµpεq points with W1pµ, µ̃q ď ε. By Lemma 3.16, the measures
ν :“ f˚µ and ν̃ :“ f˚µ̃ satisfy W1pν, ν̃q ď κε. Since ν̃ is supported on at
most n points, we conclude that Qνpκεq ď n. �
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The next two lemmas will be used several times, in particular in the proof
of Theorem 3.9:

Lemma 3.18. Let µ, µ1 P MpY q be such that µ ě tµ1, for some t ą 0.
Then:

Qµptεq ě Qµ1pεq .

Proof. Let ε̃ :“ tε. Let ν be a measure supported on a set of cardinality
` :“ Qµpε̃q and such that W1pµ, νq ď ε̃. Let π be a transport plan from µ to
ν with cost (w.r.t. d) not greater than ε̃.

The Radon–Nikodym derivative f :“ dµ1
dµ is well-defined and satisfies 0 ď

f ď t´1 at µ-a.e. point. Consider the measure π̃ on Y ˆ Y defined by:

dπ̃px, yq “ fpxqdπpx, yq .

Then π̃ is a probability, its first marginal is µ1, and its second marginal
is some measure ν̃ which is absolutely continuous with respect to ν and
therefore supported on a set of cardinality at most `. We have:

W1pµ1, ν̃q ď costpπ̃q “

ż

dpx, yq dπ̃px, yq “

ż

dpx, yq fpxq dπpx, yq

ď t´1

ż

dpx, yq dπpx, yq “ t´1costpπq ď t´1ε̃ .

That is, W1pµ1, ν̃q ď t´1ε̃ “ ε. It follows that # supp ν̃ ě Qµ1pεq, and so
` ě Qµ1pεq, as claimed. �

Lemma 3.19. Let ε ą 0 and let F Ă Y be an ε-separated set. Let n :“ #F
and let µ be the equidistributed probability measure with support F . Let ν be
any probability measure whose support has cardinality m ă n. Then:

W1pµ, νq ě
n´m` 1

n
¨
ε

2
.

Proof. Let suppµ “ tx1, . . . , xnu and supp ν “ ty1, . . . , ymu. Since µ is
equidistributed, transport plans from µ to ν take the form:

π “ πA “
1

n

n
ÿ

i“1

m
ÿ

j“1

aijδpxi,yjq ,

where A “ paijq is a row-stochastic n ˆm matrix (that is, each aij is non-
negative and

řm
j“1 aij “ 1 for every i). The cost of πA is:

costpπAq “
1

n

n
ÿ

i“1

m
ÿ

j“1

aijdpxi, yjq ,

which can be viewed as an affine function on the set of row-stochastic ma-
trices. This set is compact and convex, and its extremal points consist on
the matrices that contain exactly one entry equal to 1 on each row. So it
is sufficient to consider matrices of this type in order to find a lower bound
for the cost. Thus consider a row-stochastic matrix A “ AT whose nonzero
entries are ai,T piq “ 1 for some map T : t1, . . . , nu Ñ t1, . . . ,mu.
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Claim 3.20. For every j P t1, . . . ,mu such that s :“ #T´1pjq ě 2, the
following holds:

(3.1)
ÿ

iPT´1pjq

dpxi, yjq ě
s ¨ ε

2
.

Proof of the claim. Indeed, write T´1pjq “ ti1, . . . , isu; then the left hand
side of (3.1) equals:

s
ÿ

k“1

dpxik , yjq “
1

s´ 1

ÿ

1ďkă`ďs

“

dpxik , yjq ` dpxi` , yjq
‰

.

For every 1 ď k ă ` ď s, since F is ε-separated, it hold:

dpxik , yjq ` dpxi` , yjq ě dpxik , xi`q ě ε .

So we obtain:
s
ÿ

k“1

dpxik , yjq ě
1

s´ 1
¨
sps´ 1q

2
¨ ε “

s ¨ ε

2
,

as claimed. �

Using (3.1), we estimate:

costpπAT q “
1

n

n
ÿ

i“1

dpxi, yT piqq “
1

n

m
ÿ

j“1

ÿ

iPT´1pjq

dpxi, yjq ě
n˚
n

ε

2
,

where

n˚ :“
ÿ

jPt1,...,mu,
#T´1pjqą1

#T´1pjq “ n´
ÿ

jPt1,...,mu,
#T´1pjqď1

#T´1pjq

“ n´#
 

j P t1, . . . ,mu ; #T´1pjq “ 1
(

“ n´m`#
 

j P t1, . . . ,mu ; #T´1pjq ‰ 1
(

ě n´m` 1 ,

since m ă n. We conclude that costpπAq is at least n´m`1
n

ε
2 for every matrix

A of type AT , and therefore for every row-stochastic matrix A. The lemma
follows. �

3.5. Existence of a measure with essentially maximal quantization
numbers. In this subsection we prove Theorem 3.9, which was used to
deduce Theorem E.

Proof of Theorem 3.9. It is sufficient to prove the theorem assuming that
MpY q is metrized with the W1 distance. Indeed, by the first inequality in
(1.2) (see p. 10), if the exponent q is reduced then the metric Wq does not
increase, and so neither do quantization numbers and orders. Furthermore,
by the second inequality in (1.3), the metric LP is bounded from below by
a constant factor of the metric W1, and so quantization numbers and orders
with respect to LP are bounded from below by the corresponding quantities
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with respect to W1. So from now on we assume that MpY q is metrized with
the W1 distance.

By Proposition 3.4, it is sufficient to show the existence of a measure
µ PMpY q such that:

(3.2) qopµq ě mopY q and qopµq ě mopY q .

Recall that, given ε ą 0, the corresponding packing number is denoted

by SY pεq. We set εi :“ 2´i
2

for every i ě 1. Let Fi Ă Y be a 4εi-separated
set of cardinality ni :“ SY p4εiq, and let µi P MpY q be the equidistributed
probability measure with support Fi. By Lemma 3.19, if ν is a probability
measure whose support has cardinality at most mi :“ rni{2s then

W1pµi, νq ě εi .

That is, in terms of quantization number:

(3.3) Qµipεiq ě mi .

Now consider the following probability measure:

µ :“
8
ÿ

i“1

tiµi , where ti :“ 2´i .

By Lemma 3.18, for every i ě 1 we have Qµpε̃iq ě Qµipεiq, where ε̃i :“ tiεi.
Using (3.3) we obtain:

(3.4)
log logQµpε̃iq

´ log ε̃i
ě

log logmi

´ log ε̃i
„
iÑ8

log logni
´ logp4εiq

:“
log logSY p4εiq

´ logp4εiq
.

Claim 3.21. The following equalities hold:

lim inf
iÑ8

log logQµpε̃iq

´ log ε̃i
“ qopµq , lim sup

iÑ8

log logQµpε̃iq

´ log ε̃i
“ qopµq ,(3.5)

lim inf
iÑ8

log logSY p4εiq

´ logp4εiq
“ mopY q , lim sup

iÑ8

log logSY p4εiq

´ logp4εiq
“ mopY q .(3.6)

Proof of the claim. Let us prove (3.6); the proof of (3.5) is essentially the
same. Given ε ą 0, let i be such that ε P r4εi`1, 4εis. We have SY p4εiq ď
SY pεq ď SY p4εi`1q and so:

log logSY p4εi`1q

´ logp4εiq
ě

log logSY pεq

´ log ε
ě

log logSY p4εiq

´ logp4εi`1q
.

Since logp4εiq „ logp4εi`1q as iÑ8, inequalities (3.6) follow. �

Combining (3.4) with Claim 3.21 we obtain inequality (3.2) and the the-
orem. �
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4. Examples of conservative dynamics with high metric
emergence

We are going to study the emergence of dynamics on the annulus A:

A :“ Tˆ r0, 1s with T :“ R{Z .

Lebesgue measure on either of theses sets is denoted by Leb.
The horizontal flow associated to a C8 function ω : r0, 1s Ñ R is defined

as:

(4.1) Rtω : pθ, ρq P A ÞÑ pθ ` ωpρqt, ρq P A .

So pRtωqt is a conservative smooth flow on the annulus. Assume that ω
has no critical points. Then, for every fixed t ‰ 0, Lebesgue almost every
ρ P r0, 1s has the property that ωpρq ¨ t is irrational, and therefore for every

θ P T, the empirical measure eR
t
ωpθ, ρq equals:

λρ :“ LebT b δρ (Lebesgue measure on the circle Tˆ tρu).

Hence the ergodic decomposition of the Lebesgue measure with respect to
the time t map Rtω does not depend on t ‰ 0 and is given by:

(4.2) e
Rtω
˚ pLebq “

ż 1

0
δλρ dρ .

4.1. Robust examples of at least polynomial emergence.

Proposition 4.1. Suppose ω : r0, 1s Ñ R is a smooth function without criti-
cal points and let pRtωqt be the corresponding horizontal flow. For every t ‰ 0,
the metric emergence of the time t map Rtω with respect to the Wasserstein
metric W1 is:

ELebpR
t
ωqpεq “ rp4εq´1s .

Proof. As seen in (4.2), the ergodic decomposition µ̂ :“ e
Rtω
˚ pLebq is equidis-

tributed on the curve tλρ : ρ P r0, 1su. This curve endowed with the Wasser-
stein metric W1 is isometric to the unit interval r0, 1s endowed its usual
distance; the isometry sends the measure µ̂ to the Lebesgue measure on
r0, 1s. Thus Qµ̂pεq “ QLeb|r0,1spεq “ rp4εq´1s, by Example 3.5 with q “ 1.
Using Proposition 3.12 we conclude. �

KAM theory ensures that most of the invariant circles of Rtω persist for
any conservative C8 perturbation. As a consequence, we obtain C8-open
sets of conservative surface diffeomorphisms whose metric emergence is at
least of the order of ε´1: see Section 5.2, more specifically Corollary 5.7.

4.2. Construction of a smooth conservative flow with high emer-
gence at a given scale. The heart of the proof of Theorem B is the
following result:
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Proposition 4.2. There exists C ą 0 such that for every ε˚ ą 0, there
exists a smooth conservative diffeomorphism h of A satisfying the following
property. For every function ω P C8pr0, 1s,Rq without critical points and
for every t ‰ 0, the map Ψt :“ h ˝Rtω ˝ h

´1 satisfies:

ELebpΨ
tqpε˚q ě exppCε´2

˚ q ,

where the emergence is computed with respect to the Wasserstein metric W1.
Furthermore, h equals identity on a neighborhood of the boundary of A.

The proof of the proposition will occupy the rest of this subsection.

Proof. We will actually construct a sequence hn of diffeomorphisms such
that the corresponding flows Ψt

n :“ h´1
n ˝Rtω ˝ hn have high emergence at a

certain scale εn; then we will show that for every ε˚ ą 0 we can choose an
appropriate h “ hn and obtain the conclusion of Proposition 4.2. The proof
is divided into several steps.

Zeroth step. Let n ě 3 be an arbitrary integer. We will fix several numbers
depending on n. Let N :“ 32 ¨ n2. Let M “ m ¨ n be the multiple of n as
big as possible such that:

(4.3) M ď p2Nq´1{2eπN{4
3
.

It is clear from this definition that:

(4.4) logM — n2 .

Finally, let η :“ 1{p1000nq and κ :“ 1´ η.

First step. The real proof begins with the construction of certain families
of boxes in the annulus A. An a ˆ b-box is a set of the form I ˆ J where
I Ă T and J Ă r0, 1s are closed intervals of respective lengths a (the width
of the box) and b (the height of the box). An a-square is an a ˆ a-box.
A k ˆ `-family is a disjoint collection of boxes of the form Ii ˆ Jj where
1 ď i ď k, 1 ď j ď `. Such a family can be partitioned (in the obvious way)
into k subfamilies called columns and into ` subfamilies called rows.

Let G be a 8n ˆ 4n-family of 1
10n -squares contained in the lower half-

annulus Tˆr0, 1
2 s and such that the gaps between rows and between columns

is 1
40n .
Inside each square G from the family G we take a n ˆ m-family LG of

2κ
N ˆ

1
11M -boxes; it is possible to construct such a family since:

max

"

n ¨
2κ

N
, m ¨

1

11M

*

“ max

"

κ

16n
,

1

11n

*

ă
1

10n
“ width of G.

Let L :“
Ů

GPG LG; this is a family composed of NM boxes.

Let U be a N
2 ˆ M -family of 2κ

N ˆ 1
11M -boxes contained in the upper

half-annulus Tˆ r12 , 1s.
Second step. We will need some auxiliary combinatorial data, namely
certain coloring of our boxes. We start by painting each G-square with a
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different color, and then we paint each LG-box with the same color as G. We
claim that it is possible to paint each U-box with one of the N previously
chosen colors so that the following properties hold:

‚ no row contains repeated colors (that is, exactly N{2 different colors
appear in each row), and

‚ for any pair of distinct rows, there are at least N{4 colors that appear
in one row but not in the other.

Indeed, if each choice of N{2 among N colors can be identified with a func-

tion f : t1, . . . , Nu Ñ t0, 1u such that
řN
k“1 fpkq “

N
2 . The set F of such

functions was considered previously in the proof of Theorem 1.6, where we
have shown the existence of a set F 1 Ă F which is N{4-separated w.r.t. the

Hamming distance and has cardinality at least p2Nq´1{2eπN{4
3
: see estimate

(1.6). Thus, by (4.3), we can select M distinct elements of the set F 1. Each
of these specifies a way of coloring a row of the family U ; the order of the
colors inside each row being arbitrary. This gives the desired coloring of the
family U .

Third step. We will find a smooth conservative diffeomorphism h of the
annulus that maps each U-box to a L-box of the same color by means of a
translation, and which equals the identity near the boundary of the annulus.
Essentially, this diffeomorphism exists because for each color k, there are at
most M U-boxes of color k (at most one box for each row), while there are
exactly M “ m ¨ n L-boxes of color k. Let us construct h precisely.

We index the members of the family U as U1, U2, . . . , UNM{2 in such
a way that U1, . . . , UN{2 form the bottom row, UN{2`1, . . . , UN form the
second from bottom row, and so on. Then we select distinct L-boxes L1,
L2, . . . , LNM{2 in such a way that each Li has the same color as Ui, and
whenever Li and Lj have the same color and i ă j then Li is not above Lj .

For each i “ 1, . . . , NM{2, we will choose a smooth path ui : r0, 1s Ñ R2

starting from uip0q “ 0 such that t P r0, 1s ÞÑ Biptq :“ Ui ` uiptq is a
well-defined path of boxes in A, starting at Bip0q “ Ui and finishing at
Uip1q “ Li. We require the path of boxes Pi :“

Ť

tPr0,1sBiptq to be disjoint

from the set

(4.5) BAY
ď

jăi

Lj Y
ď

jąi

Uj .

These paths can be taken as follows: we start with the box Ui and move it
always either directly downwards or horizontally (like a Tetris piece). Note
that 1

40n ą
2κ
N (since n ě 3); this means that the gaps between the squares

of G are greater than the width of the box. Therefore it is possible to move
between gaps and reach the destination Li avoiding the obstacle set (4.5):
see Fig. 1.

Let ϕi : A Ñ r0, 1s be a smooth function that equals 1 on the set Pi and
equals 0 outside a small neighborhood of it (which is still disjoint from the
set (4.5)). Now, writing uiptq “: pviptq, wiptqq, define a (non-autonomous)
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Figure 1. A path Pi that avoids the obstacle set (4.5).

Hamiltonian Hi : Aˆ r0, 1s Ñ R by:

Hipθ, ρ, tq :“ ϕipθ, ρq
“

w1iptqρ´ v
1
iptqθ

‰

.

Let fi P Diff 8
LebpAq be the time one map of the associated Hamiltonian flow.

Then fi translates the box Ui to the box Li, and equals the identity on the
set (4.5). It follows that the diffeomorphism

h :“ fNM{2 ˝ ¨ ¨ ¨ ˝ f2 ˝ f1

translates each box Ui to the corresponding Li, and equals the identity on
a neighborhood of BA.

Fourth step. Let ω : r0, 1s Ñ R be any smooth function without critical
points. Consider the conservative flow Ψt :“ h˝Rtω˝h

´1 (see Fig. 2). We will
estimate the emergence of the time t maps from below, at an appropriate
scale.

For each ρ P r0, 1s, let λρ denote Lebesgue measure on the circle Tˆ tρu.
Recall from (4.2) that for every t ‰ 0, the ergodic decomposition of Lebesgue

measure on A with respect to Rtω is eR
t

˚ pLebq “
ş1
0 δλρ dρ, and in particular

it is independent of t. It follows that the ergodic decomposition of Lebesgue
with respect to Ψt :“ h ˝Rtω ˝ h

´1 is:

(4.6) µ̂ :“ eΨt

˚ pLebq “

ż 1

0
δλ̃ρ dρ where λ̃ρ :“ h˚pλρq .

We need to estimate the quantization number of this measure.
Let J be the set of ρ P r0, 1s such that the circle T ˆ tρu intersects the

boxes of the family U ; then J is a disjoint union of intervals J1, . . . , JM ,
each of them of length 1

11M .
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Figure 2. The flow pΨtqt.

Claim 4.3. If ρ, ρ1 P J belong to the same interval Ji then:

W1pλ̃ρ, λ̃ρ1q ď
1

11M
` 2η .

Proof of the claim. Fix ρ, ρ1 P Ji. We will use the following bound:

W1pλ̃ρ, λ̃ρ1q ď

ż

T
d
`

hpθ, ρq, hpθ, ρ1q
˘

dθ .

Indeed, the right hand side is the cost of transporting each point hpθ, ρq to
hpθ, ρ1q. Let I Ă T be the union of the projections of the U-boxes on the
first coordinate; this is a union of N

2 intervals of length 2κ
N . Note that:

d
`

hpθ, ρq, hpθ, ρ1q
˘

ď

#

1{p11Mq if θ P I,

diamA ď 2 otherwise;

indeed if θ P I then both points pθ, ρq and pθ, ρ1q belong to the same U-box
U , which has height 1

11M and furthermore h|U is an isometry. Finally, using
the fact that LebpIcq “ 1´ κ “ η, we obtain the asserted upper bound for
the Wasserstein distance. �

Claim 4.4. If ρ P Ji, ρ
1 P Jj with i ‰ j then:

W1pλ̃ρ, λ̃ρ1q ě
1´ 3η

80n
.

Proof of the claim. Fix ρ P Ji, ρ
1 P Jj with i ‰ j. Let R1 be the family

of U-boxes that intersect the circle T ˆ tρ1u (that is, a row of boxes). Let
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R be the family of U-boxes that intersect the circle T ˆ tρu and whose
colors are distinct from those of the R1-boxes. By construction, the family
R contains at least N{4 boxes; let E be their union. Since λρpUq “ 2κ{N
for each R-box U , we have λρpEq ě κ{2 “ p1´ ηq{2. So F :“ hpEq satisfies

λ̃ρpF q ě p1´ηq{2. The set F is contained in the union of the G-squares whose
colors appear in the family R. Recall that 1

40n is the minimal separation

between G-squares, so if V is the open 1
40n -neighborhood of F then V does

not intersect any G-square with other colors. In particular, R1-boxes are
disjoint from h´1pV q. Since the union of R1-boxes has λρ1 measure equal to

κ “ 1´ η, it follows that λ̃ρ1pV q “ λρ1ph
´1pV qq ď η.

Consider an arbitrary transport plan π from λ̃ρ to λ̃ρ1 . Then:

πpF ˆV cq ě πpF ˆAq´πpAˆV q “ λ̃ρpF q´ λ̃ρ1pV q ě
1´ η

2
´ η “

1´ 3η

2
,

and so:

costpπq “

ż

AˆA
dpx, yq dπpx, yq ě

ż

FˆV c

p¨ ¨ ¨ q ě
1

40n
πpF ˆ V cq ě

1´ 3η

80n
.

Since this estimate holds for all transport plans π, we obtain the asserted
lower bound for the Wasserstein distance. �

For every i P t1, . . . ,Mu, let us fix a point ρi in the interval Ji. The
following measures µ̂1, ν̂ PMpMpAqq correspond respectively to the ergodic
decomposition of Ψt|hpTˆJq and to the probability measure equidistributed

on the set tλ̃ρi ; 1 ď i ďMu:

(4.7) µ̂1 :“ 11

ż

J
δλ̃ρ dρ PMpMpAqq and ν̂ :“

1

M

M
ÿ

i“1

δλ̃ρi
.

It follows from Claim 4.3 that W1pν̂, µ̂1q ď
1

11M ` 2η; indeed each δλ̃ρ with

ρ P Ji can be transported to δλ̃ρi
at a cost no greater than 1

11M ` 2η.

On the other hand, by Claim 4.4, the measure ν̂ is equidistributed on a
1´3η
80n -separated set of cardinality M . So, by Lemma 3.19, the W1-distance

from ν̂ to any probability measure supported on M{2 points is bigger than
1´3η
320n . Therefore the W1-distance from µ̂1 to any probability measure sup-
ported on M{2 points is bigger than:

(4.8)
1´ 3η

320n
´

ˆ

1

11M
` 2η

˙

“: 11ε .

In other words, Qµ̂1p11εq ě M
2 . By definitions (4.6), (4.7), we have µ̂ ě 1

11 µ̂1,

and so Lemma 3.18 yields Qµ̂ pεq ě
M
2 . This quantization number is the

metric emergence (by Proposition 3.12), so we obtain:

(4.9) ELebpΨ
tqpεq ě

M

2
for all t ‰ 0.
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Conclusion. If ε “ εn is defined by (4.8) then εn — n´1 — εn`1. For every
sufficiently small number ε˚ ą 0, we can find n ě 3 such that εn`1 ă ε˚ ď εn.
If pΦtqt “ pΦ

t
nqt is the flow constructed above, then for every t ‰ 0 we have:

log ELebpΨ
tqpε˚q ě log ELebpΨ

tqpεnq ě log
M

2
(by (4.9))

— n2 (by (4.4))

— ε´2
n — ε´2

˚ .

This ends the proof of Proposition 4.2. �

Figure 3. Interestingly, the geometry of the construction de-
picted at the bottom of Fig. 2 looks like the pattern obtained at
the boundary of the so-called stochastic sea of the standard map
for a certain parameter (depicted in gray in the above numerical
experimentation).

4.3. Construction of a smooth conservative flow with high emer-
gence at every scale. In this subsection, we will prove Theorem B. The
main ingredient is Proposition 4.2.

Proof of Theorem B. Let us assume that the space MpAq is metrized with
Wasserstein metric W1. We will construct a conservative flow pΦtqt on the
annulus A whose metric emergence with respect to W1 is stretched expo-
nential with exponent 2. In the end of the proof we will see that the same
holds if emergence is computed with respect to other Wasserstein metrics
Wp or the Lévy–Prokhorov metric LP.

For each i ě 1, let hi P Diff 8
LebpAq be given by Proposition 4.2 for ε˚ “

εi :“ 2´i
2
. We define a smooth diffeomorphism between the annuli A and
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Ai :“ Tˆ r2´i, 2´i`1s as follows:

gi : pθ, ρq P A ÞÑ pθ, 2´ipρ` 1qq P Ai .

Let h be the homeomorphism of the annulus A such that for each i ě 1,

hpAiq “ Ai and h|Ai :“ gi ˝ hi ˝ g
´1
i .

Since each gi has constant jacobian, h is conservative. Furthermore, h equals
the identity on the boundary of the annulus and is smooth on its interior.
Next, fix a smooth function r : R Ñ R that vanishes on p´8, 0s Y r1,`8q
and is positive on the interval p0, 1q. Let pηiq be a sequence of positive
numbers converging very rapidly to 0. Define a function ζ : r0, 1s Ñ R by:

ζpρq :“

#

ηi ¨ rp2
iρ´ 1q if ρ P r2´i, 2´i`1s;

0 if ρ “ 0.

If ηi tends to 0 sufficiently rapidly then ζ becomes a smooth function. Fur-
thermore, it is positive Lebesgue a.e. Let ω : r0, 1s Ñ R be the smooth
function such that ωp0q “ ω1p0q “ 0 and ω2 “ ζ. Observe that ω1 is strictly
positive on p0, 1s. Furthermore, the Ci-norm of ω|r2´i, 2´i`1s is small when
pηjqjěi is small. Hence we can choose inductively ηi sufficiently small so
that the push forward of the vector field BtR

t
ω by h, namely

h˚BtR
t
ω : pθ, ρq ÞÑ

“

ω ˝ p2 ˝ h
´1pθ, ρq

‰

¨ Bθh ˝ h
´1pθ, ρq ,

has Ci-norm restricted to each Ai smaller than 1 for every i.
Thus this vector field and its flow Φt “ h˝Rtω ˝h

´1 are smooth. The con-
struction of the smooth conservative flow pΦtqt is completed, and is depicted
in Fig. 4. We are left to show that the flow has stretched exponential emer-
gence with exponent 2. Of course, the homeomorphism h cannot be smooth
on the whole annulus, because otherwise the flow would have polynomial
emergence (by Proposition 4.1 and lemmas from Section 3.4).

Let µ̂ PMpMpAqq denote the ergodic decomposition of Leb with respect
to Φt (which is indeed independent of t ‰ 0, since it is given by formula
(4.6)). Recalling Proposition 3.12, we have ELebpΦ

tqpεq “ Qµ̂pεq for every ε.

Claim 4.5. For every i ě 1 and t ‰ 0 we have ELebpΦ
tqpεi`1q ě exppCε´2

i q,
where C ą 0 is a constant.

Proof of the claim. Let µi :“ 2i Leb|Ai “ gi˚pLebq; this is a Φt-invariant
probability measure. Its ergodic decomposition µ̂i is bounded from above
by 2iµ̂ and so, by Lemma 3.18, for all ε ą 0 we have:

Qµ̂pεq ě Qµ̂ip2
iεq.

Let ωi :“ ω˝gi, and consider the conservative flow Ψt
i :“ hi˝R

t
ωi ˝h

´1
i and

its ergodic decomposition ν̂i :“ e
Ψti
˚ pLebq (for t ‰ 0). Note that there exists a

1-Lipschitz retraction pi : AÑ Ai. Let qi : AÑ A be the map qi :“ g´1
i ˝ pi.

By Lemma 3.11 we have ν̂i “ qi˚˚pµ̂iq, that is, ν̂i is the push-forward of
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Figure 4. Proof of Theorem B.

µ̂i under the map qi˚ : MpAq Ñ MpAq. Since qi is 2i-Lipschitz, so is qi˚.
Hence, by Lemma 3.17,

Qµ̂ip2
iεq ě Qν̂ip2

2iεq .

In summary, we have shown that Qµ̂pεq ě Qν̂ip2
2iεq, that is,

ELebpΦ
tqpεq ě ELebpΨ

t
iqp2

2iεq .

Taking ε “ 2εi`1 and noting that 22iε “ εi, we obtain:

ELebpΦ
tqpεi`1q ě ELebpΦ

tqp2εi`1q ě ELebpΨ
t
iqpεiq ě exppCε´2

i q ,

where the last inequality is the main property of the flow pΨt
iqt, coming from

Proposition 4.2. This proves the claim. �

Next, we claim that:

(4.10) lim inf
εÑ0

log logQµ̂pεq

´ log ε
ě 2 .

Indeed, given a small ε ą 0, let i be such that ε P rεi`2, εi`1s. We have
Qµ̂pεq ď Qµ̂pεi`1q and so, using Claim 4.5,

log logQµ̂pεq

´ log ε
ě

log logQµ̂pεi`1q

´ log εi`2
ě

logC ´ 2 log εi
´ log εi`2

.

The right-hand side tends to 2 as iÑ8, so (4.10) follows.
Inequality (4.10) means that the lower quantization order of µ̂ is at least 2,

that is, qopµ̂q ě 2. Up to this moment we were assuming that MpAq is
metrized with Wasserstein metric W1, but now let us use any Wasserstein
metric Wp, 1 ď p ă 8, or the Lévy–Prokhorov metric LP. By inequalities
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(1.2), (1.3) from p. 10, we still have qopµ̂q ě 2 with respect to the other met-
rics. On the other hand, by Proposition 3.4, Theorem 1.3, and Remark 1.5,
we have:

qopµ̂q ď mopMpAqq ď dimpAq “ 2 .

Therefore qopµ̂q “ 2. This means exactly that:

lim
εÑ0

log log ELebpΦ
tqpεq

´ log ε
“ 2 ,

which completes the proof of Theorem B. �

5. Genericity of high emergence

In this section, we will prove our Theorems C and D on the genericity
of high emergence among surface diffeomorphisms. Both proofs are based
on Proposition 4.2. Another fundamental tool is the creation of periodic
spots; we recall the relevant results in Section 5.1. Furthermore, for the
conservative Theorem C, we also need a KAM theorem, which is discussed
along with some of its consequences in Section 5.2.

Throughout this section, let pM,Lebq be a compact surface endowed with
a normalized smooth volume (i.e. area) measure.

5.1. Creation of periodic spots. Theorems C and D are proved using
the following concept:

Definition 5.1 (Periodic spot). An open subset O Ă M is a periodic spot
for a continuous self-map f of M if there exists p ě 1 such that fppOq “ O
and the restriction fp|O is the identity map on O.

Diffeomorphisms displaying a periodic spot appears densely in many open
subsets of dynamical systems. In the conservative setting we have:

Theorem 5.2 ([GTS, Thrm. 5] and [GeT, Thrm. 1]). For every r P r1,8s,
if U is the open subset of Diff r

LebpMq formed by dynamics having an elliptic
periodic point, then there exists a dense subset D Ă U formed by dynamics
displaying a periodic spot.

The statement above follows from the combination of [GTS, Thrm. 5] and
[GeT, Thrm. 1].

In the dissipative setting we have:

Theorem 5.3 (Turaev, [Tu, Lemma 2]). For every r P r2,8s, there exists
a non-empty open set U Ă Diff rpMq and a dense set D Ă U formed by
dynamics displaying a periodic spot.

We add that the set U in Theorem 5.3 contains the absolute Newhouse
domain: it is formed by diffeomorphisms displaying a horseshoe having a ro-
bust homoclinic tangency, a volume expanding periodic point, and a volume
contracting periodic point.
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5.2. KAM and stability of high emergence. A twist map is a conser-
vative diffeomorphism f0 : AÑ A of the form f0 “ Rtω, where ω : r0, 1s Ñ R
is a smooth function without critical points, and t ‰ 0.

Theorem 5.4 (Moser–Pöschel’s twist mapping theorem [Mo], [Pö], [BrS,
§ 3.2.1]). Let f be a twist map. Fix a number η ą 0 a neighborhood U of the
identity map in Diff 8pAq. Then there exist a closed subset D Ă p0, 1q with
Lebesgue measure at least 1 ´ η and a neighborhood V of f in Diff 8

LebpAq
such that for every g P V, there exists h P U such that the map f |T ˆD is
conjugate to g|hpTˆDq via h:

g ˝ hpzq “ h ˝ fpzq, @z P TˆD .

As a corollary of Theorem 5.4, we will prove below:

Corollary 5.5. Let f P Diff 8
LebpMq be a conservative surface diffeomor-

phism that acts as a twist map on a embedded annulus A Ă M ; more pre-
cisely, assume that there exist a smooth embedding h1 : A Ñ M with con-
stant jacobian and image h1pAq “ A and a twist map f0 : A Ñ A such that
f ˝h1 “ h1 ˝f0. Then for every ε1 ą 0, for every g P Diff 8

LebpMq sufficiently
close to f , there exists a g-invariant embedded sub-annulus B Ă A such that
LebpArBq ă ε1 and

W1

´

eg˚pµBq, e
f
˚pµAq

¯

ă ε1 ,

where µA and µB are the normalized Lebesgue measures on A and B, re-
spectively.

In the case that f itself is a twist map (so M “ A “ A, f “ f0, and
h1 “ id), we can actually take B “ A. In particular, f becomes a continuity
point for the ergodic decomposition of Lebesgue measure (c.f. Remark 3.10).

We will use the following general estimate:

Lemma 5.6. Let pX, dq be a compact metric space and µ, ν PMpXq. If ν
is absolutely continuous w.r.t. µ, with density r :“ dν

dµ , then:

W1pν, µq ď pdiamXq}r ´ 1}L1pµq .

Proof. This is an immediate consequence of the Kantorovich–Rubinstein
duality formula [Vil, p. 207]. �

Proof of Corollary 5.5. Let us first consider the simpler case where f “ f0

is a twist map on M “ A “ A, and so h1 “ id. Let η ą 0 be small, and
let U be a small neighborhood of the identity map in Diff 8pAq. We apply
Theorem 5.4, obtaining a set D Ă r0, 1s and a neighborhood V of the twist
map f in Diff 8

LebpAq. Take an arbitrary g P V. We need to prove that the
ergodic decompositions of Lebesgue measure with respect to f and g are
approximately the same.

Consider the (non-conservative) diffeomorphism f̃ :“ h´1 ˝ g ˝ h; by con-

struction it equals f on T ˆD. The measure ν :“ h´1
˚ pLebq is f̃ -invariant.
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Let c :“ νpTˆDq (a number close to 1), and let ν1 :“ c´1 ¨ ν|TˆD. Then

ν1 is f̃ -invariant. Since f̃ equals f on supp ν1 “ TˆD, this measure is also
f -invariant. We will prove that the four ergodic decompositions below are
close to each other:

1 :“ eg˚pLebq, 2 :“ ef̃˚pνq, 3 :“ ef̃˚pν1q “ ef˚pν1q, 4 :“ ef˚pLebq.

Since h is close to identity, the distances dphpxq, xq are uniformly bounded
by a small constant ε2. Therefore:

@ξ PMpAq , W1ph˚ξ, ξq ď

ż

dphpxq, xq dξpxq ď ε2 ,

That is, h˚ : pMpAq,W1q Ñ pMpAq,W1q is ε2-close to the identity map.
Repeating the argument, we see that h˚˚ is also close to the identity. By
Lemma 3.11, h˚˚p 2 q “ 1 ; this proves that the measures 1 and 2 are
close.

The Radon–Nikodym derivative r :“ dν
dLeb is smooth and uniformly close

to 1. We have:
dν1

dν
“ c´1 1TˆD .

(Here 1 denotes characteristic function.) On the other hand, for all pθ, ρq P
A, the empirical measure ef pθ, ρq is Lebesgue on the circle Tˆtρu, denoted
λρ. It follows that the ergodic decomposition of Leb and ν1 with respect to
f are:

4 “ ef˚pLebq “

ż 1

0
δλρ dρ ,

and

3 “ ef˚pν1q “ c´1

ż

D
r̄pρq δλρ dρ ,

where r̄pρq :“
ş

r dλρ. So 3 is absolutely continuous with respect to 4 ,
with density:

d 3

d 4

`

δλρ
˘

“ c´1r̄pρq1Dpρq .

This function is close to 1 in L1p 4 q; so Lemma 5.6 implies that the measures
3 and 4 are close. Finally, we have:

d 3

d 2
“ c´1 1S , where S :“ supp 3 “ tδλρ ; ρ P Du .

This function is close to 1 in L1p 2 q, so Lemma 5.6 implies that the measures

2 and 3 are close. The upshot is that 1 “ eg˚pLebq and 4 “ ef˚pLebq are
close. This completes the proof of the corollary in the case f is a twist map.

The general situation can be reduced to the previous case. Indeed, The-
orem 5.4 also ensures that if f : M Ñ M acts as a twist map on a annulus
A, then any perturbation g of f admits a g-invariant sub-annulus B Ă A
which is close to A. Then the proof is verbatim the same by substituting
the measures λρ by their pushforward by h1, g by h1 ˝ g ˝ h

´1
1 , and h by

h1 ˝ h ˝ h
´1
1 . �
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As another corollary of Theorem 5.4, we obtain open sets with at least
polynomial emergence, so justifying an assertion made in Section 4.1. (Read-
ers anxious to see the proof of Theorem C may skip this.)

Corollary 5.7. Under the same hypotheses as Corollary 5.5, there exists
C ą 0 such that for every g P Diff 8

LebpMq sufficiently close to f , its emer-
gence of g with respect to the W1 metric satisfies:

ELebpgqpεq ě Cε´1 , @ε ą 0 ,

Note that this is not a consequence of Corollary 5.5 by itself, since we
bound the emergence of the perturbations at every scale.

Proof. We will provide a proof in the case that f itself is a twist map (so
M “ A “ B “ A, f “ f0, and h1 “ id), leaving for the reader to adapt the
proof for the general situation.

Let g P Diff 8
LebpAq be a perturbation of f . Applying Theorem 5.4, we

obtain h P Diff 8pAq close to identity such that g ˝ h “ h ˝ f on T ˆ D,
where D Ă p0, 1q is a closed set with almost full measure; say at least 1{2.
We can assume that h˘1 are 2-Lipschitz and have jacobian at most 2. As
in the proof of Corollary 5.5, let f̃ :“ h´1 ˝ g ˝ h and ν :“ h´1

˚ pLebq; then ν

is f̃ -invariant.

Consider the ergodic decompositions µ̂ :“ eg˚pLebq and ν̂ :“ ef̃˚pνq. Then,
for arbitrary ε ą 0,

ELebpgqpεq “ Qµ̂pεq (by Proposition 3.12)

ě Qh´1
˚˚pµ̂q

pLipph´1
˚ qεq (by Lemma 3.17)

ě Qν̂p2εq (by Lemmas 3.11 and 3.16) .

Note that ν ě 1
2Leb, by the bound on the jacobian. Let µ1 be the normalized

Lebesgue measure on TˆD. Since LebpDq ě 1
2 we have µ1 ď 2Leb, and so

ν ě 1
4µ1. Furthermore, µ1 is also f̃ -invariant so the ergodic decomposition

µ̂1 :“ ef̃˚pνq is well-defined. We have ν̂ ě 1
4 µ̂1 and so, by Lemma 3.18,

ELebpεq ě Qν̂p2εq ě Qµ̂1p8εq .

Since f̃ equals f on the support of µ1, we have:

µ̂1 “
1

LebpDq

ż

D
δλρ dρ ,

where λρ denotes Lebesgue measure on the circle T ˆ tρu. Similarly to
the proof of Proposition 4.1, the measure µ̂1 is supported on a set which is
isometric to D under the isometry λρ ÞÑ ρ; moreover, the isometry carries µ̂1

to the normalized Lebesgue measure on D (call it λ). Therefore Qµ̂1p8εq “
Qλp8εq.

We are left to estimate the quantization number of the measure λ. Con-
sider its distribution function F : r0, 1s Ñ r0, 1s defined by F pxq :“ λpr0, xsq.



ON EMERGENCE AND COMPLEXITY OF ERGODIC DECOMPOSITIONS 41

Since λ ď 2Leb, the function F is 2-Lipschitz. Furthermore, F˚pλq “ Leb.
So, by Lemma 3.17,

Qλp8εq ě QLebp16εq .

We have seen in Example 3.5 that quantization number of 1-dimensional
Lebesgue measure is QLebpεq — ε´1. We conclude that Eµpgqpεq is at least
of the order of ε´1, as we wanted to show. �

5.3. Genericity of high emergence: conservative setting. Here is a
consequence of Proposition 4.2, combined with Corollary 5.5:

Lemma 5.8. Suppose that f P Diff 8
LebpMq admits a periodic spot O. Let

ε0 ą 0, and let U Ă Diff 8
LebpMq be a neighborhood of f . Then there exists

a nonempty open set V Ă U such that for every g P V, its metric emergence
w.r.t. W1 metric satisfies:

sup
εăε0

log log ELebpgqpεq

log ε
ě 2´ ε0 .

Proof. Assume that f has a periodic spot O. For simplicity of writing, let
us assume that O consists of fixed points.

Let Â :“ Tˆr´1, 2s. Take a smooth embedding h1 : ÂÑ O with constant
Jacobian J . Fix a small ε˚ ą 0; how small it needs to be will become
apparent at the end.

Let ω : R Ñ R be a smooth function that has no critical points in r0, 1s
and vanishes outside r´1, 2s. By Proposition 4.2, we can find h P Diff 8

LebpAq
that equals the identity on the neighborhood of the boundary such that the
maps Ψt :“ h ˝Rtω ˝ h

´1 has high emergence at scale ε˚:

E pΨtqpε˚q ě exppCε´2
˚ q , @t ‰ 0 ,

where C is a constant. We fix t ‰ 0 very close to 0 and write ψ :“ Ψt. We
can extend h and ψ to smooth conservative diffeomorphisms ĥ and ψ̂ of the
bigger annulus Â, putting ĥpθ, ρq :“ pθ, ρq and ψ̂pθ, ρq :“ pθ ` tωpρq, ρq for

pθ, ρq P Â r A. Define f̃ : M ÑM by:

f̃pxq :“

#

h1 ˝ ψ̂ ˝ h
´1
1 pxq if x P h1pÂq;

fpxq otherwise.

Then f̃ is a smooth conservative diffeomorphism, and it is C8-close to f
(since t is close to 0). So we can assume that f̃ belongs to the given neigh-

borhood U of f . Note that f̃ acts as a twist map on the embedded annulus
A :“ h1pAq, which has measure J (the jacobian of h1).

Let g P Diff 8
LebpMq be a small perturbation of f̃ . By Corollary 5.5, g

admits an invariant sub-annulus B Ă A such that:

LebpArBq ă J
2 and W1

´

eg˚pµBq, e
f̃
˚pµAq

¯

ă L´1ε˚ ,
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where µA (resp. µB) is the normalized Lebesgue measure on A (resp. B).

Since µA “ h1˚pLebAq, by Lemma 3.11, ef̃˚pµAq “ h1˚˚pe
ψ
˚ pLebAqq. Let L

be the Lipschitz constant of h1; then, by Lemmas 3.16 and 3.17,

Q
ef̃˚pµAq

pL´1ε˚q ě Q
eψ˚pLebAq

pε˚q ě exppCε´2
˚ q .

It follows from Lemma 3.15 that:

Qeg˚pµBq
p2L´1ε˚q ě Q

ef̃˚pµAq
pL´1ε˚q ě exppCε´2

˚ q .

Since LebpBq ě J
2 , we have µB ď 2J´1Leb and so eg˚pLebq ď 2J´1eg˚pµBq.

It follows from Lemma 3.18 that:

Qeg˚pLebqp4L
´1J´1ε˚q ě Qeg˚pµBq

p2L´1ε˚q ě exppCε´2
˚ q .

Let ε :“ 4L´1J´1ε˚. Since ε˚ is very small, we conclude that ε ă ε0 and

log log ELebpgqpεq

log ε
ě 2´ ε0 .

Therefore the neighborhood V of f̃ formed by the perturbations g has the
required properties. �

Proof of Theorem C. Consider the following two subsets of Diff 8
LebpMq:

‚ W is the set of weakly stable diffeomorphisms, i.e., those that ro-
bustly have only hyperbolic periodic points (if any);

‚ U is the set of diffeomorphisms that admit at least one elliptic peri-
odic point.

These two sets are open and disjoint. Furthermore, since the periodic points
of a generic area preserving map are either hyperbolic or elliptic, the union
W Y U is dense in Diff 8

LebpMq.
By Theorem 5.2, there is a dense subset D Ă U formed by diffeomorphisms

displaying a periodic spot. For each f P D, let pUf,nq be a neighborhood
basis for f . By Lemma 5.8, there exists a nonempty open subset Vf,n Ă Uf,n
such that:

@g P Vf,n , sup
εă1{n

log log ELebpgqpεq

log ε
ě 2´

1

n
.

The set On :“
Ť

fPD Vf,n is open and dense in U . Then R :“
Ş

nOn is a
residual subset of U which satisfies:

@g P R , lim sup
εÑ0

log log ELebpgqpεq

log ε
ě 2 .

Thus W YR is a residual subset of Diff 8
LebpMq formed by diffeomorphisms

that are either weakly stable or have lim sup stretched exponential emergence
with exponent 2. �
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5.4. Genericity of high emergence: dissipative setting. Here is an-
other consequence of Proposition 4.2:

Lemma 5.9. Let r P r1,8s. Suppose that f P Diff rpMq admits a periodic
spot O. Let ε0 ą 0, and let U Ă Diff 8pMq be a neighborhood of f . Then
there exists a nonempty open set V Ă U such that for every g P V, its metric
emergence w.r.t. W1 metric satisfies:

sup
εăε0

log log ELebpgqpεq

log ε
ě 2´ ε0 .

Proof. Let us first consider the simpler case where M is the annulus and f is
the identity map. Let ε0 ą 0 be given. Fix a positive ε˚ ă ε0 small enough
such that:

logC ´ 2 log ε˚
log 4´ log ε˚

ě 2´ ε0 ,

where C ą 0 is the constant from Proposition 4.2. Choose and fix a smooth
function ω : r0, 1s Ñ R without critical points. Applying Proposition 4.2,
we obtain a smooth conservative diffeomorphism h : A Ñ A that equals
identity on a neighborhood of the boundary of the annulus, such that the
flow Ψt :“ h ˝Rtω ˝ h

´1 has the following property:

@t ‰ 0, ELebpΨ
tqpε˚q ě exppCε´2

˚ q .

For each ρ P r0, 1s, let λρ denote Lebesgue measure on the circle Tˆ tρu,
and let λ̃ρ :“ h˚pλρq be its push-forward under h. So λ̃ρ is supported on
the curve Cρ :“ hpT ˆ tρuq. Consider the following sequence of elements of
MpMpAqq:

µ̂n :“
1

n

n´1
ÿ

i“0

δλ̃pi`.5q{n .

Note that the sequence pµ̂nq tends to the measure µ̂ defined by (4.6), which
is exactly the ergodic decomposition of any Ψt (t ‰ 0). By Lemma 3.15, if
n is large enough then Qµ̂npε˚{2q is at least Qµ̂pε˚q, which by construction
is at least exppCε´2

˚ q.
Let ppΨt

nqtqn be a sequence of flows on the annulus A converging to pΨtqt
and such that, for each n ě 1, the flow pΨt

nqt satisfies:

‚ for every i P t0, 1, . . . , nu, the curve Ci{n is invariant and exponen-
tially repelling;

‚ for every i P t0, 1, . . . , n ´ 1u, the curve Cpi`.5q{n is invariant and
exponentially attracting, with basin hpTˆ pi{n, pi` 1q{nqq;

Let fn :“ Ψtn
n , where ptnq is a sequence of non-zero numbers tending to zero.

Then fn converges f “ id in the C8 topology. Tweaking the sequence ptnq if
necessary, we can assume that each fn acts as an irrational rotation on each
attracting cycle Cpi`.5q{n, i P t0, 1, . . . , n´ 1u. Then every point in the basin
of Cpi`.5q{n has a well-defined empirical measure with respect to fn, which

is λ̃pi`.5q{n. Each of these basins has Lebesgue measure 1{n, so the measure
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efn˚ pLebq, (which with some abuse of terminology we will call the ergodic
decomposition of fn) is well defined and equals µ̂n. So for large enough n,
the diffeomorphism fn displays high emergence at scale ε˚{2:

ELebpfnqpε˚{2q “ Qµ̂npε˚{2q ě exppCε´2
˚ q.

(Strictly speaking, Proposition 3.12 does not apply since Leb measure is
not fn-invariant, but it still works since the empirical measures are Leb-a.e.
well defined and ergodic.) For the remainder of the proof, we fix a large n
such that fn has the above properties, and moreover belongs to the given
neighborhood U of f “ id.

Now, if g is a small C1-perturbation of fn then by persistence of nor-
mally contracting submanifolds (see e.g. [BeB, Thm. 2.1]), g has n attract-
ing curves C1-close to the curves Cpi`.5q{n, and their basins are bounded by

repelling curves that are C1-close to the curves Ci{n. The rotation numbers
along these attracting curves are either irrational or rational with a large
denominator, so every point in the union of the basins has a well-defined
empirical measure with respect to g, which is close to λ̃pi`.5q{n. Thus g has
a well-defined ergodic decomposition, which is close to µ̂n. It follows from
Lemma 3.15 that:

ELebpgqpε˚{4q “ Qeg˚pLebqpε˚{4q ě Qµ̂npε˚{2q ě exppCε´2
˚ q.

So it follows from the definition of ε˚ that:

ε :“
ε˚
4

ñ
log log ELebpgqpεq

log ε
ě 2´ ε0 .

Letting V be a C1-neighborhood of the diffeomorphism fn where such esti-
mates hold, we conclude the proof of the lemma in the case M “ A, f “ id.

If f is an arbitrary surface diffeomorphism admitting a periodic spot O,
then we embed an annulus in O and reproduce the construction above.
Emergences can be estimated from below similarly. Details are left for the
reader. �

Proof of Theorem D. The proof is entirely analogous to the proof of Theo-
rem C, using Theorem 5.3 instead of Theorem 5.2 and Lemma 5.9 instead
of Lemma 5.8. �

Appendix A. Entropy

A.1. Entropy in terms of covering numbers. Let us explain how en-
tropies are related to covering numbers. We use these relations in Section 2.

Let f : X Ñ X be a continuous self-map of a compact metric space pX, dq.
For each integer n ě 1, define the Bowen metric:

(A.1) dnpx, yq :“ max
0ďiăn

dpf ipxq, f ipyqq .

Let Npn, εq :“ Ddnpεq denote the least number of balls of radii ε in the
dn-metric necessary to cover X. We recall the following:
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Definition A.1. The topological entropy of f is:

htoppfq :“ lim
εÑ0

lim
nÑ8

1

n
logNpn, εq.

Fix an invariant measure µ PMf pXq. Given n ě 1, ε ą 0, and 0 ă δ ă 1,
let Nµpn, ε, δq denote the least number of balls of radii ε in the dn-metric
necessary to cover a set of µ-measure at least 1´ δ.

Though metric entropy is most commonly defined in terms of measurable
partitions, the following result by Katok allows us to define it in terms of
covering numbers:

Theorem A.2 (Katok [Ka], Theorem I.I). If µ is ergodic then for every δ
in the range 0 ă δ ă 1,

(A.2) hµpfq “ lim
εÑ0

lim inf
nÑ8

1

n
logNµpn, ε, δq “ lim

εÑ0
lim sup
nÑ8

1

n
logNµpn, ε, δq .

When f is a homeomorphism, let Ñµpn, ε, δq denote the least number of
balls necessary to cover a set of µ-measure at least 1 ´ δ of radii ε in the
following metric:

(A.3) d̃npx, yq :“ max
´năiăn

dpf ipxq, f ipyqq .

We note that d2npf
´npxq, f´npyqq “ d̃npx, yq and so Ñµpn, ε, δq “ Nµp2n, ε, δq.

So we obtain:

Corollary A.3. If µ is ergodic then for every δ in the range 0 ă δ ă 1,
(A.4)

hµpfq “ lim
εÑ0

lim inf
nÑ8

1

2n
log Ñµpn, ε, δq “ lim

εÑ0
lim sup
nÑ8

1

2n
log Ñµpn, ε, δq .

A.2. Variational principle for entropy. If a measurable self-map f of a
measurable space X preserves a probability measure µ, then hµpfq denotes
the corresponding metric entropy.

Theorem A.4 (Variational Principle for Entropy). If X is compact and f
is continuous, then the topological entropy htoppfq equals the supremum of
hµpfq where µ runs over all the invariant Borel probability measures.

Details can be found in the standard textbooks [DGS, Ma2, KaH, PrU,
ViO].

A.3. Metric entropy in terms of quantization numbers. Let pX, dq be
a compact metric space, and let Wp and LP denote the induced Wasserstein
and Lévy–Prokhorov metrics on the space MpXq. If µ P MpXq, then let
Qµ,Wpp¨q and Qµ,LPp¨q and denote the corresponding quantization numbers.
They can be compared as follows:

Lemma A.5. For every ε ą 0,

Qµ,LP

´

ε
p
p`1

¯

ď Qµ,Wppεq ď Qµ,LP

ˆ

εp

1` pdiamXqp

˙

.
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Proof. This is an immediate consequence of inequalities (1.3). �

Given a continuous map f : X Ñ X on the compact metric space pX, dq
and an integer n ě 1, the corresponding Bowen metric dn induces Wasser-
stein and Lévy–Prokhorov metrics on the space MpXq, which we respec-
tively denote by Wp,n and LPn. Now, given an invariant measure µ P

Mf pXq, we consider its quantization numbers with respect these two met-
rics. This relates to the entropy as follows:

Theorem A.6 (Reformulation of Katok’s entropy theorem). If µ is ergodic
then:

hµpfq “ lim
εÑ0

lim inf
nÑ8

1

n
Qµ,LPnpεq “ lim

εÑ0
lim sup
nÑ8

1

n
Qµ,LPnpεq

“ lim
εÑ0

lim inf
nÑ8

1

n
Qµ,Wp,npεq “ lim

εÑ0
lim sup
nÑ8

1

n
Qµ,Wp,npεq .

Proof. Note that existence of limits as εÑ 0 is automatic by monotonicity.
In view of Lemma A.5, it is sufficient to consider the Lévy–Prokhorov

metrics. By Lemma A.5, Qµ,LPnpεq “ Nµpn, ε, εq (in the notation of Appen-
dix A.1).

In the paper [Ka] (see inequality (I.I)), Katok proves that:

@ε ą 0, @δ ą 0, lim sup
nÑ8

1

n
logNpn, ε, δq ď hµpfq .

(This is actually the “easy part” of the proof of Theorem A.2, and a simple
consequence of Shannon–MacMillan–Breiman’s theorem.) Taking δ “ ε and
then taking εÑ 0, we obtain:

lim
εÑ0

lim sup
nÑ8

1

n
logNpn, ε, εq ď hµpfq .

On the other hand, if 0 ă ε ď δ ă 1 then Npn, ε, εq ě Npn, ε, δq, so
Theorem A.2 implies that:

lim
εÑ0

lim sup
nÑ8

1

n
logNpn, ε, εq ě hµpfq .

This concludes the proof. �

The reader will notice a certain parallelism between the notions of topo-
logical/metric entropies and topological/metric emergences: compare Def-
inition A.1 with Definition 0.2, Theorem A.6 with Proposition 3.12, and
Theorem A.4 with Theorem E.
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