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Abstract— We describe an algorithm that can robustly decide
whether a grip or a footstep is secure given data collected from
at least two independent sensors. This algorithm is based on the
observation that if there is an absence of slip, then, owing to
the high velocity of mechanical waves in solids, the two sensor
signals must be highly correlated, even in the presence of internal
or external perturbations. The statistical distance between signals
collected during slip and non-slip phases, regarded as random
distributions, also provides a continuous measure of graspability
or walkability of an object being held or a ground being stepped on.
We tested the algorithm on a bench using micro-electro-mechanical
system (MEMS) accelerometers and with a variety of materials of
different surface roughnesses. We also discuss the applications of this non-slip/slip discrimination algorithm and its
putative relationship with human gripping behavior.

Index Terms— Slip detection, tactile sensing, haptic manipulation, dexterous manipulation.

I. INTRODUCTION

Manipulation and locomotion crucially depend on friction.
When the tangential load sustained by two surfaces in contact
exceeds a threshold, slip takes place. Owing to numerous
factors, the frictional properties of contacts are difficult to
predict. However, successful manipulation and locomotion
depend on the absence of slip between the appendages of a
robot and external objects. In robotics, sensing techniques able
to detect slip have long been recognized to be essential for
dexterous manipulation and secure locomotion.

One approach to slip detection is an attempt to imitate the
features of the glabrous skin of primates. As early as the
1970s, there were efforts to create sensitive artificial skins
for grip adjustment [1]. These approaches are discussed in
numerous surveys [2]–[5]. Nevertheless, the neural processes
that subserve slip detection during grip adjustment are still not
fully explained [6], [7]. Another approach is to take advantage
of mechanical load sensors that can be integrated into robot
extremities, leading to another family of approaches termed
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gents et de Robotique (ISIR), 5 place Jussieu, 75005, Paris, France and
Actronika SAS, 157 boulevard MacDonald, 75019 Paris, France (e-mail:
vincent.hayward@sorbonne-universite.fr).

This work was supported by MES of Kazakhstan, Grant number
AP09058050.

intrinsic sensing [8]. Intrinsic sensing can also be applied to
slip detection [9].

Sensors or systems of sensors do not detect slip per se.
Sensors report some aspects of the consequences of slip in
order to trigger appropriate corrective actions. Examples of
such actions include tightening a grip, reconfiguring fingers,
reducing stride impetus, or adapting posture. Slip detection is
accomplished by algorithms that use sensor data to decide that
slip has occurred, or is about to occur, between an extremity
and an external object. Numerous algorithms surveyed in the
next section are tailored to the type of sensor used to collect
mechanical signals.

The present article describes an algorithm that depends
only weakly on the type of sensor used to collect mechanical
signals. An essential requirement for its operation, however,
is that there must be at least two sensors signals reporting
mechanical events arising from contacts with a single common
object. The algorithm could be extended to multiple sensors
but two are sufficient.

Slip between surfaces is always associated with a noisy
component corresponding to velocity fluctuations caused by
brief occurrences of negative damping in frictional phenom-
ena. Sliding surfaces, hard or soft, rough or smooth, even
lubricated, all produce frictional noise. The magnitude and the
properties of frictional noise depend on a number of factors.
These include the materials in contact, the net sliding velocity,
the topography of the surfaces, the internal structure of the
object, the load, abrasion, interstitial contaminants, and the
history of the contact [10]–[12].

Frictional fluctuations can have periodicity, as in squeals or
bow-string interactions, but are often predominantly stochastic.
Fluctuations are observed even when friction is extremely
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low [13]. Slip detection should be robust to many possible
perturbations, for example, vibrations arising from the robot’s
actuators and transmissions or from the interactions of a
gripped object with external objects.

Slip detection ought to be free from as many assumptions as
possible, i.e., independent of the assumed models of friction.
To progress toward this goal, we propose that an absence of
slip can be reliably determined during a grip or a footstep,
by investigating the similarity between signals from sensors
responding to contact with a common solid object. In the
absence of slip, the signals exhibit a high degree of similarity
since the wavelength of mechanical waves in solids is gener-
ally much greater than the distance between two sensors. At
one thousand Hertz, the wavelength of mechanical waves in
wood is about five meters; in granular materials, such as soils,
it is of the order of fifty centimeters [14], [15].

II. RELATED WORKS

In order to achieve robotic manipulation, the detection of
slip was viewed as an imperative necessity early on. Hirochika
Inoue [16] concluded, “Force feedback enables the robot to
guide a peg into a hole quite reliably given that the parts
do not slip in the hand. From a practical point of view, it is
also important to develop a general-purpose hand that prevents
‘slip’ or that at least detects its occurrence”.

Baits et al. [17] had already demonstrated automatic grip
adjustment by detecting vibrations using piezoelectric sensors
in contact with a gripped object. At the same time, Ring and
Welburn [18] observed the Cattaneo-Mindlin contact mechan-
ics in human fingers acting against a rigid counter surface. The
Cattaneo-Mindlin contact mechanics describes partially sliding
contacts as a mixture of stick and sliding regions. They noted
the time course for the transition to fully-developed slip to last
about 300 ms (value later confirmed in [19]) and developed a
sensor designed to directly resolve the state of a contact.

Research in hand prostheses anticipated the need to detect
slip, ushering families of methods concerned with the analysis
of the temporal properties of sensor signals available in a
gripping device (Section II-A); the analysis of the spatio-
temporal evolution of a population of sensors (Section II-B);
and the resolution of contact states from force measurements
(Section II-C). Efforts have been made to develop sensing
techniques to measure slip directly (Section II-D). Although
the literature on slip detection is often intertwined with the
description of tactile sensors, the above classification can guide
the discussion of slip detection algorithms.

A. Temporal Properties of Tactile Signals
Dornfeld and Handy [20] pointed out the possibility of

taking advantage of the acoustic emissions of sliding contacts
to detect slip. Howe and Cutkosky [21] proposed to threshold
the amplitude of the signal given by a miniature accelerometer
integrated in a flexible envelope wrapped around a robot finger.
Tremblay and Cutkosky [22] observed that the slip signal was
more reliably detected from accelerometers located away from
the region of contact. Kyberd and Chappell [23] described
an algorithm that computed a discrete approximation of the

temporal gradient of signals arising from force-sensing resis-
tors in the palm and fingertips of a multi-fingered prosthetic
hand. This algorithm gave an approximation of the direction
of object slip. Later, Kyberd et al. [24] discussed the automatic
tightening of a grip from cumulative counts of slip events
detected by microphones in the fingers of a prosthetic hand.
Goger et al. [25] employed the short-term Fourier transform
to process a signal given by a piezoelectric polyvinylidene
difluoride (PVDF) polymer sensor. The frequency-domain
representation was further processed through feature detection
and nearest-neighbor classification to decide whether a slip
occurred. Takenawa [26] embedded miniature magnets in
artificial skin. By Lenz’s law, the oscillation of these magnets
induced voltages in neighboring coils. The occurrence of slip
was decided through the detection of spikes caused by the
release of stored elastic energy. In another work, researchers
placed accelerometers in the grippers of a robot [27]. During
grip, the slip was detected from the magnitude of the signal
during specific phases of the manipulation. Taking advantage
of a piezoresistive film sensor, Teshigawara et al. [28] used
the Haar discrete wavelet transform (DWT) to detect specific
signal fluctuations that were indicative of slip. Heyneman and
Cutkosky [29] observed that under the assumption of linearity
the mapping from input vibrations to the sensor outputs is the
sum of the signal resulting from the coupling object-finger and
the vibrations of the held object. The analysis of coherence
among sensor signals in the frequency domain enabled the
offline classification of slip types from data recorded by a
robot gripper with two BioTac sensors (Syntouch, Montrose,
CA). Using a single BioTac sensor, Su et al. [30] used an
artificial neural network comprising a fifty-neuron hidden layer
to classify slips into sliding and pivoting contacts. Veiga et
al. [31], also with BioTac sensors, programmed a support
vector machine to predict slip using features extracted from
raw sensor data.

B. Spatio-Temporal Evolution of a Population of Sensors

Stojiljković and Clot [1] covered a prosthetic hand with
a soft artificial skin made of an electrically conductive elas-
tomer. The inner layer of this skin featured a dense array of
electrodes. Contact with objects reduced the resistance of each
cell. Each sensing cell produced one slowly-adapting output
and one fast-adapting output. An artificial neural network im-
plemented a lateral inhibition algorithm that provided separate
fast-adapting excitatory and slowly-adapting inhibitory signals.
These signals were combined to detect spatial and temporal
mechanical gradients whose magnitude determined the activa-
tion of the motors. This way, the slip was prevented for both
soft and hard gripped objects. From prior work suggesting
the use of stochastic filtering to process data available from
a population of sensors [32], Ho and Hirai [33] used image
processing to estimate the ratio of the stuck contact area to
the gross contact area to adjust grip during bi-digital object
lifting. Yuan et al. [34] collected dense data using a GelSight
sensor [35] and used image processing to estimate the state of
the Cattaneo-Mindlin contact mechanics. Meier et al. [36] used
data acquired from arrays of piezoresistive sensors pressed
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against a rigid object and, from features extracted in the
frequency domain, trained a convolutional neural network to
distinguish between sliding and pivoting contacts. Roberge
et al. [37] used unstructured data acquired from capacitive
sensing arrays and converted them to the frequency domain
to give a sparse representation of these data. After training, a
support vector machine algorithm was able to reliably identify
slips within the dataset. James et al. [38] used an optical
tactile sensor, the TacTip, to collect image-like data during a
variety of interactions with surfaces. A support vector machine
could accurately detect slip from the temporal evolution of
the image data. Rigi et al. [39] utilized a neuromorphic event-
based vision sensor to identify regions of partial slip from
internally generated vibrations during contact between rigid
objects.

C. Contact State Resolution from Force Measurements
Ring and Welburn [18] described a sensor that measures

the magnitude of the interaction force between a finger and
an object. Thus, assuming a known coefficient of friction,
the slip was prevented by driving a single-motor of the two-
fingered prosthetic hand proportionally to this signal. The
algorithm was similar in its principle to what is realized by
an industrial scissor grab lifting clamp with the difference
that the gripping action was independent of the direction of
external disturbances. Building on the work of Bicchi et al. [8]
on intrinsic sensing, Melchiorri [40] described a geometrical
method to determine the occurrence of slip from the location of
the center of rotation of a body in contact with a rigid surface
using a combination of force and distributed pressure sensing.
Wettels et al. [41] used BioTac sensors mounted on an Otto
Bock Michelangelo anthropomorphic robotic hand to resolve
the contact force through a Kalman filter. Song et al. [42]
mounted six-axis force/torque sensors on the fingertips of a
three-fingered BarrettHand robotic hand and used an extended
Kalman filter to estimate the ‘breakaway’ force ratio from
the coefficients of a solid friction model, namely the LuGre
model [43]. Yussof et al. [44] designed a robotic fingertip with
forty-one ‘feelers’ whose deflections and compressions were
optically measured. The data were used to detect the direction
of slip to maintain a stable grip.

D. Direct Measurement of Slips
Some “computation-free” techniques for slip detection are

mentioned in this subsection. Tomović and Stojiljković [45]
suggested that because slip is by definition the relative dis-
placement of two surfaces in contact, sensors could be de-
vised to detect slip directly. Notably, one of their designs
involved a needle-like pointer set inside an artificial skin
layer such that slip entrained its lateral movements, generating
trains of electrical pulses by closing a circuit. D’Alessio and
Steindler [46] employed contactless inductive transducers. The
counter surface, however, was required to possess special
magnetic properties. Eghtedari et al. [47] took advantage of
the properties of a photoelastic layer interposed between a po-
larizer and an analyzer to produce slip-sensitive fringe patterns
that could be imaged. Later, [48] used this principle to produce
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Fig. 1: Under most conditions, in the absence of slip, the signals arising from
different sensors must be correlated.

a continuous signal during slip. Gofuku et al. [49] installed
one illuminator and two adjacent reflected light detectors in
a robot gripper. Researchers estimated the slip velocity using
signal shift estimation by cross-correlating the two signals in
the frequency domain. Accoto et al. [50] described a micro-
sensor that exploited the dependency of heat diffusion upon
the relative velocity of two surfaces in contact to detect
slip. Kondratenko et al. [51] revisited the technique of the
oscillating pin interacting with a held object and sensed the
slip-induced oscillations by capacitive detectors.

III. ALGORITHM FOR ABSENCE OF SLIP DETECTION

The slip conditions for a gripping or a stepping system as
in Fig. 1 may be represented by

no slip:
{
s1(t) = p1(t),
s2(t) = p2(t),

(1)

slip:
{
s1(t) = ss1(t) + p1(t),
s2(t) = ss2(t) + p2(t).

(2)

where s1(t) and s2(t) stand for the signals acquired by the
sensors, ss1(t) and ss2(t) the signals arising from frictional
noise, and p1(t) and p2(t) are the signals resulting from
unknown external and internal perturbations. As discussed
earlier, p1(t) and p2(t) are expected to be similar since
they arise from common sources while ss1(t) and ss2(t) are
expected to be different since they arise from sliding noise.

Cross-correlation is a measure of the similarity between
signals. The cross-correlation of two continuous-time signals
is computed from their reversed convolution. Since in practice
signals are available in discrete time, cross-correlation can be
computed over a finite-length window from the inner product
of two vectors. In signal analysis, an approach commonly
adopted to arrive at a practical algorithm is to consider the
signals to be zero-mean random time-series of size n. We
make this assumption for the sensor signals s1(t) and s2(t).

The computation of the zero-delay normalized cross-
correlation, NCC(s1, s2) between the two vectors, s1 =
[s1(0), . . . , s1(n− 1)]T and s2 = [s2(0), . . . , s2(n− 1)]T can
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then be written as

NCC(s1, s2) =

∑n−1
i=0 s1(i)s2(i)√∑n−1

i=0 s
2
1(i)

∑n−1
i=0 s

2
2(i)

(3)

=
s1 · s2

n
√
σ(s1)σ(s2)

, (4)

where σ(s1) and σ(s2) represent the variances of s1 and s2,
respectively and s1 · s2 denotes the dot product of the vectors
s1 and s2.

NCC for the non-slip case can be written using (1) and (4)
as

NCC(s1, s2) = NCC(p1,p2) =
p1 · p2

n
√
σ(p1)σ(p2)

. (5)

Since p1 and p2 are highly correlated, we can write

NCC(p1,p2) =
p1 · p2

n
√
σ(p1)σ(p2)

≈ 1. (6)

In other words, NCC for the non-slip case must be close to
one. Similarly, in the case of slip, using (2) and (4), NCC can
be written,

NCC(s1, s2) =
(p1 + ss1) · (p2 + ss2)

n
√
σ(ss1 + p1)σ(ss2 + p2)

=
p1 · p2 + ss1 · p2 + ss2 · p1 + ss1 · ss2

n
√
σ(ss1 + p1)σ(ss2 + p2)

. (7)

Noting that frictional noise signals are uncorrelated with the
perturbation signals and with each other, we can assume that,

ssi · pj ≈ 0 ∀i, j ∈ {1, 2}, (8)
ss1 · ss2 ≈ 0 . (9)

Substituting (8) and (9) into (7) gives

NCC(s1, s2) =
p1 · p2

n
√

(σ(ss1) + σ(p1))(σ(ss2) + σ(p2))
,

(10)

and by posing k1 = σ(ss1)/σ(p1) and k2 = σ(ss2)/σ(p2),
(10) becomes

NCC(s1, s2) =
p1 · p2

n
√
σ(p1)σ(p2)

1√
(1 + k1)(1 + k2)

. (11)

Noting the high correlation of p1 and p2, as in (6), we can
simplify this expression to

NCC(s1, s2) ≈ 1√
(1 + k1)(1 + k2)

. (12)

We conclude that, counterintuitively, with this algorithm the
greater the perturbations are, the more reliable is the detection
of an absence of slip. For example, a robot gripping a part may
purposefully cause collisions with external objects to reduce
the uncertainty of a secure grip. Likewise, a robot may apply
an anticipatory, exaggerated load on a foot to ascertain that it
would not slip.

An absence of slip can be detected when the NCC measure
is close to one and additional information may be obtained
from the analysis of the signals. Of particular interest is the
possibility of gauging the “graspability” of an object or the
“walkability” of a terrain. To this end, a robot may quantify

how frictional noise differs from background perturbation. For
example, a smooth slippery surface would be such that the
sensor signals are similar whether or not there is slip.

In keeping with a statistical approach, such evaluation
may be accomplished through a distance measure between
distributions represented by a vector normalized to a vector
of the NCC values during slip, s̄, and to another vector of
NCC values, p̄, when there is no slip. A direct measure can
be then provided by the Hellinger distance between discrete
distributions known for its efficiency and robustness [52]. This
distance, H(s̄, p̄) can be computed as follows,

H2(s̄, p̄) =
1

2

n−1∑
i=0

(√
s̄(i)−

√
p̄(i)

)2
, (13)

=
1

2

∥∥∥√s̄−√p̄∥∥∥2
2
, (14)

= 1−
n−1∑
i=0

√
s̄(i)p̄(i). (15)

The Hellinger Distance provides us with a similarity mea-
sure of two probability distribution functions. When its ab-
solute value approaches to one, the distribution are totally
different. When its value is close to zero, the distributions
are similar. This expression allows one to estimate objectively
how well the NCC value can discriminate slip from non-slip
for in given conditions, giving robustness.

The algorithm could be instantiated with many other simi-
larity measures other than NCC, although this latter measure
has the advantage of being particularly economical to compute.
For instance, adopting a deterministic approach, the Fréchet
distance between s1 and s2 could be employed to evaluate
their similarity. This method could also have a statistical
interpretation [53]. Another statistical method could appeal
to the Kolmogorov-Smirnov empirical test to compute the
probability that the samples in vectors s1 and s2 or in u and v
were drawn from a common, yet unknown, distribution. Any
of these methods is expected to produce qualitatively similar
results. The choice of measures, being entirely application-
dependent, is not discussed further.

IV. EXPERIMENTS

A. Experimental Setup

An experimental setup (see Fig. 2A) was constructed to
systematically test the detection algorithm over a wide range
of sliding velocities, materials, and interaction forces. This
testbed comprised a slider-crank mechanism that moved inter-
changeable samples against a pair of sensorized robot gripper
pads (Model ENG 100, SCHUNK GmbH, Germany) under
the action of a speed-reduced DC motor (Model EC 380619,
Maxon Group, Switzerland). The samples were guided by four
rollers. A slider-crank mechanism with two adjustable hard-
stops entrained the movements of the sample while providing
periods of rest. The sample came to a stop each time the
mechanism came close to a singular configuration. A linear
encoder (AEDR-8300, Broadcom, CA, USA) with a resolution
of 0.12 mm provided the “ground truth” for the speed of the
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sample by the differentiating the encoder signal numerically
and smoothing it through a 500-sample moving average.

The gripper pads could be configured to either grip the
sample or press against it from the same side, see Figs. 2B
and 2C. These components were held in place by a quick-
connect aluminum frame defining a coordinate system with
the x-axis along the direction of the movements of the sample
and the z-axis in the plane of the frame, see Fig. 2A.

The sensors were 3-axis MEMS accelerometers (ADXL
335, Analog Devices, MA, USA) rigidly connected to the
gripper pads and set against elastomer supports to prevent
rattling as shown in Fig. 2D. The z-axes of the accelerometers
were aligned with the z-axis of the frame. The pads could be
oriented around the common z-axis by an angle α between
the x-axes of the accelerometers and the frame. Data were
acquired by a custom-made analog-to-digital converter board
sampling the analog signals at a rate of 8.0 kHz.

B. Testing Conditions

Testing was performed at three motor speeds (average
speeds of the samples: 0.8, 0.16, and 0.24 m/s) and with
three materials (aluminum, plastic, and wood). The grasping
or pressing forces were set at two levels for each material
(see Table I). The gripping configuration was tested at four
different angles α of orientation (0°, 15°, 30°, and 45°). In the
pressing configuration, α was zero. These parameters resulted
in seventy-two (3×3×2×4) distinct conditions in the gripping
configuration and eighteen (3×3×2) conditions in the pressing
configuration. Additional external perturbations were caused
by placing a vacuum pump producing 110 Hz vibrations in
the vicinity of the testbed. Separate tests were performed with
glass samples (see the last row of the Table I).

sample

tactile
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guiding rollers

slider

crank

motor

link

(a)

accelerometer

pad

elastomer
support

linear encoder

x

z (b) (c)

(d)
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x

z

frame
coordinates

accelerometer
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Fig. 2: Experimental setup. (A) The schematics of the mechanical and sensor
components of the setup. (B) Gripping configuration. (C) One-sided foot
configuration. (D) Details of the construction of the sensorized gripper pads.

V. RESULTS

Figure 3 shows the ability of the algorithm to discriminate
the absence of slip from the existence of slip. The heat map
in Fig. 3A represents a two-dimensional histogram of the
averaged value of the NCC measure for all trials under twenty-
four conditions (3×2×4) when the material was wood. The
same data are shown in Fig. 3B in terms of mean, one standard
deviation (dark gray), and two standard deviations (light gray).
Fig. 3C represents the distribution of NCC values for slip and
non-slip when speed is 0.2 m/s. The contact state was labeled
‘non-slip’ when the speed of the sample, as estimated from
the encoder by the inverse time method [54], fell below a
threshold of 0.1 mm s−1. The contact state was labeled ‘slip’
above this threshold.

0 2010 0 2010 30
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probability
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0.1 0.200.150.10 0.25
speed (m/s)
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non-slip
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 (b)  (c)

Fig. 3: Discrete probability density function (PDF) represented as a two-
dimensional histogram of the NCC measure when the material was wood and
the sensor orientation was zero. The color map represents values of the PDF
in logarithmic scale. (A) PDFs represented as a two-dimensional histogram
of the NCC measure. The color map represents values of the PDFs in a
logarithmic scale. (B) The distribution of NCC values are shown in terms of
mean and standard deviations. (C) PDFs of 0.2 m/s speed

The wooden sample is clearly a favorable case for the
discrimination of non-slip and slip contact states. Figure 4
shows the Hellinger distance, H , computed for the sensor
signals obtained between these two states when the optimal
conditions were altered.

Figure 4A shows the evolution of H for different gripper
orientations. It shows that the discrimination robustness, not
the performance, was sensitive to the orientation and that the
robustness was optimal when the acceleration was measured in
the direction of slip, which makes sense intuitively. Figure 4B

TABLE I: Materials and interaction forces.
material roughness lower force higher force

[nm] [N] [N]
aluminum 121 15 25
plastic 372 20 35
wood 6 381 6 12
glass 45 40 51
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shows that the discrimination robustness of the system is
greater for the gripping configuration than for the foot con-
figuration. This result could be explained by the fact that the
signal might have leaked between the two sensors in greater
proportion for the foot configuration than for the gripper con-
figuration, decreasing the distance between the signal acquired
during the different contact states. Figure 4C reports what
could be intuitively predicted, namely, that smoother surfaces
decrease robustness. Finally, Fig. 4D shows that robustness
is unaffected by the level of gripping force, which is also
intuitively correct, since pressure is unlikely to modify the
correlation of the frictional noise signals.
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Fig. 4: Hellinger distance in different testing conditions. (A) Gripper ori-
entation with respect to slip velocity. (B) One-sided foot configuration.
(C) Material and roughness. (D) Grip force.

VI. DISCUSSION AND CONCLUSION

The newly introduced non-slip detection algorithm by cross-
correlation can compute a non-slip/slip decision within a few
microseconds using an ordinary microcontroller. The decision
delay is commensurate with the length of the buffer used
to store past data. In the case of the present experiments,
the length of this buffer was 500 samples, corresponding to
62.5 ms delay for a sampling rate of 8.0 kHz. Clearly, there are
tradeoffs involved in the selection of the length of this buffer
and the sampling rate: if the buffer is too short, the detection
of decorrelation could be unreliable; if it is too long, the
delay could become unacceptable. The sampling rate should
be selected for a good representation of the signal. There is,
however, a large range of values within which performance and
robustness will be upheld. There is little tradeoff regarding
the bandwidth of the sensors since frictional noise, except
in pathological cases, always occurs over a large range of
frequencies.

On this account, it should be noted that our non-slip
detection algorithm would probably fail if the gripped object
or if the stepped-upon ground violated the assumption of being
a solid. If, for example, the held object is a fabric or a rope
or if the ground is a granular material, then the pair of signals
might decorrelate, even when no macroscopic slip takes place.

It should be recognized, however, that in these cases the very
notion of absence of slip is elusive.

Besides its computational efficiency and absence of tuning,
a prominent practical advantage of the algorithm is the low
cost incurred for its implementation. Here, the sensors were
consumer-grade, widely available mass-produced accelerom-
eters. Many other types of sensors could be used for the
purpose of responding to the vibrations of the pads in contact
with objects or the ground. For example, low-cost monomorph
disc piezoelectric units respond with high sensitivity to minute
vibrations. Miniature microphones would also be applicable.

Another key advantage of this algorithm is its ability to
be implemented as a retrofit on most existing robots, whether
they have grippers, hands, feet, or even wheels. In the case
of wheels, the implementation might not be straightforward
because the sensors would have to be configured so that both
ar always in close vicinity of the contact with the ground. The
signals would also have to be routed through the hubs. The
algorithm could also be easily retrofitted in most motorized
prosthetic hands and grippers with minimal effort. Lastly, not
the least of these applications could be to human hands and
feet since vibratory signals propagate the tissues of human
extremities [55], [56]. Sensorized gloves and shoes could also
be an interesting option.

It is tempting to draw parallels with human gripping. To
date, research has focused on discovering tactile cues that can
be used to detect slip. Westling and Johansson demonstrated
that participants with anesthetized fingers would adjust their
grip to the weight of objects but not to their frictional
properties, thus demonstrating the existence of a physiolog-
ical mechanism that responds to slip [57]. The authors later
demonstrated that fast-adapting mechanoreceptors found in the
glabrous skin of fingers responded before fully-developed slip
takes place between fingers and counter-surfaces in suddenly
loaded grips [6], [58]. A follow-up study confirmed through
electromyography (EMG) that motor adjustment takes place
about 130 ms after the start of an unexpected perturbation and,
importantly, is time-locked with the onset of friction-induced
vibrations [59]. The possibility exists that human gripping
activity may depend on estimating the correlation—or the
lack thereof—of sensor signals between or within fingers [7]
on the grounds that estimating correlation is a fundamental
computational process of neural systems [60].
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