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Abstract

Recently, parametric insurance has emerged as a convenient way to cover risks

that may be difficult to evaluate. Through the introduction of a parameter that

triggers compensation and allows the insurer to determine a payment without eval-

uating the true loss, these products simplify the compensation process, and provide

easily tractable indicators to perform risk management. On the other hand, this

parameter may sometimes deviate from its purpose, and may not always correctly

represent the basis risk. In this paper, we provide theoretical results that investigate

the behavior of parametric insurance products when they are confronted to large

claims. These results, in particular, measure the difference between the true loss and

the parameter in a generic situation, with a particular focus on heavy-tailed losses.

Simulation studies that complete the analysis show the importance of nonlinear

dependence measures to ensure a good protection over the whole distribution.
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1 Introduction

Parametric insurance (see for example Lin and Kwon, 2020) is a very elegant and efficient

way to simplify risk management in situations when the evaluation of losses might be

complex. Parametric solutions have been developed for example in the case of natural

disasters (see for example Van Nostrand and Nevius, 2011; Horton, 2018). A typical ex-

ample is the case of an hurricane striking some area. The damages of such an episode

can be very complex to evaluate, leading to expertise costs and delays in the compen-

sation process. The solution proposed by parametric insurance is to not directly cover

the true losses, but to work with some “parameter”, namely a quantity that is linked to

the loss and is easily measurable. In the case of natural disasters, wind speed, precipi-

tation level, or any index based on relevant physical quantities can be used. Figueiredo

et al. (2018) described a detailed methodology in the example of parametric insurance in

Jamaica against flooding. Since the parameter can be measured instantly (or in a short

amount of time), payment can be performed in a faster way. Moreover, when it comes

to evaluating the risk, the situation is considerably simplified if one works with an easily

available quantity that can be tracked and model through standard actuarial methods.

This explains the growing popularity of these solutions that are now widely promoted (see

for example Prokopchuk et al., 2020; Broberg, 2020; Bodily and Coleman, 2021).

Nonetheless, parametric insurance is no miracle solution. Reducing the volatility of the

outcome has a cost. One of the difficulties is to convince the policyholder that a guarantee

based on a given parameter is relevant. The attractiveness of such contracts may be

reduced by the fear of the customers that the policy does not correctly cover the risk itself,

against which they want to be protected. This is especially true if the parameter is complex

and may not be fully understandable. In such cases, the simplification of the compensation

process is not necessarily worth the loss in terms of protection. Moreover, “calculative

misfires” as those pointed by Johnson (2021) do exist, that may discourage policyholders.

Johnson (2021) details some “Ex gratia repairs” that are sometimes activated to limit the

impact of such inconvenience.

The aim of the present paper is to study, in a general simplified framework, under which

conditions parametric insurance may still provide (or not) a good protection against the

risk in case of large claims. By large claims, we mean that the true loss of the policyholder

is large. These situations, which deviate from the central scenario which is expected to

drive the calibration of the payoff based on the parameter, require particular attention
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because they correspond to situations that are maybe not the more likely, but that cor-

respond to important preoccupations of the policyholders: if the potential customers feel

like they are not properly covered in case of serious events—which occurrence is at the

core of the decision to rely on insurance—they may be reluctant to buy such solutions.

In this work, we focus on two particular cases. In the first one, the loss variable has a

Gaussian tail. In this situation, significant deviations from the central scenario are of small

probability. Hence, simply working on the correlation between the parameter and the loss

is enough to improve the coverage of the risk. On the other hand, losses with heavy-tail

are more challenging. The results we derive show that extreme losses may be difficult

to capture, except if the parameter is able to reflect this heaviness. We illustrate these

properties through a simulation study inspired by the case of cyber risk, more precisely

of insuring against data breaches. In this case, the volume of data that are breached can

be related to an estimated cost, and using this indicator to design parametric insurance

products would make sense.

The rest of the paper is organized as follows. In Section 2, we discuss the general

framework that we consider to evaluate the performance of a parameter used in parametric

insurance. We especially focus on the question of the dependence between the parameter

and the true loss, which is key to hope to achieve satisfactory properties. Section 3 gathers

some theoretical results to measure how the parametric solution is able to approximate

the true loss when the amount of the latter is high. The simulation study illustrating

these properties in the case of cyber insurance is described in Section 4. The proof of the

technical results are listed in the appendix in Section 6.

2 Model for parametric insurance

In this section, we explain the general framework used to model the difference between

the true loss and the payment made via the parametric insurance product. The general

setting is described in Section 2.1. The key question of the dependence between the two

variables (true loss versus payment) is discussed in Section 2.2 which introduces tools

from copula theory.

2.1 Description of the framework

In the following, we consider a random variable X representing the true loss experienced

by a policyholder. Parametric insurance relies on the fact that X may be difficult to

3



measure. In case of a natural catastrophe, X may be for example the total cost of the

event on a given area. It could take time to properly evaluate precisely this cost (if even

possible), and the idea is to rather pay a cost Y which is not exactly X, but is supposed

to reflect it. Y is supposed to be a variable which is must easier to measure.

For example, the precipitation level θ, or other meteorological variables, can be ob-

tained instantly, and a payoff can be deduced from Y, that is, in this case, Y = ϕ(θ) for a

given non-decreasing function ϕ. We will use the term “parameter” to denote the random

variable θ.

Ideally, we would like Y to be close to X. Another benefit that could be taken from

this approach is the potential reduction of volatility: paying Y instead of X is interesting

in terms of risk management if the variance σ2
Y of Y is smaller than the variance σ2

X of X.

Of course, if the variance of Y is too small compared to X, the quality of approximation

of X by Y can diminish, since the distribution of Y does not match with the one of X.

2.2 Dependence

For the parameter θ, or, more precisely, the payoff Y = ϕ(θ), to describe accurately the

risk, X and Y should be dependent. The most simple way to describe this dependence is

through correlation. Namely, let ρ be the correlation coefficient of X and Y defined by

ρ = Cor(X, Y ) = Cov(X, Y )σ−1
X σ−1

Y , where σ2
X = Var[X] and σ2

Y = Var[Y ]. Considering

the quadratic loss, we have

E[(X − Y )2] = σ2
X + σ2

Y − 2ρσ2
Xσ

2
Y + (E[X2] + E[Y 2]− 2E[X]E[Y ]).

Hence, increasing this correlation reduces the loss.

However, correlation is known to be a measure of dependence which takes mostly into

account the center of the distribution, but not the tail. When facing a large claim, that

is when X is far from its expectation, correlation is not enough to ensure that Y stays

close to its target.

To illustrate this matter, let us consider the case where we want to cover claims for

which X exceeds a deductible x0. If X is not observed and if the insurance product is

based on the parameter θ, the insurance company will make errors: sometimes a payment

will be initiated when X < x0, and sometimes no payment will occur even if X ≥ x0.

This is caused by the fact that θ is only a proxy to get to X : payment is in fact initiated

when θ ≥ t0, and the event {θ ≥ t0} does not exactly match with the event {X ≥ x0}.
A good parameter should be such that π+(t0, x0) = P(θ ≥ t0|X ≥ x0) and π−(t0, x0) =
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P(θ < t0|X < x0) are close to 1. Maximizing π+ is supposed to enhances the satisfaction

of the policyholder: coverage is obtained for almost all claims that are significant. On the

other hand, a high value of π− ensures that the insurer will not pay for claims that were

initially beyond the scope of the product.

Let us introduce the cumulative distribution function (c.d.f.) Fθ(t) = P(T ≤ t) (resp.

FX(t) = P(X ≤ t)) defining the distribution of θ (resp. of X), and the joint c.d.f.

Fθ,X(t1, t2) = P(θ ≤ t1, X ≤ t2). A common and general way to describe the dependence

structure between θ and X is through copulas. Copula theory is based on the seminal

result of Sklar (1959), stating that

Fθ,X(t1, t2) = C(Fθ(t1), Fθ(t2)), (2.1)

where C is a copula function, that is the joint distribution function of a two-dimensional

variable on [0, 1]2 with uniformly distributed margins. The decomposition is unique if

θ and X are continuous, which is the assumption we make in the following. Hence,

(2.1) shows that there is a separation between the marginal behavior of (θ,X), and the

dependence structure which is contained in C. Many parametric families of copulas have

been proposed to describe various forms of dependence (see for example Nelsen, 2007).

Let us write π+ and π− in terms of copulas. Introducing the survival functions Sθ(t) =

1− Fθ(t), SX(t) = 1− FX(t), and S(t1, t2) = P(θ ≥ t1, X ≥ t2), we have

π+(t0, x0) =
C∗(Sθ(t0), SX(x0))

SX(x0)
,

π−(t0, x0) =
Sθ(t0)− S(t0, x0)

FX(x0)
,

where C∗ is the survival copula associated with C, that is

C∗(v, w) = v + w − 1 + C(1− x, 1− w).

To make the link with classical dependence measures for π+, let us consider the case

where Sθ(t0) = SX(x0) = u. In this situation, a large value of π+ means that the deductible

on θ that we use (based on a quantile of the distribution of θ), has approximately the same

effect as a deductible directly on X (based on the same quantile). π+ close to 1 rewrites

C∗(u, u)/u ≈ 1. If u is small (which means that we are focusing on higher quantiles, that

is large claims), π+ becomes close to

λ = lim
u→0

C∗(u, u)

u
= P(θ ≥ S−1

θ (u)|X ≥ S−1
X (u)),
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which is the upper tail dependence, see Nelsen (2007). From this, we see that if we are

focusing on large claims, correlation is not sufficient if one wants to correctly represent

the risk, tail dependence seems more relevant.

Through this discussion, we focus solely on what triggers the payment, that is when

θ > t0. But another issue is the difference between the payment ϕ(Y ) and the true loss

X. This question is investigated in the next section.

Remark 2.1 π− can also be expressed in terms of copula, but is harder to link with

classical dependence measure. Our scope being essentially to focus on the tail of the

distribution and on the potential difference between what the customer expects and what

she/he gets, we do not develop this point.

3 Difference between the true loss and the payoff

based on the parameter

We here provide theoretical results to help quantifying the difference between X and Y

when a claim is large, that is when X is. The quantities that are measured are defined in

Section 3.1. We next consider two types of distribution: Gaussian variables (Section 3.2)

are used as a benchmark, while Pareto-type variables are considered in Section 3.3.

3.1 Measuring the difference

In the following we consider two different quantities to measure how far ϕ(Y ) is from X

for large claims, that is when X exceeds some high value s.

The first measure we focus on is E[X − Y |X ≥ s]. The advantage of this measure is

that it shows if Y tends to be smaller or larger than X. On the other hand, the conditional

bias E[X − Y |X ≥ s] may be zero (if E[Y |X] = X) while the conditional variance may

be large, leading to potentially huge gaps between X and Y in practice.

For this reason, we also consider a classical quadratic loss, that is E[(X−Y )2|X ≥ s].

Note that this quadratic loss may not be defined for distributions that have a too heavy

tail (this is also the case for E[X−Y |X ≥ s] which may not be defined if the expectation

is infinite, but assuming a finite variance restrains even more the set of distributions).

To understand how the approximation made by the parametric approach deteriorates

when X is large, we will next derive asymptotic approximations of these quantities when

s tends to infinity.
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3.2 Gaussian losses

In this section, we assume that (X, Y ) are Gaussian variables, with distribution(
X

Y

)
∼ N

((
µX

µY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
. (3.1)

Considering such a framework is not completely realistic, in the sense that X and Y

might take negative values with non-zero probability. Nevertheless, if µX and µY are large

enough, the probability of such an event is quite small. The Gaussian case is considered

here essentially because it gives us an example of variables that are highly concentrated

near their expectation, in order to measure the difference with heavy-tailed variables of

Section 3.3.

Moreover, another motivation for considering Gaussian variables is the Central Limit

Theorem. IfX consists of the aggregation of individual claims, that isX =
∑n

i=1 Zi, where

(Zi)1≤i≤n are independent identically distributed losses, the Central Limit Theorem states

that X is approximately distributed as a Gaussian random variable with mean nE[Z1]

and variance n1/2Var(Z1), provided that n is large enough. A Gaussian limit can also be

obtained under some weak forms of dependence for these aggregated losses. This requires

of course that the variance of Z1 is finite.

A specificity of Gaussian random vectors is that their dependence structure is solely

determine by the correlation matrix. Here, the dependence is driven by the correlation

coefficient ρ. As we already mentioned, this is somehow a way to define dependence in

the central part of the distribution. Due to the particular structure of Gaussian variable,

this quantity has also an effect on the tail, that is even looking at situations where X ≥ s

with s large.

Proposition 3.1 and 3.2 provide explicit formulas for E[X − Y |X ≥ s] and E[(X −
Y )2|X ≥ s].

Proposition 3.1 Consider a random vector distributed as (3.1). Then, as s→ +∞,

E[X − Y |X ≥ s] ∼ (µX − µY ) +

(
1− ρσY

σX

)
(s− µX), (3.2)

where ∼ is the symbol for equivalence.

Let us note that if E[Y |X] = X, that is if ρσY σ
−1
X = 1 and µX = µY , we retrieve that

E[X−Y |X ≥ s] = 0. Apart from this trivial case, we can decompose (3.2) into two parts.
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First, the difference between the expectation of µX and µY , which reflects how good Y is

able to capture the central part of the distribution of X. The second term increases with

s when ρσY σ
−1
X < 1. However, a large value of the correlation coefficient ρ tends to reduce

this effect. Hence, we can rely on correlation between X and Y to improve the ability of

the parametric insurance contract to provide good results even for large claims.

On the other hand, the case ρσY σ
−1
X ≥ 1 is less interesting to study: it would corre-

spond to a situation where σY ≥ σX , that is a payoff based on the parameter which is

more volatile that the one we would have directly used X. Although this situation may

occur, this is not the ideal case where parametric insurance is used to both facilitate the

collect of information required to trigger claim payment, and reduce the uncertainty.

Similar observations apply from the result of Proposition 3.2 for the quadratic loss.

Proposition 3.2 Consider a random vector distributed as (3.1). Then, as s→ +∞,

E[(X − Y )2|X ≥ s] ∼
(
1− ρ

σY
σX

)2
s2

σ2
X

. (3.3)

The exact value for E[(X − Y )2|X ≥ s] can also be computed for a vector distributed

as (3.1). The formula can be obtained from the proof of Proposition 3.2, which is made

in Section 6.1.2.

3.3 Heavy-tail distributions

Heavy-tail random variables play an important role in Extreme Value Theory, (see for

example Beirlant et al., 2004; Coles, 2001). Assuming that we are dealing with a i.i.d

sample which cumulative distribution function F -satisfies the following property

F (t) = t−γℓ(t) (3.4)

where ℓ is a slow-varying function, that is

∀x > 0, lim
t→∞

ℓ(tx)

ℓ(t)
= 1,

the fundamental result of Extreme Value Theory states that the normalized maximum

Mn of the sample converges in distribution toward a non-degenerated distribution and

that this distribution necessarily belongs to a parametric family of distributions, called

the generalized extreme value distributions. More precisely, under assumption (3.4) when

γ > 0, there exists normalizing constants an and bn > 0 such that

P
(
Mn − an

bn
≥ x

)
−→
n→∞

Gγ(x),
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and Gγ(x) is necessarily of the form, for x such that 1 + γx > 0,

Gγ(x) = exp(−(1 + γx)1/γ).

from (Fisher and Tippett, 1928) and (Gnedenko, 1943). More precisely, Gnedenko (1943)

showed that the survival function 1−F (t) is necessarily of the form (3.4). The parameter

γ which reflects the heaviness of tail of F is called the tail index. The higher γ, the heavier

the tail of the distribution: X tends to take large values with a significant probability.

Here, γ > 0, and X belongs to the heavy-tail domain. The tail of heavy-tail distribution

decreases polynomially toward 0, their moments of order larger than 1/γ do not exist.

For example, the Pareto, the Student, the log-normal and the Cauchy distributions are

heavy-tailed.

Hence, Assumption 3.4 allows us to cover a large set of distributions. In the following,

we thus assume that

SX(t) = ℓX(t)t
−1/γX , and SY (t) = ℓY (t)t

−1/γY , (3.5)

with γX , γY > 0 and ℓX and ℓY two slowing varying functions.

Let us also note that heavy-tailed variables can also be used to approximate sums of

losses. Taking again the example of X =
∑n

i=1 Zi, if Zi are heavy-tailed i.i.d. random

variables, Mikosch and Nagaev (1998) show that, when it comes to high quantiles, X can

be approximated by a heavy-tailed variable.

We here do not provide exact values for E[X−Y |X ≥ s] and E[(X−Y )2|X ≥ s], since

these quantities depend on ℓX and ℓY . Nevertheless, our results should general bounds for

s large. We first consider the case of E[X − Y |X ≥ s] in Proposition 3.3. We recall that

E[X − Y |X ≥ s] (resp. E[(X − Y )2|X ≥ s]) is defined only if γX and γY are less than 1

(resp. less than 0.5).

Proposition 3.3 Consider X ≥ 0 and Y ≥ 0 with survival functions as in (3.5), with

γX > γY . There exists a constant c > 0 depending on ℓX and ℓY and not on their

dependence structure, such that, for s large enough,

E[X − Y |X ≥ s] ≥ cs.

Proposition 3.3 shows that there is a linear increase in this difference for large values of

s. However, the situation is quite different from the Gaussian case. In the Gaussian case,

we could expect to reduce the slope by relying on a strong correlation between X and
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Y. Here, improving the correlation would certainly have an effect, but not on the leading

linear term. In fact, the distribution of X being heavier than Y, when s becomes large,

X belongs to some areas which are unreachable by Y except for very low probability. In

practice, the difference between γY and γX also plays a role, but, again, only on smaller

order terms.

We can obtain a more precise result under some additional assumptions, as we see in

Proposition 3.4 below.

Proposition 3.4 Consider X ≥ 0 and Y ≥ 0 with survival functions as in (3.5) with

γX > γY . Moreover, let

ψ(x) = E[Y |X = x].

Assume that ψ is strictly non decreasing and such that the random variable ψ(X) is

heavy-tailed. Then

E[X − Y |X ≥ s] = s− ψ(s) + o(s).

Under this additional assumption, we see that we even get a linear increase of E[X −
Y |X ≥ s], since ψ(s) is less than s since γY < γX .

A similar result is obtained for the quadratic loss in Proposition 3.5, where we see that

this quantity increases at rate s2, no matter the dependence structure between X and Y.

Proposition 3.5 Consider X ≥ 0 and Y ≥ 0 with survival functions as in (3.5), with

γX > γY .

E[(X − Y )2|X ≥ s] = s2 + o(s2).

Through these theoretical results, we see that there tends to be a significant gap

between the payoff Y and the true loss X when the variables are heavy-tailed. Here

we assumed that γX > γY , which seems to be the most interesting case since, in this

situation, the risk taken by parametric insurance is less volatile than the original one.

In the opposite situation, the parametric product would tend to over compensate the

true loss. The situation γX = γY seems purely theoretical, since it would require a very

particular situation in which both tail indexes are exactly the same.

Finally, let us mention that all the results of this section extends to the case where X is

heavy-tailed, and Y is low-tailed. In this situation, the remainder terms in the asymptotic

expansions are even smaller.
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4 Illustration inspired by cyber risk

The purpose of this section is to illustrate the theoretical results and to go beyond the

asymptotic approximations we gave. Our simulation setting is inspired from questions

arising in cyber insurance. Cyber insurance is a field in which parametric insurance is

increasingly mentioned as a promising tool to conceive contracts adapted to the complexity

of the risk, see for example Dal Moro (2020) or Chapter 5 in OCDE (2017). Different

indicators have been proposed to monitor the risk, either regarding frequency or severity of

an event. We here build a simulation setting which is inspired (in terms of the distribution

we use) from calibrations that have been done in the field of cyber, more precisely in the

case of data breaches. This context offers a natural physical parameter which describes

the severity. In Section 4.1, we give a short presentation of this context. The simulation

settings we consider are explained in Section 4.2, with a focus on the copula models that

we use in Section 4.3. The results and analysis are given in Section 4.4.

4.1 Description of data breaches through number of records

Among the various types of situations behind the concept of cyber risk, data breaches are

probably the ones for which the cost related to such an event is relatively easy to evaluate.

Indeed, the volume of data that has been breached (namely the “number of records”) is

a good indication of the severity. This quantity, which can be easily measured soon after

occurrence of a claim, can be used as a parameter that should be able to give indications

on the true loss.

Jacobs (2014) proposed a relationship between this number of records, say θ, and

X, which can be taken as the formula defining the payoff Y. This relationship is of the

following type,

log Y = α + β log θ, (4.1)

where X and Y are expressed in dollars. The formula has been calibrated from data com-

ing from the Ponemon institute (see Ponemon, 2018). Jacobs (2014) estimated α = 7.68

and β = 0.76. Nevertheless, Farkas et al. (2021) pointed that the formula, computed from

data collected in 2014, was not consistent with some so-called “mega-breache” observed

afterwards. For example, two mega-breaches have been reported in the CODB report

2018 (see Ponemon, 2018). The first one, with 1 million breached records, would lead

to an estimated cost of nearly 79 million dollars, while the true cost was approximately

39 millions. The biggest one, with 50 million breached records, would lead to Y = 1.5
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billion dollars, far from the paid 350 millions. Hence, Farkas et al. (2021) proposed a

(very rough) recalibration of the parameters, taking α = 9.59 and β = 0.57.

Behind this discussion, one sees that, even though we are facing an indicator (the

number of records) that seems to be physically relevant to describe the magnitude of the

event we considered, the payoff function Y may be a very rough approximation of the

true loss, especially in the tail. Apart from the inherent variance of the error behind the

calibration of (4.1), and the potential lack-of-fit of the model, we see that there is many

uncertainties concerning the estimation of the parameters.

The examples we use in the following are inspired by this example, and the corre-

sponding values of the parameters.

4.2 Simulation settings

In this section, we consider different settings inspired by the relationship (4.1) between

the expected cost of a data breach and the number of records.

Main settings. First of all, to consider reasonable values that are connected to our

example, we need a proper distribution for the parameter θ. We choose the simple Pareto

distribution considered by Maillart and Sornette (2010), that is

P(θ ≥ t) =
(u
t

)b
, for t ≥ u,

with b = 0.7 and u = 7.104. This heavy-tail distribution is consistent with the work of ,

or with the analysis of Farkas et al. (2021) based on more recent data (where a significant

class of the data breaches has been identified to follow a distribution close to the one of

(Maillart and Sornette, 2010)).

In this case, the variable Y inherits the heavy-tail property of θ if Y is defined according

to (4.1). More precisely, we see that

P (Y ≥ t) =

(
u′

t

)b/β

, for t ≥ u′,

with u′ = uβ exp(α). The parameter β is of course the more important when we look at

the tail of the distribution, since it is directly linked to the tail index γY = β/b. We take

α = 9.59 and β = 0.5, that is slightly lower than the parameter β calibrated in Farkas

et al. (2021).

Next, to simulate X, we consider

logX = α + β′ log(θ′),
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where

P(θ ≥ t) =
(u
t

)b′
, for t ≥ u,

with b′ = b− 0.1. The choice of b′ − 0.1 is motivated by the fact that this corresponds to

the error margin given by Maillart and Sornette (2010). The parameter θ′ is simulated

to be dependent from θ, and creates the dependence between X and Y, by considering

different copula functions to describe the dependence structure. The copula families and

how the corresponding parameters have been chosen is explained in Section 4.3.

Benchmark settings. To better understand the impact of the heaviness of the dis-

tributions and the impact of the difference between the values of the tail indexes. This

settings are denoted B1 to B3 in the following.

• Setting B1 : Y is simulated as in the main settings, but X = Y + ε, where ε ∼
N (0, σ2

1). The variance is taken so that X has the same variance as in the main

settings.

• Setting B2 : Y is simulated as in the main settings, but logX = log Y + ε, where

ε ∼ N (0, σ2
2). Again, σ

2
2 is taken so that X has the same variance as in the main

settings.

• Setting B3 : (X, Y ) is a Gaussian vector as in (3.1), with same mean and variance

as in the main settings. We consider different values for the correlation coefficient,

ρ = 0.3, ρ = 0.5 and ρ = 0.7.

All of these benchmark cases can be thought has ”favorable cases”: with B1 and

B2, the tail index of X and Y is the same. In the first situation, we take an additive

Gaussian error, which means that X is relatively concentrated around Y. In B2, the errors

are multiplicative, since the Gaussian error is applied to the logarithms. This typically

corresponds to the optimistic case where E[logX|Y ] = α + βY : that is a standard

linear regression model on the logarithm of X with no misspecification error. Finally, the

benchmark B3 is the more optimistic case, where X and Y have Gaussian tails.

4.3 Copula families

We consider three copula families, corresponding to different types of dependence struc-

ture. The copula functions are summarized in Table 1.
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Copula family Copula function δ ∈ τ λU

Clayton survival u+ v − 1 +
[
max

(
u−δ + v−δ − 1, 0

)]−1/δ
δ ≥ −1 and δ ̸= 0 δ

δ+2
2−δ

Gumbel exp

(
−
[
(− log(−u))δ − (log(−v))δ

]1/δ)
δ ≥ 1 δ−1

δ
2− 2−δ

Frank −1
δ
log
(
1 + (e−δu−1)(e−δv−1)

e−δ−1

)
δ ̸= 0 Implicit 0

Table 1: Copula families used in the different simulation settings.

The Frank copula family is classical and flexible, but does not allow us to take tail

dependence into account. On the other hand, the two other families that we consider

(Gumbel, and Clayton survival copula) have non-zero tail dependence.

To make things comparable, we consider values of parameters that provide a similar

dependence according to an appropriate indicator. The dependence measure that we use

is Kendall’s tau coefficient, which is defined, for two random variables (θ, θ′), as

τ = P((θ1 − θ2)(θ
′
1 − θ′2) > 0)− P((θ1 − θ2)(θ

′
1 − θ′2) < 0),

where (θ1, θ
′
1) and (θ2, θ

′
2) are independent copies of (θ, θ

′). A simple relationship between

the parameter τ and the classical parametrization of the copula families we consider.

We consider three values of the parameters for each copula family, corresponding

respectively to τ = 0.3, τ = 0.5 and τ = 0.7.

4.4 Simulation results

In Figure 1 and 2, we see the evolution of E[(X − Y )|X ≥ s] and E[(X − Y )2|X ≥ s]

in the different models used for the simulations. Let us recall that these models only

differ because of the dependence structure between Y and X. In each case, X and Y are

heavy-tailed.

We can observe that the evolution seems approximately linear for s large in the case

of E[(X − Y )|X ≥ s], and approximately quadratic for E[(X − Y )2|X ≥ s]. Clearly,

the dependence structure matters, allowing to reduce the slope (which is a property that

was expected but not covered by Proposition 3.3 and 3.5). We also see in Figure 1 that

the slope is close to 1 for Frank’s copula, and is reduced for the families that allow tail

dependence. Let us point out that a slope close to 1 is bad news: this means that the

difference between Y and X is of the same magnitude as X itself (since X ≥ s).

These results emphasize the need to use a parameter which is not only connected to the

basis risk via a form of “central dependenc”, but which can also integrate tail dependence.
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Figure 1: Evolution of E[X − Y |X ≥ s] with respect to the threshold s. The red lines

correspond to a Kendall’s tau coefficient τ = 0.3, orange τ = 0.5, blue τ = 0.7.

Figure 2: Evolution of E[(X − Y )2|X ≥ s] with respect to the threshold s. The red lines

correspond to a Kendall’s tau coefficient τ = 0.3, orange τ = 0.5, blue τ = 0.7.

Without this property, heavy tailed variables may not be approximated properly due to

the significant proportion of events in the tail of the distribution.
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Next, Figures 3 and 4 show comparisons between the Clayton case and the bench-

marks. The conclusions for the other settings being similar, we postpone the figures to

the appendix section (section 6.3).

Figure 3: Evolution of the ratio of E[(X−Y )|X ≥ s] computed from the Clayton survival

copula model, with respect to the value of E[(X − Y )|X ≥ s] obtained in the benchmark

settings. The orange lines correspond to benchmark B1, the red ones to scenario B2, the

blue one to scenario B3.

From these figures, we see that the cases B1 and B2 are much favorable. In B3, we are

in the Gaussian case, that is X and Y have low tails, and the error is much smaller than

in the case of heavy tails. In B1 and B2, X and Y should have the same tail, but we see

that, although these cases seem very optimistic, the absence of tail dependence make the

results poorer in some situations.
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Figure 4: Evolution of the ratio of E[(X − Y )|X ≥ s] computed from the Gumbel copula

model, with respect to the value of E[(X−Y )|X ≥ s] obtained in the benchmark settings.

The orange lines correspond to benchmark B1, the red ones to scenario B2, the blue one

to scenario B3.

5 Conclusion

In this paper, we investigated what are the factors that may disturb the project of para-

metric insurance to properly cover the basis risk in case of large claims. This question

can be seen of the ability of a random variable to approximate another. We particularly

emphasized the problem created by heavy tailed losses. In these cases, the difference

between what is paid to the policyholder and the true may be quite large, particularly if

the tail index is even slightly misevaluated. The ability of parametric insurance to reduce

the variance will be diminished in this case—except if one accepts to provide a poorer

coverage for large claims—since no reduction of the tail index compared to the basis risk

leads to, more or less, the same kind of variability. Next, the dependence structure be-

tween the parameter and the true loss seems to be an important question to address.

Tail dependence appears to be essential in order to obtain a proper approximation of the

losses for large claims. Let us mention that designing a parameter tail dependent from the

basis risk is a challenging task: analyzing ”extreme” events requires lots of data, which

pleads for a careful statistical analysis to properly define the proper metric. Alternatively,
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specific treatment for large claims could be anticipated, in order not to create a too huge

gap between the expectations of the policyholders and the compensated amount.

6 Appendix

The Appendix section is organized in the following way. Section 6.1 is devoted to the

results of Gaussian variables, while the results regarding variables with Pareto tail are

gathered in Section 6.2. The additional comparisons with the benchmarks of the simula-

tion study are shown in section 6.3.

6.1 Results on Gaussian variables

6.1.1 Proof of Proposition 3.1

First recall that X is distributed according to the distribution N (µX , σ
2
X) so that

E[X|X ≥ s] = µX + σ2
Xh(s|µX , σ

2
X), (6.1)

where h(s|µX , σ
2
X) is the hazard rate of a Gaussian random variable with mean µX and

variance σ2
X , that is

h(s|µX , σ
2
X) =

exp
(
− (s−µX)2

2σ2
X

)
√

2πσ2
XΦ̄
(

s−µX

σX

) ∼
s→+∞

s− µX

σ2
X

,

with Φ̄ the survival function of the standard Gaussian distribution N (0, 1).

First of all, let m(s) = E[(X − Y )1X≥s]. Since

E[Y |X] = µY +
ρσY
σX

(X − µX),

we have

m(s) =

(
1− ρσY

σX

)
E [X1X≥s]−

(
µY − ρσY

σX
µX

)
P(X ≥ s).

From (6.1), we get

E[X − Y |X ≥ s] = (µX − µY ) +

(
1− ρσY

σX

)
σ2
Xh(s|µX , σ

2
X)

∼ (µX − µY ) +

(
1− ρσY

σX

)
(s− µX),

as s→ ∞.
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6.1.2 Proof of Proposition 3.2

We have

E[(X − Y )2|X ≥ s] = E[X2|X ≥ s] + E[Y 2|Y ≥ s]− 2E[XY |X ≥ s].

Moreover,

m2(s) = E[X2|X ≥ s] =
(
σ2
X + µ2

X

)
+ σ2

Xh(s|µX , σ
2
X)(s+ µX),

and

E[XY |X ≥ s] = E[XE[Y |X]|X ≥ s].

From (6.1),

E[XY |X ≥ s] =

(
µY − ρ

σY
σX

)
(µX + σ2

Xh(s|µX , σ
2
X)) + ρ

σY
σX

m2(s).

Finally,

E[Y 2|X ≥ s] = E[Var(Y |X)|X ≥ s] + E[E[Y |X]2|X ≥ s],

which leads to

E[Y 2|X ≥ s] = σ2
Y (1− ρ2) +

(
µY − ρµX

σY
σX

)2

+ρ2
σ2
Y

σ2
X

m2(s) + 2ρ
σY
σX

(µY − ρµX
σY
σX

)(µX + σ2
Xh(s|µX , σ

2
X)).

Hence, we see that

E[(X − Y )2|X ≥ s] =

(
1− ρ

σY
σX

)2

m2(s) + o(m2(s))

=

(
1− ρ

σY
σX

)2

sh(s|µX , σ
2
X) + o(sh(s|µX , σ

2
X))

∼
(
1− ρ

σY
σX

)2
s2

σ2
X

,

as s→ ∞.

6.2 Results on heavy-tail variables

6.2.1 A preliminary result

We start with a preliminary result showing that the variable X − Y has the same tail

index as X, under the assumptions of Propositions 3.3 to 3.5. Lemma 6.1 consists in

providing upper and lower bounds for the survival function of X − Y .
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Lemma 6.1 Let X, Y be as defined in Proposition 3.3, and let Z = X − Y . Then,

introducing SZ(t) = P(Z ≥ t), for t ≥ 0,

h−1/γX t−1/γXℓX(th)− (h− 1)−1/γY t−1/γY ℓY (t(h− 1)) ≤ SZ(t) ≤ t−1/γXℓX(t),

with h > 0 fixed.

Proof. Since Y ≥ 0 almost surely, X − Y ≥ t implies that X ≥ t. Hence, we get

SZ(t) ≤ SX(t), and the upper bound of Lemma 6.1 is obtained.

To obtain the lower bound, introduce the event, for h > 0 fixed,

Eh(t) = {{X ≥ th} ∩ {Y ≤ t(h− 1)}} .

We have SZ(t) ≥ P(Eh(t)). Next,

P(Eh(t)) ≥ P(X ≥ th)− P(Y ≥ t(h− 1)) = SX(th)− SY (t(h− 1)).

This shows the lower bound in Lemma 6.1.

We can now apply this lemma to obtain the following proposition.

Proposition 6.2 Let X be a heavy tail variable with γX > 0. Let Y be a non negative

variable with tail index γY < γX . If γX > γY , Z = X − Y is heavy-tailed with tail index

γX .

Proof.

Let ℓZ(t) = t1/γXSZ(t). Let us proof that ℓZ is slowly-varying. From Lemma 6.1, for

x > 1 and for all h > 10,

ℓZ(tx)

ℓZ(t)
≤ ℓX(tx)

h−1/γXℓX(th)− (h− 1)−1/γX (t(h− 1))1/γX−1/γY ℓY (t(h− 1))
, (6.2)

and,
ℓX(thx)

h1/γXℓX(t)
− x1/γX (tx(h− 1))−1/γY ℓY (tx(h− 1))

t−1/γXℓX(t)
≤ ℓZ(tx)

ℓZ(t)
. (6.3)

Hence, for all x > 0 and h > 1, taking the limit of the right-hand side of (6.2),

lim sup
t→∞

ℓZ(tx)

ℓZ(t)
≤ h1/γX .

To see that, let β = γ−1
Y −γ−1

X > 0.We have t−β/2lY (t(h−1)) →t→∞ 0, and tβ/2lX(tx) →t→∞

∞.
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Similarly, from (6.3), we get

lim inf
t→∞

ℓZ(tx)

ℓZ(t)
≥ 1

h1/γX
.

This is valid for all h > 1. Next, let h tend to 1 in order to obtain that, for all x,

limt→∞ ℓZ(tx)/ℓZ(t) = 1, leading to the result.

6.2.2 Proof of Proposition 3.3

From Proposition 6.2, Z = X − Y is heavy-tailed with tail index γX , that is SZ(t) =

ℓZ(t)t
−1/γX with ℓZ slow-varying. Hence,

E[Z|Z ≥ s] = s+ o(s). (6.4)

Next,

E[Z|X ≥ s] = E[Z|X ≥ s, Z ≥ s]P(Z ≥ s|X ≥ s)

+E[Z|X ≥ s, Z < s]P(Z < s|X ≥ s).

Since Z ≥ s implies X ≥ s, we have

E[Z|X ≥ s, Z ≥ s]P(Z ≥ s|X ≥ s) = E[Z|Z ≥ s]P(Z ≥ s|X ≥ s).

Moreover,

P(Z ≥ s|X ≥ s) =
P ({Z ≥ s} ∩ {X ≥ s})

P(X ≥ s)
=

P(Z ≥ s)

P(X ≥ s)
.

From this, we get

E[Z|X ≥ s] ≥ E[Z|Z ≥ s]× ℓZ(s)

ℓX(s)
= (s+ o(s))× ℓZ(s)

ℓX(s)
,

from (6.4). From Lemma 6.1, we see that, taking for example x = 2,

ℓZ(s)

ℓX(s)
≥ 1

21/γX
ℓX(2s)

ℓX(s)
− 1

sβ
ℓY (s)

ℓX(s)
,

introducing β = γ−1
Y − γ−1

X > 0. Since ℓX and ℓY are slow varying, sβ/2ℓX(s) → ∞,

s−β/2ℓY (s) → 0 as s tends to infinity, leading to

1

sβ
ℓY (s)

ℓX(s)
= o(1).

Moreover,

lim
s→∞

ℓX(2s)

ℓX(s)
= 1,

showing that there exists a constant c > 0 such that, for s large enough,

E[Z|X ≥ s] ≥ cs.
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6.2.3 Proof of Proposition 3.4

We have

E[X − Y |X ≥ s] = E[X − ψ(X)|X ≥ s],

where ψ(X) = E[Y |X]. Since X is heavy-tailed with tail index γX > 0, E[X|X ≥ s] =

s+ o(s). On the other hand,

E[ψ(X)|X ≥ s] = E[ψ(X)|ψ(X) ≥ ψ(s)],

since ψ is strictly non decreasing. Then, since ψ(X) assumed to be heavy-tailed,

E[ψ(X)|ψ(X) ≥ ψ(s)] = ψ(s) + o(ψ(s)),

which shows that

E[X − Y |X ≥ s] = s− ψ(s) + o(s).

6.2.4 Proof of Proposition 3.5

Let Z = X − Y. We have

E[(X − Y )2|X ≥ s] =
E[Z21X≥s]

P(X ≥ s)
≥ E[Z21X≥s1Z≥s]

P(X ≥ s)
.

If Z ≥ s, then, necessarily, X ≥ s since Y ≥ 0. Hence

E[(X − Y )2|X ≥ s] ≥ E[Z21Z≥s]

P(X ≥ s)
= E[Z2|Z ≥ s]

P(Z ≥ s)

P(X ≥ s)
.

Next,

E[Z2|Z ≥ s] =
E[Z21Z2≥s2 ]

P(Z ≥ s)
− E[Z21Z<−s]

P(Z ≥ s)
.

Moreover,

E[Z21Z<−s] ≤ E[Y 21Y≥s] = E[Y 2|Y ≥ s]P(Y ≥ s).

Combining this last equation with Proposition 6.2 leads to

E[Z2|Z ≥ s] ≥ E[Z2|Z2 ≥ s2]
P(Z2 ≥ s2)

P(Z ≥ s)
− ℓY (s)

ℓZ(s)
E[Y 2|Y ≥ s]s1/γX−1/γY

≥ E[Z2|Z2 ≥ s2]− ℓY (s)

ℓZ(s)
E[Y 2|Y 2 ≥ s2]s1/γX−1/γY ,

where the last line comes from the fact that, P(Z2 ≥ s2) ≥ P(Z ≥ s), and that, since

Y ≥ 0 almost surely, E[Y 2|Y ≥ s] = E[Y 2|Y 2 ≥ s2].
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We have, since Y ≥ 0 almost surely,

P(Y 2 ≥ t) = P(Y ≥ t1/2) =
ℓY (t

1/2)

t1/(2γY )
,

where t→ ℓY (t
1/2) inherits the slow-varying property of ℓY . Hence

E[Y 2|Y 2 ≥ s2] = s2 + o(s2). (6.5)

On the other hand, let β = γ−1
Y − γ−1

X > 0. Since ℓY (s)s
2−β/2 → 0 when s tends to

infinity, and since ℓZ(s)s
β/2 → ∞. Hence, using (6.5),

ℓY (s)

ℓZ(s)
E[Y 2|Y 2 ≥ s2]s1/γX−1/γY = s2−β/2 + o(s2−β/2).

Since E[Z2|Z2 ≥ s2] = s2 + o(s2), the result follows.
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6.3 Additional comparisons with benchmarks

Figure 5: Evolution of the ratio of E[(X − Y )|X ≥ s] computed from the Frank copula

model, with respect to the value of E[(X−Y )|X ≥ s] obtained in the benchmark settings.

The orange lines correspond to benchmark B1, the red ones to scenario B2, the blue one

to scenario B3.

Figure 6: Evolution of the ratio of E[(X − Y )2|X ≥ s] computed from the Frank copula

model, with respect to the value of E[(X−Y )|X ≥ s] obtained in the benchmark settings.

The orange lines correspond to benchmark B1, the red ones to scenario B2, the blue one

to scenario B3.
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Figure 7: Evolution of the ratio of E[(X − Y )2|X ≥ s] computed from the Frank copula

model, with respect to the value of E[(X−Y )|X ≥ s] obtained in the benchmark settings.

The orange lines correspond to benchmark B1, the red ones to scenario B2, the blue one

to scenario B3.

Figure 8: Evolution of the ratio of E[(X − Y )2|X ≥ s] computed from the Frank copula

model, with respect to the value of E[(X−Y )|X ≥ s] obtained in the benchmark settings.

The orange lines correspond to benchmark B1, the red ones to scenario B2, the blue one

to scenario B3.
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