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THERMODYNAMIC LIMIT OF THE PIECES’ MODEL
VADIM OGNOV

ABSTRACT. We study the ground states of the pieces’ model in the Fermi-Dirac statistics in the
thermodynamic limit. In other words, we consider the minimizing configurations of n interacting
fermions in an interval A divided into pieces by a Poisson point process, when ﬁ — p >0 as
|A| — oo. We notice that a decomposition into groups of pieces arises from the hypothesis of finite-
range pairwise interaction. Under assumptions of convexity and non-degeneracy of the subsystems,
we get an almost complete factorization of any ground state. This method applies at least for
groups comprising one or two particles. It improves the expansion of the thermodynamic limit of
the ground state energy per particle up to the error O(p?~?), with 0 < § < 1 (see [KV20]). It also
provides an approximate ground state for the pieces’ model.

1. INTRODUCTION

One-dimensional many-body localization is a non-trivial topic for both condensed matter physi-
cists and spectral theory mathematicians. At large disorder, one expects that quantum systems
with interaction do not thermalize and that they exhibit a kind of localization [AL1S8|. Some papers
tackle this phenomenon for a finite number of particles and an infinite interval [BWI§| [EKSIS|.
However, from a physical perspective, the appropriate scope would be to consider a number of
particles that increases proportionally with the size of the interval. This regime is called the
thermodynamaic limit.

Published in 2012, a paper of Veniaminov proved the existence of the thermodynamic limit of
the ground state energy per particle for a class of disordered quantum systems [Venl2|. This
result applies in particular to the pieces’” model which is a refined version of the Luttinger-Sy
model, introduced in 1973 [LS73]. Without interaction, the ground state is given by minimizing
the distribution of n particles among the partition of the large interval A into pieces by the
Poisson point process. Because of this explicit solution and since the original paper, the pieces’
model has been studied to understand the Bose-Einstein condensation of free or interacting bosons
[LZ06] [KPS19al [KPS19b] [KP21].

In this article, we focus on the pieces’ model in the Fermi-Dirac statistics, i.e for indistinguishable
particles. Our work is inspired by the paper of Klopp and Veniaminov [KV20]. Let p > 0 be the
density of particles, i.e the limit of the ratio ﬁ Klopp and Veniaminov expand the thermodynamic
limit of the ground state energy per particle up to the error O(— p log(p)_3). We give an expansion
up to the error O(p2_5), for any § € (0,1), in case of finite-range interactions. We also provide a
natural characterization of the ground states. The next step would be to use our results to express
some indicators of the many-body localization.

Let us now briefly describe our method. In the free case, the minimizing configuration of particles
is such that the energy produced by any particle is less than the Fermi energy F,. It yields that, in

the ground state, the pieces with length below [, = 7E, Y2 are empty. Similarly, in the interacting
case, under the assumptions of a pairwise potential U with compact support and a density of
particles p small enough, the pieces with length below [, are empty for any ground state. So,
the random background reduces to a compilation of groups of pieces, that we call chains, such
that a particle belonging to a chain cannot interact with a particle living outside this chain. This

structure is therefore similar to the one of the free system if the chains replace the pieces. Our
1



2 VADIM OGNOV

problem turns into finding a minimizing distribution of n particles among the chains. Without
interaction, given any piece, the energy as a function of the number of particles is convex. This
property allows to get the ground state inductively. Does this statement hold for any chain in
the presence of interactions? Unfortunately we did not solve this question. We bypass this issue
noticing that, due to the nature of the Poisson point process, large chains do not contribute much
to the total energy. The ground state energy per particle is mostly, i.e up to our error term,
given by isolated fermions and isolated pairs of fermions lying in one or two pieces. For these
simple subsystems, the energies are convex and we can compare them quite precisely. Then, we
distribute by induction the particles among these chains. We prove that the corresponding state
approximates any ground state in the thermodynamic limit.

The paper is organized as follows. In Section 2, we present the model and we sketch our method
to get an expansion of the ground state energy per particle up to any order O(p*~%), p > 2 and
0 < 0 < 1, under strong assumptions. In Section 3, we state our results for p = 2 without proof.
Section 4 rigorously develop the splitting into chains, including its limits. Section 5 is devoted to
the detailed study of chains comprising at most two particles. It also contains the proofs of our
main propositions. We gather other results in the Appendix.

2. MODEL AND FIRST OBSERVATIONS

2.1. The pieces’ model for Fermi-Dirac statistics. Let X (w) = (z,(w))nez be a Poisson
point process on R of intensity 1. Recall that the probability that a Borel set A < R contain
exactly k points is
A,
P(#(X(w) n &) = k) = e

and for two disjoints Borel sets A1, Ay < R, the events {X(w) n Ay = ki } and {X(w) n Ay = kao}
are independent.

For L > 0 we set A = [0, L]. We assume that zo(w) = 0 and we denote m(w) = #(X (w) n A).
By a large deviation principle, when L is large, with probability 1 — O(L™%), m(w) = L+ O(L3),.
For i € [1,m(w)], the i-th piece is the interval A;(w) = [x;_1(w), z;(w)].

On H(A) = L*(A), we set the following one-particle random operator

m(w) d2 D
2.1 he(A) = - —
2 0= @ (- 0)

where D stands for Dirichlet boundary conditions.
Now, we consider n particles in the disordered background given by h,,(A) combined to a pairwise
repulsive interaction. Using the statistic of Fermi-Dirac, the n-particle space on A is

22) 5 = A\ s

Then, for n > 2, the pieces’ model is the random operator given by

(2.3) HY(A,n) Zn: (@1%) ho(A) ® (3@1 15(A)) + W, on H"(A)

i=1
where W, is the multiplication operator

(2.4) W1, ..., zp) :EU(x

1<j
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and U : R — R satisfies the following assumption.

Assumption 2.1. The function U : R — R is nonnegative, even, bounded and compactly sup-
ported.

Under Assumption the operator HY (A, n) is well-defined on D, (A, n) given by

m(w)

Dy(A,n) = ch(( U ]xk_l,xk[)n) N H"(A)

k=1

and it is nonnegative. Using perturbation theory (see e.g Chapter 6 [Tesld]), one proves that
HUY(A,n) is essentially self-adjoint on $™(A) and it has pure spectrum. Let EY(A,n) be the
ground state energy of HU (A, n).
Definition 2.1. The limat {L — +w, 7 — p} 15 called the thermodynamic limit. The constant
p s the density of particles per unit of volume.

In [KV20], Klopp and Veniaminov proved that, even under weaker assumptions on U, the
thermodynamic limit of n ' EY (A, n) exists P-almost surely and in L!(P). In this paper, we give
an expansion of this limit.

2.2. The free operator. We denote by H?(A,n) the free operator and by E°(A,n) its ground
state energy. One can give quite explicitly the thermodynamic limit of the ground state energy
per particle

E2(A,n)
0 L : w )
(2.5) E°(p) = L}L—I}EOO —
L7

The ground state energy E° (A, n) is exactly the sum of the n first eigenvalues of h,,(A). But, since
its eigenvalues only depend on the lengths of the pieces and the statistical distribution of these
lengths is known, the pieces’ model admits an explicit integrated density of states (see Proposition
2.6 [KV20] or Proposition 3.2 [LZ06]). One computes

#{eigenvalues of hy(A) in (—o0, E]} s
(2.6) N(E) := lim _ S P
L— L 1_ e VB

Let the Fermi energy E, be the unique solution of N(E) = p. Then, one deduces

(2.7) £9(p) = %L "EdN(E).

We refer to Theorem 5.14 [Ven12] for the proof.

2.3. The approach in term of occupations. From now on, we drop the "w” index. Unlike the
free operator, one cannot express the ground state energy of the pieces’” model with interactions
by using the spectral decomposition of the one-particle operator. However, in both cases, one can
talk about the number of particles in a given piece. The n-particle space admits the decomposition

28 W)= @ Hod) with sa<qi>1gigm<A>=/\(/\L2<Az->).

QeN™ |Q|1=n i=1 N\ j=1

Definition 2.2. An occupation is a multi-indexr @ = (q;)1<i<m of norm equal to n.
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In [KV20], Klopp and Veniaminov proved that the decomposition is invariant under the
action of HY(A,n). For a fixed occupation Q, let HY(A,n,Q) be the restriction of HY(A,n) to
the subspace g(A). Then, the ground state ¥V (A, n, Q) of HY(A,n, Q) is non-degenerate and it
has exactly ¢; particles in the piece A; for all i € [1,m].

In the free case, it yields that, for a given occupation @, the ground state energy of H°(A, n, Q)
satisfies

(2.9) E°(A,n, Q) = i (A, ¢)

where we denote E°(A, k) the ground state energy for k non-interacting fermionic particles in the
piece A. Each particle lies in a Dirichlet Laplacian background in A. The minimum of E°(A, n, Q)
over all the occupations is the ground state energy of H°(A,n). Remark that E°(A, k) is the sum

of the k first eigenvalues of the operator ha = —%i. So, the map £k — E°(A,k) is strictly

convex on N. By Lemma E the ground state energy E°(A,n) is given by the sum of the n
smallest elements of the set I’ = {E°(A;, k + 1) — E°(A; k), i € [1,m], k € N}.

However, note that the set I'’ is equal to the set of all the eigenvalues of the one-particle operator
h(A). Then the counting function of T'Y,

(2.10) N°(E):= lim #<Fgm<_oo’E]>

L—+00 L ’

is well-defined and it is equal to the integrated density of state of h(A). Thus, we recover the
formula ([2.7)).

From now on, we restrict to finite-range interactions.
Assumption 2.2. Let s(U) be the support of the function U and

(2.11) M= sup |z—y|
z,yes(U)

The length M is independent of p.
The following lemma is crucial for our analysis.

Lemma 2.1. Let WY(A,n) to be a ground state of HY(A,n). For n and L large enough, with
probability 1 — O(L~%), there exists a minimal length 1, = —log (ﬁ) — (4M + 6)p such that

If a piece A; satisfies |A;| < kl,u, k € N, then, for every occupation @Q,

<PQ\IIU(A,n) # 0> = (qi <k-— 1)
where Py is the orthogonal projector on Hg(A).

So, given a piece, the number of particles in this piece is bounded uniformly for any ground
state. In particular, the pieces of length up to [, are empty for any ground state.

We will use the term chain to refer to a group of pieces of length greater than [, with gaps of
length smaller than M. Let P to be the set of chains. Using the notations of Lemma [2.1] for any
occupation () such that PQ\IJZ(A, n) # 0, the ground state energy of HY(A, n, Q) satisfies

(2.12) YA, Q) = > FU(I,k(Q

IeP
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where /7(Q) is the number of particles in the chain I and FY(I, ) is the smallest energy produced
by k particles in I. Each particle lies in a Dirichlet Laplacian background for some piece of I and
it is eventually submitted to the repulsive pairwise interaction U.

One should think of Equation (2.12) as a counterpart to Equation (2.9)) where each chain stands
for an occupied piece in the free case. If one could prove the convexity of every map x — FUY(I, k)
then by Lemma , the ground state energy EY (A, n) would be given by the sum of the n smallest
elements of the set I' = {FU(I,k + 1) — FY(I, k), I chain, k € N}.

For k = 0, the (k + 1)-th energy level of the chain I is given by

(2.13) fU(I,k+1)=FY(I,k+1) - FY(I, k).

It represents the smallest amount of energy that appears if one adds a particle to a minimizing
configuration of k particles in I. From the above discussion, one would like to use that, for
every chain, k — fY(I, k) is increasing. Using the perturbation methods, we fail to prove such a
statement. However it seems relevant to search for results in case of monotony for small chains
and /or for few particles.

More precisely, let p > 2 and P, be the set of chains each of which carries at most p particles
for any ground state, and I', be the set of the p lowest energy levels of every chain that belongs to
Pp, meaning that

(2.14) r,= {fU(I,/ﬁl), I eP, nép}.
Assume that
(2.15) VieP, Vi<p-—1, fl,r) < f(I,k+1).

Set 6 € (0,1). By Lemma [2.1]and by statistical distribution of the pieces (see Proposition [6.2)), one
proves that, for any ground state, the number of particles in “P,, the complement of P,, is of order
O(npP~?%). One also controls the contribution of these particles to the ground state energy with
a bound of order O(np?~?). Then, up to an error O(npP~?), the ground state energy EV(A,n) is
given by the sum of the n smallest elements of I',,. Let Ng be the counting function of I',, meaning
that

) #(T, 0 (=0, ])
(2.16) N, (A) = LETw 7 :
Using NpU as a counterpart to NV (see ), one should get an approximation of the thermody-
namic limit of the ground state energy per particle £Y(p) up to an error O(p?~°).

3. MAIN RESULTS

Since the interaction is repulsive, Assumption is always true for p = 2. Following the
above discussion, we study this case in depth. In the set P, a chain is either a single piece with
at most two particles, or a pair of pieces with at most one particle in each piece.

Klopp and Veniaminov proved a result about the ground state energy of two interacting particles
in a single piece.

Proposition 3.1. [KV20] Under Assumption for 1 >0, consider the operator
o D

(3.1) < d ) @ Lr2¢oay) + L2 ® (— ) +U(x —vy) on L*([0,1]) A L*([0,1])

N d_y2|[o,1] EI[OJ]
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Then, for large l, the ground state energy EU([O, 1, 2) admits the following expansion

(3.2) EY([0,1],2) = 55—7;2 + % +o(I™?)

with v > 0 when U # 0.

In the Appendix, we prove an analogue of Proposition [3.1] for the ground state energy of two
interacting particles in two distinct pieces.

Proposition 3.2. Under Assumption[2.1], for 1 >0, d >0 and a > 1, consider the operator
(3.3)
o D

a2’ d
- 172 120 - U(x— L*([—al,0])QL*([d, d+1
( dy2|[al,0])® r2([dd+1)) 12 az,o])®( d$2|[d,d+l]>+ (z—y) on L*([—al,0])Q@L*([d,d+1])

Then, for d = 0 and large | > 0, the ground state enerqy EU<{[—al,0], [d,d + l]}, (1, 1)) admits

the following expansion
2 2

(3.4) EU<{[—al,0], [d,d+ 1]}, (1, 1)) - (7;—2 + (;>2> + %(1 + 0(1))

with o(d) a positive function that vanishes for d > diam(supp(U)).

We now state our theorem.

Theorem 3.1. Under Assumption [2.1] and Assumption[2.9, let M = diam(supp(U)) and L,y >0
be the minimal length defined in Lemma . Consider, on (0, +00), the application

J\) = (1 — Me_vaU)2<J fY([0,u], 1)e™ du + f Y([0,u], 2)e™ du
D1(N) Dy(N)
M
+ f J 2¢~ ) fU({[—u, 0], [t, v + t]}, 1) dtdudv
0 JDs3(N)

+ JM f 2¢ () FU({[—u, 0], [t,v + ]}, 2) dtdudv)
0 JIDi0)

where fY(1,1) (resp. fU(I,2)) is the first (resp. second) energy level of the chain I,

Di(N) = [\%, 3lp,U:|; Ds(N) = {(IE,?J) e [lu, QZP,U]Z,y > max <m, %)}
Dy(N) = [\2/—7% + #,BZp,U], D\ t) = {(:U,y) € [lij,leU]z, Y= > (\% + %) }

and 7y (resp. o(t)) is given in Proposition [3.1] (resp. Proposition [3.3).

Set 0 € (0,1). There exists ps > 0 such that for every p € (0, ps) there is a Fermi enerqy level
A, depending only on p and U, such that, with probability 1 — O(L™%), the thermodynamic limit
of the ground state energy per particle satisfies

. EY(A,n 1 _
(3.5) EY(p) := lim E,(An) =T (\,) +O(p*™).

L—+0 n 1%

We also get results on the ground state itself. Recall that, in any chain of P, there is at most
two particles. They are either in the same piece (see the operator ) either in two distinct
pieces (see the operator ) From A, > 0 a Fermi energy level given by Theorem , we build
an occupation Q' such that



THERMODYNAMIC LIMIT OF THE PIECES’ MODEL 7

(i) for a single piece A; € Py,

¢ = max {q, fU(Aiq) <\ };
(ii) for a pair (A;, Ag) € Py, assuming |A;]| < |Ag,

q;est = maX(O, max {Qa fU((Aj’Ak)’q) < Ap} - 1)7

qzest:mm@ max {q, £ (A5, A, )\Aﬂ})

We prove that one can complete Q** on P, with respect to Lemma Then, set the following
state

(36) \I,test A TL _ ( /\ 2/}U( fest ze])) ( /\ /\ 1/}0( i q:est>>
IePy lIecPy iel
where
(i) Y (I  ()ie 1) is the ground state for the interacting system with exactly ¢; particles in A;;

(i) ¥°(A, q) is the ground state for ¢ non-interacting particles in A, given by the Slater deter-
a P

minant of the ¢ firsts eigenfunctions of the operator ha = —aZ |

We compare the state U**(A, n) to any ground state WY (A, n) through the one- and two- particle
densities, using trace norm || .

Definition 3.1. For ¢ € H™(A), its 1-particle density is the operator 7¢ on H(A) = L*(A)
with kernel

1) Wiew) =n | ol 2)0ly. 2)iz

The 2-particle density of ¢ is the operator 7(;2) on H%(A) with kernel

n(n—1)
2

Proposition 3.3. Let WY(A,n) be a ground state of HY(A,n). For § € (0,1), p € (0,ps), set
the state W''(A n) according to the above construction. Then, in the thermodynamic limit, with
probability 1 — O(L™%), one has

(38> ’7¢(>2)(1U1a932>y1792) = J ¢($17$27Z)¢(y17?/2a2>dz-
An—2

(1)

L) o 2-5
(39) EHV‘PU(A’TL) Py\ptest(A n) 10p .

We get an analogue of Proposition [3.3] for the 2—partlcle density.

Proposition 3.4. Let WY (A, n) be a ground state of HY(A,n). For § € (0,1) and p € (0, ps), set
the state W''(A,n) as above. Then, in the thermodynamic limit, with probability 1 — O(L~%), one
has

450270,

2
(310) H,}/\I,U ATL ry\(Ijt)cst(A’n) i <

Remark 3.1. Proposition[3.5 and Proposition[3.4] show that the state W' is a better approzima-
tion of the ground state than the approrimated state given in [KV20)].



8 VADIM OGNOV

4. EXPRESSING THE GROUND STATE ENERGY FOR A FIXED OCCUPATION
4.1. Proof of Lemma . Define the Fermi length [, as the length of a piece A for which the

D
ground state energy of the Dirichlet Laplacian —%| A 18 equal to the Fermi energy. Using formula

(2.6)), one computes
™ p
4.1 li= —— = —1o (—)
(4.1) p \/ﬁp g 1+p
For L large enough, with probability 1 — O(L~*) no piece of a length below ki, can carry more
than k& — 1 particles in the ground state of the free operator H°(A,n). Due to Assumption of

finite-range interactions, in the case of the full operator HY (A, n), we exhibit the same phenomenon
for some minimal length [,y < {,. The following lemma is a reformulation of Lemma

Lemma 4.1. Let WY(A,n) to be a ground state of HY(A,n). For n and L large enough, with
probability 1 — O(L™%), there exists a minimal length 1,y = 1, — (4M + 6)p such that

If a piece A; satisfies |A;| < kl,u, k € N, then, for every occupation @Q,
(PQ\IJU(A,n) ” 0) - (ql- <k- 1)

where Pg 1s the orthogonal projector on $g.
Then, any ground state of HY(A,n) belongs to @ geq Ho(A) where H(A) is given in and

(4.2) Q={(qi)eNm,iqizncmdfor1<i<m qiglliJ}.

i=1 lpv

This is a slight improvement of Lemma 3.25 of [KV20]. We use the same method of proof.
Proof. Set 1,y =1, —tp, for t > 0. Assume that A is the smallest piece that does not satisfy the
property of the lemma. Pick k € N so that (k—1)l,y < |A®| < kl,y and Q° an occupation so that
A° is occupied by j = k — 1 + e particles in PgeWY (A, n) with e > 1. Without loss of generality,
we assume that WY (A, n) = Pge WY (A, n).

We show that one can define a state ®V(A,n) such that

(@Y (A, ), HY (A, )Y (A, )y < (WY (A,m), HY (A, n) 8" (A, n))
by moving the e extra particles in e empty pieces without creating any interaction.

By hypothesis, there are at most n — j + 1 pieces with some particle in the state WY (A, n). We
call interaction range of a piece A the set of pieces A’ such as the distance between A and A’ is less
than or equal to M. Thanks to Proposition [6.2] and Proposition [6.3] one knows, with probability
1—0O(L™%),

#{A, Ly <Al <2y} = Le »U(1—e ') + O(LF)
—n(1+ (L= 1)+ 0(p))(1 — p + olp)
#{(A AN A > Ly, |A] > Ly, d(AA') < 2M + 1} = 2(2M + 1)Le v + O(LP)

= 2(2M + D)n(p + o(p)) (1 + 2tp + o(p))).

Thus, there are more than n(l +(t—1)p—2(2M +2)p + 0(,0)) pieces of length between [, and

21, such that there is no other piece of length greater than {,;; in any interaction range and, for
any two interaction ranges, their intersection is empty. This last property means that no particle
can interact with some particles of both pieces.

Choose t = 4M + 6 so that n(l +(t—1Dp—22M +2)p+ 0(,0)) > n+ 1 for n large enough. By

the pigeonhole principle, there are at least j of such pieces for which the interaction area do not
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carry any particle in WY (A, n). Therefore one can move the e extra particles to these slots. We
get a new state ®Y(A, n).
Before the exchange, the free energy of the piece A, is

2 2
E°(A°,j) = EY(A° | — 1) +2 e
6€]§2 + 6e(e — 1)k + (26 — 1)e(e — 1) =2
:_EO‘Ae -1
(A% k—1)+ - gt
S EO(AC k1) 4 SR Ocle = Dk + e~ D)efe—1)
6 K2,

2

> YAk —1) + et
.

So, the e extra particles contribute to more than eZ Z’TTQ in \IIU(A n). But in ®Y(A,n), the free

energy associated to these e particles is strictly less than e— and there is no interaction energy.

?

p, U
So,
(Y (A, m), HY (A, )0V (A, m)) < (Y (A, m), HY (A, m) WY (A, m)
Thus ¥Y(A,n) can not be a ground state and this completes the proof of Lemma . O

4.2. Decomposition of A into non-interacting groups of pieces. From now on, we fix the
minimal length [,y = {, — (4M + 6)p. According to Lemma , the pieces of length [ <1,y are
empty for any ground state. We divide the others pieces into undecomposable groups of pieces
that may interact through U. For simplicity, we identify a piece Ay and its index k (position).
The length of the piece £ is denoted by [, and the distance between the pieces j and k by d;

Definition 4.1. The r-tuple I = (2'1, ey dy), with iy < -+ <, is a chain of size r if

(i) for every ke [1,r], l;, = v,

(ii) for every ke [1,r — ]] iy iy < M,

(iii) for every j < iy such thatl; = 1,y, d;;, > M
(iv) for every j > i, such that l; = l,u, d;, j > M.

Fix p € N*. We denote by

(4.3) P, = {I chain, Y [lli J <(p+ 1)}

el -~ PU

the set of chains that cannot carry more than p particles in any ground state of HY(A,n), and by
N, the set of others pieces. Using the notations of Lemma .1, we consider, for a fixed occupation
Q) € 9, the operator

(4.4) HY(A,n,Q) = PoHY(A,n)Py  on $H(A /\( /\L2 )

As chains do not interact one with another, HY (A, n, Q) can be written as a sum of operators each
of which acting on a specific chain. We list the notations and definitions for these operators.

Definition 4.2. Fiz I a chain in A. For (q;)icr € N*, let YY(I,(q)icr) and EY(I,(q:)ic1) be the
ground state and the ground state enerqy of the operator HY (I, (q;)icr) given by

(4.5) HY(I, (q”ef)zi(®15 )@h@(@ 1 )+Wm on /\(/\L2 )

k=1 Jj=k+1
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where

(1) kK1 = De; @i is the number of particles in I;
(ii) hy is the one-particle operator defined by

(16) -0 @ ) s

Pt dz? |,
(iil) Wy is given by (2.4).
Set FU(1,0) =0 and for k € N*

(4.7) FU(I, k) = min EY(I, (q:)er).
Ki=
For k € N*, the k-th energy level of the chain I is defined by
(4.8) fY(I,k)=FY(I,k) — FY(I,k - 1).
With the notations of Definition , YUY (A, n, Q) the ground state of HY(A,n, Q) has the form
(4.9) (A0, Q) = v (Q) A U (Q)
where
(4.10) Vi Q) = AW (@)er)  and o (Q = N U (@)
IeP, I chain c N,

The corresponding ground state energy is

(4.11) EY(An,Q) = Ep (Q) + By, (Q)

with

(4.12) = Y BY(I(¢)ier) and  ER(Q)= >, EY(L(q)ier)-
1ePp I chain c N,

We study these two quantities in the next subsections.

4.3. Study of Ef\]/p. The following lemma give an upper bound for the number of particles that
one does not control when the occupation is known only for the chains of P,.

Lemma 4.2. For pe N*, and § € (0, 1), there exists ps > 0 such that for every p € (0, ps)
1

4.13 pHo < - ) < pP0.

(4.13) p sup (n > q) p

Proof. If i € N,,, we have the following options.
(i) Either [; <l,u, ¢; = 0;
(ii) Or l; = (p + 1)l, v, then, using Proposition , one computes

+0
Z ¢ < Z kL(e Mev — WD)y = (p 4 1) Le=PH0 (1 4 O(e7tov))

i Li=(p+ D)0 k=p+1
(iii) Or i€ I chain of size r > 2 and >,/ l; = (p+1)l,v and l; < (p+1)l,y; in this case ¢; < p.
For r < p,

#{I chain of size r of total length > (p + 1)l, 1} < #{r pieces of total length > (p +1)l, ¢
with gaps of length < M}

< MrflLef(erl)lp,U
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and
#{I chain of size r = p+ 1} < #{(p+ 1) pieces of length > [,y with gaps of length < M}
< MpLe (P+1)

As e~ PtDbu = o(pP+1=9) this completes the proof of the right-hand side of the inequality (4.13)).
Concerning the left-hand side, let Q° = (¢?) be the occupation of the ground state for the free
model. We have that for i € [1,m] if I; € [kl,, (k + 1){,) then ¢ = k. Since I,y < l,, Q° € Q. So,

+00
Y= > = ) kL(e — e ) = (p+ 1)Le PV (1 4+ O(e 7))

ieN i, li=(p+1)l, k=p+1
As pPH1H9 = o(e=(tDk) it gives the left part of the inequality (4.13)). O

Proposition 4.1. For a fited p > 1, 6 € (0,1) and Q € Q, there exists ps > 0 such that for
p € (0, ps),

(4.14) EY (Q) < np?

Proof. As in Definition , for any chain I, we denote ¥V (I, (g;)) and EY(I,(g;)) the ground

state and ground state energy of the operator HY (I , (ql)) given by |j We use the notations
Y°(I, (g;)) and E°(1, (g;)) for the free case. We have

(I (@) s HO (T (a) 97 (1 () ) < P (1s (@) s HO (T (a0)) v (1 (@) )

(4.15) EY(1,(q) < E°(1, (@) + 0° (1, (0), Wi, 0° (1, (@) )-
Then, we compute
(4.16) EG(@ = > EY(L(a)er)
Ic N chain
< Z <EO (I, (Qj)jel) + <¢0 (I, (%’))7 W, v° ([, (C]z))>>
Ic Ny chain

< Iéleag: ( J’ % ) Z q; + Z <¢0 (Iv (%))a Wﬁlwg ([7 (qz))>

JEN, JEND Ic Ny chain

For any @ € Q and j € NV}, by Lemma [£.1]

4 3
(4.17) E°(l;,q;) = kZ 7 <O < ﬁ

By Lemma Zje/\/p q; < npP=°.
We deal with the remaining sum using the results of Lemma/|6.3| For a chain I, i€ I, j € N, let
quAi be the state on L?*(A;) given by

(4.18) ow) = Y2 sin (e 201, 0.
Then,
(4.19) 9 @) = A N\
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By skew-symmetry and orthogonality of (qﬁin)iJ,

O (1, (a)), Wi (1, (a)) ) = w f Uty — 2)° (1, (¢:)) (v, ., Z) dedydZ

=2 2 fU(y—x)\cbff no|

el 1<j<k<gq;

T YU 3 o VRS

hyel, h#i j=1k=1

(z,y)dzdy

N qﬁk (x y)dxdy

So, by Lemma 6.3}

(4.20) (T (@), W (1, <C) > j;k +C ) Zi:pl:%

el 1<j<k<q; higel, h#ij=1k=1

CZ 31 +C 2 Qh(h

iel pU hyiel, h#i pU

2
SB, Zqz . (Z )
pU o U el

where C' depends on U and M. Again by Lemmaﬂ Dic N, @i < PP For the part with squares,

we adapt the proof of (£.13). A chain I < N, of size 7 = p+1 of total length [ € [k:lp v, (k+1)l,0)
with & > r may contain at most k partlcles Otherwise, the chains I < N of size r < p and of
total length [ € [kl,y, (k + 1)l, ) with k£ > p + 1 may contain at most k particles. So,

Z <qu> Z M™ 1Zk2Le klPU+ZM7“ 1 Z 12 Le—Flou

IcN, el r=p+1 k=p+1

We claim that, if Me™v < 1,

(4.21) iC' >0 Z (ZQi>2 < Cmax{l,..., MP}(p + 1)*Le= P+,
ICN, el
Then, if p is small enough, combining , and , the inequality becomes
(4.22) BN (Q) < np”™°.
It concludes the proof of Proposition [4.1] O

Remark 4.1. If one replaces @/J}\J/p(Q) by /\1ch wO(I, (qz)) then the same bound holds for the
energy.

4.4. Study of Egp. The following proposition states that, when the number of particles in P, is
known, Egp is the sum of the smallest energy levels. But it requires a strong hypothesis on the
monotony of the energy levels.

Assumption 4.1. For a fized p = 1, using the notations of Definition[.3, the application

U [0,p] —R
(4.23) f (Ia') { r '—>fU(I 7")

is increasing for every chain I in P,.
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From now on, we denote by ng the number of particles in P, for the occupation (). Using the
notations of Definition [4.2] we also set

(4.24) r, = {fU(J, k), [eP,l<k< p}.

Let <, be a lexical order on I', such that
(4.25)
fOI k) < fU(J.0)
VI, JePy, 1<kil<p  fU(I,k)<,fV(J,]) = < else lastindex of I < first index of J
else k<l

PropOSItlon 4.2. For a fized p = 1, let {a, € T'p, ar—1 <, ax} be the ordered set given by (4.24
and . Under Assumption for r < min(n, #I, ), any occupation ) that minimizes Epp

lllUJ for each piece A; in P, , satisfies
P

when ng =1 and q; <

(4.26) EL@Q) =Y

Proof. Fix r < min(n, #I',). Take such an occupation @). Then, by reductio ad absurdum,

EPP ZEU queI ZFU]/{I EZfUIj

1ePy IePy IePy j=1

with Zlepp kp=rand kK; < Q. llpl—lUJ < p. In particular,

(4.27) Dlan < Ef
k=1
For the reverse inequality, we build by induction an appropriate occupation @’. Set Q’(0) =
(0,...,0). For k from 1 to r, assume that the multi-index Q’'(k — 1) = (¢}(k — 1))1<i<m satisfies

EP 2 and iqg(/@—l) =k—1
s=1 i=1

We know that aj, = fY(I,j) meaning ay is the j-th energy level of the chain I. Since fY(I,.) is
increasing, we have {fY(1,1),..., fY(I,j — 1)} = {ai,...,a;,_yfor 1 <iy < -+ <ijo1 <k—1
and for every i > j, fU(I,i) > a;. In particular,

k J
Dias= > aa+ ) UL = ), ac+ FULLY).
s=1 S${i1,...,ij_1,k?} i=1 S¢{i1 ..... ij_l,k}
We set ¢/(k) for i € I so that EY(I, (¢\(k))icr) = FY(I,j) and for every i ¢ I, ¢i(k) = ¢(k — 1).
Then,
k

Ep (QK) = Yjas  and Y gl(k) =

s=1

We fill the coordinates in N, so that Q" is an occupation with ng = r.
It concludes the proof of Proposition O
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Remark. We don’t know yet how to prove that Assumption holds when p > 3. The following
lemma gives a partial result for chains of size 1.

3_
Lemma 4.3. Using the notations of Definition if | < lp27U5 for e € (0,3) then for p small
enough

(4.28) vre[l,p—1] 70,0, 7) < f7([0,1,r + 1)
where p = [ZPLUJ

Proof. Assume that [ = 7371, ;. For r > 1, denote F(r) = FU([0,1],r) and ¥(r) a corresponding
eigenfuntion. Also set F°(r) and U°(r) in the free case U = 0. We know that

Wo(r) = /\%’
1=1

where @;(z) = \/7? sin (Zix) 1y (z). We compute
-1
(W, 00(r), 00(r)) = 7“(7“2 ) fU(xl — 29)UY(r) (w1, 39, Z)*dw1d29dZ by skew-symmetry
r(r—1)1 :
-S| Ut - ) [ Tl )X

" 0,0€6, =1
— Z J (x1 — @9 ‘gpp A goq‘ (21, 29)dx1dxy
p<g<r
by skew-symmetry and orthogonality of (¢;);>1. Hence, by Lemma [6.3]
(4.29) W 00(r), W0 (r)y < > CL3(p" + ) < CI3%,
p<g<r

Since,
0< F(r)— FOr) < (W, 0°(r), ¥0(r)).

we have

(4.30) F(r) = F(r) + O(I°r") = Z(wl—lzﬁ +O0(7%r")
Then,

(4.31) F(r+1)=2F(r) + F(r—1) =2zl %r (1 + O(L 7))

asr < .l }J and 2] p3 L, 25. Thus one gets that for p small enough the r.h.s is positive. This
concludes the proof of Lemma O

Combining Lemma and Lemma [6.1, we get that Assumption holds when one cancels
the interaction between pieces and p is less than |log(p)|. Without restriction on the form of
the interaction, the issue occurs when the growth in the free energy is less or of the order of the
interaction between two pieces. More precisely, we don’t know yet how to deal with the cases
where the lengths of a pair of pieces {A;, A;} satisfy

(4.32) Tk ks e [1,p — 1] ‘(’;—)2 _ (%)2] —0(5).
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Otherwise, let (I',, <,) be the ordered set given by (4.24]) and (4.4), and for 1 < r < #I',, and
let G,(r) be the subset of P, such that

(4.33) Gp(r) = {] e P,, 31 <k <p, fU(I,k) = the r-th smallest element of (T, <p)}.

From the proof of Proposition We deduce the following corollary. For B < [1,m] and Q € N™,
we denote by Qg = (¢i)ien the restriction of the multi-index to B.

Corollary 4.1. Under Assumption there exists a sequence of occupations (Q(r)) . such that

r<

x

(1) the number of particles in the chains of P, for the occupation Q(r) is ngyy = r;
(2) the restrictions Q(r)p, and Q(r + 1)p, are equal except for one chain;
(3) if WY is a ground state of HY and Q is an occupation that satisfies PoWY # 0 then

(4.34) QP,\6,(n0) = Q(NQ)1P,\6,(nq):
where G,(ngq) is given by ({-39).

The issue of the cardinal of G,(r), for any r € [1, #I',], looks as hard to solve as the issue of
order of degeneracy of the ground state of HY(A,n). However, it seems relevant to assume that,
except for some pathological Poisson point processes, one should get only few cases of equality for
the energy levels of I,

Assumption 4.2. For 1 <r < #I,, #G,(r) < npP~°.

The next proposition states that if Assumption [£.1 and Assumption [£.2] are true for some p > 1
then the number of particles in each piece of P,, except for at most 2npP~° chains, stays the same
for any ground state.

Proposition 4.3. Set p e N*, § € (0,1) and p € (0, ps). Under Assumption and Assumption
there exist a subset F,, of P, and, for each piece i in F,, an integer qu such that

(1) the number of chains in P,\F, is less than or equal to 2npP=°;
(2) if WY is a ground state ofH then it admits the decomposition WY = ®U7» A QU5 with

(435) (I)U’]:p = /\ ¢U q; ze[) and QUJ:C = Z >\ /\ wU qz zEI

IeF, Qe I¢F,

Proof. Let F, be the set of chains I in P, such that the function r — Q(r); is constant on
[n — 2npP=° n]. By Corollary , for r < n — 1, there is a unique chain I € P, for which
Q(r)p, s = Q(r + 1)p, 1. So, by induction on r = n — 2np~°, F, is not empty and the numbers of
chains in P,\F, is less than or equal to 2npP~°. Then, for any piece i in F,, let qf” be the common
value.

Let UV be a ground state of H. By Lemma and Definition we have the decomposition

(4.36) = 3ANQ) N\ V(I (@)

Qe I chain

where Y ([, (¢i)ier) is a normalized wave function of % (U;) with ¢; = >._; ¢; and Uy = |J,.; A
Using Lemma 4.2} if an occupation @ satisfies Po®Y # 0 then the number of particles in P, for

Q belongs to [n — npP=%, n].
Under Assumption [4.2] we have

(4.37) O Gp(r) < Pp\Fp

r=n—npP—%
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because the left term, gathers all the chains that match with any r-th smallest element in (T, <,)
for r € [n — np?~°,n] (see (4.33)) while the right term gathers all the chains that match with any
element of (T, <,) between the (n — 2pP~%)-th and the n-th ones.

Using the third point of Corollary , one shows that, for every chain I € F,,, the restriction

map @ — Q7 is constant on {Q € Q, Po¥Y # 0}, equal to (qifp)ie[. So, li becomes
(438) ( /\ wU q; zGI > ( Z )‘ /\ ¢U qz iel )
IeF, Qe I¢Fy

This concludes the proof of Proposition 4.3| O

5. PROCEEDING WITH THE CASE p = 2

5.1. Monotony of the energy levels. We recall that P, is the set of chains each of which carries
at most two particles for any ground state.

Lemma 5.1. Set
(5.1) Ty = { (LK), TPy, ke {1,2}}
Then, with probability 1 — O(L=%), for p small enough,

2n < #Ty < 2n(1 + (3M +6)p).

Proof. Using e~V = p(l + (4M +5)p + O(p)), Proposition and Proposition we compute

4T, = 2#{{Ai} c 732} + 2#{{Aj, Ay} e 732}
=2L(1 — Me™ L, )2 ((e‘lﬂ’U — e‘glP*U) + M(e‘lP’U — e_QIPvU)2)
=2L(1—2Mp+o(p))p(1+ (4M +5)p + o(p)) (1L + Mp + o(p))
=2n(1+4 (3M +5)p + o(p))
It concludes the proof of Lemma O
We now prove that Assumption holds when p = 2.
Lemma 5.2. For [ € Py, fU(I,2) > fY(I,1).

Proof. If I € P5, then we have two cases.
(i) Either I = (4) is a unique piece of length ; € [l, 17, 3l, 7). The first energy level of A, is

7T2

f (Alv 1) l2

For the second energy level of A;, we use Proposition [3.1]

2

(5.2) fY(A;,2) = 4;; + llg +o(I7%) > fU(A;,1).
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ii) Or I = (J,k) is a pair of pieces of length [, € |l,17,2l,) separated by a gap of length
j P P
d;r < M. The first energy level of the pair {A;, Az} is
2 2

w2 o
(5.3) YA, Ag), 1) = min (55, = ).
(145:24).1) = min (5. )
Concerning the second energy level of this pair, we use Proposition [3.2]

2 2 7(di)
) (185 802) = max (355 ) + T (1 o) = 7718840, 1).

j
This completes the proof of Lemma [5.2] O

Combining Lemma [5.2] and Proposition [£.2] we get the following corollary.

Corollary 5.1. For r < n, the minimum of EP when there are exactly r particles in the chains
of Py is equal to the sum of the r smallest elements of T'.

5.2. Distribution of the energy levels. By Corollary 5.1} we need to understand the distribu-
tion of the energy levels in I'y. For A > 0, we define

1
(5.5) NY(L,)) = z#{x ely, ze (-0, ]} and NJ(A):= lim NY(L, ).
—00
NV is called the counting function of 'y, We evaluate it in the following proposition.

Proposition 5.1. Define the application J by, for A\ > 0,

(5.6) JA) := (1 — Me7lov)? <J _“du—kJ e “du
D2(N)
J J W) dtdudy + J J —(u+v) dtdudv)
D3()\ D4 )\ t

Di(\) = [max (lp,U, \%),BZP,U], Ds(\) = {(x,y) € [Lv, QZ,J,U]z,y > max <x, \%)}
T o(t)

2
Dy(3) = | max (21,0, \/7% 872) ol DAY = {(a:,y) e [Lw,20,0] y= 2> (\—5 + 2—y3) }

and 7y (resp. o(t)) is given in Proposition [3.1] (resp. Proposition [3.3).
Then, with probability 1 — O(L~%), for every B > 1 and A > 0, the counting function of T'
satisfies

where

Ny (A) = J(N) + Ry
with Rﬁ = O(pﬁ).

Proof. A chain of P, is either a single piece A; or a pair {A;, A;}. In the first case, the energy levels
of A; are functions of a single parameter, the length l; € [, 7, 31, v]. When I = {A;, A}, the energy
levels of I are given by the triplet of parameters (I;,1;,d;;) € [l,v, 30| x [l,0,3l,0] x [0, M].
Fix B > 1. We set a discretization of the above parameters with a constant step p®. We get a
sequence of approximated energy levels I‘g . We prove that the Hausdorff distance between I'; and
T is of order O(p?). So it is sufficient to compute the counting function of T’ at order O(p?).
Since the Poisson process fix the statistics of pieces, one knows how many times each approximated
energy level appears in Fg . We will use the expansion of the energy levels given by Proposition
and Proposition [3.2] to replace the condition "below A" by some conditions on the parameters.
We now give the details. For I € Py, we distinguish two cases.
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(i) If I = {A;} then [; € [kp®, (k+1)p®) for some k and for a € {1,2}, we approximate the a-th
energy level of the piece A; by

657) Fulk) = £V (10, kp").a).
The parameter k goes from K; = |l,yp~?] to K3 = |3l,rp~"|. For a € {1,2}, we define
(5.8) palk) = #{{A} € Poy i € [ke?, (k + 1))

(ii) if I = {Aj, Ag} then [; € [rp?, (r + 1)p%), Iy € [sp°, (s + 1)p?) and d; € [dp®, (d + 1)p°)
for some 7, s and d and, for a € {1,2}, we approximate the a-th energy level of the pair
(Aja Ak) by

(5.9) ga(r,,d) = [V ({[=rp", 0], [dp", dp” + 5p"1},1)

Here the parameters r, s go from K; to Ky = [2lp7Up*fBJ and the parameter d goes from 0
to D = |Mp~?|. For a € {1,2}, we set
(5.10)

Ga(r,s,d) = #{{Aj,Ak} e Py, lje[rp?, (r + 1)p°), ln € [sp°, (s + 1)p?), d;x € [dp®, (d + 1)p’8)}.

Let Fg to be the sequence of approximated energy levels.

Lemma 5.3. Recall the definition of the Hausdorff distance d, on P(R). For (A, B) € P(R)?,
dyw(A, B) = ig‘) 117{:112 la —b].

For B > 1, there exists C' > 0 such that
dop (T2, T5) < Cp’.

Proof. (of Lemma By construction of Fg , from xz € T'y we compute 2 € Fg . We study the
cases separately.

(i) Either 2# = fi(k), then x belongs to [fi(k + 1), fi(k)]. Note that

(5.11) A0 = Ailk+1) = 555+ 0 (s ).

(ii) Or 2% = fy(k), then x belongs to [fa(k + 1), f2(k)]. Using (5.2)), one computes that

2

8 1
(5.12) Falb) = folk 1) = 35735 + O ()

(iii) Or 2# = g¢i(r,s,d). Without lost of generality, assume that » < s. Then x belongs to
[g1(r, s + 1,d), g2(r, s,d)]. Using (55.3)), one computes that

272 1
(513) gl(T,S,d) - gl<7n78 + 17d) = Sgpzﬂ + O<84p26>’

(iv) Or 2% = go(r,s,d). Without lost of generality, assume that < s. Then z belongs to
[g2(r + 1,,d), g2(r, s,d)]. Using (j5.4), one computes that

272 1
51 025, 0) a1 ) = S O ).
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So

1
: et
blélrfg |z —b] < Cr3p25

Since k (resp. r and s) is of order O(l,yp~*), we conclude

Vo ely inf |z —b| < Cp°

bels
U
By Lemma [5.1] and Lemma [5.3], for 8 > 1,
(5.15) % #{x €Ty, z € (—om, A]} - #{x el ze(—o, )\]} < #LFde(rz,rg)
< Pt

Let Ng 5 be the counting function of Fg . Then, for g > 1,
(5.16) NY(A) = Ny/5(A) + O(p"™).

We estimate NQUB the counting function of Fg. Set A € (min Fg,max Fg) We translate the

condition "energy level smaller than A" in term of bounds for the parameters of the discretization.
For k € [[Kl,Kg — 1]],

s
5.17 BY<A o kz-——=pF
Using the asymptotic (5.2)), for large k, we compute that

4 2
(5.18) falk) = 4R

(k - W) 28
with Ry, = o(ﬁ).

The remainder Ry is negligible with respect to the gap between fo(k+ 1) and fa(k) (see (5.12))).
It yields

(5.19) fa(k) < A < g <N’

For r,s € [Ky, Ky — 1] and d € [0, D — 1], assuming r < s
(5.20) g1(r,s,d) < A < $ = max <r, i,0_’8>

Using the asymptotic (5.4)), for large r < s and d € [0, D], we compute

71_2

(5.21) ga(r, 8,d) = 7t Shsd
(v 543) o

with S, 54 = o(ﬁ).
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The remainder S, ;4 is negligible with respect to the gap between go(r + 1,s,d) and g2(r, s, d)
(see (b.14))). It yields, for large r < s,

(5.22) ga(r,s,d) < A < T < AP

T olde)y s
= r= <\—& + 283p3/3>p

Thus, combining (5.17), (5.19), (5.20) and , for A € (min Fg,maxrg),

K3—1 Ks—1 D—1
(5.23) #{x ell ze (—oo,)\]} = Z p(k) + Z po(k) + Z 5(7“ s)qi(r, s, d)
k=k1(\) k=ka(\) d=0 (r,s)e B(A

+ 2 Z e(r, s)qa(r, s,d)

d=0 (r,s)e C(\,d)

where p, (k) (resp. gu(r,s,d)) is given by (5.8)) (resp. (5.9)) and

[Tl =[G e

BO\) = {(u,v) e [K1, K — 1%, v > max (u

d
C(\d) := {(u,v) e[Ky, Ko — 1% v=u> (% + ;()3236>p5}7

e(r,s) :=2if r # s and e(r, s) := 1 otherwise.
By Lemma , for n € (%, 1), with probability 1 — O(L~%), we have for a € {1,2} and for k,r,s,d

(5.24) pa(k) = L(1 = Me~tov)2e (1 — =#°) 4 1, (k)L
Ga(r,s,d) = L(1 — Me’lP’U)2e’(’"+5)pﬁp5 (1- e’pﬁ)2 + 8q(r,s,d)L"

with r,(k) and s,(r, s,d) bounded for every k,r, s and d.
Using dominated convergence theorem, we get

(5.25) Nys(A) = lim 1#{&: el ze(— oo,)\]}
Ks—1 Kz—1
= (1—Me‘lP*U> ( > e (1 —e ) + > e (1—e )
k=k1()\) k=ka(\)
D-1
+ r+s)p’8p,8(1 e—p5)2
d=0 (r,s)eB(A

+
MH

e(r, s)e’(”s)’)ﬁ PPl — e’ )2)

a
I

0 (r,5) C(\d)
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Let X3 be the third sum in Equation (5.25]).

(526) Z Z r+s)pﬁpﬁ(1 e_pb‘)g

Dpf (r+1)pﬁ (s+1)p'3 5 Ko—1 5
J ( J J 2e~(utv) dudv) dt — DpP(1 — e )? Z e e
0 \(ns)eB) P 5o

r=ki(\)

Dpf D 5
(5.27) J J e~ ) dudy — §p256—2k1(>\)p (1+0(1))
Bg(A

Bs(\) = {(x,y) [Klp Ksp ] > max (x [i _5]p6>}.
Set
B(\) = {(:c,y) e [l,u,2l,v]?, v = max (;1:, \%) }

Using that, for any x > 0,

‘az — [a:p_ﬁ]pﬁ‘ <’ and ‘(E — [$p_5Jpﬁ‘ < pf
we get
M
(5.28) ‘23 —J f 2¢~ ) didudv | < pP (262%U du + QMJ du 4 Mtep,U>
0 JBM) B A\B5 (3
5 (26_21” U 24 8Mp + Me 2. U)

The other terms in Equation (5.25)) can be handled in much the same way.
So, for A € (minT%, maxT5),

2 3lp,U 3lp,U
(5.29) Ngﬁ()\) = <1 _ Me—l,,,[]) (J P du+J e du

Z (3sm)

=
J J 2¢~ ) dtdudu

+ J J 2¢(utv) dtdudv> +0(p?)
o Jep

B()) = {(m) € llpar, 2oy = ma (7, %)}

where

A
C(A, d) = {(x,y) & [l 2y y > > (\% + %) }
Combining ((5.16)) and (| , it yields
(5.30) NY(N) = J(\) + O(p?).
where J is given by . It concludes the proof of Proposition .
The following corollary states that Assumption is true for p = 2.
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Corollary 5.2. Set § € (0,1). For every x € I'y and in the thermodynamic limit,

(5.31) %#{y ely, y =1} =0(p"")

Proof. Note that each domain of integration in the RHS of (5.6|) is smooth for A € (0, +). So, J
is continuous on (min 'y, maxI'y). By Proposition , we compute for > 1, h > 0 and x € I'y

1 L
(5:32) —#{yeToy=a} < Z|NY(Lix+h) = N (L2~ )

L
< E(‘Nf(L,erh)—NgU(vah)‘ + )NQU(L,x—h)—NQU(x—h) +

(J(x R — J(x - h)‘ + O(pﬂ))

1
(5.33) Lo ;)J(:p YR~ J(x— h)‘ + 0"
ARl
Taking > 2 and h — 0, we conclude the proof of Corollary [5.2] O

5.3. Construction of an approximated ground state. We use the counting function NV to
build an approximate ground state for HY (A, n).
Note that, for d € [0, M] and minTy < A\ < p < max 'y,

(5.34) Vie{1,2,3} D;(\) & Di(p) and Dy(A\,d) & Dy(p, d).
So J is increasing on (min 'y, max I';). Remark also that, by Lemma [5.1] we have, for A > max T,
NY(N\) > 2p and, for 0 < A < minTy, NY(\) = 0. Hence, by Proposition 5.1/ and the continuity

of J, for a fixed 8 > 2, there exists a unique /\,B) € (min 'y, max I'y) such that J(/\g) =p— Rpyq or
equivalently

(5.35) NY(X0) = p.

This unique )\f) is our Fermi enerqgy level.

Consider all energy levels of I's below )\g and fill the chains by induction following the proof
of the Proposition Then, by definition, we get an occupation Q° for which the number of
particles in Py is equal to ngs = min(n, LNg (L, A7)). For L large enough (that depends on p and
),

(5.36) [Ny (L, X)) = Nj ()] < p7*

So, using (5.35]), in the thermodynamic limit, the number of particles in the chains of N5 is less
than Cnp® for some constant C' > 0. Remembering 8 > 2 and the left inequality of (4.13)), for p
small enough, one can set the restriction Q|BN2 so that the occupation Q° belongs to Q.

/8 — T . oy . .
Set o) evk Using Proposition and more specifically the R.H.S of 1} one can get an
approximate description of Q? in term of the pieces’ lengths and lf. Disregarding O(np”) particles,
it means that

* for a piece A; € Po
(a) if I; < 67, then ¢/ =0
(b) if li € |87, 207 + ) then ¢ =1
(c) if l; = 255 + g2z then qiﬂ = 2;

* for a pair (A;, Ay) € Pa, assume [; < [,
(a) if I < (55 then qf = qf =0,
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(b) if ; 6[55 654— Jk)) theanz()andq,f:l

(c) if (5B + 2 2z3 ) then qJ = qk =1

We can compare the occupation Q° with the occupation of the free operator Q°. Recall that in
Q" there are k particles in pieces of length between kl, and (k + 1)I, where 1, is given by (4.1).
We compute

(5.37)

f e “du+ J eV du=e — e U 4 ez _ o

DI(EP) DQ(EP)
—p(1=p+00")) (1+e 5+ 0(p?),

M I, r2l,u
(5.38) f f 2¢~ () dtdudy = sz f e~ ) dudy + 2M e~ () dudy
D3(E)p) p, U 2l, yzvzuzl,

= Mp*(1+0(p)),

(5.39) J J ~W) dtdudv < 2M e~ ) dudu

Dy Ep t) 2lp U/v>u>lp

= Mp*(1+ O(p)).

So,
(5.40)

NY(E,) < p(1 —oMp + O(p2)> ((1 o O(;ﬁ)) (1 e O(;ﬂ)) + 2Mp<1 4 O(p)>)
= p(l + p(e_zswi2 — 1) + O(p2)>
< p.

Thus, E, < )\g meaning that [,y < 55 < l,. For p small enough, 21, + g > 21, so 255—#8% = 21,
It means that when interactions are on, we remove one particle from pieces of length close to 2[,
but larger and put it in empty pieces of length close to [, but smaller. Similarly, for pair of pieces
of length close to [,, one takes one particle out of the pair to fill a smaller piece that does not
interact.

Hence, using (4.9) and (4.10)), we define the approximated ground state
(5.41) VP (A,n) = WY (A, n,Q°).

Proposition 5.2. Using the notations of Proposition[5.1], define the map J by

(5.42) J(\) = L(1 — Me™v)? <J fY([0,u], 1)e™ du +J fY([0,u],2)e™ du
D1 (\3) Dy (A\5)
N e~ W) FU—u, 0], [t,v + t]}, 1) dtdudv
+J JD3()\§) 2 f ) ) LY )

M
+ J f 2¢~ () fU ([, 0], [t, v + t]}2) dtdudv).
0 JDi(N50)
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For 8 > 2, for )\g and WP(A,n) defined as above, for § € (0,1) and 0 < p < ps small enough, then,
i the thermodynamaic limit, with probability 1,

lim <HU(A,TL)\IJE(A, n),qfﬁ(A, n)> _ %j()\g) n O(pQ_(S)‘

(5.43) i, -
TP

Proof. Fix > 2. By construction of W#(A,n) and using , we write

(5.41)  (HY(A m)WP(A n), WA, )y = BY (A, Q%) = BY,(Q%) + FL, (@)
By Proposition , we know that, for § € (0,1) and p € (0, ps),

(5.45) EY,(Q°) < g

It gives the amount of energy produced by particles we do not control precisely. One can check
that it fits with the remaining part in ((5.43).

Otherwise, we compute Ep,(Q”) using F , the approximate sequence of levels of energy for the
good pieces that we introduced in the proof of Proposition [5.1 Following the method and the
notations of Proposition one derives the next formula. With probability 1 — O(L~®) and

ne(31),

(5.46) Ep,(Q°) = L(1 — Me—lp»U)Q(L o U0, u], 1)e™ du + f fY([0,u],2)e™" du

D2 (\5)

M
+ f J 2¢~ ) fU [ —u, 0], [t,v + t]}, 1) dtdudv
0 JDs(a))

M
+ f J 2e~ ) fU ([ —u, 0], [t, v + t]}2) dtdudv) + O(Lp" ™) + O(L").
0 JDi\S )

Thus, in the thermodynamic limit, one derives

(HY(A,n)UP(A,n), TP (A,n)) 1

. _ 4 B 2-5
(547 i, - ~T () + O )
Lor
It concludes the proof of Proposition [5.2] U

Remark 5.1. One could also set

(5.48) VP (A, n) = ( A\ wU(I, (qf%a)) A ( A\ /\¢O(A“‘ﬁ>)

IePy TeNs el

meaning that, outside of P, it behaves like a free state. By Remark both states and
give, up to the order O(p*~%), the same amount of energy per particle in the thermodynamic
limat.

5.4. Comparing the ground state energy to the approximated ground state energy. We

compare our approximate ground state energy with the ground state energy, in the thermodynamic
limit.

Proposition 5.3. For L > 0, let WY (A, n) be a ground state of HY (A, n). For§ € (0,1) and 8 > 3,

the approzimated ground state WP(L,n), given in Subsection satisfies in the thermodynamic

limit, with probability 1 — O(L~%),

CHY (A, m)0Y (A, n), WU (A,n))  CHY(A,n) WP (L n), P(L,n))
n n

(5.49) +O(p*?).
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Proof. We drop the indices "A" and "n". Let ¥V be a ground state of HY. Using the notations of
Subsection [£.2] we have

(5.50) W= Y ANQYR,(Q) A ¥R, (Q)
QeN
with A(Q) € C, ¢%,(Q) € H,(Q) and ¥, (Q) € H,,(Q), Then,
(5.51) HYWY, 0 = 3INQ)F (L (Q) + EX (@)
Qe

. U
> m&n E732

Fix 8> 3 and § € (0,1). Let U# = WY(QP) be the state given by the construction of Subsection
(.3 We compute

(5.52) 0< CHVWP W% — (HUWY WY) < B, (@) + B, (Q%) — min B,

< Eégagﬂ)__ngnlxé +7“976

if p € (0, ps). We used Proposition for the last inequality. If ) is an occupation that minimizes
Ep, on 9 then, by Proposition [4.2]

nos
(5.53) Ep,(Q°) = Ep,(Q) = ) ax.
k=ng
So,
— EU (08 — EBY —
(5'54> (min F2)nQ5 nqQ < PQ(Q ) PQ(Q) < (maxr‘Q)w
L L L
By Lemma {4.2
2-§
Ngs —NQ n—ng np
5.55 0< < <
( ) L L L
for p € (0, ps). Combining (5.54]) and (5.55)) we get
EY (Q%) — ming EY,
(5.56) lim GAC 2P _ O(p2 ).
Q7+w n
TP

Thus, using (5.52) and ([5.56|), one proves that, in the thermodynamic limit,
<HU\DIB7 \Ijﬁ> B <HU\IJU7 \IJU> _

. 2-5
(5.57) Liirfoo - O(p™°)
TP
It concludes the proof of Proposition [5.3| O

Combining Proposition [5.2] and Proposition [5.3] we get Theorem [3.1]

5.5. Comparing a true ground state to the approximated ground state. We recall that
for U e H"(A), we define its 1-particle density 7\(1,1 ) (resp. 2-particle density 7\(1,2 )) as the operator
on H'(A) (resp. $H2(A)) given by (3.7) (resp. [3.8). The following lemma deals with the case of a

vector W € $"(A) which factorizes with respect to a given partition of A.
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Lemma 5.4. [KV20] Consider (U;)1<i<r a family of closed sets of R where U; n'U; = & holds for
every i # j and |U;| is finite. Set, for (¢;)1<i<r € N,

(5.58) U= /\w(i,qi)

where (i, k) is a state that belongs to $*(U;), the k-particle space on U;. Then the 1-particle ’yq,

and the 2-particle fy\(l,) admit the following decompositions

1 1
(5'59> ry‘(I’) - Z ’yi(ﬁ()i,%)
)
and
(5 60)

e L (1) L oo 0 oo @
2(71#1% 2 V(i) ®7wqu) 2<7w(zqz)®7¢zq )OT)+§7\P X Yy _§<’Y\If X Yy )OT

with T(ZEl,J/’Qayl’yQ) = ($17$27y2791)-

We compare the 1-particle density and the 2-particle density of our approximate ground state
with those of any ground state. The following Proposition is a reformulation of Proposition
and Proposition [3.4]

Proposition 5.4. Let WY (A, n) be a ground state of HY (A, n). For§ e (0,1), pe (0, ps) and 3 > 3,
set the approzimate ground state WP(A,n) given in Subsection . Then, in the thermodynamic
limit, with probability 1 — O(L~=%), one has

1 —
(5.61) H%UM W], <1057
and

2
(5.62) —HV‘I,UAn vég(An) < 45p°79.

Proof. Let WY (A, n) be a ground state of HY(A,n) for large n and L. The proof uses that both UV
and U admit a factor that fixes all but O(np*~?) particles. Indeed, by Lemma and Corollary
[(.2) both Assumption [£.I] and Assumption [£.2] hold for p = 2. So, we apply Proposition [£.3] We

have the factorization

(5.63) ( AN\ YT (g ZE])) A QUTS

IeFs
where
(564) QUJ:C = Z )‘ /\ %DU Qz zEI
Qe I¢F>
Set
(5.65) n’ = > Y g
IeFs iel

the number of particles in Fs.
Let W8 be our approximated ground state. By construction, we know

(5.66) VieF, Yiel ¢ =g~
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As in (5.63)), we have

(5.67) 075 = N 0V (1,( )ier)
I¢Fs
so that
(5.68) < N\ Y (I, (g zd)) A QTS
IeFs

We deal with the 1-particle densities and 2-particle densities separately.
(i) By Lemmal5.4] the 1-particle density of ¥V satisfies

5.69 = +yY
( ) /}/‘I/U [;7—' ’YwU( (IQ) ) ’yQU‘fZ

For any ¢ € $5"(A), |¢ >< ¢| is a rank one projector and
(5.70) lo><al] - | locrFax.
So its 1-particle 7(551) is trace class with

(5.71) 2], = j 2, 2) de

Since QU7 is a normalized wave function of $™""*(A), we compute

(5.72) H’ygg sl =" n’? < rgeag( Zj\;% + 2#PN\F, < 5np*°
ie
Thus,
(5.73) 2 - vﬁ}ﬁ” — Srs =130 .
<], + oo,
(5.74) < 10np*~
( (11)) We expand the 2-particle density of ¥V according to Lemma [5.4}
5.75

1
2 2 2 1 1 1 1 1 1 1 1
7\(1;l)1 = 751)13,?2 +PYS()(3,J-'2C + B (fyc(pla,}'g ®PYS(23,J-'2C +’Y§23,f2c ®7<(I>l3,}'2 (7&,3 Fo ®75(23F§) oT— (7&3,?5 ®7<(1>L)I,f2 ) OT) .

(2)

For ¢ € $5"(A), the corresponding 2-particle ;" is trace class and it satisfies

(5.76) Hv(f) = f ’Yé )($1, Ty, T1, To) dx
Then,
Fa Fo
(2) _(n—n )(n—n _1) 25 o 4 95
(5.77) HWQU’% - 2 S
and
(5.78) H%(I,lg,fz) ® 7;;3,;5 o H (75;3,;2 ®7§3,;5> oT L= n’? (n — nfz) < 5n2p* o,

The same inequalities hold for ®%72 and Q°7%. So,

(5.79) % =+ <asnte.
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It concludes the proof of Proposition O

6. APPENDIX
6.1. Convex functions and discrete optimization.
Definition 6.1. A function F': N — R is convex (resp. strictly convex) iff for every k > 1
Fk+1)—F(k)=>F(k)—F(k—-1) (resp. F(k+1)—F(k)> F(k)—F(k—1)).
Lemma 6.1. Let (F})1<i<p be nonnegative functions defined on N, with F;(0) = 0. Define
P — R — R
6L F: {(xl, N ,Tp) Z‘Z’::FZ(@) and G { 71“\I — min;+...+$pzr F(xy,...,7,)

Assume that, for every i, F; is strictly convex. Then,

(1) the function G is convez;
(2) forr =1, G(r) is exactly the sum of the r smallest elements of

I'={F(k+1)— F(k),ie[1,m], ke N},
taken with multiplicity.

Proof. (1) For r > 1, choose (z7, ..., ;) € N? so that
G(r) = F(xy,...,2,).
We prove that one can set (21, ..., ;“) e N? satisfying
(6.2) N4 € [1, ] (2t =af  +1) and  (Vi#jra 2]t =af).

Pick (y1,...,y,) € N? with 37 | 5 = r + 1. Assume that there is y;, > 2] + 1. Without
loss of generality we consider 75 = 1. Then

Fyi, - yp) — Fzy + 1,25, 2) :F(yl—l,yg,...,r—i—l—Zyi)—F(x’i,...,r—Z:c

+ i) = filyr = 1) + fi(zy) = faef +1)
>0
by definition of (27)1<;<, and because f; is strictly convex from 0 to r + 1.

So ™ < al+1foralli. Since >F | /™ = 3" 2741, there is jo so that it =l 41
Without loss of generality we can consider j, = 1. Pick (yl, .., Yp) € N” with szl yi =r+1
and y; = r7+1. Then, the same calculus gives F'(y1,...,y,) = F(zj+1,25,...,2;) meaning
(] + 1,2%,...,27) is a minimizer of F'. Thus we set (z]),>1 by induction and we compute

G(r+1) = G(r) = fila} + 1) = fila})
> fi(z}) = fi(a] = 1)
and for all j € [2, p]
G(r+1)=G(r) = fi(a}) = f;(z — 1)
because

Sl + (@) + A < ) fia) + i) - 1) + filal + 1)
i¢{1,5} ig{1,5}
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Hence,
G(r+1)—G(r) = G(r)—G(r—1).

(2) In particular, the sequence (G(r +1)— G(r)) is non decreasing and it belongs to I". By
0

=

reductio ad absurdum, assume that there is a € [ n{G(r+1)—G(r),r > 1}°. Let r, be such
that G(r,)—G(r,—1) < a < G(r,+1)—G(r,), and (i4, z,) such that a = F;, (z,+1)—F}, (x,).
Then, z;* = x, and

F(x§a7'~-7xa+1,...,l';a> :G(Ta)+a<G(Ta+]_)_

Contradiction.
It concludes the proof of Lemma [6.1] O

6.2. Statistical distribution of the pieces. We recall some results about the statistical distri-
bution of pieces.

Proposition 6.1. [KV20] With probability 1 — O(L~%*), the largest piece has a length bounded by
log(L) log(log(L)).

Proposition 6.2. [KV20] Fiz 8 € (3,1). For L large and a,b € [0,log(L)log(log(L))], with

probability 1 — O(L~%) the number of pieces of length contained in [a,b] is equal to
Le™®—e ™)+ R LP
where |Ry| is bounded.

Proposition 6.3. [KV20| Fiz 5 € (%, 1) and r = 2. For L large and (a;)1<i<r, (0;)1<i<rs (€i)1<i<r—1
and (d;)1<i<r—1 Some positive sequences, with probability 1 — O(L™%), the number of pieces such
that the length of i-th piece (from left to right) is contained in [a;, b;], the distance with the (i+1)-th

piece is contained in [c;, d;], is equal to

r—1 r
L H(dl — ) H(e‘“j —e %) + Ry LP
i=1 =1

where |Ry| is bounded.

The proofs of Propositions[6.1] [6.2]and[6.3]are in Appendix A of [KV20]. From these propositions,

we derive the following lemma.

Lemma 6.2. Fiz g € (%, 1) and refer to the specific terminology in Definition . For L large
and a,b,c,d, f, g € [l,v,log(L)loglog(L)], with probability 1 — O(L~%),

(1) the number of chains of size 1 with length contained in |a,b] is
L(1 — Me )2 (em@ — e + S, LP

where |St| is bounded;

(2) the number of chains of size 2 such that the length of the left piece is contained in [a,b],
the length of the right piece is contained in [c,d] and the distance between the pieces is
contained in [f, g], is equal to

L(1 — Me %) (g — f)le® —e ") (e —e %) + S, LP

where |Sp| is bounded.
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Proof. (1) Let Poyp :={i € [1,m], l; € [a,b]}. Then,
{chain of size 1} N P, = ab\({zePab, >4l =1,y di; <M}

Ui € Pay, 35 <i, ;= Loy, dy, M})

We use Proposition[6.2] Proposition [6.3/and #(Au B) = #A+#B—+#(An B) to conclude.
(2) Let Ropea = {(i,7) € [1,m]? i < j, l; € [a,b], [; € [c,d]}. Then,

{chain of size 2} N Raped = Ra7b7c7d\<{(i,j) € Raped Ik > J, Ik = v, dj, < M}
U {i € Rapea, Ik < i, I > Loy, dis < M})

We conclude as for (1).

6.3. Bounds for the interaction of two particles.

Lemma 6.3. Set, for [a,b] = R a finite interval and i € N,

™

b—a

Pl (2) = *f - sin (

Forp,qe N, if | > 0 is large enough,

i(x — a)) Ly ().

2
(6:3) | vt = 0fole 2 o9 )y < €107 + )

and if ' > 0 is also large enough, and 0 < d < M,
2
(64) f ‘¢ —1',0] dd+l]’ (x,y)dxdy < Cl—3l/—3p2q2

with C' > 0 that only depends on U.

Proof. We derive with changes of variables
2
fU (y— x))dy[f”” A ¢£°’”‘ (z,y)dady = JU (y — ) (cb,[?’”(96)2@550’”(34)2 — ¢l (@)l (1) gl (1) 101 (1‘)) dady
=47t J f (SlIl q(ul™" + v)) sin®(7pv)
—sin(mp(ul ™ + v)) sin(rq(ul ™ + v)) sin(mpv) sin(qu)) dudv
Il
=4]7? J J U (u)m?u? (q2 cos?(mpv) sin®(mqu)
-1 Jo
— pq cos(mpv) cos(mqu) sin(mwpv) sin(qu)) dudv + O(I™*)

< 107173 (p* + q2)J U(u)u*du

R



THERMODYNAMIC LIMIT OF THE PIECES’ MODEL 31

and

’ 2 _q
fU(y —a)|ob " A ol (o, y)dady — f Ulw = y)ay ") oy (y) dedy
Il
=471t f f U(r + s + d) sin®(zprl’™") sin®(rqsl ') drds
0+OCO U
=471 f J U(u + d) sin® (mp(u — v)lI'™") sin® (rqul™")dudv
o Jo

. [T (u
= 473 3PP f Ulu + d)(u — v)*v*dudy
Jo Jo
+O P+ 170
([0
< 8T PP U(u + d)u’du.
Jo

O

6.4. Proof of Proposition [3.2] The ideas and the structure are inspired by the proof of Propo-
sition [3.1] that one can find in Subsection 6.1.1 of [KV20].
Set I > 0,d> 0 and a > 1. We consider the operator

(6.5) ( Ci ]) RI+I® <— d—QD ) +U(z —y) on L*([—al,0]) ® L*([d,d + ])

Y o da?|[d,d+1)

By scaling, it is unitarily equivalent to the operator [~2H'! acting on LQ([O7 1]2) where
(6.6) H = ——— — ——— + PU(lx + aly + d)

with Dirichlet boundary conditions. Denote E} the ground state of H' and let H° be the free
operator. One checks that the eigenvalues of H are

(6.7) E,, =P+ ¢a?)
for p,q > 1, with the corresponding eigenfunctions
(6.8) Ypq(z,y) = 2sin(mpz) sin(mqy).
Set Ey := By, 1o := 11, and U' := H' — H°. By Lemma [6.3]
(6.9 . Uy <
So,
(6.10) Ey < Ey < By + (o, Ulhg) < Eg + O(a™17%) < Ey 5.

Set E = E}— Ey. By the Schur decomposition for (Span (1)), Span(¢y)*), the eigenvalue equation
becomes

(6.11) I, U'Tly — (6 )Ty — UL (H, — EY)~'1,.U'Ty = 0

with Iy = |19){¥p| the orthogonal projection on Span(vy), II, the orthogonal projection on
Span(wo)i and H, = H\Span(wo)i~ Note that H, = HJ_HOHJ_ + I, UIL, > ELQ.
We use the following notation

(612) RL(Z) = HL(HL—Z)_IHL.
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We prove that one can replace R, (E}) with R, (F,) for some negligible cost. Remark that, as
| RL(Eo)| < (Brz2 — Eo)*la

(6.13) Ry (Ef) = Ri(Eg) = Y Ri(Eo)""' (SE)" = O(SE) < CI™*.

n=1

Then,

[0, U (R (BE) = Ru(B0)) U] < VO || [VOT (R (88) = R (Bo)) V|

<ol s
using (6.9), (6.13) and |U']| < U
Thus, §E = A"+ O(17%) where
(6.14) Al = (o, (U' = U'R L (Eo)U") o).

By T, 4 = 0"
Now we express RL( ) in terms of RY (z) = I, (HY —2)~'I,. By Krein’s formula, one can check
that

(6.15) Ru(2) = \[RY(2) (1 + \/Rg<z)Ul\/Rg<z)) ENTE)
Denote
(6.16) —VUL/RY(Ey) and ¢} = IPNVUWy,.
Using , one computes
PA = (b, 1 —T' 1+ 1) ' T'¢h)
= (h, T = T'T™ (1 +T'T"™) "l

(6.17) = (@b, (1+T'T™) 7 gh).
L2([0,1]?) — L*(Q
Define the partial isometry I'! : ([ 1] ) () 4, Where
f lflﬂl<f07 )

(6.18) Q:{( )€R+*,u>v} and Ql:{(uv)eRi*,u;ve(o,l),%e(o,l)}

[0,1]* — Q
(z,y) > (l(z +ay),lay)
Then, using and ((6.16)), one computes

2

Ik (u,v) = %msin <7ru ; U) sin <7r%> 1gi(u,v)

272 — —
(6.19) = U+ d)(<“ LIC DL

Va l
where ¢, is a bounded continuous function. So, by dominated convergence theorem, the sequence
(a3/2fl¢6)l>0 admits the following limit in L*(2) when | — +co:

are two domains of R, and v :

Gra(u, v)) 1o (u,v)

(6.20) o(u,v) = 27*/U(u + d)(u — v)v.
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Otherwise, we use the notations (6.7)) and to write the kernel K! of D'V T,

1z(uvlzuv u = v

! _ Q Q

K(u,v,u',v’)— Z CL(E \/U +d\/Uu +d)¢pq< >¢PQ< (Zl>

(p.a)#(1,1)

If f e CX(Q) then, for [ large enough, f € C*(') and

(6.21)
4 1

DT T f(u,v) = — Z 5 o (u; v) VU (u+ d)sin <7r(u—v)z—9> sin ( )Gf (p 4
al? w2 (5 + A5) — & [ al 1’ al

(p7q)7&(171) 2 (GZ)Z 12

where G(§,n) = o /U + d) f(u',v') sin(m/€) sin(mv'n) du'dv’. By Riemann’s summation, the
limit for [ — 400 of (6.21)) is

(6.22) L(u,v) = —lg (u,v)A/U(u + d) ff 5 sin(m(u — v)z) sin(mvy) Gy (z,y) drdy.

Using g(s,t) = A/U(s +d)f(s,t) and its Fourier transform F,(&,n) = SRQ g(s,1)eteFin dsdt, one

computes
1
Grla,y) = 7 ( = Folay —2) + Fylo,—y = 2) = F—a,0 = y) + Fy=a, + ).
Then, (6.22) becomes
(6.23) L(u,v) = ——19 u,v)A/U(u + d) Jf 5 sin(m(u — v)z) sin(rvy) Fy(z,y — ) dedy.

Lemma 6.4. Define S on CF(Q) such that Sf = L, given by (6.23). Then, the operator S is
well-defined and is extended to a bounded operator on L?(§2).

Proof. (of Lemma We first prove that, for (u,v) € Q, L(u,v), given by (6.23)), is well-defined.
We consider the singularities separately.

(1) For (a, 8) € R?, we have

e () F (0 ) ~ 00 55 aBF0.0

It gives the integrability in (0, 0).

(2) By the Paley Wiener theorem, as f € C°(€2), F, is an entire function and | F,(z,y)| < (HCW
for 7 > 1. Then,
I . &
m sin(ax) sin(fy) Fy(z,y — )| < R

It gives the integrability at +oo.
So, S is well-defined on CF(£2).
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J

Take h € C*(R?). We compute

sin?(zu) sin®(yv)
(22 + y2)2

sin(zu) sin(yv)
2?2 + y?

2
Ulu+ v+ d)” h(:p,y)dxdy‘ dudv < B2 JU(U + v+ d)
2 R2
+
<l [orvra [ o
o0z (72 + 9%

2,2
+ Uu+v+du2v2f _ry
f ( ) 12 (2% +y?)?
< Clhl7-.

Since the Fourier transform is unitary and U is bounded, we get that S admits an extension on
L3(9).
It concludes the proof of Lemma [6.4] O

Thus, by Lemma , the sequence (I‘lTlT Z*Fl*)bo converges strongly to some operator S. So
does (1 + T'T'T*T™)=1 to (1 4+ S)~!. The limit only depends on U and d.
For any positive self-adjoint operator A on a Hilbert space H, we know [ (1 + A)™||gm < 1.

Then, combining it with (6.17)), (6.20) and (6.23)), for [ large,

*lx) —1 -
(6.24) (@PTlh, (1 + T'T'TT™) " a® Tl dhd 120y = (o, (1 + ) )20y + o(1).
It yields

1 _ 1

We set 7(d) = (¢, (1 +5)"'¢)r2(q). It concludes the proof of Proposition .

ACKNOWLEGDMENTS

The author would like to thank very warmly his PhD supervisor Frederic Klopp for his guidance
conceiving this article.

REFERENCES

[AL18]  Fabien Alet and Nicolas Laflorencie. Many-body localization: An introduction and selected topics. C' R
Phys, 19(6):498-525, 2018.

[BW18] V. Beaud and S. Warzel. Bounds on the entanglement entropy of droplet states in the XXZ spin chain.
Journal of Mathematical Physics, 59(1):012109, jan 2018.

[EKS18] Alexander Elgart, Abel Klein, and Giinter Stolz. Many-body localization in the droplet spectrum of the
random XXZ quantum spin chain. Journal of Functional Analysis, 275(1):211-258, jul 2018.

[KP21]  Joachim Kerner and Maximilian Pechmann. On the effect of repulsive pair interactions on Bose-Einstein
condensation in the Luttinger—Sy model. Proceedings of the American Mathematical Society, 149(8):3499—
3513, may 2021.

[KPS19a] Joachim Kerner, Maximilian Pechmann, and Wolfgang Spitzer. Bose-Einstein condensation in the Lut-
tinger—Sy model with contact interaction. Annales Henri Poincaré, 20(6):2101-2134, feb 2019.

[KPS19b] Joachim Kerner, Maximilian Pechmann, and Wolfgang Spitzer. On Bose-Einstein condensation in the
Luttinger—Sy Model with finite interaction strength. Journal of Statistical Physics, 174(6):1346-1371, feb
2019.



THERMODYNAMIC LIMIT OF THE PIECES’ MODEL 35

[KV20]  Frédéric Klopp and Nikolaj A. Veniaminov. Interacting electrons in a random medium: a simple one-
dimensional model. In Frontiers in analysis and probability, pages 91-242. Springer, Cham, 2020.

[LST73] J. M. Luttinger and H. K. Sy. Bose-Einstein condensation in a one-dimensional model with random
impurities. Physical Review A, 7(2):712-720, feb 1973.

[LZ06] Olivier Lenoble and Valentin Zagrebnov. Bose-Einstein Condensation in the Luttinger-Sy Model. April
2006.

[Tes14]  Gerald Teschl. Mathematical methods in quantum mechanics : with applications to Schrodinger operators.
American Mathematical Society, Providence, Rhode Island, 2014.

[Venl12]  Nikolaj A. Veniaminov. The Existence of the thermodynamic limit for the system of interacting quantum
particles in random media. Annales Henri Poincaré, 14(1):63-94, may 2012.

INSTITUT DE MATHEMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE, SORBONNE UNIVERSITE, 75005 PARIS,
FRANCE
Email address: vadim.ognov@imj-prg.fr



	1. Introduction
	2. Model and first observations
	2.1. The pieces' model for Fermi-Dirac statistics
	2.2. The free operator
	2.3. The approach in term of occupations

	3. Main Results
	4. Expressing the ground state energy for a fixed occupation
	4.1. Proof of Lemma 2.1
	4.2. Decomposition of   into non-interacting groups of pieces
	4.3. Study of  EUNp 
	4.4. Study of  EUPp 

	5. Proceeding with the case p=2
	5.1. Monotony of the energy levels
	5.2. Distribution of the energy levels
	5.3. Construction of an approximated ground state
	5.4. Comparing the ground state energy to the approximated ground state energy
	5.5. Comparing a true ground state to the approximated ground state

	6. Appendix
	6.1. Convex functions and discrete optimization
	6.2. Statistical distribution of the pieces
	6.3. Bounds for the interaction of two particles
	6.4. Proof of Proposition 3.2

	Acknowlegdments
	References

