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THERMODYNAMIC LIMIT OF THE PIECES’ MODEL

VADIM OGNOV

Abstract. We study the ground states of the pieces’ model in the Fermi-Dirac statistics in the
thermodynamic limit. In other words, we consider the minimizing configurations of n interacting
fermions in an interval Λ divided into pieces by a Poisson point process, when n

|Λ| Ñ ρ ą 0 as
|Λ| Ñ 8. We notice that a decomposition into groups of pieces arises from the hypothesis of finite-
range pairwise interaction. Under assumptions of convexity and non-degeneracy of the subsystems,
we get an almost complete factorization of any ground state. This method applies at least for
groups comprising one or two particles. It improves the expansion of the thermodynamic limit of
the ground state energy per particle up to the error Opρ2´δq, with 0 ă δ ă 1 (see [KV20]). It also
provides an approximate ground state for the pieces’ model.

1. Introduction

One-dimensional many-body localization is a non-trivial topic for both condensed matter physi-
cists and spectral theory mathematicians. At large disorder, one expects that quantum systems
with interaction do not thermalize and that they exhibit a kind of localization [AL18]. Some papers
tackle this phenomenon for a finite number of particles and an infinite interval [BW18] [EKS18].
However, from a physical perspective, the appropriate scope would be to consider a number of
particles that increases proportionally with the size of the interval. This regime is called the
thermodynamic limit.

Published in 2012, a paper of Veniaminov proved the existence of the thermodynamic limit of
the ground state energy per particle for a class of disordered quantum systems [Ven12]. This
result applies in particular to the pieces’ model which is a refined version of the Luttinger-Sy
model, introduced in 1973 [LS73]. Without interaction, the ground state is given by minimizing
the distribution of n particles among the partition of the large interval Λ into pieces by the
Poisson point process. Because of this explicit solution and since the original paper, the pieces’
model has been studied to understand the Bose-Einstein condensation of free or interacting bosons
[LZ06][KPS19a][KPS19b] [KP21].

In this article, we focus on the pieces’ model in the Fermi-Dirac statistics, i.e for indistinguishable
particles. Our work is inspired by the paper of Klopp and Veniaminov [KV20]. Let ρ ą 0 be the
density of particles, i.e the limit of the ratio n

|Λ|
. Klopp and Veniaminov expand the thermodynamic

limit of the ground state energy per particle up to the error O
`

´ρ logpρq´3
˘

. We give an expansion
up to the error O

`

ρ2´δ
˘

, for any δ P p0, 1q, in case of finite-range interactions. We also provide a
natural characterization of the ground states. The next step would be to use our results to express
some indicators of the many-body localization.

Let us now briefly describe our method. In the free case, the minimizing configuration of particles
is such that the energy produced by any particle is less than the Fermi energy Eρ. It yields that, in
the ground state, the pieces with length below lρ “ πE

´1{2
ρ are empty. Similarly, in the interacting

case, under the assumptions of a pairwise potential U with compact support and a density of
particles ρ small enough, the pieces with length below lρ,U are empty for any ground state. So,
the random background reduces to a compilation of groups of pieces, that we call chains, such
that a particle belonging to a chain cannot interact with a particle living outside this chain. This
structure is therefore similar to the one of the free system if the chains replace the pieces. Our
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2 VADIM OGNOV

problem turns into finding a minimizing distribution of n particles among the chains. Without
interaction, given any piece, the energy as a function of the number of particles is convex. This
property allows to get the ground state inductively. Does this statement hold for any chain in
the presence of interactions? Unfortunately we did not solve this question. We bypass this issue
noticing that, due to the nature of the Poisson point process, large chains do not contribute much
to the total energy. The ground state energy per particle is mostly, i.e up to our error term,
given by isolated fermions and isolated pairs of fermions lying in one or two pieces. For these
simple subsystems, the energies are convex and we can compare them quite precisely. Then, we
distribute by induction the particles among these chains. We prove that the corresponding state
approximates any ground state in the thermodynamic limit.

The paper is organized as follows. In Section 2, we present the model and we sketch our method
to get an expansion of the ground state energy per particle up to any order Opρp´δq, p ě 2 and
0 ă δ ă 1, under strong assumptions. In Section 3, we state our results for p “ 2 without proof.
Section 4 rigorously develop the splitting into chains, including its limits. Section 5 is devoted to
the detailed study of chains comprising at most two particles. It also contains the proofs of our
main propositions. We gather other results in the Appendix.

2. Model and first observations

2.1. The pieces’ model for Fermi-Dirac statistics. Let Xpwq “ pxnpwqqnPZ be a Poisson
point process on R of intensity 1. Recall that the probability that a Borel set Λ Ă R contain
exactly k points is

P
´

#
`

Xpwq X Λ
˘

“ k
¯

“
|Λ|k

k!
e´|Λ|

and for two disjoints Borel sets Λ1,Λ2 Ă R, the events tXpwq X Λ1 “ k1u and tXpwq X Λ2 “ k2u

are independent.
For L ą 0 we set Λ “ r0, Ls. We assume that x0pwq “ 0 and we denote mpwq “ #

`

Xpwq X Λ
˘

.
By a large deviation principle, when L is large, with probability 1´OpL´8q, mpwq “ L`OpL

2
3 q,.

For i P J1,mpwqK, the i-th piece is the interval ∆ipwq “ rxi´1pwq, xipwqs.
On HpΛq “ L2pΛq, we set the following one-particle random operator

(2.1) hwpΛq “
mpwq
à

k“1

ˆ

´
d2

dx2

D

|∆kpwq

˙

where D stands for Dirichlet boundary conditions.
Now, we consider n particles in the disordered background given by hwpΛq combined to a pairwise

repulsive interaction. Using the statistic of Fermi-Dirac, the n-particle space on Λ is

(2.2) Hn
pΛq “

n
ľ

i“1

HpΛq.

Then, for n ě 2, the pieces’ model is the random operator given by

(2.3) HU
w pΛ, nq “

n
ÿ

i“1

ˆ i´1
â

j“1

1HpΛq

˙

b hwpΛq b

ˆ n´i
â

j“1

1HpΛq

˙

`Wn on Hn
pΛq

where Wn is the multiplication operator

(2.4) Wnpx1, . . . , xnq “
ÿ

iăj

Upxi ´ xjq
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and U : R ÝÑ R satisfies the following assumption.

Assumption 2.1. The function U : R Ñ R is nonnegative, even, bounded and compactly sup-
ported.

Under Assumption 2.1, the operator HU
w pΛ, nq is well-defined on DwpΛ, nq given by

DwpΛ, nq “ C80
ˆ

´

mpwq
ď

k“1

sxk´1, xkr
¯n

˙

X Hn
pΛq

and it is nonnegative. Using perturbation theory (see e.g Chapter 6 [Tes14]), one proves that
HU
w pΛ, nq is essentially self-adjoint on HnpΛq and it has pure spectrum. Let EU

w pΛ, nq be the
ground state energy of HU

w pΛ, nq.

Definition 2.1. The limit
 

LÑ `8, n
L
Ñ ρ

(

is called the thermodynamic limit. The constant
ρ is the density of particles per unit of volume.

In [KV20], Klopp and Veniaminov proved that, even under weaker assumptions on U , the
thermodynamic limit of n´1EU

w pΛ, nq exists P-almost surely and in L1pPq. In this paper, we give
an expansion of this limit.

2.2. The free operator. We denote by H0
wpΛ, nq the free operator and by E0

wpΛ, nq its ground
state energy. One can give quite explicitly the thermodynamic limit of the ground state energy
per particle

(2.5) E0
pρq :“ lim

LÑ`8
n
L
Ñρ

E0
wpΛ, nq

n
.

The ground state energy E0
wpΛ, nq is exactly the sum of the n first eigenvalues of hwpΛq. But, since

its eigenvalues only depend on the lengths of the pieces and the statistical distribution of these
lengths is known, the pieces’ model admits an explicit integrated density of states (see Proposition
2.6 [KV20] or Proposition 3.2 [LZ06]). One computes

(2.6) NpEq :“ lim
LÑ8

#
!

eigenvalues of hwpΛq in p´8, Es
)

L
“

e
´ π?

E

1´ e
´ π?

E

1Eě0

Let the Fermi energy Eρ be the unique solution of NpEq “ ρ. Then, one deduces

(2.7) E0
pρq “

1

ρ

ż Eρ

´8

E dNpEq.

We refer to Theorem 5.14 [Ven12] for the proof.

2.3. The approach in term of occupations. From now on, we drop the ”w” index. Unlike the
free operator, one cannot express the ground state energy of the pieces’ model with interactions
by using the spectral decomposition of the one-particle operator. However, in both cases, one can
talk about the number of particles in a given piece. The n-particle space admits the decomposition

(2.8) Hn
pΛq “

à

QPNm, |Q|1“n
HQpΛq with Hpqiq1ďiďmpΛq “

m
ľ

i“1

ˆ qi
ľ

j“1

L2
p∆iq

˙

.

Definition 2.2. An occupation is a multi-index Q “ pqiq1ďiďm of norm equal to n.
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In [KV20], Klopp and Veniaminov proved that the decomposition (2.8) is invariant under the
action of HUpΛ, nq. For a fixed occupation Q, let HUpΛ, n,Qq be the restriction of HUpΛ, nq to
the subspace HQpΛq. Then, the ground state ψUpΛ, n,Qq of HUpΛ, n,Qq is non-degenerate and it
has exactly qi particles in the piece ∆i for all i P J1,mK.

In the free case, it yields that, for a given occupation Q, the ground state energy of H0pΛ, n,Qq
satisfies

(2.9) E0
pΛ, n,Qq “

m
ÿ

i“1

E0
p∆i, qiq

where we denote E0p∆, kq the ground state energy for k non-interacting fermionic particles in the
piece ∆. Each particle lies in a Dirichlet Laplacian background in ∆. The minimum of E0pΛ, n,Qq
over all the occupations is the ground state energy of H0pΛ, nq. Remark that E0p∆, kq is the sum
of the k first eigenvalues of the operator h∆ “ ´ d2

dx2

D

|∆
. So, the map k Ñ E0p∆, kq is strictly

convex on N. By Lemma 6.1, the ground state energy E0pΛ, nq is given by the sum of the n
smallest elements of the set Γ0 “

 

E0p∆i, k ` 1q ´ E0p∆i, kq, i P J1,mK, k P N
(

.
However, note that the set Γ0 is equal to the set of all the eigenvalues of the one-particle operator

hpΛq. Then the counting function of Γ0,

(2.10) N0
pEq :“ lim

LÑ`8

#
´

Γ0 X p´8, Es
¯

L
,

is well-defined and it is equal to the integrated density of state of hpΛq. Thus, we recover the
formula (2.7).

From now on, we restrict to finite-range interactions.

Assumption 2.2. Let spUq be the support of the function U and

(2.11) M “ sup
x,y P spUq

|x´ y|

The length M is independent of ρ.

The following lemma is crucial for our analysis.

Lemma 2.1. Let ΨUpΛ, nq to be a ground state of HUpΛ, nq. For n and L large enough, with
probability 1´OpL´8q, there exists a minimal length lρ,U “ ´ log

`

ρ
1`ρ

˘

´ p4M ` 6qρ such that

If a piece ∆i satisfies |∆i| ă klρ,U , k P N, then, for every occupation Q,
´

PQΨU
pΛ, nq ‰ 0

¯

ñ

´

qi ď k ´ 1
¯

where PQ is the orthogonal projector on HQpΛq.

So, given a piece, the number of particles in this piece is bounded uniformly for any ground
state. In particular, the pieces of length up to lρ,U are empty for any ground state.

We will use the term chain to refer to a group of pieces of length greater than lρ,U with gaps of
length smaller than M . Let P to be the set of chains. Using the notations of Lemma 2.1, for any
occupation Q such that PQΨU

ω pΛ, nq ‰ 0, the ground state energy of HUpΛ, n,Qq satisfies

(2.12) EU
pΛ, n,Qq “

ÿ

IPP
FU

`

I, κIpQq
˘
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where κIpQq is the number of particles in the chain I and FUpI, κq is the smallest energy produced
by κ particles in I. Each particle lies in a Dirichlet Laplacian background for some piece of I and
it is eventually submitted to the repulsive pairwise interaction U .

One should think of Equation (2.12) as a counterpart to Equation (2.9) where each chain stands
for an occupied piece in the free case. If one could prove the convexity of every map κÑ FUpI, κq
then by Lemma 6.1, the ground state energy EUpΛ, nq would be given by the sum of the n smallest
elements of the set Γ “ tFUpI, κ` 1q ´ FUpI, κq, I chain, κ P Nu.

For κ ě 0, the pκ` 1q-th energy level of the chain I is given by

(2.13) fUpI, κ` 1q “ FU
pI, κ` 1q ´ FU

pI, κq.

It represents the smallest amount of energy that appears if one adds a particle to a minimizing
configuration of κ particles in I. From the above discussion, one would like to use that, for
every chain, κ Ñ fUpI, κq is increasing. Using the perturbation methods, we fail to prove such a
statement. However it seems relevant to search for results in case of monotony for small chains
and/or for few particles.

More precisely, let p ě 2 and Pp be the set of chains each of which carries at most p particles
for any ground state, and Γp be the set of the p lowest energy levels of every chain that belongs to
Pp, meaning that

(2.14) Γp “
!

fUpI, κq, I P Pp, κ ď p
)

.

Assume that

(2.15) @I P Pp, @κ ď p´ 1, fpI, κq ă fpI, κ` 1q.

Set δ P p0, 1q. By Lemma 2.1 and by statistical distribution of the pieces (see Proposition 6.2), one
proves that, for any ground state, the number of particles in cPp, the complement of Pp, is of order
Opnρp´δq. One also controls the contribution of these particles to the ground state energy with
a bound of order Opnρp´δq. Then, up to an error Opnρp´δq, the ground state energy EUpΛ, nq is
given by the sum of the n smallest elements of Γp. Let NU

p be the counting function of Γp, meaning
that

(2.16) NU
p pλq :“ lim

LÑ`8

#
´

Γp X p´8, λs
¯

L
.

Using NU
p as a counterpart to N0 (see (2.10)), one should get an approximation of the thermody-

namic limit of the ground state energy per particle EUpρq up to an error Opρp´δq.

3. Main Results

Since the interaction is repulsive, Assumption (2.15) is always true for p “ 2. Following the
above discussion, we study this case in depth. In the set P2, a chain is either a single piece with
at most two particles, or a pair of pieces with at most one particle in each piece.

Klopp and Veniaminov proved a result about the ground state energy of two interacting particles
in a single piece.

Proposition 3.1. [KV20] Under Assumption 2.1, for l ą 0, consider the operator

(3.1)
ˆ

´
d2

dy2

D

|r0,ls

˙

b 1L2pr0,lsq` 1L2pr0,lsqb

ˆ

´
d2

dx2

D

|r0,ls

˙

`Upx´ yq on L2
`

r0, ls
˘

^L2
`

r0, ls
˘
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Then, for large l, the ground state energy EU
`

r0, ls, 2
˘

admits the following expansion

(3.2) EU
`

r0, ls, 2
˘

“
5π2

l2
`
γ

l3
` opl´3

q

with γ ą 0 when U ‰ 0.

In the Appendix, we prove an analogue of Proposition 3.1 for the ground state energy of two
interacting particles in two distinct pieces.

Proposition 3.2. Under Assumption 2.1, for l ą 0, d ě 0 and a ą 1, consider the operator
(3.3)
ˆ

´
d2

dy2

D

|r´al,0s

˙

b1L2prd,d`lsq`1L2pr´al,0sqb

ˆ

´
d2

dx2

D

|rd,d`ls

˙

`Upx´yq on L2
`

r´al, 0s
˘

bL2
`

rd, d`ls
˘

Then, for d ě 0 and large l ą 0, the ground state energy EU
´

 

r´al, 0s, rd, d ` ls
(

, p1, 1q
¯

admits
the following expansion

(3.4) EU
´

 

r´al, 0s, rd, d` ls
(

, p1, 1q
¯

“

´π2

l2
`

π2

palq2

¯

`
σpdq

a3l6

´

1` op1q
¯

with σpdq a positive function that vanishes for d ą diampsupppUqq.

We now state our theorem.

Theorem 3.1. Under Assumption 2.1 and Assumption 2.2, let M “ diampsupppUqq and lρ,U ą 0
be the minimal length defined in Lemma 2.1. Consider, on p0,`8q, the application

J pλq “
`

1´Me´lρ,U
˘2

ˆ
ż

D1pλq

fUpr0, us, 1qe´u du`

ż

D2pλq

fUpr0, us, 2qe´u du

`

ż M

0

ż

D3pλq

2e´pu`vqfUptr´u, 0s, rt, v ` tsu, 1q dtdudv

`

ż M

0

ż

D4pλ,tq

2e´pu`vqfU
`

tr´u, 0s, rt, v ` tsu, 2
˘

dtdudv

˙

where fUpI, 1q (resp. fUpI, 2q) is the first (resp. second) energy level of the chain I,

D1pλq “
” π
?
λ
, 3lρ,U

ı

, D3pλq “

"

px, yq P
“

lρ,U , 2lρ,U
‰2
, y ě max

´

x,
π
?
λ

¯

*

D2pλq “
” 2π
?
λ
`

γ

8π2
, 3lρ,U

ı

, D4pλ, tq “

"

px, yq P
“

lρ,U , 2lρ,U
‰2
, y ě x ě

´ π
?
λ
`
σptq

2y3

¯

*

.

and γ (resp. σptq) is given in Proposition 3.1 (resp. Proposition 3.2).
Set δ P p0, 1q. There exists ρδ ą 0 such that for every ρ P p0, ρδq there is a Fermi energy level

λρ, depending only on ρ and U , such that, with probability 1 ´ OpL´8q, the thermodynamic limit
of the ground state energy per particle satisfies

(3.5) EUpρq :“ lim
LÑ`8
n
L
Ñρ

EU
w pΛ, nq

n
“

1

ρ
J pλρq `Opρ2´δ

q.

We also get results on the ground state itself. Recall that, in any chain of P2, there is at most
two particles. They are either in the same piece (see the operator (3.1)) either in two distinct
pieces (see the operator (3.3)). From λρ ą 0 a Fermi energy level given by Theorem 3.1, we build
an occupation Qtest such that
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(i) for a single piece ∆i P P2,

qtest
i “ max

 

q, fUp∆i, qq ď λρ
(

;

(ii) for a pair p∆j,∆kq P P2, assuming |∆j| ď |∆k|,

qtest
j “ max

ˆ

0, max
!

q, fU
`

p∆j,∆kq, q
˘

ď λρ

)

´ 1

˙

,

qtest
k “ min

ˆ

1, max
!

q, fU
`

p∆j,∆kq, q
˘

ď λρ

)

˙

.

We prove that one can complete Qtest on cP2 with respect to Lemma 2.1. Then, set the following
state

(3.6) Ψtest
pΛ, nq “

ˆ

ľ

I PP2

ψU
´

I, pqtest
i qiPI

¯

˙

^

ˆ

ľ

I P cP2

ľ

iPI

ψ0
´

∆i, q
test
i

¯

˙

where
(i) ψU

´

I, pqiqiPI

¯

is the ground state for the interacting system with exactly qi particles in ∆i;
(ii) ψ0p∆, qq is the ground state for q non-interacting particles in ∆, given by the Slater deter-

minant of the q firsts eigenfunctions of the operator h∆ “ ´
d2

dx2

D

|∆
.

We compare the state ΨtestpΛ, nq to any ground state ΨUpΛ, nq through the one- and two- particle
densities, using trace norm } }tr.

Definition 3.1. For φ P HnpΛq, its 1-particle density is the operator γp1qφ on H1pΛq “ L2pΛq
with kernel

(3.7) γ
p1q
φ px, yq “ n

ż

Λn´1

φpx, Zqφpy, ZqdZ.

The 2-particle density of φ is the operator γp2qφ on H2pΛq with kernel

(3.8) γ
p2q
φ px1, x2, y1, y2q “

npn´ 1q

2

ż

Λn´2

φpx1, x2, Zqφpy1, y2, ZqdZ.

Proposition 3.3. Let ΨUpΛ, nq be a ground state of HUpΛ, nq. For δ P p0, 1q, ρ P p0, ρδq, set
the state ΨtestpΛ, nq according to the above construction. Then, in the thermodynamic limit, with
probability 1´OpL´8q, one has

(3.9)
1

n

›

›

›
γ
p1q

ΨU pΛ,nq
´ γ

p1q
ΨtestpΛ,nq

›

›

›

tr
ď 10ρ2´δ.

We get an analogue of Proposition 3.3 for the 2-particle density.

Proposition 3.4. Let ΨUpΛ, nq be a ground state of HUpΛ, nq. For δ P p0, 1q and ρ P p0, ρδq, set
the state ΨtestpΛ, nq as above. Then, in the thermodynamic limit, with probability 1´OpL´8q, one
has

(3.10)
1

n2

›

›

›
γ
p2q

ΨU pΛ,nq
´ γ

p2q
ΨtestpΛ,nq

›

›

›

tr
ď 45ρ2´δ.

Remark 3.1. Proposition 3.3 and Proposition 3.4 show that the state Ψtest is a better approxima-
tion of the ground state than the approximated state given in [KV20].
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4. Expressing the ground state energy for a fixed occupation

4.1. Proof of Lemma 2.1. Define the Fermi length lρ as the length of a piece ∆ for which the
ground state energy of the Dirichlet Laplacian ´ d2

dx2

D

|∆
is equal to the Fermi energy. Using formula

(2.6), one computes

(4.1) lρ :“
π

a

Eρ
“ ´ log

´ ρ

1` ρ

¯

For L large enough, with probability 1´OpL´8q no piece of a length below klρ can carry more
than k ´ 1 particles in the ground state of the free operator H0pΛ, nq. Due to Assumption 2.2 of
finite-range interactions, in the case of the full operatorHUpΛ, nq, we exhibit the same phenomenon
for some minimal length lρ,U ă lρ. The following lemma is a reformulation of Lemma 2.1.

Lemma 4.1. Let ΨUpΛ, nq to be a ground state of HUpΛ, nq. For n and L large enough, with
probability 1´OpL´8q, there exists a minimal length lρ,U “ lρ ´ p4M ` 6qρ such that

If a piece ∆i satisfies |∆i| ă klρ,U , k P N, then, for every occupation Q,
´

PQΨU
pΛ, nq ‰ 0

¯

ñ

´

qi ď k ´ 1
¯

where PQ is the orthogonal projector on HQ.
Then, any ground state of HUpΛ, nq belongs to

À

QPQ HQpΛq where HQpΛq is given in (2.8) and

(4.2) Q “

!

pqiq P Nm,
m
ÿ

i“1

qi “ n and for 1 ď i ď m qi ď
Y li
lρ,U

])

.

This is a slight improvement of Lemma 3.25 of [KV20]. We use the same method of proof.

Proof. Set lρ,U “ lρ ´ tρ, for t ą 0. Assume that ∆e is the smallest piece that does not satisfy the
property of the lemma. Pick k P N so that pk´ 1qlρ,U ď |∆

e| ă klρ,U and Qe an occupation so that
∆e is occupied by j “ k ´ 1 ` e particles in PQeΨUpΛ, nq with e ě 1. Without loss of generality,
we assume that ΨUpΛ, nq “ PQeΨ

UpΛ, nq.
We show that one can define a state ΦUpΛ, nq such that

xΦU
pΛ, nq, HU

pΛ, nqΦU
pΛ, nqy ă xΨU

pΛ, nq, HU
pΛ, nqΨU

pΛ, nqy

by moving the e extra particles in e empty pieces without creating any interaction.
By hypothesis, there are at most n´ j ` 1 pieces with some particle in the state ΨUpΛ, nq. We

call interaction range of a piece ∆ the set of pieces ∆1 such as the distance between ∆ and ∆1 is less
than or equal to M . Thanks to Proposition 6.2 and Proposition 6.3, one knows, with probability
1´OpL´8q,

#
 

∆, lρ,U ă |∆| ă 2lρ,U
(

“ Le´lρ,U p1´ e´lρ,U q `OpLβq

“ np1` pt´ 1qρ` opρqqp1´ ρ` opρqq

#
 

p∆,∆1
q, |∆| ą lρ,U , |∆

1
| ą lρ,U , dp∆,∆1

q ď 2M ` 1
(

“ 2p2M ` 1qLe´2lρ,U `OpLβq

“ 2p2M ` 1qnpρ` opρqq
`

1` 2tρ` opρqq
˘

.

Thus, there are more than n
´

1` pt´ 1qρ´ 2p2M ` 2qρ` opρq
¯

pieces of length between lρ,U and
2lρ,U such that there is no other piece of length greater than lρ,U in any interaction range and, for
any two interaction ranges, their intersection is empty. This last property means that no particle
can interact with some particles of both pieces.

Choose t “ 4M ` 6 so that n
´

1` pt´ 1qρ´ 2p2M ` 2qρ` opρq
¯

ě n` 1 for n large enough. By
the pigeonhole principle, there are at least j of such pieces for which the interaction area do not
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carry any particle in ΨUpΛ, nq. Therefore one can move the e extra particles to these slots. We
get a new state ΦUpΛ, nq.

Before the exchange, the free energy of the piece ∆e is

E0
p∆e, jq “ E0

p∆e, k ´ 1q `
j
ÿ

i“k

i2π2

|∆e|2

“ E0
p∆e, k ´ 1q `

6ek2 ` 6epe´ 1qk ` p2e´ 1qepe´ 1q

6

π2

|∆e|2

ě E0
p∆e, k ´ 1q `

6ek2 ` 6epe´ 1qk ` p2e´ 1qepe´ 1q

6

π2

k2l2ρ,U

ě E0
p∆e, k ´ 1q ` e

j

k

π2

l2ρ,U
.

So, the e extra particles contribute to more than e j
k
π2

l2ρ,U
in ΨUpΛ, nq. But in ΦUpΛ, nq, the free

energy associated to these e particles is strictly less than e π2

l2ρ,U
and there is no interaction energy.

So,
xΦU

pΛ, nq, HU
pΛ, nqΦU

pΛ, nqy ă xΨU
pΛ, nq, HU

pΛ, nqΨU
pΛ, nqy

Thus ΨUpΛ, nq can not be a ground state and this completes the proof of Lemma 4.1. �

4.2. Decomposition of Λ into non-interacting groups of pieces. From now on, we fix the
minimal length lρ,U “ lρ ´ p4M ` 6qρ. According to Lemma 4.1, the pieces of length l ă lρ,U are
empty for any ground state. We divide the others pieces into undecomposable groups of pieces
that may interact through U . For simplicity, we identify a piece ∆k and its index k (position).
The length of the piece k is denoted by lk and the distance between the pieces j and k by dj,k.

Definition 4.1. The r-tuple I “ pi1, . . . , irq, with i1 ă ¨ ¨ ¨ ă ir, is a chain of size r if
(i) for every k P J1, rK, lik ě lρ,U ,
(ii) for every k P J1, r ´ 1K, dik,ik`1

ďM ,
(iii) for every j ă i1 such that lj ě lρ,U , dj,i1 ąM
(iv) for every j ą ir such that lj ě lρ,U , dir,j ąM .

Fix p P N‹. We denote by

(4.3) Pp “
!

I chain,
ÿ

iPI

Y li
lρ,U

]

ă pp` 1q
)

the set of chains that cannot carry more than p particles in any ground state of HUpΛ, nq, and by
Np the set of others pieces. Using the notations of Lemma 4.1, we consider, for a fixed occupation
Q P Q, the operator

(4.4) HU
pΛ, n,Qq “ PQH

U
pΛ, nqPQ on HQpΛq “

m
ľ

i“1

ˆ qi
ľ

j“1

L2
p∆iq

˙

.

As chains do not interact one with another, HUpΛ, n,Qq can be written as a sum of operators each
of which acting on a specific chain. We list the notations and definitions for these operators.

Definition 4.2. Fix I a chain in Λ. For pqiqiPI P N‹, let ψUpI, pqiqiPIq and EUpI, pqiqiPIq be the
ground state and the ground state energy of the operator HUpI, pqiqiPIq given by

(4.5) HU
`

I, pqiqiPI
˘

“

κI
ÿ

κ“1

ˆ κ´1
â

j“1

1HpΛq

˙

b hI b

ˆ κI
â

j“κ`1

1HpΛq

˙

`WκI on
ľ

iPI

´

qi
ľ

j“1

L2
p∆iq

¯
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where
(i) κI “

ř

iPI qi is the number of particles in I;
(ii) hI is the one-particle operator defined by

(4.6) hI “
à

iPI

ˆ

´
d2

dx2

D

|∆i

˙

on HpΛq;

(iii) Wk is given by (2.4).
Set FUpI, 0q ” 0 and for κ P N‹

(4.7) FU
pI, κq “ min

κI“k
EU
pI, pqiqiPIq.

For κ P N‹, the κ-th energy level of the chain I is defined by

(4.8) fUpI, κq “ FU
pI, κq ´ FU

pI, κ´ 1q.

With the notations of Definition 4.2, ψUpΛ, n,Qq the ground state of HUpΛ, n,Qq has the form

(4.9) ψUpΛ, n,Qq “ ψUPppQq ^ ψ
U
NppQq

where

(4.10) ψUPppQq “
ľ

IPPp

ψUpI, pqiqiPIq and ψUNppQq “
ľ

I chain ĂNp

ψUpI, pqiqiPIq

The corresponding ground state energy is

(4.11) EU
pΛ, n,Qq “ EU

PppQq ` E
U
NppQq

with

(4.12) EU
PppQq “

ÿ

IPPp

EU
pI, pqiqiPIq and EU

NppQq “
ÿ

I chain ĂNp

EU
pI, pqiqiPIq.

We study these two quantities in the next subsections.

4.3. Study of EU
Np. The following lemma give an upper bound for the number of particles that

one does not control when the occupation is known only for the chains of Pp.

Lemma 4.2. For p P N‹, and δ P p0, 1q, there exists ρδ ą 0 such that for every ρ P p0, ρδq

(4.13) ρ p`δ ď sup
pqiqPQ

ˆ

1

n

ÿ

iPNp

qi

˙

ď ρ p´δ.

Proof. If i P Np, we have the following options.
(i) Either li ă lρ,U , qi “ 0;
(ii) Or li ě pp` 1qlρ,U , then, using Proposition 6.2, one computes

ÿ

i, liěpp`1qlρ,U

qi ď
`8
ÿ

k“p`1

kLpe´klρ,U ´ e´pk`1qlρ,U q “ pp` 1qLe´pp`1qlρ,U p1`Ope´lρ,U qq

(iii) Or i P I chain of size r ě 2 and
ř

jPI lj ě pp`1qlρ,U and li ă pp`1qlρ,U ; in this case qi ď p.
For r ď p,

#tI chain of size r of total length ě pp` 1qlρ,Uu ď #tr pieces of total length ě pp` 1qlρ,U

with gaps of length ďMu

ďM r´1Le´pp`1qlρ,U
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and

#tI chain of size r ě p` 1u ď #tpp` 1q pieces of length ě lρ,U with gaps of length ďMu

ďMpLe´pp`1qlρ,U .

As e´pp`1qlρ,U “ opρ p`1´δq, this completes the proof of the right-hand side of the inequality (4.13).
Concerning the left-hand side, let Q0 “ pq0

i q be the occupation of the ground state for the free
model. We have that for i P J1,mK if li P rklρ, pk ` 1qlρq then q0

i “ k. Since lρ,U ď lρ, Q0 P Q. So,

ÿ

iPN
q0
i ě

ÿ

i, liěpp`1qlρ

q0
i “

`8
ÿ

k“p`1

kLpe´klρ ´ e´pk`1qlρq “ pp` 1qLe´pp`1qlρp1`Ope´lρqq

As ρ p`1`δ “ ope´pp`1qlρq, it gives the left part of the inequality (4.13). �

Proposition 4.1. For a fixed p ě 1, δ P p0, 1q and Q P Q, there exists ρδ ą 0 such that for
ρ P p0, ρδq,

(4.14) EU
NppQq ď nρp´δ

Proof. As in Definition 4.2, for any chain I, we denote ψU
`

I, pqiq
˘

and EU
`

I, pqiq
˘

the ground
state and ground state energy of the operator HU

`

I, pqiq
˘

given by (4.5). We use the notations
ψ0

`

I, pqiq
˘

and E0
`

I, pqiq
˘

for the free case. We have
@

ψU
`

I, pqiq
˘

, HU
`

I, pqiq
˘

ψU
`

I, pqiq
˘ D

ď
@

ψ0
`

I, pqiq
˘

, HU
`

I, pqiq
˘

ψ0
`

I, pqiq
˘ D

so

(4.15) EU
`

I, pqiq
˘

ď E0
`

I, pqiq
˘

`
@

ψ0
`

I, pqiq
˘

,WκIψ
0
`

I, pqiq
˘D

.

Then, we compute

EU
NppQq “

ÿ

IĂNp chain

EU
`

I, pqjqjPI
˘

(4.16)

ď
ÿ

IĂNp chain

ˆ

E0
`

I, pqjqjPI
˘

`
@

ψ0
`

I, pqiq
˘

,WκIψ
0
`

I, pqiq
˘D

˙

ď max
QPQ
jPNp

ˆ

E0plj, qjq

qj

˙

ÿ

jPNp

qj `
ÿ

IĂNp chain

@

ψ0
`

I, pqiq
˘

,WκIψ
0
`

I, pqiq
˘D

For any Q P Q and j P Np, by Lemma 4.1,

(4.17) E0
plj, qjq “

qj
ÿ

k“1

k2π2

l2j
ď C

q3
j

l2j
ď C

qj
l2ρ,U

.

By Lemma 4.2,
ř

jPNp qj ď nρp´δ.
We deal with the remaining sum using the results of Lemma 6.3. For a chain I, i P I, j P N, let

φ∆i
j be the state on L2p∆iq given by

(4.18) φ∆i
j pxq “

?
2

?
li

sin
´π

li
jpx´ xiq

¯

1∆i
pxq.

Then,

(4.19) ψ0
pI, pqiqq “

ľ

iPI

qi
ľ

j“1

φ∆i
j .
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By skew-symmetry and orthogonality of pφ∆i
j qi,j,

@

ψ0
`

I, pqiq
˘

,WκIψ
0
`

I, pqiq
˘D

“
κIpκI ´ 1q

2

ż

Upy ´ xqψ0
`

I, pqiq
˘2
py, x, Zq dxdydZ

“
ÿ

iPI

ÿ

1ďjăkďqi

ż

Upy ´ xq
ˇ

ˇ

ˇ
φ∆i
j ^ φ∆i

k

ˇ

ˇ

ˇ

2

px, yqdxdy

`
ÿ

h,i PI, h‰i

qh
ÿ

j“1

qi
ÿ

k“1

ż

Upy ´ xq
ˇ

ˇ

ˇ
φ∆h
j ^ φ∆i

k

ˇ

ˇ

ˇ

2

px, yqdxdy

So, by Lemma 6.3,

@

ψ0
`

I, pqiq
˘

,Wpψ
0
`

I, pqiq
˘D

ď C
ÿ

iPI

ÿ

1ďjăkďqi

j2 ` k2

l3i
` C

ÿ

h,i PI, h‰i

qh
ÿ

j“1

qi
ÿ

k“1

j2k2

l3hl
3
i

(4.20)

ď C
ÿ

iPI

qi
l3ρ,U

` C
ÿ

h,i PI, h‰i

qhqi
l6ρ,U

ď
C

l3ρ,U

ÿ

iPI

qi `
C

l6ρ,U

´

ÿ

iPI

qi

¯2

where C depends on U and M . Again by Lemma 4.2,
ř

iPNp qi ď nρp´ε. For the part with squares,
we adapt the proof of (4.13). A chain I Ă Np of size r ě p` 1 of total length l P rklρ,U , pk` 1qlρ,Uq
with k ě r may contain at most k particles. Otherwise, the chains I Ă N of size r ď p and of
total length l P rklρ,U , pk ` 1qlρ,Uq with k ě p` 1 may contain at most k particles. So,

ÿ

IĂNp

´

ÿ

iPI

qi

¯2

ď

`8
ÿ

r“p`1

M r´1
8
ÿ

k“r

k2Le´klρ,U `
p
ÿ

r“1

M r´1
`8
ÿ

k“p`1

k2Le´klρ,U .

We claim that, if Me´lρ,U ă 1,

(4.21) DC ą 0
ÿ

IĂNp

´

ÿ

iPI

qi

¯2

ď C maxt1, . . . ,Mp
upp` 1q2Le´pp`1qlρ,U .

Then, if ρ is small enough, combining (4.17), (4.20) and (4.21), the inequality (4.16) becomes

(4.22) EU
NppQq ď nρp´δ.

It concludes the proof of Proposition 4.1. �

Remark 4.1. If one replaces ψUNppQq by
Ź

IĂNp ψ
0
`

I, pqiq
˘

then the same bound holds for the
energy.

4.4. Study of EU
Pp. The following proposition states that, when the number of particles in Pp is

known, EU
Pp is the sum of the smallest energy levels. But it requires a strong hypothesis on the

monotony of the energy levels.

Assumption 4.1. For a fixed p ě 1, using the notations of Definition 4.2, the application

(4.23) fUpI, .q :

#

J0, pK ÝÑ R
r ÞÝÑ fUpI, rq

is increasing for every chain I in Pp.
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From now on, we denote by nQ the number of particles in Pp for the occupation Q. Using the
notations of Definition 4.2, we also set

(4.24) Γp “
!

fUpI, kq, I P Pp, 1 ď k ď p
)

.

Let ďp be a lexical order on Γp such that
(4.25)

@I, J P Pp, 1 ď k, l ď p fUpI, kq ăp f
U
pJ, lq ðñ

$

’

&

’

%

fUpI, kq ă fUpJ, lq

else last index of I ă first index of J
else k ă l

Proposition 4.2. For a fixed p ě 1, let tak P Γp, ak´1 ăp aku be the ordered set given by (4.24)
and (4.4). Under Assumption 4.1, for r ď minpn,#Γpq, any occupation Q that minimizes EU

Pp

when nQ “ r and qi ď
Y

li
lρ,U

]

for each piece ∆i in Pp , satisfies

(4.26) EU
PppQq “

r
ÿ

k“1

ak.

Proof. Fix r ď minpn,#Γpq. Take such an occupation Q. Then, by reductio ad absurdum,

EU
PppQq “

ÿ

IPPp

EU
pI, pqiqiPIq “

ÿ

IPPp

FU
pI, κIq “

ÿ

IPPp

κI
ÿ

j“1

fUpI, jq

with
ř

IPPp κI “ r and κI ď
ř

iPI

Y

li
lρ,U

]

ď p. In particular,

(4.27)
r
ÿ

k“1

ak ď EU
PppQq.

For the reverse inequality, we build by induction an appropriate occupation Q1. Set Q1p0q ”
p0, . . . , 0q. For k from 1 to r, assume that the multi-index Q1pk ´ 1q “

`

q1ipk ´ 1q
˘

1ďiďm
satisfies

EU
Pp

`

Q1pk ´ 1q
˘

“

k´1
ÿ

s“1

as and
m
ÿ

i“1

q1ipk ´ 1q “ k ´ 1.

We know that ak “ fUpI, jq meaning ak is the j-th energy level of the chain I. Since fUpI, .q is
increasing, we have tfUpI, 1q, . . . , fUpI, j ´ 1qu “ tai1 , . . . , aij´1

u for 1 ď i1 ă ¨ ¨ ¨ ă ij´1 ď k ´ 1
and for every i ą j, fUpI, iq ą ak. In particular,

k
ÿ

s“1

as “
ÿ

sRti1,...,ij´1,ku

as `
j
ÿ

i“1

fUpI, iq “
ÿ

sRti1,...,ij´1,ku

as ` F
U
pI, jq.

We set q1ipkq for i P I so that EUpI, pq1ipkqqiPIq “ FUpI, jq and for every i R I, q1ipkq “ q1ipk ´ 1q.
Then,

EU
Pp

`

Q1pkq
˘

“

k
ÿ

s“1

as and
m
ÿ

i“1

q1ipkq “ k.

We fill the coordinates in Np so that Q1 is an occupation with nQ “ r.
It concludes the proof of Proposition 4.2. �
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Remark. We don’t know yet how to prove that Assumption 4.1 holds when p ě 3. The following
lemma gives a partial result for chains of size 1.

Lemma 4.3. Using the notations of Definition 4.2, if l ă l
3
2
´ε

ρ,U for ε P p0, 1
2
q then for ρ small

enough

(4.28) @r P J1, p´ 1K fU
`

r0, ls, r
˘

ă fU
`

r0, ls, r ` 1
˘

where p “ t l
lρ,U

u.

Proof. Assume that l “ πβ´1lρ,U . For r ě 1, denote F prq “ FU
`

r0, ls, r
˘

and Ψprq a corresponding
eigenfuntion. Also set F 0prq and Ψ0prq in the free case U ” 0. We know that

Ψ0
prq “

r
ľ

i“1

ϕi

where ϕipxq “
?

2?
l

sin
`

π
l
ix
˘

1r0,lspxq. We compute

xWrΨ
0
prq,Ψ0

prqy “
rpr ´ 1q

2

ż

Upx1 ´ x2qΨ
0
prqpx1, x2, Zq

2dx1dx2dZ by skew-symmetry

“
rpr ´ 1q

2

1

r!

ÿ

σ,σ1PSr

εpσqεpσ1q

ż

Upx1 ´ x2q

r
ź

i“1

ϕσpiqpxiqϕσ1piqpxiqdX

“
ÿ

păqďr

ż

Upx1 ´ x2q
ˇ

ˇϕp ^ ϕq
ˇ

ˇ

2
px1, x2qdx1dx2

by skew-symmetry and orthogonality of pϕiqiě1. Hence, by Lemma 6.3,

(4.29) xWrΨ
0
prq,Ψ0

prqy ď
ÿ

păqďr

Cl´3
pp2
` q2

q ď Cl´3r4.

Since,
0 ď F prq ´ F 0

prq ď xWrΨ
0
prq,Ψ0

prqy.

we have

(4.30) F prq “ F 0
prq `Opl´3r4

q “

r
ÿ

i“1

pπl´1iq2 `Opl´3r4
q

Then,

(4.31) F pr ` 1q ´ 2F prq ` F pr ´ 1q “ 2πl´2r
`

1`Opl´2ε
ρ,U q

˘

as r ă l.l´1
ρ,U and l2l´3

ρ,U ď l´2ε
ρ,U . Thus one gets that for ρ small enough the r.h.s is positive. This

concludes the proof of Lemma 4.3. �

Combining Lemma 4.3 and Lemma 6.1, we get that Assumption 4.1 holds when one cancels
the interaction between pieces and p is less than | logpρq|. Without restriction on the form of
the interaction, the issue occurs when the growth in the free energy is less or of the order of the
interaction between two pieces. More precisely, we don’t know yet how to deal with the cases
where the lengths of a pair of pieces t∆i,∆ju satisfy

(4.32) D ki, kj P J1, p´ 1K
ˇ

ˇ

ˇ

´ki
li

¯2

´

´kj
lj

¯2ˇ
ˇ

ˇ
“ Opl´6

ρ,Uq.
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Otherwise, let pΓp,ďpq be the ordered set given by (4.24) and (4.4), and for 1 ď r ď #Γp, and
let Gpprq be the subset of Pp such that

(4.33) Gpprq “
!

I P Pp, D 1 ď k ď p, fUpI, kq “ the r-th smallest element of pΓp,ďpq
)

.

From the proof of Proposition 4.2 we deduce the following corollary. For B Ă J1,mK and Q P Nm,
we denote by Q|B “ pqiqiPB the restriction of the multi-index to B.

Corollary 4.1. Under Assumption 4.1, there exists a sequence of occupations
`

Qprq
˘

rďn
such that

(1) the number of particles in the chains of Pp for the occupation Qprq is nQprq “ r;
(2) the restrictions Qprq|Pp and Qpr ` 1q|Pp are equal except for one chain;
(3) if ΨU is a ground state of HU and Q is an occupation that satisfies PQΨU ‰ 0 then

(4.34) Q|PpzGppnQq “ QpnQq|PpzGppnQq,

where GppnQq is given by (4.33).

The issue of the cardinal of Gpprq, for any r P J1, #ΓpK, looks as hard to solve as the issue of
order of degeneracy of the ground state of HUpΛ, nq. However, it seems relevant to assume that,
except for some pathological Poisson point processes, one should get only few cases of equality for
the energy levels of Γp.

Assumption 4.2. For 1 ď r ď #Γp, #Gpprq ď nρp´δ.

The next proposition states that if Assumption 4.1 and Assumption 4.2 are true for some p ě 1
then the number of particles in each piece of Pp, except for at most 2nρp´δ chains, stays the same
for any ground state.

Proposition 4.3. Set p P N‹, δ P p0, 1q and ρ P p0, ρδq. Under Assumption 4.1 and Assumption
4.2, there exist a subset Fp of Pp and, for each piece i in Fp, an integer qFpi such that

(1) the number of chains in PpzFp is less than or equal to 2nρp´δ;
(2) if ΨU is a ground state of H then it admits the decomposition ΨU “ ΦU,Fp ^ ΩU,Fcp with

(4.35) ΦU,Fp “
ľ

IPFp

ψU
`

I, pq
Fp
i qiPI

˘

and ΩU,Fcp “
ÿ

QPQ

λpQq
ľ

IRFp

ψU
`

I, pqiqiPI
˘

.

Proof. Let Fp be the set of chains I in Pp such that the function r ÞÑ Qprq|I is constant on
Jn ´ 2nρp´δ, nK. By Corollary 4.1, for r ď n ´ 1, there is a unique chain I P Pp for which
QprqPpzI “ Qpr` 1qPpzI . So, by induction on r ě n´ 2nρp´δ, Fp is not empty and the numbers of
chains in PpzFp is less than or equal to 2nρp´δ. Then, for any piece i in Fp, let q

Fp
i be the common

value.
Let ΨU be a ground state of H. By Lemma 4.1 and Definition 4.2, we have the decomposition

(4.36) ΨU
“

ÿ

QPQ

λpQq
ľ

I chain

ψU
`

I, pqiqiPI
˘

where ψU
`

I, pqiqiPI
˘

is a normalized wave function of HqI pUIq with qI “
ř

iPI qi and UI “
Ť

iPI ∆i.
Using Lemma 4.2, if an occupation Q satisfies PQΨU ‰ 0 then the number of particles in Pp for

Q belongs to Jn´ nρp´δ, nK.
Under Assumption 4.2, we have

(4.37)
n
ď

r“n´nρp´δ

Gpprq Ă PpzFp



16 VADIM OGNOV

because the left term, gathers all the chains that match with any r-th smallest element in pΓp,ďpq
for r P Jn´ nρp´δ, nK (see (4.33)) while the right term gathers all the chains that match with any
element of pΓp,ďpq between the pn´ 2ρp´δq-th and the n-th ones.

Using the third point of Corollary 4.1, one shows that, for every chain I P Fp, the restriction
map Q ÞÑ Q|I is constant on tQ P Q, PQΨU ‰ 0u, equal to pqFpi qiPI . So, (4.36) becomes

(4.38) ΨU
“

ˆ

ľ

IPFp

ψU
`

I, pq
Fp
i qiPI

˘

˙

^

ˆ

ÿ

QPQ

λpQq
ľ

IRFp

ψU
`

I, pqiqiPI
˘

˙

This concludes the proof of Proposition 4.3. �

5. Proceeding with the case p “ 2

5.1. Monotony of the energy levels. We recall that P2 is the set of chains each of which carries
at most two particles for any ground state.

Lemma 5.1. Set

(5.1) Γ2 “

!

fUpI, kq, I P P2, k P t1, 2u
)

Then, with probability 1´OpL´8q, for ρ small enough,

2n ă #Γ2 ă 2n
`

1` p3M ` 6qρ
˘

.

Proof. Using e´lρ,U “ ρ
`

1` p4M ` 5qρ` opρq
˘

, Proposition 6.2 and Proposition 6.3, we compute

#Γ2 “ 2#
!

t∆iu P P2

)

` 2#
!

t∆j,∆ku P P2

)

“ 2Lp1´Me´lρ,U q2
´

`

e´lρ,U ´ e´3lρ,U
˘

`M
`

e´lρ,U ´ e´2lρ,U
˘2
¯

“ 2L
`

1´ 2Mρ` opρq
˘

ρ
`

1` p4M ` 5qρ` opρq
˘`

1`Mρ` opρq
˘

“ 2n
`

1` p3M ` 5qρ` opρq
˘

It concludes the proof of Lemma 5.1. �

We now prove that Assumption 4.1 holds when p “ 2.

Lemma 5.2. For I P P2, fUpI, 2q ą fUpI, 1q.

Proof. If I P P2, then we have two cases.
(i) Either I “ piq is a unique piece of length li P rlρ,U , 3lρ,Uq. The first energy level of ∆i is

fUp∆i, 1q “
π2

l2i

For the second energy level of ∆i, we use Proposition 3.1.

(5.2) fUp∆i, 2q “
4π2

l2i
`
γ

l3i
` opl´3

q ą fUp∆i, 1q.
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(ii) Or I “ pj, kq is a pair of pieces of length lj, lk P rlρ,U , 2lρ,Uq separated by a gap of length
djk ďM . The first energy level of the pair t∆j,∆ku is

(5.3) fU
´

t∆j,∆ku, 1
¯

“ min
´π2

l2j
,
π2

l2k

¯

.

Concerning the second energy level of this pair, we use Proposition 3.2.

(5.4) fU
´

t∆j,∆ku, 2
¯

“ max
´π2

l2j
,
π2

l2k

¯

`
τpdjkq
l3l13

´

1` op1q
¯

ą fU
´

t∆j,∆ku, 1
¯

.

This completes the proof of Lemma 5.2. �

Combining Lemma 5.2 and Proposition 4.2, we get the following corollary.

Corollary 5.1. For r ď n, the minimum of EU
P2

when there are exactly r particles in the chains
of P2 is equal to the sum of the r smallest elements of Γ2.

5.2. Distribution of the energy levels. By Corollary 5.1, we need to understand the distribu-
tion of the energy levels in Γ2. For λ ą 0, we define

(5.5) NU
2 pL, λq :“

1

L
#
 

x P Γ2, x P p´8, λs
(

and NU
2 pλq :“ lim

LÑ8
NU

2 pL, λq.

NU
2 is called the counting function of Γ2. We evaluate it in the following proposition.

Proposition 5.1. Define the application J by, for λ ą 0,

Jpλq :“ p1´Me´lρ,U q2
ˆ
ż

D1pλq

e´u du`

ż

D2pλq

e´u du(5.6)

`

ż M

0

ż

D3pλq

2e´pu`vq dtdudv `

ż M

0

ż

D4pλ,tq

2e´pu`vq dtdudv

˙

.

where

D1pλq “
”

max
´

lρ,U ,
π
?
λ

¯

, 3lρ,U

ı

, D3pλq “

"

px, yq P
“

lρ,U , 2lρ,U
‰2
, y ě max

´

x,
π
?
λ

¯

*

D2pλq “
”

max
´

2lρ,U ,
2π
?
λ
`

γ

8π2

¯

, 3lρ,U

ı

, D4pλ, tq “

"

px, yq P
“

lρ,U , 2lρ,U
‰2
, y ě x ě

´ π
?
λ
`
σptq

2y3

¯

*

.

and γ (resp. σptq) is given in Proposition 3.1 (resp. Proposition 3.2).
Then, with probability 1 ´ OpL´8q, for every β ą 1 and λ ą 0, the counting function of Γ2

satisfies
NU

2 pλq “ Jpλq `Rβ

with Rβ “ Opρβq.

Proof. A chain of P2 is either a single piece ∆i or a pair t∆i,∆ju. In the first case, the energy levels
of ∆i are functions of a single parameter, the length li P rlρ,U , 3lρ,U s. When I “ t∆i,∆ju, the energy
levels of I are given by the triplet of parameters pli, lj,dijq P rlρ,U , 3lρ,U s ˆ rlρ,U , 3lρ,U s ˆ r0,M s.

Fix β ą 1. We set a discretization of the above parameters with a constant step ρβ. We get a
sequence of approximated energy levels Γβ2 . We prove that the Hausdorff distance between Γ2 and
Γβ2 is of order Opρβq. So it is sufficient to compute the counting function of Γβ2 at order Opρβq.
Since the Poisson process fix the statistics of pieces, one knows how many times each approximated
energy level appears in Γβ2 . We will use the expansion of the energy levels given by Proposition
3.1 and Proposition 3.2 to replace the condition "below λ" by some conditions on the parameters.

We now give the details. For I P P2, we distinguish two cases.
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(i) If I “ t∆iu then li P rkρβ, pk`1qρβq for some k and for a P t1, 2u, we approximate the a-th
energy level of the piece ∆i by

(5.7) fapkq “ fU
`

r0, kρβs, a
˘

.

The parameter k goes from K1 “ tlρ,Uρ
´βu to K3 “ t3lρ,Uρ

´βu. For a P t1, 2u, we define

(5.8) papkq “ #
!

t∆iu P P2, li P rkρ
β, pk ` 1qρβq

)

;

(ii) if I “ t∆j,∆ku then lj P rrρβ, pr ` 1qρβq, lk P rsρβ, ps ` 1qρβq and dj,k P rdρβ, pd ` 1qρβq
for some r, s and d and, for a P t1, 2u, we approximate the a-th energy level of the pair
p∆j,∆kq by

(5.9) gapr, s, dq “ fU
´

 

r´rρβ, 0s, rdρβ, dρβ ` sρβs
(

, 1
¯

Here the parameters r, s go from K1 to K2 “ t2lρ,Uρ
´βu and the parameter d goes from 0

to D “ tMρ´βu. For a P t1, 2u, we set
(5.10)
qapr, s, dq “ #

!

t∆j,∆ku P P2, lj P rrρ
β, pr ` 1qρβq, lk P rsρ

β, ps` 1qρβq, dj,k P rdρβ, pd` 1qρβq
)

.

Let Γβ2 to be the sequence of approximated energy levels.

Lemma 5.3. Recall the definition of the Hausdorff distance d8 on PpRq. For pA,Bq P PpRq2,

d8pA,Bq :“ sup
aPA

inf
bPB
|a´ b|.

For β ą 1, there exists C ą 0 such that

d8pΓ2,Γ
β
2 q ď Cρβ.

Proof. (of Lemma 5.3) By construction of Γβ2 , from x P Γ2 we compute xβ P Γβ2 . We study the
cases separately.

(i) Either xβ “ f1pkq, then x belongs to rf1pk ` 1q, f1pkqs. Note that

(5.11) f1pkq ´ f1pk ` 1q “
2π2

k3ρ2β
`O

´ 1

k4ρ2β

¯

,

(ii) Or xβ “ f2pkq, then x belongs to rf2pk ` 1q, f2pkqs. Using (5.2), one computes that

(5.12) f2pkq ´ f2pk ` 1q “
8π2

k3ρ2β
`O

´ 1

k4ρ2β

¯

,

(iii) Or xβ “ g1pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to
rg1pr, s` 1, dq, g2pr, s, dqs. Using (5.3), one computes that

(5.13) g1pr, s, dq ´ g1pr, s` 1, dq “
2π2

s3ρ2β
`O

´ 1

s4ρ2β

¯

,

(iv) Or xβ “ g2pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to
rg2pr ` 1, s, dq, g2pr, s, dqs. Using (5.4), one computes that

(5.14) g2pr, s, dq ´ g2pr ` 1, s, dq “
2π2

r3ρ2β
`O

´ 1

r4ρ2β

¯

,
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So

inf
b PΓβ2

|x´ b| ď C
1

r3ρ2β

Since k (resp. r and s) is of order Oplρ,Uρ´βq, we conclude

@x P Γ2 inf
b PΓβ2

|x´ b| ď Cρβ

�

By Lemma 5.1 and Lemma 5.3, for β ą 1,

1

L

ˇ

ˇ

ˇ

ˇ

ˇ

#

"

x P Γ2, x P p´8, λs

*

´#

"

x P Γβ2 , x P p´8, λs

*

ˇ

ˇ

ˇ

ˇ

ˇ

ď
#Γ2

L
d8pΓ2,Γ

β
2 q(5.15)

ď Cρβ`1

Let NU
2,β be the counting function of Γβ2 . Then, for β ą 1,

(5.16) NU
2 pλq “ NU

2,βpλq `Opρ
β`1
q.

We estimate NU
2,β the counting function of Γβ2 . Set λ P pmin Γβ2 ,max Γβ2 q. We translate the

condition "energy level smaller than λ" in term of bounds for the parameters of the discretization.
For k P JK1, K3 ´ 1K,

(5.17) f1pkq ď λ ô k ě
π
?
λ
ρ´β

Using the asymptotic (5.2), for large k, we compute that

(5.18) f2pkq “
4π2

´

k ´ γ
8π2ρβ

¯2

ρ2β

`Rk

with Rk “ op 1
k3ρ2β

q.

The remainder Rk is negligible with respect to the gap between f2pk` 1q and f2pkq (see (5.12)).
It yields

f2pkq ď λ ô
4π2

´

k ´ γ
8π2ρβ

¯2 ď λρ2β(5.19)

ô k ě
´ 2π
?
λ
`

γ

8π2

¯

ρ´β

For r, s P JK1, K2 ´ 1K and d P J0, D ´ 1K, assuming r ď s

(5.20) g1pr, s, dq ď λ ô s ě max
´

r,
π
?
λ
ρ´β

¯

Using the asymptotic (5.4), for large r ă s and d P J0, DK, we compute

(5.21) g2pr, s, dq “
π2

´

r ´ σpdρβq
2s3ρ4β

¯2

ρ2β

` Sr,s,d

with Sr,s,d “ op 1
r3ρ2β

q.
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The remainder Sr,s,d is negligible with respect to the gap between g2pr ` 1, s, dq and g2pr, s, dq
(see (5.14)). It yields, for large r ď s,

g2pr, s, dq ď λ ô
π2

´

r ´ σpdρβq
2s3ρ4β

¯2 ď λρ2β(5.22)

ô r ě
´ π
?
λ
`
σpdρβq

2s3ρ3β

¯

ρ´β

Thus, combining (5.17), (5.19), (5.20) and (5.22), for λ P pmin Γβ2 ,max Γβ2 q,

#

"

x P Γβ2 , x P p´8, λs

*

“

K3´1
ÿ

k“k1pλq

p1pkq `
K3´1
ÿ

k“k2pλq

p2pkq `
D´1
ÿ

d“0

ÿ

pr,sq PBpλq

εpr, sqq1pr, s, dq(5.23)

`

D´1
ÿ

d“0

ÿ

pr,sq PCpλ,dq

εpr, sqq2pr, s, dq

where papkq (resp. gapr, s, dq) is given by (5.8) (resp. (5.9)) and

k1pλq :“

R

π
?
λ
ρ´β

V

, k2pλq :“

R

´ 2π
?
λ
`

γ

8π2

¯

ρ´β
V

,

Bpλq :“

"

pu, vq P JK1, K2 ´ 1K2, v ě max
´

u,
π
?
λ
ρ´β

¯

*

,

Cpλ, dq :“

"

pu, vq P JK1, K2 ´ 1K2, v ě u ě
´ π
?
λ
`
σpdρβq

2v3ρ3β

¯

ρ´β
*

,

εpr, sq :“ 2 if r ‰ s and εpr, sq :“ 1 otherwise.

By Lemma 6.2, for η P p2
3
, 1q, with probability 1´OpL´8q, we have for a P t1, 2u and for k, r, s, d

papkq “ L
`

1´Me´lρ,U
˘2
e´kρ

β

p1´ e´ρ
β

q ` rapkqL
η(5.24)

qapr, s, dq “ L
`

1´Me´lρ,U
˘2
e´pr`sqρ

β

ρβ
`

1´ e´ρ
β˘2

` sapr, s, dqL
η

with rapkq and sapr, s, dq bounded for every k, r, s and d.
Using dominated convergence theorem, we get

NU
2,βpλq “ lim

LÑ8

1

L
#

"

x P Γβ2 , x P p´8, λs

*

(5.25)

“

´

1´Me´lρ,U
¯2
ˆ K3´1

ÿ

k“k1pλq

e´kρ
β

p1´ e´ρ
β

q `

K3´1
ÿ

k“k2pλq

e´kρ
β

p1´ e´ρ
β

q

`

D´1
ÿ

d“0

ÿ

pr,sq PBpλq

εpr, sqe´pr`sqρ
β

ρβp1´ e´ρ
β

q
2

`

D´1
ÿ

d“0

ÿ

pr,sq PCpλ,dq

εpr, sqe´pr`sqρ
β

ρβp1´ e´ρ
β

q
2

˙
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Let Σ3 be the third sum in Equation (5.25).

Σ3 :“
D´1
ÿ

d“0

ÿ

pr,sq PBpλq

εpr, sqe´pr`sqρ
β

ρβp1´ e´ρ
β

q
2(5.26)

“

ż Dρβ

0

ˆ

ÿ

pr,sq PBpλq

ż pr`1qρβ

rρβ

ż ps`1qρβ

sρβ
2e´pu`vq dudv

˙

dt´Dρβp1´ e´ρ
β

q
2
K2´1
ÿ

r“k1pλq

e´2rρβ

“

ż Dρβ

0

ż

Bβpλq
2e´pu`vqdudv ´

D

2
ρ2βe´2k1pλqρβ

`

1` op1q
˘

(5.27)

where
Bβpλq “

"

px, yq P
”

K1ρ
β, K2ρ

β
ı

, y ě max
´

x,
Q π
?
λ
ρ´β

U

ρβ
¯

*

.

Set
Bpλq “

"

px, yq P rlρ,U , 2lρ,U s
2, y ě max

´

x,
π
?
λ

¯

*

.

Using that, for any x ą 0,
ˇ

ˇ

ˇ
x´ rxρ´β

T

ρβ
ˇ

ˇ ď ρβ and
ˇ

ˇ

ˇ
x´ txρ´β

\

ρβ
ˇ

ˇ ď ρβ

we get
ˇ

ˇ

ˇ

ˇ

Σ3 ´

ż M

0

ż

Bpλq
2e´pu`vq dtdudv

ˇ

ˇ

ˇ

ˇ

ď ρβ
ˆ

2e´2lρ,U

ż

Bpλq
du` 2M

ż

BpλqzBβpλq
du`Me´2lρ,U

˙

(5.28)

ď ρβ
ˆ

2e´2lρ,U p2lρ,Uq
2
` 8Mρβ `Me´2lρ,U

˙

ď Cρβ.

The other terms in Equation (5.25) can be handled in much the same way.
So, for λ P pmin Γβ2 ,max Γβ2 q,

NU
2,βpλq “

´

1´Me´lρ,U
¯2
ˆ
ż 3lρ,U

π?
λ

e´u du`

ż 3lρ,U

`

2π?
λ
`

γ

8π2

˘

e´u du(5.29)

`

ż M

0

ż

Bpλq
2e´pu`vq dtdudv

`

ż M

0

ż

Cpλ,tq
2e´pu`vq dtdudv

˙

`Opρβq

where

Bpλq “
"

px, yq P rlρ,U , 2lρ,U s
2, y ě max

´

x,
π
?
λ

¯

*

Cpλ, dq “
"

px, yq P rlρ,U , 2lρ,U s
2, y ě x ě

´ π
?
λ
`
σpdq

2y3

¯

*

.

Combining (5.16) and (5.29), it yields

(5.30) NU
2 pλq “ Jpλq `Opρβq.

where J is given by (5.6). It concludes the proof of Proposition 5.1. �

The following corollary states that Assumption 4.2 is true for p “ 2.
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Corollary 5.2. Set δ P p0, 1q. For every x P Γ2 and in the thermodynamic limit,

(5.31)
1

n
#
 

y P Γ2, y “ x
(

“ Opρ2´δ
q

Proof. Note that each domain of integration in the RHS of (5.6) is smooth for λ P p0,`8q. So, J
is continuous on pmin Γ2,max Γ2q. By Proposition 5.1, we compute for β ą 1, h ą 0 and x P Γ2

1

n
#
!

y P Γ2, y “ x
)

ď
L

n

ˇ

ˇ

ˇ
NU

2 pL, x` hq ´N
U
2 pL, x´ hq

ˇ

ˇ

ˇ
(5.32)

ď
L

n

ˆ

ˇ

ˇ

ˇ
NU

2 pL, x` hq ´N
U
2 px` hq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
NU

2 pL, x´ hq ´N
U
2 px´ hq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Jpx` hq ´ Jpx´ hq

ˇ

ˇ

ˇ
`Opρβq

˙

ÑLÑ`8
n
L
Ñρ

1

ρ

ˇ

ˇ

ˇ
Jpx` hq ´ Jpx´ hq

ˇ

ˇ

ˇ
`Opρβ´1

q(5.33)

Taking β ą 2 and hÑ 0, we conclude the proof of Corollary 5.2. �

5.3. Construction of an approximated ground state. We use the counting function NU to
build an approximate ground state for HUpΛ, nq.

Note that, for d P r0,M s and min Γ2 ă λ ă µ ă max Γ2,

(5.34) @i P t1, 2, 3u Dipλq Ł Dipµq and D4pλ, dq Ł D4pµ, dq.

So J is increasing on pmin Γ2,max Γ2q. Remark also that, by Lemma 5.1, we have, for λ ą max Γ2,
NU

2 pλq ą 2ρ and, for 0 ă λ ă min Γ2, NU
2 pλq “ 0. Hence, by Proposition 5.1 and the continuity

of J , for a fixed β ą 2, there exists a unique λβρ P pmin Γ2,max Γ2q such that Jpλβρq “ ρ´Rβ`1 or
equivalently

(5.35) NU
2 pλ

β
ρq “ ρ.

This unique λβρ is our Fermi energy level.
Consider all energy levels of Γ2 below λβρ and fill the chains by induction following the proof

of the Proposition 4.2. Then, by definition, we get an occupation Qβ for which the number of
particles in P2 is equal to nQβ “ minpn, LNU

2 pL, λ
β
ρqq. For L large enough (that depends on ρ and

β),

(5.36) |NU
2 pL, λ

β
ρq ´N

U
2 pλ

β
ρq| ď ρβ`1.

So, using (5.35), in the thermodynamic limit, the number of particles in the chains of N2 is less
than Cnρβ for some constant C ą 0. Remembering β ą 2 and the left inequality of (4.13), for ρ
small enough, one can set the restriction Qβ

|N2
so that the occupation Qβ belongs to Q.

Set δβρ “
π?
λβρ
. Using Proposition 5.1 and more specifically the R.H.S of (5.6), one can get an

approximate description of Qβ in term of the pieces’ lengths and lβρ . Disregarding Opnρβq particles,
it means that

‹ for a piece ∆i P P2

(a) if li ă δβρ , then q
β
i “ 0

(b) if li P
”

δβρ , 2δβρ `
γ

8π2

¯

then qβi “ 1

(c) if li ě 2δβρ `
γ

8π2 then qβi “ 2;
‹ for a pair p∆j,∆kq P P2, assume lj ď lk

(a) if lk ă δβρ then qβj “ qβk “ 0,
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(b) if lj P
”

δβρ , δ
β
ρ `

σpdj,kq
2l3k

¯

then qβj “ 0 and qβk “ 1

(c) if lj ě δβρ `
σpdj,kq

2l3k
then qβj “ qβk “ 1

We can compare the occupation Qβ with the occupation of the free operator Q0. Recall that in
Q0 there are k particles in pieces of length between klρ and pk ` 1qlρ where lρ is given by (4.1).
We compute

ż

D1pEρq

e´u du`

ż

D2pEρq

e´u du “ e´lρ ´ e´3lρ,U ` e´2lρ´
γ

8π2 ´ e´3lρ,U

(5.37)

“ ρ
´

1´ ρ`Opρ2
q

¯´

1` e´
γ

8π2 ρ`Opρ2
q

¯

,
ż M

0

ż

D3pEρq

2e´pu`vq dtdudv “ 2M

ż lρ

lρ,U

ż 2lρ,U

lρ

e´pu`vq dudv ` 2M

ż

2lρ,Uěvěuělρ

e´pu`vq dudv(5.38)

“Mρ2
`

1`Opρq
˘

,
ż M

0

ż

D4pEρ,tq

2e´pu`vq dtdudv ď 2M

ż

2lρ,Uěvěuělρ

e´pu`vq dudv(5.39)

“Mρ2
`

1`Opρq
˘

.

So,

NU
2 pEρq ď ρ

´

1´ 2Mρ`Opρ2
q

¯

ˆ

´

1´ ρ`Opρ2
q

¯´

1` e´
γ

8π2 ρ`Opρ2
q

¯

` 2Mρ
´

1`Opρq
¯

˙

(5.40)

“ ρ
´

1` ρ
`

e´
γ

8π2 ´ 1
˘

`Opρ2
q

¯

ă ρ.

Thus, Eρ ă λβρ meaning that lρ,U ă δβρ ă lρ. For ρ small enough, 2lρ,U`
γ

8π2 ě 2lρ so 2δβρ`
γ

8π2 ě 2lρ.
It means that when interactions are on, we remove one particle from pieces of length close to 2lρ
but larger and put it in empty pieces of length close to lρ but smaller. Similarly, for pair of pieces
of length close to lρ, one takes one particle out of the pair to fill a smaller piece that does not
interact.

Hence, using (4.9) and (4.10), we define the approximated ground state

(5.41) Ψβ
pΛ, nq “ ΨU

pΛ, n,Qβ
q.

Proposition 5.2. Using the notations of Proposition 5.1, define the map J by

J pλq “ Lp1´Me´lρ,U q2
ˆ
ż

D1pλ
β
ρ q

fUpr0, us, 1qe´u du`

ż

D2pλ
β
ρ q

fUpr0, us, 2qe´u du(5.42)

`

ż M

0

ż

D3pλ
β
ρ q

2e´pu`vqfUptr´u, 0s, rt, v ` tsu, 1q dtdudv

`

ż M

0

ż

D4pλ
β
ρ ,tq

2e´pu`vqfUptr´u, 0s, rt, v ` tsu2q dtdudv

˙

.
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For β ą 2, for λβρ and ΨβpΛ, nq defined as above, for δ P p0, 1q and 0 ă ρ ă ρδ small enough, then,
in the thermodynamic limit, with probability 1,

(5.43) lim
LÑ`8
n
L
Ñρ

@

HUpΛ, nqΨβpΛ, nq,ΨβpΛ, nq
D

n
“

1

ρ
J pλβρq `Opρ2´δ

q.

Proof. Fix β ą 2. By construction of ΨβpΛ, nq and using (4.11), we write

(5.44)
@

HU
pΛ, nqΨβ

pΛ, nq,Ψβ
pΛ, nq

D

“ EU
pΛ, n,Qβ

q “ EU
P2
pQβ

q ` EU
N2
pQβ

q

By Proposition 4.1, we know that, for δ P p0, 1q and ρ P p0, ρδq,

(5.45) EU
N2
pQβ

q ď nρ2´δ

It gives the amount of energy produced by particles we do not control precisely. One can check
that it fits with the remaining part in (5.43).

Otherwise, we compute EP2pQ
βq using Γβ2 , the approximate sequence of levels of energy for the

good pieces that we introduced in the proof of Proposition 5.1. Following the method and the
notations of Proposition 5.1, one derives the next formula. With probability 1 ´ OpL´8q and
η P p2

3
, 1q,

EP2pQ
β
q “ Lp1´Me´lρ,U q2

ˆ
ż

D1pλ
β
ρ q

fUpr0, us, 1qe´u du`

ż

D2pλ
β
ρ q

fUpr0, us, 2qe´u du(5.46)

`

ż M

0

ż

D3pλ
β
ρ q

2e´pu`vqfUptr´u, 0s, rt, v ` tsu, 1q dtdudv

`

ż M

0

ż

D4pλ
β
ρ ,tq

2e´pu`vqfUptr´u, 0s, rt, v ` tsu2q dtdudv

˙

`OpLρβ`1
q `OpLηq.

Thus, in the thermodynamic limit, one derives

lim
LÑ`8
n
L
Ñρ

@

HUpΛ, nqΨβpΛ, nq,ΨβpΛ, nq
D

n
“

1

ρ
J pλβρq `Opρ2´δ

q(5.47)

It concludes the proof of Proposition 5.2. �

Remark 5.1. One could also set

(5.48) Ψβ
pΛ, nq “

ˆ

ľ

I PP2

ψU
´

I, pqβi qiPI

¯

˙

^

ˆ

ľ

I PN2

ľ

iPI

ψ0
´

∆i, q
β
i

¯

˙

meaning that, outside of P2, it behaves like a free state. By Remark 4.1, both states (5.41) and
(5.48) give, up to the order Opρ2´δq, the same amount of energy per particle in the thermodynamic
limit.

5.4. Comparing the ground state energy to the approximated ground state energy. We
compare our approximate ground state energy with the ground state energy, in the thermodynamic
limit.

Proposition 5.3. For L ą 0, let ΨUpΛ, nq be a ground state of HUpΛ, nq. For δ P p0, 1q and β ą 3,
the approximated ground state ΨβpL, nq, given in Subsection 5.3, satisfies in the thermodynamic
limit, with probability 1´OpL´8q,

(5.49)
xHUpΛ, nqΨUpΛ, nq,ΨUpΛ, nqy

n
“
xHUpΛ, nqΨβpL, nq,ΨβpL, nqy

n
`Opρ2´δ

q.
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Proof. We drop the indices "Λ" and "n". Let ΨU be a ground state of HU . Using the notations of
Subsection 4.2, we have

(5.50) ΨU
“

ÿ

QPQ

λpQqψUP2
pQq ^ ψUN2

pQq

with λpQq P C, ψUP2
pQq P HP2pQq and ψUN2

pQq P HN2pQq, Then,

xHUΨU ,ΨU
y “

ÿ

QPQ

|λpQq|2
´

EU
P2
pQq ` EU

N2
pQq

¯

(5.51)

ě min
Q
EU

P2

Fix β ą 3 and δ P p0, 1q. Let Ψβ “ ΨUpQβq be the state given by the construction of Subsection
5.3. We compute

0 ď xHUΨβ,Ψβ
y ´ xHUΨU ,ΨU

y ď EU
P2
pQβ

q ` EU
N2
pQβ

q ´min
Q
EP2(5.52)

ď EU
P2
pQβ

q ´min
Q
EU

P2
` nρ2´δ

if ρ P p0, ρδq. We used Proposition 4.1 for the last inequality. If Q is an occupation that minimizes
EP2 on Q then, by Proposition 4.2,

(5.53) EU
P2
pQβ

q ´ EU
P2
pQq “

n
Qβ
ÿ

k“nQ

ak.

So,

(5.54) pmin Γ2q
nQβ ´ nQ

L
ď
EU

P2
pQβq ´ EU

P2
pQq

L
ď pmax Γ2q

nQβ ´ nQ
L

.

By Lemma 4.2,

(5.55) 0 ď
nQβ ´ nQ

L
ď
n´ nQ
L

ď
nρ2´δ

L

for ρ P p0, ρδq. Combining (5.54) and (5.55) we get

(5.56) lim
LÑ`8
n
L
Ñρ

EU
P2
pQβq ´minQE

U
P2

n
“ Opρ2´δ

q.

Thus, using (5.52) and (5.56), one proves that, in the thermodynamic limit,

(5.57) lim
LÑ`8
n
L
Ñρ

xHUΨβ,Ψβy ´ xHUΨU ,ΨUy

n
“ Opρ2´δ

q

It concludes the proof of Proposition 5.3. �

Combining Proposition 5.2 and Proposition 5.3, we get Theorem 3.1.

5.5. Comparing a true ground state to the approximated ground state. We recall that
for Ψ P HnpΛq, we define its 1-particle density γp1qΨ (resp. 2-particle density γp2qΨ ) as the operator
on H1pΛq (resp. H2pΛq) given by (3.7) (resp. 3.8). The following lemma deals with the case of a
vector Ψ P HnpΛq which factorizes with respect to a given partition of Λ.
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Lemma 5.4. [KV20] Consider pUiq1ďiďr a family of closed sets of R where UiXUj “ H holds for
every i ‰ j and |Ui| is finite. Set, for pqiq1ďiďr P Nr,

(5.58) Ψ “

r
ľ

i“1

ψpi, qiq

where ψpi, kq is a state that belongs to HkpUiq, the k-particle space on Ui. Then the 1-particle γp1qΨ

and the 2-particle γp2qΨ admit the following decompositions

(5.59) γ
p1q
Ψ “

r
ÿ

i“1

γ
p1q
ψpi,qiq

and
(5.60)

γ
p2q
Ψ “

r
ÿ

i“1

ˆ

γ
p2q
ψpi,qiq

´
1

2
γ
p1q
ψpi,qiq

b γ
p1q
ψpi,qiq

`
1

2

´

γ
p1q
ψpi,qiq

b γ
p1q
ψpi,qiq

¯

˝ τ

˙

`
1

2
γ
p1q
Ψ b γ

p1q
Ψ ´

1

2

´

γ
p1q
Ψ b γ

p1q
Ψ

¯

˝ τ

with τpx1, x2, y1, y2q “ px1, x2, y2, y1q.

We compare the 1-particle density and the 2-particle density of our approximate ground state
with those of any ground state. The following Proposition is a reformulation of Proposition 3.3
and Proposition 3.4.

Proposition 5.4. Let ΨUpΛ, nq be a ground state of HUpΛ, nq. For δ P p0, 1q, ρ P p0, ρδq and β ą 3,
set the approximate ground state ΨβpΛ, nq given in Subsection 5.3. Then, in the thermodynamic
limit, with probability 1´OpL´8q, one has

(5.61)
1

n

›

›

›
γ
p1q

ΨU pΛ,nq
´ γ

p1q

ΨβpΛ,nq

›

›

›

tr
ď 10ρ2´δ

and

(5.62)
1

n2

›

›

›
γ
p2q

ΨU pΛ,nq
´ γ

p2q

ΨβpΛ,nq

›

›

›

tr
ď 45ρ2´δ.

Proof. Let ΨUpΛ, nq be a ground state of HUpΛ, nq for large n and L. The proof uses that both ΨU

and Ψβ admit a factor that fixes all but Opnρ2´δq particles. Indeed, by Lemma 5.2 and Corollary
5.2, both Assumption 4.1 and Assumption 4.2 hold for p “ 2. So, we apply Proposition 4.3. We
have the factorization

(5.63) ΨU
“

ˆ

ľ

IPF2

ψU
`

I, pqF2
i qiPI

˘

˙

^ ΩU,Fc2

where

(5.64) ΩU,Fc2 “
ÿ

QPQ

λpQq
ľ

IRF2

ψU
`

I, pqiqiPI
˘

.

Set

(5.65) nF2 “
ÿ

IPF2

ÿ

iPI

qF2
i

the number of particles in F2.
Let Ψβ be our approximated ground state. By construction, we know

(5.66) @I P F2 @i P I qβi “ qF2
i .
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As in (5.63), we have

(5.67) Ωβ,Fc2 “
ľ

IRF2

φUpI, pqβi qiPIq

so that

(5.68) Ψβ
“

ˆ

ľ

IPF2

ψU
`

I, pqF2
i qiPI

˘

˙

^ Ωβ,Fc2 .

We deal with the 1-particle densities and 2-particle densities separately.
(i) By Lemma 5.4, the 1-particle density of ΨU satisfies

(5.69) γ
p1q

ΨU
“

ÿ

IPF2

γ
p1q

ψU
`

I,pq
F2
i qiPI

˘ ` γ
p1q

Ω
U,Fc

2
.

For any φ P HnpΛq, |φ ąă φ| is a rank one projector and

(5.70)
›

›

›
|φ ąă φ|

›

›

›

tr
“

ż

Λn
|φpXq|2 dX.

So its 1-particle γp1qφ is trace class with

(5.71)
›

›

›
γ
p1q
φ

›

›

›

tr
“

ż

Λ

γ
p1q
φ px, xq dx

Since ΩU,Fc2 is a normalized wave function of Hn´nF2
pΛq, we compute

(5.72)
›

›

›
γ
p1q

Ω
U,Fc

2

›

›

›

tr
“ n´ nF2 ď max

QPQ

ÿ

iPN
qi ` 2#P2zF2 ď 5nρ2´δ.

Thus,
›

›

›
γ
p1q

ΨU
´ γ

p1q

Ψβ

›

›

›

tr
“

›

›

›
γ
p1q

Ω
U,Fc

2
´ γ

p1q

Ω
β,Fc

2

›

›

›

tr
(5.73)

ď

›

›

›
γ
p1q

Ω
U,Fc

2

›

›

›

tr
`

›

›

›
γ
p1q

Ω
β,Fc

2

›

›

›

tr

ď 10nρ2´δ(5.74)

(ii) We expand the 2-particle density of ΨU according to Lemma 5.4.
(5.75)

γ
p2q

ΨU
“ γ

p2q

ΦU,F2
`γ

p2q

Ω
U,Fc

2
`

1

2

´

γ
p1q

ΦU,F2
bγ

p1q

Ω
U,Fc

2
`γ

p1q

Ω
U,Fc

2
bγ

p1q

ΦU,F2
´
`

γ
p1q

ΦU,F2
bγ

p1q

Ω
U,Fc

2

˘

˝τ´
`

γ
p1q

Ω
U,Fc

2
bγ

p1q

ΦU,F2

˘

˝τ
¯

.

For φ P HnpΛq, the corresponding 2-particle γp2qφ is trace class and it satisfies

(5.76)
›

›

›
γ
p2q
φ

›

›

›

tr
“

ż

Λ

γ
p2q
φ px1, x2, x1, x2q dx

Then,

(5.77)
›

›

›
γ
p2q

Ω
U,Fc

2

›

›

›

tr
“

`

n´ nF2
˘`

n´ nF2 ´ 1
˘

2
ď

25

2
n2ρ4´2δ

and

(5.78)
›

›

›
γ
p1q

ΦU,F2
b γ

p1q

Ω
U,Fc

2

›

›

›

tr
“

›

›

›

´

γ
p1q

ΦU,F2
b γ

p1q

Ω
U,Fc

2

¯

˝ τ
›

›

›

tr
“ nF2

`

n´ nF2
˘

ď 5n2ρ2´δ.

The same inequalities hold for Φβ,F2 and Ωβ,Fc2 . So,

(5.79)
›

›

›
γ
p2q

ΨU
´ γ

p2q

Ψβ

›

›

›

tr
ď 45n2ρ2´δ.
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It concludes the proof of Proposition 5.4. �

6. Appendix

6.1. Convex functions and discrete optimization.

Definition 6.1. A function F : NÑ R is convex (resp. strictly convex) iff for every k ě 1,

F pk ` 1q ´ F pkq ě F pkq ´ F pk ´ 1q (resp. F pk ` 1q ´ F pkq ą F pkq ´ F pk ´ 1q).

Lemma 6.1. Let pFiq1ďiďp be nonnegative functions defined on N, with Fip0q “ 0. Define

(6.1) F :

#

Np ÝÑ R`
px1, . . . , xpq ÞÝÑ

řp
i“1 Fipxiq

and G :

#

N ÝÑ R`
r ÞÝÑ minx1`¨¨¨`xp“r F px1, . . . , xpq

Assume that, for every i, Fi is strictly convex. Then,
(1) the function G is convex;
(2) for r ě 1, Gprq is exactly the sum of the r smallest elements of

Γ “
 

Fipk ` 1q ´ Fipkq, i P J1,mK, k P N
(

,

taken with multiplicity.

Proof. (1) For r ě 1, choose pxr1, . . . , xrpq P Np so that

Gprq “ F pxr1, . . . , x
r
pq.

We prove that one can set pxr`1
1 , . . . , xr`1

p q P Np satisfying

(6.2) D!jr`1 P J1, pK
`

xr`1
jr`1

“ xrjr`1
` 1

˘

and
`

@i ‰ jr`1 xr`1
i “ xri

˘

.

Pick py1, . . . , ypq P Np with
řp
i“1 yi “ r ` 1. Assume that there is yi0 ą xri0 ` 1. Without

loss of generality we consider i0 “ 1. Then

F py1, . . . , ypq ´ F px
r
1 ` 1, xr2 . . . , x

r
pq “F py1 ´ 1, y2, . . . , r ` 1´

p´1
ÿ

i“1

yiq ´ F px
r
1, . . . , r ´

p´1
ÿ

i“1

xri q

` f1py1q ´ f1py1 ´ 1q ` f1px
r
1q ´ f1px

r
1 ` 1q

ą0

by definition of pxri q1ďiďp and because f1 is strictly convex from 0 to r ` 1.
So xr`1

i ď xri`1 for all i. Since
řp
i“1 x

r`1
i “

řp
i“1 x

r
i`1, there is j0 so that xr`1

j0
“ xrj0`1.

Without loss of generality we can consider j0 “ 1. Pick py1, . . . , ypq P Np with
řp
i“1 yi “ r`1

and y1 “ xr1`1. Then, the same calculus gives F py1, . . . , ypq ě F pxr1`1, xr2, . . . , x
r
pqmeaning

pxr1 ` 1, xr2, . . . , x
r
pq is a minimizer of F . Thus we set pxri qrě1 by induction and we compute

Gpr ` 1q ´Gprq “ f1px
r
1 ` 1q ´ f1px

r
1q

ą f1px
r
1q ´ f1px

r
1 ´ 1q

and for all j P J2, pK

Gpr ` 1q ´Gprq ě fjpx
r
jq ´ fjpx

r
j ´ 1q

because
ÿ

iRt1,ju

fipx
r
i q ` fjpx

r
jq ` f1px

r
1q ď

ÿ

iRt1,ju

fipx
r
i q ` fjpx

r
j ´ 1q ` f1px

r
1 ` 1q
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Hence,
Gpr ` 1q ´Gprq ě Gprq ´Gpr ´ 1q.

(2) In particular, the sequence
`

Gpr` 1q´Gprq
¯

rě0
is non decreasing and it belongs to Γ. By

reductio ad absurdum, assume that there is a P ΓX
 

Gpr`1q´Gprq, r ě 1
(c. Let ra be such

thatGpraq´Gpra´1q ď a ă Gpra`1q´Gpraq, and pia, xaq such that a “ Fiapxa`1q´Fiapxaq.
Then, xraia “ xa and

F pxra1 , . . . , xa ` 1, . . . , xrap q “ Gpraq ` a ă Gpra ` 1q.

Contradiction.
It concludes the proof of Lemma 6.1. �

6.2. Statistical distribution of the pieces. We recall some results about the statistical distri-
bution of pieces.

Proposition 6.1. [KV20] With probability 1´OpL´8q, the largest piece has a length bounded by
logpLq logplogpLqq.

Proposition 6.2. [KV20] Fix β P p2
3
, 1q. For L large and a, b P r0, logpLq logplogpLqqs, with

probability 1´OpL´8q the number of pieces of length contained in ra, bs is equal to

Lpe´a ´ e´bq `RLL
β

where |RL| is bounded.

Proposition 6.3. [KV20] Fix β P p2
3
, 1q and r ě 2. For L large and paiq1ďiďr, pbiq1ďiďr, pciq1ďiďr´1

and pdiq1ďiďr´1 some positive sequences, with probability 1 ´ OpL´8q, the number of pieces such
that the length of i-th piece (from left to right) is contained in rai, bis, the distance with the pi`1q-th
piece is contained in rci, dis, is equal to

L
r´1
ź

i“1

pdi ´ ciq
r
ź

j“1

pe´aj ´ e´bjq `RLL
β

where |RL| is bounded.

The proofs of Propositions 6.1, 6.2 and 6.3 are in Appendix A of [KV20]. From these propositions,
we derive the following lemma.

Lemma 6.2. Fix β P p2
3
, 1q and refer to the specific terminology in Definition 4.1. For L large

and a, b, c, d, f, g P rlρ,U , logpLq log logpLqs, with probability 1´OpL´8q,
(1) the number of chains of size 1 with length contained in ra, bs is

Lp1´Me´lρ,U q2pe´a ´ e´bq ` SLL
β

where |SL| is bounded;
(2) the number of chains of size 2 such that the length of the left piece is contained in ra, bs,

the length of the right piece is contained in rc, ds and the distance between the pieces is
contained in rf, gs, is equal to

Lp1´Me´lρ,U q2pg ´ fqpe´a ´ e´bqpe´c ´ e´dq ` SLL
β

where |SL| is bounded.
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Proof. (1) Let Pa,b :“ ti P J1,mK, li P ra, bsu. Then,

tchain of size 1u X Pa,b “ Pa,bz
´

ti P Pa,b, Dj ą i, lj ě lρ,U , di,j ďMu

Y ti P Pa,b, Dj ă i, lj ě lρ,U , dj,i ďMu
¯

We use Proposition 6.2, Proposition 6.3 and #pAYBq “ #A`#B´#pAXBq to conclude.
(2) Let Ra,b,c,d :“ tpi, jq P J1,mK2, i ă j, li P ra, bs, lj P rc, dsu. Then,

tchain of size 2u XRa,b,c,d “ Ra,b,c,dz

´

tpi, jq P Ra,b,c,d, Dk ą j, lk ě lρ,U , dj,k ďMu

Y ti P Ra,b,c,d, Dk ă i, lk ě lρ,U , dk,i ďMu
¯

We conclude as for (1).

6.3. Bounds for the interaction of two particles.

Lemma 6.3. Set, for ra, bs Ă R a finite interval and i P N,

φ
ra,bs
i pxq “

?
2

?
b´ a

sin
` π

b´ a
ipx´ aq

˘

1ra,bspxq.

For p, q P N, if l ą 0 is large enough,

(6.3)
ż

Upy ´ xq
ˇ

ˇ

ˇ
φr0,lsp ^ φr0,lsq

ˇ

ˇ

ˇ

2

px, yqdxdy ď Cl´3
pp2
` q2

q

and if l1 ą 0 is also large enough, and 0 ď d ďM ,

(6.4)
ż

Upy ´ xq
ˇ

ˇ

ˇ
φr´l

1,0s
p ^ φrd,d`lsq

ˇ

ˇ

ˇ

2

px, yqdxdy ď Cl´3l1´3p2q2

with C ą 0 that only depends on U .

Proof. We derive with changes of variables
ż

Upy ´ xq
ˇ

ˇ

ˇ
φr0,lsp ^ φr0,lsq

ˇ

ˇ

ˇ

2

px, yqdxdy “

ż

Upy ´ xq

ˆ

φr0,lsp pxq2φr0,lsq pyq2 ´ φr0,lsp pxqφr0,lsq pyqφr0,lsp pyqφr0,lsq pxq

˙

dxdy

“ 4l´1

ż l

´l

ż 1

0

Upuq

ˆ

sin2
pπqpul´1

` vqq sin2
pπpvq

´ sinpπppul´1
` vqq sinpπqpul´1

` vqq sinpπpvq sinpπqvq

˙

dudv

“ 4l´3

ż l

´l

ż 1

0

Upuqπ2u2

ˆ

q2 cos2
pπpvq sin2

pπqvq

´ pq cospπpvq cospπqvq sinpπpvq sinpπqvq

˙

dudv `Opl´4
q

ď 10π2l´3
pp2
` q2

q

ż

R
Upuqu2du
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and
ż

Upy ´ xq
ˇ

ˇ

ˇ
φr´l

1,0s
p ^ φrd,d`lsq

ˇ

ˇ

ˇ

2

px, yqdxdy “

ż

Upx´ yqφr´l
1,0s

p pxq2φrd,d`lsq pyq2dxdy

“ 4l´1l1´1

ż l1

0

ż l

0

Upr ` s` dq sin2
pπprl1´1

q sin2
pπqsl´1

qdrds

“ 4l´1l1´1

ż `8

0

ż u

0

Upu` dq sin2
`

πppu´ vql1´1
˘

sin2
`

πqvl´1
qdudv

“ 4π4l´3l1´3p2q2

ż `8

0

ż u

0

Upu` dqpu´ vq2v2dudv

`Opl´4l1´3
` l´3l1´4

q

ď 8π4l´3l1´3p2q2

ż `8

0

Upu` dqu5du.

�

6.4. Proof of Proposition 3.2. The ideas and the structure are inspired by the proof of Propo-
sition 3.1 that one can find in Subsection 6.1.1 of [KV20].

Set l ą 0, d ą 0 and a ě 1. We consider the operator

(6.5)
ˆ

´
d2

dy2

D

|r´al,0s

˙

b I ` I b

ˆ

´
d2

dx2

D

|rd,d`ls

˙

` Upx´ yq on L2
pr´al, 0sq b L2

prd, d` lsq

By scaling, it is unitarily equivalent to the operator l´2H l acting on L2
`

r0, 1s2
˘

where

(6.6) H l
“ ´

B2

Bx2
´

1

a2

B2

By2
` l2Uplx` aly ` dq

with Dirichlet boundary conditions. Denote El
0 the ground state of H l and let H0 be the free

operator. One checks that the eigenvalues of H0 are

(6.7) Ep,q “ π2
pp2
` q2a´2

q

for p, q ě 1, with the corresponding eigenfunctions

(6.8) ψp,qpx, yq “ 2 sinpπpxq sinpπqyq.

Set E0 :“ E1,1, ψ0 :“ ψ1,1 and U l :“ H l ´H0. By Lemma 6.3,

(6.9) xψ0, U
lψ0y ď

C

a3l4

So,

(6.10) E0 ď El
0 ď E0 ` xψ0, U

lψ0y ď E0 `Opa
´3l´4

q ă E1,2.

Set δE “ El
0´E0. By the Schur decomposition for pSpanpψ0q, Spanpψ0q

Kq, the eigenvalue equation
becomes

(6.11) Π0U
lΠ0 ´ pδEqΠ0 ´ Π0U

lΠKpHK ´ E
l
0q
´1ΠKU

lΠ0 “ 0

with Π0 “ |ψ0yxψ0| the orthogonal projection on Spanpψ0q, ΠK the orthogonal projection on
Spanpψ0q

K and HK “ H|Spanpψ0qK . Note that HK “ ΠKH
0ΠK ` ΠKUΠK ě E1,2.

We use the following notation

(6.12) RKpzq “ ΠKpHK ´ zq
´1ΠK.



32 VADIM OGNOV

We prove that one can replace RKpEl
0q with RKpE0q for some negligible cost. Remark that, as

}RKpE0q} ď pE1,2 ´ E0q
´1,

(6.13) RKpE
l
0q ´RKpE0q “

ÿ

ně1

RKpE0q
n`1
pδEqn “ OpδEq ď Cl´4.

Then,
ˇ

ˇ

ˇ
xψ0, U

l
`

RKpE
l
0q ´RKpE0q

˘

U lψ0y

ˇ

ˇ

ˇ
ď

›

›

›

?
U lΠ0

›

›

›

2›
›

›

?
U l
`

RKpE
l
0q ´RKpE0q

˘

?
U l

›

›

›

ď Cl´6.

using (6.9), (6.13) and }U l} ď l2}U}8.
Thus, δE “ Al `Opl´6q where

(6.14) Al “ xψ0,
`

U l
´ U lRKpE0qU

l
˘

ψ0y.

By (6.10), Al “ Opl´4q.
Now we express RKpzq in terms of R0

Kpzq “ ΠKpH
0
K´zq

´1ΠK. By Krein’s formula, one can check
that

(6.15) RKpzq “
b

R0
Kpzq

ˆ

1`
b

R0
KpzqU

l
b

R0
Kpzq

˙´1b

R0
Kpzq.

Denote

(6.16) T l “
?
U l

b

R0
KpE0q and φl0 “ l2

?
U lψ0.

Using (6.15), one computes

l4Al “ xφl0, I ´ T
l
`

1` T l‹T l
˘´1

T lφl0y

“ xφl0, I ´ T
lT l‹

`

1` T lT l‹
˘´1

φl0y

“ xφl0,
`

1` T lT l‹
˘´1

φl0y.(6.17)

Define the partial isometry Γl :

#

L2
`

r0, 1s2
˘

ÝÑ L2pΩq

f ÞÝÑ 1
l
?
a
1Ωlpf ˝ γ

´1q
where

(6.18) Ω “
!

pu, vq P R2
`‹, u ą v

)

and Ωl
“

!

pu, vq P R2
`‹,

u´ v

l
P p0, 1q,

v

al
P p0, 1q

)

are two domains of R2
`‹ and γ :

#

r0, 1s2 ÝÑ Ω

px, yq ÞÝÑ plpx` ayq, layq
.

Then, using (6.8) and (6.16), one computes

Γlφl0pu, vq “
2l2
?
a

a

Upu` dq sin
´

π
u´ v

l

¯

sin
´

π
v

al

¯

1Ωlpu, vq

“
2π2

?
a

a

Upu` dq
´

pu´ vqv

a
`
pu´ vqv

l
gl,apu, vq

¯

1Ωlpu, vq(6.19)

where gl,a is a bounded continuous function. So, by dominated convergence theorem, the sequence
`

a3{2Γlφl0
˘

lą0
admits the following limit in L2pΩq when l Ñ `8:

(6.20) ϕpu, vq “ 2π2
a

Upu` dqpu´ vqv.
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Otherwise, we use the notations (6.7) and (6.8) to write the kernel K l of ΓlT lT l‹Γl‹.

K l
pu, v, u1, v1q “

ÿ

pp,qq‰p1,1q

1Ωlpu, vq1Ωlpu
1, v1q

apEp,q ´ E0q

a

Upu` dq
a

Upu1 ` dqψp,q

´u´ v

l
,
v

al

¯

ψp,q

´u1 ´ v1

l
,
v1

al

¯

.

If f P C8c pΩq then, for l large enough, f P C8c pΩlq and
(6.21)

ΓlT lT l‹Γl‹fpu, vq “
4

al2

ÿ

pp,qq‰p1,1q

1Ωlpu, vq

π2p
p2

l2
`

q2

palq2
q ´ E0

l2

a

Upu` dq sin
´

πpu´vq
p

l

¯

sin
´

πv
q

al

¯

Gf

´p

l
,
q

al

¯

where Gf pξ, ηq “
ş

Ω

a

Upu1 ` dqfpu1, v1q sinpπu1ξq sinpπv1ηq du1dv1. By Riemann’s summation, the
limit for l Ñ `8 of (6.21) is

(6.22) Lpu, vq “
4

π2
1Ωpu, vq

a

Upu` dq

ĳ

R2
`

1

x2 ` y2
sinpπpu´ vqxq sinpπvyqGf px, yq dxdy.

Using gps, tq “
a

Ups` dqfps, tq and its Fourier transform Fgpξ, ηq “
ş

R2
`

gps, tqeisξ`itη dsdt, one
computes

Gf px, yq “
1

4

´

´ Fgpx, y ´ xq ` Fgpx,´y ´ xq ´ Fgp´x, x´ yq ` Fgp´x, x` yq
¯

.

Then, (6.22) becomes

(6.23) Lpu, vq “ ´
1

π2
1Ωpu, vq

a

Upu` dq

ĳ

R2

1

x2 ` y2
sinpπpu´ vqxq sinpπvyqFgpx, y ´ xq dxdy.

Lemma 6.4. Define S on C8c pΩq such that Sf “ L, given by (6.23). Then, the operator S is
well-defined and is extended to a bounded operator on L2pΩq.

Proof. (of Lemma 6.4) We first prove that, for pu, vq P Ω, Lpu, vq, given by (6.23), is well-defined.
We consider the singularities separately.

(1) For pα, βq P R2, we have

1

x2 ` y2
sinpαxq sinpβyqFgpx, y ´ xq „p0,0q

xy

x2 ` y2
αβFgp0, 0q

It gives the integrability in p0, 0q.
(2) By the Paley Wiener theorem, as f P C8c pΩq, Fg is an entire function and |Fgpx, yq| ď

Cj
p1`|y|qj

for j ě 1. Then,
ˇ

ˇ

ˇ

ˇ

1

x2 ` y2
sinpαxq sinpβyqFgpx, y ´ xq

ˇ

ˇ

ˇ

ˇ

ď
Cj

px2 ` y2qp1` |y ´ x|qj
.

It gives the integrability at ˘8.

So, S is well-defined on C8c pΩq.
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Take h P C8c pR2q. We compute
ż

R2
`

Upu` v ` dq
ˇ

ˇ

ˇ

ż

R2

sinpxuq sinpyvq

x2 ` y2
hpx, yqdxdy

ˇ

ˇ

ˇ

2

dudv ď }h}2L2

ż

Upu` v ` dq
sin2pxuq sin2pyvq

px2 ` y2q2

ď }h}2L2

˜

ż

Upu` v ` dq

ż

r1,8q2

1

px2 ` y2q2

`

ż

Upu` v ` dqu2v2

ż

r0,1s2

x2y2

px2 ` y2q2

¸

ď C}h}2L2 .

Since the Fourier transform is unitary and U is bounded, we get that S admits an extension on
L2pΩq.

It concludes the proof of Lemma 6.4. �

Thus, by Lemma 6.4, the sequence
`

ΓlT lT l‹Γl‹
˘

lą0
converges strongly to some operator S. So

does p1` ΓlT lT l‹Γl‹q´1 to p1` Sq´1. The limit only depends on U and d.
For any positive self-adjoint operator A on a Hilbert space H, we know }p1 ` Aq´1}BpHq ď 1.

Then, combining it with (6.17), (6.20) and (6.23), for l large,

(6.24) xa3{2Γlφl0,
`

1` ΓlT lT l‹Γl‹
˘´1

a3{2Γlφl0yL2pΩq “ xϕ, p1` Sq
´1ϕyL2pΩq ` op1q.

It yields

(6.25) δE “
1

a3l4
xϕ, p1` Sq´1ϕyL2pΩq ` o

´ 1

l4

¯

.

We set τpdq “ xϕ, p1` Sq´1ϕyL2pΩq. It concludes the proof of Proposition 3.2.
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