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Introduction

One-dimensional many-body localization is a non-trivial topic for both condensed matter physicists and spectral theory mathematicians. At large disorder, one expects that quantum systems with interaction do not thermalize and that they exhibit a kind of localization [START_REF] Alet | Many-body localization: An introduction and selected topics[END_REF]. Some papers tackle this phenomenon for a finite number of particles and an infinite interval [START_REF] Beaud | Bounds on the entanglement entropy of droplet states in the XXZ spin chain[END_REF] [START_REF] Elgart | Many-body localization in the droplet spectrum of the random XXZ quantum spin chain[END_REF]. However, from a physical perspective, the appropriate scope would be to consider a number of particles that increases proportionally with the size of the interval. This regime is called the thermodynamic limit.

Published in 2012, a paper of Veniaminov proved the existence of the thermodynamic limit of the ground state energy per particle for a class of disordered quantum systems [START_REF] Nikolaj | The Existence of the thermodynamic limit for the system of interacting quantum particles in random media[END_REF]. This result applies in particular to the pieces' model which is a refined version of the Luttinger-Sy model, introduced in 1973 [START_REF] Luttinger | Bose-Einstein condensation in a one-dimensional model with random impurities[END_REF]. Without interaction, the ground state is given by minimizing the distribution of n particles among the partition of the large interval Λ into pieces by the Poisson point process. Because of this explicit solution and since the original paper, the pieces' model has been studied to understand the Bose-Einstein condensation of free or interacting bosons [START_REF] Lenoble | Bose-Einstein Condensation in the Luttinger-Sy Model[END_REF][KPS19a][KPS19b] [START_REF] Kerner | On the effect of repulsive pair interactions on Bose-Einstein condensation in the Luttinger-Sy model[END_REF].

In this article, we focus on the pieces' model in the Fermi-Dirac statistics, i.e for indistinguishable particles. Our work is inspired by the paper of Klopp and Veniaminov [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF]. Let ρ ą 0 be the density of particles, i.e the limit of the ratio n |Λ| . Klopp and Veniaminov expand the thermodynamic limit of the ground state energy per particle up to the error O `´ρ logpρq ´3˘.

We give an expansion up to the error O `ρ2´δ ˘, for any δ P p0, 1q, in case of finite-range interactions. We also provide a natural characterization of the ground states. The next step would be to use our results to express some indicators of the many-body localization.

Let us now briefly describe our method. In the free case, the minimizing configuration of particles is such that the energy produced by any particle is less than the Fermi energy E ρ . It yields that, in the ground state, the pieces with length below l ρ " πE ´1{2 ρ are empty. Similarly, in the interacting case, under the assumptions of a pairwise potential U with compact support and a density of particles ρ small enough, the pieces with length below l ρ,U are empty for any ground state. So, the random background reduces to a compilation of groups of pieces, that we call chains, such that a particle belonging to a chain cannot interact with a particle living outside this chain. This structure is therefore similar to the one of the free system if the chains replace the pieces. Our problem turns into finding a minimizing distribution of n particles among the chains. Without interaction, given any piece, the energy as a function of the number of particles is convex. This property allows to get the ground state inductively. Does this statement hold for any chain in the presence of interactions? Unfortunately we did not solve this question. We bypass this issue noticing that, due to the nature of the Poisson point process, large chains do not contribute much to the total energy. The ground state energy per particle is mostly, i.e up to our error term, given by isolated fermions and isolated pairs of fermions lying in one or two pieces. For these simple subsystems, the energies are convex and we can compare them quite precisely. Then, we distribute by induction the particles among these chains. We prove that the corresponding state approximates any ground state in the thermodynamic limit.

The paper is organized as follows. In Section 2, we present the model and we sketch our method to get an expansion of the ground state energy per particle up to any order Opρ p´δ q, p ě 2 and 0 ă δ ă 1, under strong assumptions. In Section 3, we state our results for p " 2 without proof. Section 4 rigorously develop the splitting into chains, including its limits. Section 5 is devoted to the detailed study of chains comprising at most two particles. It also contains the proofs of our main propositions. We gather other results in the Appendix.

Model and first observations

2.1. The pieces' model for Fermi-Dirac statistics. Let Xpwq " px n pwqq nPZ be a Poisson point process on R of intensity 1. Recall that the probability that a Borel set Λ Ă R contain exactly k points is

P ´#`X pwq X Λ ˘" k ¯" |Λ| k k! e ´|Λ|
and for two disjoints Borel sets Λ 1 , Λ 2 Ă R, the events tXpwq X Λ 1 " k 1 u and tXpwq X Λ 2 " k 2 u are independent.

For L ą 0 we set Λ " r0, Ls. We assume that x 0 pwq " 0 and we denote mpwq " # `Xpwq X Λ ˘.

By a large deviation principle, when L is large, with probability 1 ´OpL ´8q, mpwq " L `OpL 2 3 q,. For i P 1, mpwq , the i-th piece is the interval ∆ i pwq " rx i´1 pwq, x i pwqs.

On HpΛq " L 2 pΛq, we set the following one-particle random operator

(2.1) h w pΛq "

mpwq à k"1 ˆ´d 2 dx 2 D |∆ k pwq
ẇhere D stands for Dirichlet boundary conditions. Now, we consider n particles in the disordered background given by h w pΛq combined to a pairwise repulsive interaction. Using the statistic of Fermi-Dirac, the n-particle space on Λ is (2.2)

H n pΛq "

n ľ i"1
HpΛq.

Then, for n ě 2, the pieces' model is the random operator given by (2.3) H U w pΛ, nq "

n ÿ i"1 ˆi´1 â j"1
1 HpΛq ˙b h w pΛq b ˆn´i â j"1

1 HpΛq ˙`W n on H n pΛq where W n is the multiplication operator (2.4) W n px 1 , . . . , x n q " ÿ iăj U px i ´xj q and U : R ÝÑ R satisfies the following assumption.

Assumption 2.1. The function U : R Ñ R is nonnegative, even, bounded and compactly supported.

Under Assumption 2.1, the operator H U w pΛ, nq is well-defined on D w pΛ, nq given by

D w pΛ, nq " C 8 0 ˆ´mpwq ď k"1 sx k´1 , x k r ¯n˙X H n pΛq
and it is nonnegative. Using perturbation theory (see e.g Chapter 6 [START_REF] Teschl | Mathematical methods in quantum mechanics : with applications to Schrodinger operators[END_REF]), one proves that H U w pΛ, nq is essentially self-adjoint on H n pΛq and it has pure spectrum. Let E U w pΛ, nq be the ground state energy of H U w pΛ, nq. Definition 2.1. The limit L Ñ `8, n L Ñ ρ ( is called the thermodynamic limit. The constant ρ is the density of particles per unit of volume.

In [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF], Klopp and Veniaminov proved that, even under weaker assumptions on U , the thermodynamic limit of n ´1E U w pΛ, nq exists P-almost surely and in L 1 pPq. In this paper, we give an expansion of this limit.

2.2. The free operator. We denote by H 0 w pΛ, nq the free operator and by E 0 w pΛ, nq its ground state energy. One can give quite explicitly the thermodynamic limit of the ground state energy per particle

(2.5) E 0 pρq :" lim LÑ`8 n L Ñρ E 0 w pΛ, nq n .
The ground state energy E 0 w pΛ, nq is exactly the sum of the n first eigenvalues of h w pΛq. But, since its eigenvalues only depend on the lengths of the pieces and the statistical distribution of these lengths is known, the pieces' model admits an explicit integrated density of states (see Proposition 2.6 [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF] or Proposition 3.2 [START_REF] Lenoble | Bose-Einstein Condensation in the Luttinger-Sy Model[END_REF]). One computes

(2.6) N pEq :" lim LÑ8 # ! eigenvalues of h w pΛq in p´8, Es ) L " e ´π ? E 1 ´e´π ? E 1 Eě0
Let the Fermi energy E ρ be the unique solution of N pEq " ρ. Then, one deduces

(2.7)

E 0 pρq " 1 ρ ż Eρ
´8 E dN pEq. We refer to Theorem 5.14 [START_REF] Nikolaj | The Existence of the thermodynamic limit for the system of interacting quantum particles in random media[END_REF] for the proof.

2.3.

The approach in term of occupations. From now on, we drop the "w" index. Unlike the free operator, one cannot express the ground state energy of the pieces' model with interactions by using the spectral decomposition of the one-particle operator. However, in both cases, one can talk about the number of particles in a given piece. The n-particle space admits the decomposition (2.8)

H n pΛq " à QPN m , |Q| 1 "n H Q pΛq with H pq i q 1ďiďm pΛq " m ľ i"1 ˆqi ľ j"1 L 2 p∆ i q ˙.
Definition 2.2. An occupation is a multi-index Q " pq i q 1ďiďm of norm equal to n.

In [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF], Klopp and Veniaminov proved that the decomposition (2.8) is invariant under the action of H U pΛ, nq. For a fixed occupation Q, let H U pΛ, n, Qq be the restriction of H U pΛ, nq to the subspace H Q pΛq. Then, the ground state ψ U pΛ, n, Qq of H U pΛ, n, Qq is non-degenerate and it has exactly q i particles in the piece ∆ i for all i P 1, m .

In the free case, it yields that, for a given occupation Q, the ground state energy of H 0 pΛ, n, Qq satisfies (2.9) E 0 pΛ, n, Qq "

m ÿ i"1 E 0 p∆ i , q i q
where we denote E 0 p∆, kq the ground state energy for k non-interacting fermionic particles in the piece ∆. Each particle lies in a Dirichlet Laplacian background in ∆. The minimum of E 0 pΛ, n, Qq over all the occupations is the ground state energy of H 0 pΛ, nq. Remark that E 0 p∆, kq is the sum of the k first eigenvalues of the operator h ∆ " ´d2

dx 2 D |∆ .
So, the map k Ñ E 0 p∆, kq is strictly convex on N. By Lemma 6.1, the ground state energy E 0 pΛ, nq is given by the sum of the n smallest elements of the set Γ 0 " E 0 p∆ i , k `1q ´E0 p∆ i , kq, i P 1, m , k P N ( . However, note that the set Γ 0 is equal to the set of all the eigenvalues of the one-particle operator hpΛq. Then the counting function of Γ 0 , (2.10)

N 0 pEq :" lim LÑ`8 # ´Γ0 X p´8, Es L ,
is well-defined and it is equal to the integrated density of state of hpΛq. Thus, we recover the formula (2.7).

From now on, we restrict to finite-range interactions.

Assumption 2.2. Let spU q be the support of the function U and

(2.11) M " sup

x,y P spU q

|x ´y|

The length M is independent of ρ.

The following lemma is crucial for our analysis.

Lemma 2.1. Let Ψ U pΛ, nq to be a ground state of H U pΛ, nq. For n and L large enough, with probability 1 ´OpL ´8q, there exists a minimal length l ρ,U " ´log

`ρ 1`ρ ˘´p4M `6qρ such that If a piece ∆ i satisfies |∆ i | ă kl ρ,U , k P N, then, for every occupation Q, ´PQ Ψ U pΛ, nq ‰ 0 ¯ñ ´qi ď k ´1w here P Q is the orthogonal projector on H Q pΛq.
So, given a piece, the number of particles in this piece is bounded uniformly for any ground state. In particular, the pieces of length up to l ρ,U are empty for any ground state.

We will use the term chain to refer to a group of pieces of length greater than l ρ,U with gaps of length smaller than M . Let P to be the set of chains. Using the notations of Lemma 2.1, for any occupation Q such that P Q Ψ U ω pΛ, nq ‰ 0, the ground state energy of H U pΛ, n, Qq satisfies (2.12)

E U pΛ, n, Qq " ÿ IPP F U `I, κ I pQq ˘
where κ I pQq is the number of particles in the chain I and F U pI, κq is the smallest energy produced by κ particles in I. Each particle lies in a Dirichlet Laplacian background for some piece of I and it is eventually submitted to the repulsive pairwise interaction U . One should think of Equation (2.12) as a counterpart to Equation (2.9) where each chain stands for an occupied piece in the free case. If one could prove the convexity of every map κ Ñ F U pI, κq then by Lemma 6.1, the ground state energy E U pΛ, nq would be given by the sum of the n smallest elements of the set Γ " tF U pI, κ `1q ´F U pI, κq, I chain, κ P Nu.

For κ ě 0, the pκ `1q-th energy level of the chain I is given by (2.13) f U pI, κ `1q " F U pI, κ `1q ´F U pI, κq.

It represents the smallest amount of energy that appears if one adds a particle to a minimizing configuration of κ particles in I. From the above discussion, one would like to use that, for every chain, κ Ñ f U pI, κq is increasing. Using the perturbation methods, we fail to prove such a statement. However it seems relevant to search for results in case of monotony for small chains and/or for few particles. More precisely, let p ě 2 and P p be the set of chains each of which carries at most p particles for any ground state, and Γ p be the set of the p lowest energy levels of every chain that belongs to P p , meaning that

(2.14) Γ p " ! f U pI, κq, I P P p , κ ď p ) .
Assume that (2.15) @I P P p , @κ ď p ´1, f pI, κq ă f pI, κ `1q.

Set δ P p0, 1q. By Lemma 2.1 and by statistical distribution of the pieces (see Proposition 6.2), one proves that, for any ground state, the number of particles in c P p , the complement of P p , is of order Opnρ p´δ q. One also controls the contribution of these particles to the ground state energy with a bound of order Opnρ p´δ q. Then, up to an error Opnρ p´δ q, the ground state energy E U pΛ, nq is given by the sum of the n smallest elements of Γ p . Let N U p be the counting function of Γ p , meaning that (2.16)

N U p pλq :" lim LÑ`8 # ´Γp X p´8, λs L .
Using N U p as a counterpart to N 0 (see (2.10)), one should get an approximation of the thermodynamic limit of the ground state energy per particle E U pρq up to an error Opρ p´δ q.

Main Results

Since the interaction is repulsive, Assumption (2.15) is always true for p " 2. Following the above discussion, we study this case in depth. In the set P 2 , a chain is either a single piece with at most two particles, or a pair of pieces with at most one particle in each piece.

Klopp and Veniaminov proved a result about the ground state energy of two interacting particles in a single piece. Proposition 3.1. [KV20] Under Assumption 2.1, for l ą 0, consider the operator

(3.1) ˆ´d 2 dy 2 D |r0,ls ˙b 1 L 2 pr0,lsq `1L 2 pr0,lsq b ˆ´d 2 dx 2 D |r0,ls
˙`U px ´yq on L 2 `r0, ls ˘^L 2 `r0, ls ˘

Then, for large l, the ground state energy E U `r0, ls, 2 ˘admits the following expansion (3.2) E U `r0, ls, 2 ˘" 5π 2 l 2 `γ l 3 `opl ´3q with γ ą 0 when U ‰ 0.

In the Appendix, we prove an analogue of Proposition 3.1 for the ground state energy of two interacting particles in two distinct pieces. We now state our theorem.

Theorem 3.1. Under Assumption 2.1 and Assumption 2.2, let M " diampsupppU qq and l ρ,U ą 0 be the minimal length defined in Lemma 2.1. Consider, on p0, `8q, the application

J pλq " `1 ´M e ´lρ,U ˘2ˆż 
D 1 pλq f U pr0, us, 1qe ´u du `żD 2 pλq f U pr0, us, 2qe ´u du `ż M 0 ż D 3 pλq 2e ´pu`vq f U ptr´u, 0s, rt, v `tsu, 1q dtdudv `ż M 0 ż D 4 pλ,tq
2e ´pu`vq f U `tr´u, 0s, rt, v `tsu, 2 ˘dtdudv ẇhere f U pI, 1q (resp. f U pI, 2q) is the first (resp. second) energy level of the chain I,

D 1 pλq " " π ? λ , 3l ρ,U ı , D 3 pλq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě max ´x, π ? λ ¯* D 2 pλq " " 2π ? λ `γ 8π 2 , 3l ρ,U ı , D 4 pλ, tq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě x ě ´π ? λ `σptq 2y 3 ¯*.
and γ (resp. σptq) is given in Proposition 3.1 (resp. Proposition 3.2). Set δ P p0, 1q. There exists ρ δ ą 0 such that for every ρ P p0, ρ δ q there is a Fermi energy level λ ρ , depending only on ρ and U , such that, with probability 1 ´OpL ´8q, the thermodynamic limit of the ground state energy per particle satisfies

(3.5) E U pρq :" lim LÑ`8 n L Ñρ E U w pΛ, nq n " 1 ρ J pλ ρ q `Opρ 2´δ q.
We also get results on the ground state itself. Recall that, in any chain of P 2 , there is at most two particles. They are either in the same piece (see the operator (3.1)) either in two distinct pieces (see the operator (3.3)). From λ ρ ą 0 a Fermi energy level given by Theorem 3.1, we build an occupation Q test such that (i) for a single piece ∆ i P P 2 , q test i " max q, f U p∆ i , qq ď λ ρ ( ;

(ii) for a pair p∆ j , ∆ k q P P 2 , assuming

|∆ j | ď |∆ k |, q test j " max ˆ0, max ! q, f U `p∆ j , ∆ k q, q ˘ď λ ρ ) ´1˙, q test k " min ˆ1, max ! q, f U `p∆ j , ∆ k q, q ˘ď λ ρ ) ˙.
We prove that one can complete Q test on c P 2 with respect to Lemma 2.1. Then, set the following state (3.6) Ψ test pΛ, nq " ˆľ I P P 2 ψ U ´I, pq test i q iPI ¯˙^ˆľ

I P c P 2 ľ iPI ψ 0
´∆i , q test i ¯ẇhere (i) ψ U ´I, pq i q iPI ¯is the ground state for the interacting system with exactly q i particles in ∆ i ;

(ii) ψ 0 p∆, qq is the ground state for q non-interacting particles in ∆, given by the Slater determinant of the q firsts eigenfunctions of the operator h ∆ " ´d2 dx 2

D

|∆ . We compare the state Ψ test pΛ, nq to any ground state Ψ U pΛ, nq through the one-and two-particle densities, using trace norm } } tr . Definition 3.1. For φ P H n pΛq, its 1-particle density is the operator γ p1q φ on H 1 pΛq " L 2 pΛq with kernel

(3.7) γ p1q φ px, yq " n ż Λ n´1
φpx, Zqφpy, ZqdZ.

The 2-particle density of φ is the operator γ p2q φ on H 2 pΛq with kernel

(3.8) γ p2q φ px 1 , x 2 , y 1 , y 2 q " npn ´1q 2 ż Λ n´2 φpx 1 , x 2 , Zqφpy 1 , y 2 , ZqdZ.
Proposition 3.3. Let Ψ U pΛ, nq be a ground state of H U pΛ, nq. For δ P p0, 1q, ρ P p0, ρ δ q, set the state Ψ test pΛ, nq according to the above construction. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has

(3.9) 1 n › › ›γ p1q Ψ U pΛ,nq ´γp1q 
Ψ test pΛ,nq › › › tr ď 10ρ 2´δ .
We get an analogue of Proposition 3.3 for the 2-particle density.

Proposition 3.4. Let Ψ U pΛ, nq be a ground state of H U pΛ, nq. For δ P p0, 1q and ρ P p0, ρ δ q, set the state Ψ test pΛ, nq as above. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has 

(3.10) 1 n 2 › › ›γ p2q Ψ U pΛ,nq ´γp2q 
Ψ
l ρ :" π a E ρ " ´log ´ρ 1 `ρ For
L large enough, with probability 1 ´OpL ´8q no piece of a length below kl ρ can carry more than k ´1 particles in the ground state of the free operator H 0 pΛ, nq. Due to Assumption 2.2 of finite-range interactions, in the case of the full operator H U pΛ, nq, we exhibit the same phenomenon for some minimal length l ρ,U ă l ρ . The following lemma is a reformulation of Lemma 2.1.

Lemma 4.1. Let Ψ U pΛ, nq to be a ground state of H U pΛ, nq. For n and L large enough, with probability 1 ´OpL ´8q, there exists a minimal length l ρ,U " l ρ ´p4M `6qρ such that If a piece

∆ i satisfies |∆ i | ă kl ρ,U , k P N, then, for every occupation Q, ´PQ Ψ U pΛ, nq ‰ 0 ¯ñ ´qi ď k ´1w here P Q is the orthogonal projector on H Q .
Then, any ground state of H U pΛ, nq belongs to

À QPQ H Q pΛq where H Q pΛq is given in (2.8) and (4.2) Q " ! pq i q P N m , m ÿ i"1 q i " n and for 1 ď i ď m q i ď Y l i l ρ,U ]) .
This is a slight improvement of Lemma 3.25 of [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF]. We use the same method of proof.

Proof. Set l ρ,U " l ρ ´tρ, for t ą 0. Assume that ∆ e is the smallest piece that does not satisfy the property of the lemma. Pick k P N so that pk ´1ql ρ,U ď |∆ e | ă kl ρ,U and Q e an occupation so that ∆ e is occupied by j " k ´1 `e particles in P Q e Ψ U pΛ, nq with e ě 1. Without loss of generality, we assume that Ψ U pΛ, nq " P Q e Ψ U pΛ, nq.

We show that one can define a state Φ U pΛ, nq such that xΦ U pΛ, nq, H U pΛ, nqΦ U pΛ, nqy ă xΨ U pΛ, nq, H U pΛ, nqΨ U pΛ, nqy by moving the e extra particles in e empty pieces without creating any interaction.

By hypothesis, there are at most n ´j `1 pieces with some particle in the state Ψ U pΛ, nq. We call interaction range of a piece ∆ the set of pieces ∆ 1 such as the distance between ∆ and ∆ 1 is less than or equal to M . Thanks to Proposition 6.2 and Proposition 6.3, one knows, with probability

1 ´OpL ´8q, # ∆, l ρ,U ă |∆| ă 2l ρ,U ( " Le ´lρ,U p1 ´e´l ρ,U q `OpL β q " np1 `pt ´1qρ `opρqqp1 ´ρ `opρqq # p∆, ∆ 1 q, |∆| ą l ρ,U , |∆ 1 | ą l ρ,U , dp∆, ∆ 1 q ď 2M `1( " 2p2M `1qLe ´2l ρ,U `OpL β q " 2p2M `1qnpρ `opρqq `1 `2tρ `opρqq ˘.
Thus, there are more than n ´1 `pt ´1qρ ´2p2M `2qρ `opρq ¯pieces of length between l ρ,U and 2l ρ,U such that there is no other piece of length greater than l ρ,U in any interaction range and, for any two interaction ranges, their intersection is empty. This last property means that no particle can interact with some particles of both pieces. Choose t " 4M `6 so that n ´1 `pt ´1qρ ´2p2M `2qρ `opρq ¯ě n `1 for n large enough. By the pigeonhole principle, there are at least j of such pieces for which the interaction area do not carry any particle in Ψ U pΛ, nq. Therefore one can move the e extra particles to these slots. We get a new state Φ U pΛ, nq.

Before the exchange, the free energy of the piece ∆ e is

E 0 p∆ e , jq " E 0 p∆ e , k ´1q `j ÿ i"k i 2 π 2 |∆ e | 2
" E 0 p∆ e , k ´1q `6ek 2 `6epe ´1qk `p2e ´1qepe ´1q 6

π 2 |∆ e | 2 ě E 0 p∆ e , k ´1q `6ek 2 `6epe ´1qk `p2e ´1qepe ´1q 6 π 2 k 2 l 2 ρ,U ě E 0 p∆ e , k ´1q `e j k π 2 l 2 ρ,U
.

So, the e extra particles contribute to more than e j k π 2 l 2 ρ,U in Ψ U pΛ, nq. But in Φ U pΛ, nq, the free energy associated to these e particles is strictly less than e π 2 l 2 ρ,U and there is no interaction energy. So, xΦ U pΛ, nq, H U pΛ, nqΦ U pΛ, nqy ă xΨ U pΛ, nq, H U pΛ, nqΨ U pΛ, nqy Thus Ψ U pΛ, nq can not be a ground state and this completes the proof of Lemma 4.1.

Decomposition of Λ into non-interacting groups of pieces.

From now on, we fix the minimal length l ρ,U " l ρ ´p4M `6qρ. According to Lemma 4.1, the pieces of length l ă l ρ,U are empty for any ground state. We divide the others pieces into undecomposable groups of pieces that may interact through U . For simplicity, we identify a piece ∆ k and its index k (position). The length of the piece k is denoted by l k and the distance between the pieces j and k by d j,k .

Definition 4.1. The r-tuple I " pi 1 , . . . , i r q, with i 1 ă ¨¨¨ă i r , is a chain of size r if (i) for every k P 1, r , l i k ě l ρ,U , (ii) for every k P 1, r ´1 , d i k ,i k`1 ď M , (iii) for every j ă i 1 such that l j ě l ρ,U , d j,i 1 ą M (iv) for every j ą i r such that l j ě l ρ,U , d ir,j ą M .

Fix p P N ‹ . We denote by

(4.3) P p " ! I chain, ÿ iPI Y l i l ρ,U ] ă pp `1q
) the set of chains that cannot carry more than p particles in any ground state of H U pΛ, nq, and by N p the set of others pieces. Using the notations of Lemma 4.1, we consider, for a fixed occupation

Q P Q, the operator (4.4) H U pΛ, n, Qq " P Q H U pΛ, nqP Q on H Q pΛq " m ľ i"1 ˆqi ľ j"1 L 2 p∆ i q ˙.
As chains do not interact one with another, H U pΛ, n, Qq can be written as a sum of operators each of which acting on a specific chain. We list the notations and definitions for these operators.

Definition 4.2. Fix I a chain in Λ. For pq i q iPI P N ‹ , let ψ U pI, pq i q iPI q and E U pI, pq i q iPI q be the ground state and the ground state energy of the operator H U pI, pq i q iPI q given by (4.5)

H U `I, pq i q iPI ˘" κ I ÿ κ"1 ˆκ´1 â j"1 1 HpΛq ˙b h I b ˆκI â j"κ`1 1 HpΛq ˙`W κ I on ľ iPI ´qi ľ j"1 L 2 p∆ i q
¯ where (i) κ I " ř iPI q i is the number of particles in I; (ii) h I is the one-particle operator defined by

(4.6) h I " à iPI ˆ´d 2 dx 2 D |∆ i
˙on HpΛq;

(iii) W k is given by (2.4). Set F U pI, 0q " 0 and for κ P N ‹ (4.7) F U pI, κq " min κ I "k E U pI, pq i q iPI q.

For κ P N ‹ , the κ-th energy level of the chain I is defined by

(4.8) f U pI, κq " F U pI, κq ´F U pI, κ ´1q.
With the notations of Definition 4.2, ψ U pΛ, n, Qq the ground state of H U pΛ, n, Qq has the form (4.9) ψ U pΛ, n, Qq " ψ U Pp pQq ^ψU Np pQq where (4.10)

ψ U Pp pQq " ľ IPPp ψ U pI, pq i q iPI q and ψ U Np pQq " ľ I chain Ă Np ψ U pI, pq i q iPI q
The corresponding ground state energy is

(4.11) E U pΛ, n, Qq " E U Pp pQq `EU Np pQq with (4.12) E U Pp pQq "
ÿ IPPp E U pI, pq i q iPI q and E U Np pQq "

ÿ I chain Ă Np E U pI, pq i q iPI q.
We study these two quantities in the next subsections.

Study of E U

Np . The following lemma give an upper bound for the number of particles that one does not control when the occupation is known only for the chains of P p . Lemma 4.2. For p P N ‹ , and δ P p0, 1q, there exists ρ δ ą 0 such that for every ρ P p0, ρ δ q (4.13) ρ p`δ ď sup pq i qPQ ˆ1 n ÿ iPNp q i ˙ď ρ p´δ .

Proof. If i P N p , we have the following options. (i) Either l i ă l ρ,U , q i " 0; (ii) Or l i ě pp `1ql ρ,U , then, using Proposition 6.2, one computes

ÿ i, l i ěpp`1ql ρ,U q i ď `8 ÿ k"p`1
kLpe ´kl ρ,U ´e´pk`1ql ρ,U q " pp `1qLe ´pp`1ql ρ,U p1 `Ope ´lρ,U qq (iii) Or i P I chain of size r ě 2 and ř jPI l j ě pp `1ql ρ,U and l i ă pp `1ql ρ,U ; in this case q i ď p. For r ď p, #tI chain of size r of total length ě pp `1ql ρ,U u ď #tr pieces of total length ě pp `1ql ρ,U with gaps of length ď M u ď M r´1 Le ´pp`1ql ρ,U and #tI chain of size r ě p `1u ď #tpp `1q pieces of length ě l ρ,U with gaps of length ď M u ď M p Le ´pp`1ql ρ,U .

As e ´pp`1ql ρ,U " opρ p`1´δ q, this completes the proof of the right-hand side of the inequality (4.13).

Concerning the left-hand side, let Q 0 " pq 0 i q be the occupation of the ground state for the free model. We have that for i P 1, m if l i P rkl ρ , pk `1ql ρ q then q 0 i " k. Since l ρ,U ď l ρ , Q 0 P Q. So,

ÿ iPN q 0 i ě ÿ i, l i ěpp`1qlρ q 0 i " `8 ÿ k"p`1
kLpe ´klρ ´e´pk`1qlρ q " pp `1qLe ´pp`1qlρ p1 `Ope ´lρ qq As ρ p`1`δ " ope ´pp`1qlρ q, it gives the left part of the inequality (4.13).

Proposition 4.1. For a fixed p ě 1, δ P p0, 1q and Q P Q, there exists ρ δ ą 0 such that for ρ P p0, ρ δ q, (4.14)

E U Np pQq ď nρ p´δ
Proof. As in Definition 4.2, for any chain I, we denote ψ U `I, pq i q ˘and E U `I, pq i q ˘the ground state and ground state energy of the operator H U `I, pq i q ˘given by (4.5). We use the notations ψ 0 `I, pq i q ˘and E 0 `I, pq i q ˘for the free case. We have @ ψ U `I, pq i q ˘, H U `I, pq i q ˘ψU `I, pq i q ˘D ď @ ψ 0 `I, pq i q ˘, H U `I, pq i q ˘ψ0 `I, pq i q ˘D so (4.15)

E U `I, pq i q ˘ď E 0 `I, pq i q ˘`@ ψ 0 `I, pq i q ˘, W κ I ψ 0 `I, pq i q ˘D.
Then, we compute

E U Np pQq " ÿ IĂ Np chain E U `I, pq j q jPI (4.16) ď ÿ IĂ Np chain
ˆE0 `I, pq j q jPI ˘`@ ψ 0 `I, pq i q ˘, W κ I ψ 0 `I, pq i q ˘Dď max QPQ jPNp ˆE0 pl j , q j q q j ˙ÿ jPNp q j `ÿ IĂ Np chain @ ψ 0 `I, pq i q ˘, W κ I ψ 0 `I, pq i q ˘D

For any Q P Q and j P N p , by Lemma 4.1, (4.17) E 0 pl j , q j q "

q j ÿ k"1 k 2 π 2 l 2 j ď C q 3 j l 2 j ď C q j l 2 ρ,U
. By Lemma 4.2, ř jPNp q j ď nρ p´δ . We deal with the remaining sum using the results of Lemma 6.3. For a chain I, i P I, j P N, let φ ∆ i j be the state on L 2 p∆ i q given by (4.18)

φ ∆ i j pxq " ? 2 ? l i sin ´π l i jpx ´xi q ¯1∆ i pxq.
Then, (4.19) ψ 0 pI, pq i qq "

ľ iPI q i ľ j"1 φ ∆ i j .
By skew-symmetry and orthogonality of pφ ∆ i j q i,j , @ ψ 0 `I, pq i q ˘, W κ I ψ 0 `I, pq i q ˘D " κ I pκ I ´1q 2 ż U py ´xqψ 0 `I, pq i q ˘2py, x, Zq dxdydZ

" ÿ iPI ÿ 1ďjăkďq i ż U py ´xq ˇˇφ ∆ i j ^φ∆ i k ˇˇ2px, yqdxdy `ÿ h,i PI, h‰i q h ÿ j"1 q i ÿ k"1 ż U py ´xq ˇˇφ ∆ h j ^φ∆ i k ˇˇ2px, yqdxdy
So, by Lemma 6.3,

@ ψ 0 `I, pq i q ˘, W p ψ 0 `I, pq i q ˘D ď C ÿ iPI ÿ 1ďjăkďq i j 2 `k2 l 3 i `C ÿ h,i PI, h‰i q h ÿ j"1 q i ÿ k"1 j 2 k 2 l 3 h l 3 i (4.20) ď C ÿ iPI q i l 3 ρ,U `C ÿ h,i PI, h‰i q h q i l 6 ρ,U ď C l 3 ρ,U ÿ iPI q i `C l 6 ρ,U ´ÿ iPI q i ¯2
where C depends on U and M . Again by Lemma 4.2, ř iPNp q i ď nρ p´ε . For the part with squares, we adapt the proof of (4.13). A chain I Ă N p of size r ě p `1 of total length l P rkl ρ,U , pk `1ql ρ,U q with k ě r may contain at most k particles. Otherwise, the chains I Ă N of size r ď p and of total length l P rkl ρ,U , pk `1ql ρ,U q with k ě p `1 may contain at most k particles. So,

ÿ IĂNp ´ÿ iPI q i ¯2 ď `8 ÿ r"p`1 M r´1 8 ÿ k"r k 2 Le ´kl ρ,U `p ÿ r"1 M r´1 `8 ÿ k"p`1 k 2 Le ´kl ρ,U .
We claim that, if M e ´lρ,U ă 1,

(4.21) DC ą 0 ÿ IĂNp ´ÿ iPI q i ¯2 ď C maxt1, . . . , M p upp `1q 2 Le ´pp`1ql ρ,U .
Then, if ρ is small enough, combining (4.17 

Study of E U

Pp . The following proposition states that, when the number of particles in P p is known, E U Pp is the sum of the smallest energy levels. But it requires a strong hypothesis on the monotony of the energy levels.

Assumption 4.1. For a fixed p ě 1, using the notations of Definition 4.2, the application

(4.23) f U pI, .q : # 0, p ÝÑ R r Þ ÝÑ f U pI, rq
is increasing for every chain I in P p .

From now on, we denote by n Q the number of particles in P p for the occupation Q. Using the notations of Definition 4.2, we also set (4.24)

Γ p " ! f U pI, kq, I P P p , 1 ď k ď p

) .

Let ď p be a lexical order on Γ p such that (4.25) @I,

J P P p , 1 ď k, l ď p f U pI, kq ă p f U pJ, lq ðñ $ ' & ' % f U pI, kq ă f U pJ, lq else last index of I ă first index of J else k ă l
Proposition 4.2. For a fixed p ě 1, let ta k P Γ p , a k´1 ă p a k u be the ordered set given by (4.24) and (4.4). Under Assumption 4.1, for r ď minpn, #Γ p q, any occupation

Q that minimizes E U Pp when n Q " r and q i ď Y l i l ρ,U ]
for each piece ∆ i in P p , satisfies

(4.26) E U Pp pQq " r ÿ k"1 a k .
Proof. Fix r ď minpn, #Γ p q. Take such an occupation Q. Then, by reductio ad absurdum,

E U Pp pQq " ÿ IPPp E U pI, pq i q iPI q " ÿ IPPp F U pI, κ I q " ÿ IPPp κ I ÿ j"1 f U pI, jq with ř IPPp κ I " r and κ I ď ř iPI Y l i l ρ,U ] ď p. In particular, (4.27) r ÿ k"1 a k ď E U Pp pQq.
For the reverse inequality, we build by induction an appropriate occupation Q 1 . Set Q 1 p0q " p0, . . . , 0q. For k from 1 to r, assume that the multi-index Q 1 pk ´1q " `q1

i pk ´1q ˘1ďiďm satisfies

E U Pp `Q1 pk ´1q ˘" k´1 ÿ s"1 a s and m ÿ i"1 q 1 i pk ´1q " k ´1.
We know that a k " f U pI, jq meaning a k is the j-th energy level of the chain I. Since f U pI, .q is increasing, we have tf U pI, 1q, . . . , f U pI, j ´1qu " ta i 1 , . . . , a i j´1 u for 1 ď i 1 ă ¨¨¨ă i j´1 ď k ´1 and for every i ą j, f U pI, iq ą a k . In particular,

k ÿ s"1 a s " ÿ sRti 1 ,...,i j´1 ,ku a s `j ÿ i"1 f U pI, iq " ÿ sRti 1 ,...,i j´1 ,ku a s `F U pI, jq.
We set q 1 i pkq for i P I so that E U pI, pq 1 i pkqq iPI q " F U pI, jq and for every i R I, q 1 i pkq " q 1 i pk ´1q. Then,

E U Pp `Q1 pkq ˘" k ÿ s"1 a s and m ÿ i"1 q 1 i pkq " k.
We fill the coordinates in N p so that Q 1 is an occupation with n Q " r.

It concludes the proof of Proposition 4.2.

Remark. We don't know yet how to prove that Assumption 4.1 holds when p ě 3. The following lemma gives a partial result for chains of size 1.

Lemma 4.3. Using the notations of Definition 4.2, if l ă l 3 2 ´ε ρ,U for ε P p0, 1 2 q then for ρ small enough (4.28) @r P 1, p ´1 f U `r0, ls, r ˘ă f U `r0, ls, r `1w

here p " t l l ρ,U u.

Proof. Assume that l " πβ ´1l ρ,U . For r ě 1, denote F prq " F U `r0, ls, r ˘and Ψprq a corresponding eigenfuntion. Also set F 0 prq and Ψ 0 prq in the free case U " 0. We know that

Ψ 0 prq " r ľ i"1 ϕ i
where ϕ i pxq "

? 2 ?
l sin `π l ix ˘1r0,ls pxq. We compute

xW r Ψ 0 prq, Ψ 0 prqy " rpr ´1q 2 ż U px 1 ´x2 qΨ 0 prqpx 1 , x 2 , Zq 2 dx 1 dx 2 dZ by skew-symmetry " rpr ´1q 2 1 r! ÿ σ,σ 1 PSr εpσqεpσ 1 q ż U px 1 ´x2 q r ź i"1 ϕ σpiq px i qϕ σ 1 piq px i qdX " ÿ păqďr ż U px 1 ´x2 q ˇˇϕ p ^ϕq ˇˇ2 px 1 , x 2 qdx 1 dx 2
by skew-symmetry and orthogonality of pϕ i q iě1 . Hence, by Lemma 6.3, (4.29) xW r Ψ 0 prq, Ψ 0 prqy ď ÿ păqďr Cl ´3pp 2 `q2 q ď Cl ´3r 4 .

Since, 0 ď F prq ´F 0 prq ď xW r Ψ 0 prq, Ψ 0 prqy. we have (4.30)

F prq " F 0 prq `Opl ´3r 4 q " r ÿ i"1 pπl ´1iq 2 `Opl ´3r 4 q Then, (4.31) F pr `1q ´2F prq `F pr ´1q " 2πl ´2r `1 `Opl ´2ε ρ,U q ȃs r ă l.l ´1 ρ,U and l 2 l ´3 ρ,U ď l ´2ε ρ,U . Thus one gets that for ρ small enough the r.h.s is positive. This concludes the proof of Lemma 4.3.

Combining Lemma 4.3 and Lemma 6.1, we get that Assumption 4.1 holds when one cancels the interaction between pieces and p is less than | logpρq|. Without restriction on the form of the interaction, the issue occurs when the growth in the free energy is less or of the order of the interaction between two pieces. More precisely, we don't know yet how to deal with the cases where the lengths of a pair of pieces t∆ i , ∆ j u satisfy (4.32)

D k i , k j P 1, p ´1 ˇˇ´k i l i ¯2 ´´k j l j ¯2ˇˇˇ" Opl ´6 ρ,U q.
Otherwise, let pΓ p , ď p q be the ordered set given by (4.24) and (4.4), and for 1 ď r ď #Γ p , and let G p prq be the subset of P p such that (4.33) G p prq "

! I P P p , D 1 ď k ď p, f U pI, kq " the r-th smallest element of pΓ p , ď p q ) .
From the proof of Proposition 4.2 we deduce the following corollary. For B Ă 1, m and Q P N m , we denote by Q |B " pq i q iPB the restriction of the multi-index to B.

Corollary 4.1. Under Assumption 4.1, there exists a sequence of occupations `Qprq ˘rďn such that (1) the number of particles in the chains of P p for the occupation Qprq is n Qprq " r;

(2) the restrictions Qprq |Pp and Qpr `1q |Pp are equal except for one chain;

(3) if Ψ U is a ground state of H U and Q is an occupation that satisfies

P Q Ψ U ‰ 0 then (4.34) Q |PpzGppn Q q " Qpn Q q |PpzGppn Q q ,
where G p pn Q q is given by (4.33).

The issue of the cardinal of G p prq, for any r P 1, #Γ p , looks as hard to solve as the issue of order of degeneracy of the ground state of H U pΛ, nq. However, it seems relevant to assume that, except for some pathological Poisson point processes, one should get only few cases of equality for the energy levels of Γ p . Assumption 4.2. For 1 ď r ď #Γ p , #G p prq ď nρ p´δ .

The next proposition states that if Assumption 4.1 and Assumption 4.2 are true for some p ě 1 then the number of particles in each piece of P p , except for at most 2nρ p´δ chains, stays the same for any ground state. Proposition 4.3. Set p P N ‹ , δ P p0, 1q and ρ P p0, ρ δ q. Under Assumption 4.1 and Assumption 4.2, there exist a subset F p of P p and, for each piece i in F p , an integer q Fp i such that (1) the number of chains in P p zF p is less than or equal to 2nρ p´δ ;

(2) if Ψ U is a ground state of H then it admits the decomposition Ψ U " Φ U,Fp ^ΩU,F c p with

(4.35) Φ U,Fp " ľ IPFp ψ U `I, pq Fp i q iPI ˘and Ω U,F c p " ÿ QPQ λpQq ľ IRFp ψ U `I, pq i q iPI ˘.
Proof. Let F p be the set of chains I in P p such that the function r Þ Ñ Qprq |I is constant on n ´2nρ p´δ , n . By Corollary 4.1, for r ď n ´1, there is a unique chain I P P p for which Qprq PpzI " Qpr `1q PpzI . So, by induction on r ě n ´2nρ p´δ , F p is not empty and the numbers of chains in P p zF p is less than or equal to 2nρ p´δ . Then, for any piece i in F p , let q Fp i be the common value.

Let Ψ U be a ground state of H. By Lemma 4.1 and Definition 4.2, we have the decomposition (4.36)

Ψ U " ÿ QPQ λpQq ľ I chain
ψ U `I, pq i q iPI where ψ U `I, pq i q iPI ˘is a normalized wave function of H q I pU I q with q I " ř iPI q i and U I " because the left term, gathers all the chains that match with any r-th smallest element in pΓ p , ď p q for r P n ´nρ p´δ , n (see (4.33)) while the right term gathers all the chains that match with any element of pΓ p , ď p q between the pn ´2ρ p´δ q-th and the n-th ones.

Ť iPI ∆ i . Using Lemma 4.2, if an occupation Q satisfies P Q Ψ U ‰
Using the third point of Corollary 4.1, one shows that, for every chain )

I P F p , the restriction map Q Þ Ñ Q |I is constant on tQ P Q, P Q Ψ U ‰ 0u,
Then, with probability 1 ´OpL ´8q, for ρ small enough,

2n ă #Γ 2 ă 2n `1 `p3M `6qρ ˘.
Proof. Using e ´lρ,U " ρ `1 `p4M `5qρ `opρq ˘, Proposition 6.2 and Proposition 6.3, we compute

#Γ 2 " 2# ! t∆ i u P P 2 ) `2# ! t∆ j , ∆ k u P P 2 ) " 2Lp1 ´M e ´lρ,U q 2
´`e ´lρ,U ´e´3l ρ,U ˘`M `e´l ρ,U ´e´2l ρ,U

˘2"

2L `1 ´2M ρ `opρq ˘ρ`1 `p4M `5qρ `opρq ˘`1 `M ρ `opρq " 2n `1 `p3M `5qρ `opρq Ȋt concludes the proof of Lemma 5.1.

We now prove that Assumption 4.1 holds when p " 2.

Lemma 5.2. For I P P 2 , f U pI, 2q ą f U pI, 1q.

Proof. If I P P 2 , then we have two cases. (i) Either I " piq is a unique piece of length l i P rl ρ,U , 3l ρ,U q. The first energy level of ∆ i is

f U p∆ i , 1q " π 2 l 2 i
For the second energy level of ∆ i , we use Proposition 3.1.

(5.2)

f U p∆ i , 2q " 4π 2 l 2 i `γ l 3 i `opl ´3q ą f U p∆ i , 1q.
(ii) Or I " pj, kq is a pair of pieces of length l j , l k P rl ρ,U , 2l ρ,U q separated by a gap of length d jk ď M . The first energy level of the pair t∆ j , ∆ k u is

(5.3) f U ´t∆ j , ∆ k u, 1 ¯" min ´π2 l 2 j , π 2 l 2 k ¯.
Concerning the second energy level of this pair, we use Proposition 3.2.

(5.4)

f U ´t∆ j , ∆ k u, 2 ¯" max ´π2 l 2 j , π 2 l 2 k ¯`τ pd jk q l 3 l 13 ´1 `op1q ¯ą f U ´t∆ j , ∆ k u, 1 ¯.
This completes the proof of Lemma 5.2.

Combining Lemma 5.2 and Proposition 4.2, we get the following corollary.

Corollary 5.1. For r ď n, the minimum of E U P 2 when there are exactly r particles in the chains of P 2 is equal to the sum of the r smallest elements of Γ 2 . 5.2. Distribution of the energy levels. By Corollary 5.1, we need to understand the distribution of the energy levels in Γ 2 . For λ ą 0, we define (5.5) N U 2 pL, λq :"

1 L # x P Γ 2 , x P p´8, λs ( and N U 2 pλq :" lim LÑ8 N U 2 pL, λq.
N U 2 is called the counting function of Γ 2 . We evaluate it in the following proposition. Proposition 5.1. Define the application J by, for λ ą 0, Jpλq :" p1 ´M e ´lρ,U q 2 ˆżD 1 pλq e ´u du `żD 2 pλq e ´u du (5.6)

`ż M 0 ż D 3 pλq 2e ´pu`vq dtdudv `ż M 0 ż D 4 pλ,tq 2e ´pu`vq dtdudv ˙.
where

D 1 pλq " " max ´lρ,U , π ? λ ¯, 3l ρ,U ı , D 3 pλq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě max ´x, π ? λ ¯* D 2 pλq " " max ´2l ρ,U , 2π ? λ `γ 8π 2 ¯, 3l ρ,U ı , D 4 pλ, tq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě x ě ´π ? λ `σptq 2y 3 ¯*.
and γ (resp. σptq) is given in Proposition 3.1 (resp. Proposition 3.2). Then, with probability 1 ´OpL ´8q, for every β ą 1 and λ ą 0, the counting function of Γ 2 satisfies N U 2 pλq " Jpλq `Rβ with R β " Opρ β q.

Proof. A chain of P 2 is either a single piece ∆ i or a pair t∆ i , ∆ j u. In the first case, the energy levels of ∆ i are functions of a single parameter, the length l i P rl ρ,U , 3l ρ,U s. When I " t∆ i , ∆ j u, the energy levels of I are given by the triplet of parameters pl i , l j , d ij q P rl ρ,U , 3l ρ,U s ˆrl ρ,U , 3l ρ,U s ˆr0, M s.

Fix β ą 1. We set a discretization of the above parameters with a constant step ρ β . We get a sequence of approximated energy levels Γ β 2 . We prove that the Hausdorff distance between Γ 2 and Γ β 2 is of order Opρ β q. So it is sufficient to compute the counting function of Γ β 2 at order Opρ β q. Since the Poisson process fix the statistics of pieces, one knows how many times each approximated energy level appears in Γ β 2 . We will use the expansion of the energy levels given by Proposition 3.1 and Proposition 3.2 to replace the condition "below λ" by some conditions on the parameters.

We now give the details. For I P P 2 , we distinguish two cases.

(i) If I " t∆ i u then l i P rkρ β , pk `1qρ β q for some k and for a P t1, 2u, we approximate the a-th energy level of the piece ∆ i by (5.7) f a pkq " f U `r0, kρ β s, a ˘.

The parameter k goes from K 1 " tl ρ,U ρ ´β u to K 3 " t3l ρ,U ρ ´β u. For a P t1, 2u, we define (5.8) p a pkq " # ! t∆ i u P P 2 , l i P rkρ β , pk `1qρ β q ) ;

(ii) if I " t∆ j , ∆ k u then l j P rrρ β , pr `1qρ β q, l k P rsρ β , ps `1qρ β q and d j,k P rdρ β , pd `1qρ β q for some r, s and d and, for a P t1, 2u, we approximate the a-th energy level of the pair p∆ j , ∆ k q by (5.9) g a pr, s, dq

" f U ´ r´rρ β , 0s, rdρ β , dρ β `sρ β s ( , 1 
Here the parameters r, s go from K 1 to K 2 " t2l ρ,U ρ ´β u and the parameter d goes from 0 to D " tM ρ ´β u. For a P t1, 2u, we set (5.10) q a pr, s, dq " # ! t∆ j , ∆ k u P P 2 , l j P rrρ β , pr `1qρ β q, l k P rsρ β , ps `1qρ β q, d j,k P rdρ β , pd `1qρ β q ) .

Let Γ β 2 to be the sequence of approximated energy levels. For β ą 1, there exists C ą 0 such that

d 8 pΓ 2 , Γ β 2 q ď Cρ β .
Proof. (of Lemma 5.3) By construction of Γ β 2 , from x P Γ 2 we compute x β P Γ β 2 . We study the cases separately.

(i) Either x β " f 1 pkq, then x belongs to rf 1 pk `1q, f 1 pkqs. Note that (5.11)

f 1 pkq ´f1 pk `1q " 2π 2 k 3 ρ 2β `O´1 k 4 ρ 2β ¯,
(ii) Or x β " f 2 pkq, then x belongs to rf 2 pk `1q, f 2 pkqs. Using (5.2), one computes that (5.12)

f 2 pkq ´f2 pk `1q " 8π 2 k 3 ρ 2β `O´1 k 4 ρ 2β ¯,
(iii) Or x β " g 1 pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to rg 1 pr, s `1, dq, g 2 pr, s, dqs. Using (5.3), one computes that (5.13) g 1 pr, s, dq ´g1 pr, s `1, dq "

2π 2 s 3 ρ 2β `O´1 s 4 ρ 2β ¯,
(iv) Or x β " g 2 pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to rg 2 pr `1, s, dq, g 2 pr, s, dqs. Using (5.4), one computes that (5.14) g 2 pr, s, dq ´g2 pr `1, s, dq "

2π 2 r 3 ρ 2β `O´1 r 4 ρ 2β ¯, So inf b PΓ β 2 |x ´b| ď C 1 r 3 ρ 2β
Since k (resp. r and s) is of order Opl ρ,U ρ ´β q, we conclude

@x P Γ 2 inf b PΓ β 2 |x ´b| ď Cρ β
By Lemma 5.1 and Lemma 5.3, for β ą 1,

1 L ˇˇˇˇ# " x P Γ 2 , x P p´8, λs * ´#" x P Γ β 2 , x P p´8, λs * ˇˇˇˇď #Γ 2 L d 8 pΓ 2 , Γ β 2 q (5.15) ď Cρ β`1
Let N U 2,β be the counting function of Γ β 2 . Then, for β ą 1,

(5.16) N U 2 pλq " N U 2,β pλq `Opρ β`1 q.
We estimate N U 2,β the counting function of Γ β 2 . Set λ P pmin Γ β 2 , max Γ β 2 q. We translate the condition "energy level smaller than λ" in term of bounds for the parameters of the discretization. For k P K 1 , K 3 ´1 , (5.17)

f 1 pkq ď λ ô k ě π ? λ ρ ´β
Using the asymptotic (5.2), for large k, we compute that (5.18)

f 2 pkq " 4π 2 ´k ´γ 8π 2 ρ β ¯2ρ 2β `Rk with R k " op 1 k 3 ρ 2β q.
The remainder R k is negligible with respect to the gap between f 2 pk `1q and f 2 pkq (see (5.12)). It yields where p a pkq (resp. g a pr, s, dq) is given by (5.8) (resp. (5.9)) and

f 2 pkq ď λ ô 4π 2 ´k ´γ 8π 2 ρ β ¯2 ď λρ 2β (5.19) ô k ě ´2π ? λ `γ 8π 2 ¯ρ´β For r, s P K 1 , K 2 ´1
k 1 pλq :" R π ? λ ρ ´β V , k 2 pλq :" R ´2π ? λ `γ 8π 2 ¯ρ´β V , Bpλq :" " pu, vq P K 1 , K 2 ´1 2 , v ě max ´u, π ? λ ρ ´β ¯*,
Cpλ, dq :"

" pu, vq P K 1 , K 2 ´1 2 , v ě u ě ´π ? λ `σpdρ β q 2v 3 ρ 3β ¯ρ´β * ,
εpr, sq :" 2 if r ‰ s and εpr, sq :" 1 otherwise.

By Lemma 6.2, for η P p 2 3 , 1q, with probability 1 ´OpL ´8q, we have for a P t1, 2u and for k, r, s, d p a pkq " L `1 ´M e ´lρ,U ˘2e ´kρ β p1 ´e´ρ β q `ra pkqL η (5.24) q a pr, s, dq " L `1 ´M e ´lρ,U ˘2e ´pr`sqρ β ρ β `1 ´e´ρ β ˘2 `sa pr, s, dqL η with r a pkq and s a pr, s, dq bounded for every k, r, s and d.

Using dominated convergence theorem, we get

N U 2,β pλq " lim LÑ8 1 L # " x P Γ β 2 , x P p´8, λs * (5.25) " ´1 ´M e ´lρ,U ¯2ˆK 3 ´1 ÿ k"k 1 pλq e ´kρ β p1 ´e´ρ β q `K3 ´1 ÿ k"k 2 pλq e ´kρ β p1 ´e´ρ β q `D´1 ÿ d"0 ÿ pr,sq PBpλq εpr, sqe ´pr`sqρ β ρ β p1 ´e´ρ β q 2 `D´1 ÿ d"0 ÿ pr,sq PCpλ,dq
εpr, sqe ´pr`sqρ β ρ β p1 ´e´ρ β q 2 ˙ Let Σ 3 be the third sum in Equation (5.25).

Σ 3 :" D´1 ÿ d"0 ÿ pr,sq PBpλq
εpr, sqe ´pr`sqρ β ρ β p1 ´e´ρ β q 2 (5.26)

" ż Dρ β 0 ˆÿ pr,sq PBpλq ż pr`1qρ β rρ β ż ps`1qρ β sρ β 2e ´pu`vq dudv ˙dt ´Dρ β p1 ´e´ρ β q 2 K 2 ´1 ÿ r"k 1 pλq e ´2rρ β " ż Dρ β 0 ż B β pλq 2e ´pu`vq dudv ´D 2 ρ 2β e ´2k 1 pλqρ β `1 `op1q (5.27)
where

B β pλq " " px, yq P " K 1 ρ β , K 2 ρ β ı , y ě max ´x, Q π ? λ ρ ´β U ρ β ¯*. Set Bpλq " " px, yq P rl ρ,U , 2l ρ,U s 2 , y ě max ´x, π ? λ ¯*.
Using that, for any x ą 0,

ˇˇx ´rxρ ´β T ρ β ˇˇď ρ β and ˇˇx ´txρ ´β \ ρ β ˇˇď ρ β we get ˇˇˇΣ 3 ´ż M 0 ż Bpλq 2e ´pu`vq dtdudv ˇˇˇď ρ β ˆ2e ´2l ρ,U ż Bpλq du `2M ż BpλqzB β pλq
du `M e ´2l ρ,U (5.28)

ď ρ β ˆ2e ´2l ρ,U p2l ρ,U q 2 `8M ρ β `M e ´2l ρ,U ď Cρ β .
The other terms in Equation (5.25) can be handled in much the same way. So, for λ P pmin

Γ β 2 , max Γ β 2 q, N U 2,β pλq " ´1 ´M e ´lρ,U ¯2ˆż 3l ρ,U π ? λ e ´u du `ż 3l ρ,U `2π ? λ `γ 8π 2 ˘e´u du (5.29) `ż M 0 ż Bpλq 2e ´pu`vq dtdudv `ż M 0 ż Cpλ,tq 2e ´pu`vq dtdudv ˙`Opρ β q where Bpλq " " px, yq P rl ρ,U , 2l ρ,U s 2 , y ě max ´x, π ? λ ¯* Cpλ, dq " " px, yq P rl ρ,U , 2l ρ,U s 2 , y ě x ě ´π ? λ `σpdq 2y 3 ¯*.
Combining (5.16) and (5.29), it yields (5.30) N U 2 pλq " Jpλq `Opρ β q. where J is given by (5.6). It concludes the proof of Proposition 5.1.

The following corollary states that Assumption 4.2 is true for p " 2.

Corollary 5.2. Set δ P p0, 1q. For every x P Γ 2 and in the thermodynamic limit, (5.31)

1 n # y P Γ 2 , y " x ( " Opρ 2´δ q
Proof. Note that each domain of integration in the RHS of (5.6) is smooth for λ P p0, `8q. So, J is continuous on pmin Γ 2 , max Γ 2 q. By Proposition 5.1, we compute for β ą 1, h ą 0 and x P Γ 2

1 n # ! y P Γ 2 , y " x ) ď L n ˇˇN U 2 pL, x `hq ´N U 2 pL, x ´hq ˇ(5.32) ď L n ˆˇˇN U 2 pL, x `hq ´N U 2 px `hq ˇˇ`ˇˇN U 2 pL, x ´hq ´N U 2 px ´hq ˇˇJ px `hq ´Jpx ´hq ˇˇ`Opρ β q ÑLÑ`8 n L Ñρ
1 ρ ˇˇJpx `hq ´Jpx ´hq ˇˇ`Opρ β´1 q (5.33) Taking β ą 2 and h Ñ 0, we conclude the proof of Corollary 5.2. 5.3. Construction of an approximated ground state. We use the counting function N U to build an approximate ground state for H U pΛ, nq.

Note that, for d P r0, M s and min Γ 2 ă λ ă µ ă max Γ 2 ,

(5.34) @i P t1, 2, 3u D i pλq Ł D i pµq and D 4 pλ, dq Ł D 4 pµ, dq.

So J is increasing on pmin Γ 2 , max Γ 2 q. Remark also that, by Lemma 5.1, we have, for λ ą max Γ 2 , N U 2 pλq ą 2ρ and, for 0 ă λ ă min Γ 2 , N U 2 pλq " 0. Hence, by Proposition 5.1 and the continuity of J, for a fixed β ą 2, there exists a unique λ β ρ P pmin Γ 2 , max Γ 2 q such that Jpλ β ρ q " ρ ´Rβ`1 or equivalently (5.35) N U 2 pλ β ρ q " ρ. This unique λ β ρ is our Fermi energy level. Consider all energy levels of Γ 2 below λ β ρ and fill the chains by induction following the proof of the Proposition 4.2. Then, by definition, we get an occupation Q β for which the number of particles in P 2 is equal to n Q β " minpn, LN U 2 pL, λ β ρ qq. For L large enough (that depends on ρ and β),

(5.36)

|N U 2 pL, λ β ρ q ´N U 2 pλ β ρ q| ď ρ β`1 . So, using (5.35), in the thermodynamic limit, the number of particles in the chains of N 2 is less than Cnρ β for some constant C ą 0. Remembering β ą 2 and the left inequality of (4.13), for ρ small enough, one can set the restriction

Q β |N 2 so that the occupation Q β belongs to Q. Set δ β ρ " π ? λ β ρ
. Using Proposition 5.1 and more specifically the R.H.S of (5.6), one can get an approximate description of Q β in term of the pieces' lengths and l β ρ . Disregarding Opnρ β q particles, it means that ‹ for a piece

∆ i P P 2 (a) if l i ă δ β ρ , then q β i " 0 (b) if l i P " δ β ρ , 2δ β ρ `γ 8π 2 ¯then q β i " 1 (c) if l i ě 2δ β
ρ `γ 8π 2 then q β i " 2; ‹ for a pair p∆ j , ∆ k q P P 2 , assume

l j ď l k (a) if l k ă δ β ρ then q β j " q β k " 0, (b) if l j P " δ β ρ , δ β ρ `σpd j,k q 2l 3 k ¯then q β j " 0 and q β k " 1 (c) if l j ě δ β ρ `σpd j,k q 2l 3 k then q β j " q β k " 1
We can compare the occupation Q β with the occupation of the free operator Q 0 . Recall that in Q 0 there are k particles in pieces of length between kl ρ and pk `1ql ρ where l ρ is given by (4.1). We compute

ż D 1 pEρq e ´u du
`żD 2 pEρq e ´u du " e ´lρ ´e´3l ρ,U `e´2lρ´γ 8π 2 ´e´3l ρ,U

(5.37)

" ρ ´1 ´ρ `Opρ 2 q ¯´1 `e´γ 8π 2 ρ `Opρ 2 q ¯, ż M 0 ż D 3 pEρq 2e ´pu`vq dtdudv " 2M ż lρ l ρ,U ż 2l ρ,U lρ e ´pu`vq dudv `2M ż 2l ρ,U ěvěuělρ
e ´pu`vq dudv (5.38)

" M ρ 2 `1 `Opρq ˘, ż M 0 ż D 4 pEρ,tq 2e ´pu`vq dtdudv ď 2M ż 2l ρ,U ěvěuělρ e ´pu`vq dudv (5.39) " M ρ 2 `1 `Opρq ˘. So, N U 2 pE ρ q ď ρ ´1 ´2M ρ `Opρ 2 q ¯ˆ´1 ´ρ `Opρ 2 q ¯´1 `e´γ 8π 2 ρ `Opρ 2 q ¯`2M ρ ´1 `Opρq ¯(5.40) " ρ ´1 `ρ`e ´γ 8π 2 ´1˘`O pρ 2 q ă ρ.
Thus, E ρ ă λ β ρ meaning that l ρ,U ă δ β ρ ă l ρ . For ρ small enough, 2l ρ,U `γ 8π 2 ě 2l ρ so 2δ β ρ `γ 8π 2 ě 2l ρ . It means that when interactions are on, we remove one particle from pieces of length close to 2l ρ but larger and put it in empty pieces of length close to l ρ but smaller. Similarly, for pair of pieces of length close to l ρ , one takes one particle out of the pair to fill a smaller piece that does not interact.

Hence, using (4.9) and (4.10), we define the approximated ground state (5.41)

Ψ β pΛ, nq " Ψ U pΛ, n, Q β q.
Proposition 5.2. Using the notations of Proposition 5.1, define the map J by J pλq " Lp1 ´M e ´lρ,U q 2 ˆżD 1 pλ β ρ q f U pr0, us, 1qe ´u du `żD 2 pλ β ρ q f U pr0, us, 2qe ´u du (5.42)

`ż M 0 ż D 3 pλ β ρ q
2e ´pu`vq f U ptr´u, 0s, rt, v `tsu, 1q dtdudv

`ż M 0 ż D 4 pλ β ρ ,tq
2e ´pu`vq f U ptr´u, 0s, rt, v `tsu2q dtdudv ˙.

For β ą 2, for λ β ρ and Ψ β pΛ, nq defined as above, for δ P p0, 1q and 0 ă ρ ă ρ δ small enough, then, in the thermodynamic limit, with probability 1,

(5.43) lim LÑ`8 n L Ñρ @ H U pΛ, nqΨ β pΛ, nq, Ψ β pΛ, nq D n " 1 ρ J pλ β ρ q `Opρ 2´δ q.
Proof. Fix β ą 2. By construction of Ψ β pΛ, nq and using (4.11), we write (5.44) @ H U pΛ, nqΨ β pΛ, nq, Ψ β pΛ, nq D " E U pΛ, n, Q β q " E U P 2 pQ β q `EU N 2 pQ β q By Proposition 4.1, we know that, for δ P p0, 1q and ρ P p0, ρ δ q,

(5.45) E U N 2 pQ β q ď nρ 2´δ It gives the amount of energy produced by particles we do not control precisely. One can check that it fits with the remaining part in (5.43).

Otherwise, we compute E P 2 pQ β q using Γ β 2 , the approximate sequence of levels of energy for the good pieces that we introduced in the proof of Proposition 5.1. Following the method and the notations of Proposition 5.1, one derives the next formula. With probability 1 ´OpL ´8q and η P p 2 3 , 1q,

E P 2 pQ β q " Lp1 ´M e ´lρ,U q 2 ˆżD 1 pλ β ρ q f U pr0, us, 1qe ´u du `żD 2 pλ β ρ q f U pr0, us, 2qe ´u du (5.46) `ż M 0 ż D 3 pλ β ρ q 2e ´pu`vq f U ptr´u, 0s, rt, v `tsu, 1q dtdudv `ż M 0 ż D 4 pλ β ρ ,tq
2e ´pu`vq f U ptr´u, 0s, rt, v `tsu2q dtdudv ˙`OpLρ β`1 q `OpL η q.

Thus, in the thermodynamic limit, one derives lim LÑ`8 n L Ñρ @ H U pΛ, nqΨ β pΛ, nq, Ψ β pΛ, nq D n " 1 ρ J pλ β ρ q `Opρ 2´δ q (5.47) It concludes the proof of Proposition 5.2.

Remark 5.1. One could also set (5.48) Ψ β pΛ, nq " ˆľ I P P 2 ψ U ´I, pq β i q iPI ¯˙^ˆľ

I P N 2 ľ iPI ψ 0 ´∆i , q β i ¯ṁeaning
that, outside of P 2 , it behaves like a free state. By Remark 4.1, both states (5.41) and (5.48) give, up to the order Opρ 2´δ q, the same amount of energy per particle in the thermodynamic limit.

5.4.

Comparing the ground state energy to the approximated ground state energy. We compare our approximate ground state energy with the ground state energy, in the thermodynamic limit.

Proposition 5.3. For L ą 0, let Ψ U pΛ, nq be a ground state of H U pΛ, nq. For δ P p0, 1q and β ą 3, the approximated ground state Ψ β pL, nq, given in Subsection 5.3, satisfies in the thermodynamic limit, with probability 1 ´OpL ´8q, Fix β ą 3 and δ P p0, 1q. Let Ψ β " Ψ U pQ β q be the state given by the construction of Subsection 5.3. We compute

(
0 ď xH U Ψ β , Ψ β y ´xH U Ψ U , Ψ U y ď E U P 2 pQ β q `EU N 2 pQ β q ´min Q E P 2 (5.52) ď E U P 2 pQ β q ´min Q E U P 2 `nρ 2´δ
if ρ P p0, ρ δ q. We used Proposition 4.1 for the last inequality. If Q is an occupation that minimizes E P 2 on Q then, by Proposition 4.2,

(5.53)

E U P 2 pQ β q ´EU P 2 pQq " n Q β ÿ k"n Q a k . So, (5.54) pmin Γ 2 q n Q β ´nQ L ď E U P 2 pQ β q ´EU P 2 pQq L ď pmax Γ 2 q n Q β ´nQ L .
By Lemma 4.2,

(5.55)

0 ď n Q β ´nQ L ď n ´nQ L ď nρ 2´δ L
for ρ P p0, ρ δ q. Combining (5.54) and (5.55) we get (5.56) lim

LÑ`8 n L Ñρ E U P 2 pQ β q ´min Q E U P 2 n " Opρ 2´δ q.
Thus, using (5.52) and (5.56), one proves that, in the thermodynamic limit,

(5.57) lim

LÑ`8 n L Ñρ xH U Ψ β , Ψ β y ´xH U Ψ U , Ψ U y n " Opρ 2´δ q
It concludes the proof of Proposition 5.3.

Combining Proposition 5.2 and Proposition 5.3, we get Theorem 3.1.

5.5.

Comparing a true ground state to the approximated ground state. We recall that for Ψ P H n pΛq, we define its 1-particle density γ p1q Ψ (resp. 2-particle density γ p2q Ψ ) as the operator on H 1 pΛq (resp. H 2 pΛq) given by (3.7) (resp. 3.8). The following lemma deals with the case of a vector Ψ P H n pΛq which factorizes with respect to a given partition of Λ.

Lemma 5.4. [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF] Consider pU i q 1ďiďr a family of closed sets of R where U i X U j " H holds for every i ‰ j and |U i | is finite. Set, for pq i q 1ďiďr P N r , (5.58) Ψ "

r ľ i"1 ψpi, q i q
where ψpi, kq is a state that belongs to H k pU i q, the k-particle space on U i . Then the 1-particle γ (5.60)

γ p2q Ψ " r ÿ i"1 ˆγp2q ψpi,q i q ´1 2 γ p1q ψpi,q i q b γ p1q ψpi,q i q `1 2 ´γp1q ψpi,q i q b γ p1q ψpi,q i q ¯˝τ ˙`1 2 γ p1q Ψ b γ p1q Ψ ´1 2 ´γp1q Ψ b γ p1q Ψ ¯˝τ
with τ px 1 , x 2 , y 1 , y 2 q " px 1 , x 2 , y 2 , y 1 q.

We compare the 1-particle density and the 2-particle density of our approximate ground state with those of any ground state. The following Proposition is a reformulation of Proposition 3.3 and Proposition 3.4. Proposition 5.4. Let Ψ U pΛ, nq be a ground state of H U pΛ, nq. For δ P p0, 1q, ρ P p0, ρ δ q and β ą 3, set the approximate ground state Ψ β pΛ, nq given in Subsection 5.3. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has Proof. Let Ψ U pΛ, nq be a ground state of H U pΛ, nq for large n and L. The proof uses that both Ψ U and Ψ β admit a factor that fixes all but Opnρ 2´δ q particles. Indeed, by Lemma 5.2 and Corollary 5.2, both Assumption 4.1 and Assumption 4.2 hold for p " 2. So, we apply Proposition 4.3. We have the factorization

(5.63) Ψ U " ˆľ IPF 2 ψ U `I, pq F 2 i q iPI ˘˙^Ω U,F c 2 where (5.64) Ω U,F c 2 " ÿ QPQ λpQq ľ IRF 2 ψ U `I, pq i q iPI ˘. Set (5.65) n F 2 " ÿ IPF 2 ÿ iPI q F 2 i
the number of particles in F 2 . Let Ψ β be our approximated ground state. By construction, we know (5.66) @I P F 2 @i P I q β i " q F 2 i .

As in (5.63), we have

(5.67) Ω β,F c 2 " ľ IRF 2 φ U pI, pq β i q iPI q so that (5.68) Ψ β " ˆľ IPF 2 ψ U `I, pq F 2 i q iPI ˘˙^Ω β,F c 2 .
We deal with the 1-particle densities and 2-particle densities separately. (i) By Lemma 5.4, the 1-particle density of Ψ U satisfies (5.69)

γ p1q Ψ U " ÿ IP F 2 γ p1q ψ U `I,pq F 2 i q iPI ˘`γ p1q Ω U,F c 2 .
For any φ P H n pΛq, |φ ąă φ| is a rank one projector and

(5.70)

› › ›|φ ąă φ| › › › tr " ż Λ n |φpXq| 2 dX.
So its 1-particle γ p1q φ is trace class with (5.71)

› › ›γ p1q φ › › › tr " ż Λ γ p1q φ px, xq dx Since Ω U,F c 2 is a normalized wave function of H n´n F 2 pΛq, we compute (5.72) › › ›γ p1q Ω U,F c 2 › › › tr " n ´nF 2 ď max QPQ ÿ iPN q i `2#P 2 zF 2 ď 5nρ 2´δ . Thus, › › ›γ p1q Ψ U ´γp1q Ψ β › › › tr " › › ›γ p1q Ω U,F c 2 ´γp1q Ω β,F c 2 › › › tr (5.73) ď › › ›γ p1q Ω U,F c 2 › › › tr `› › ›γ p1q Ω β,F c 2 › › › tr ď 10nρ 2´δ (5.74) (ii)
We expand the 2-particle density of Ψ U according to Lemma 5.4. (5.75)

γ p2q Ψ U " γ p2q Φ U,F 2 `γp2q Ω U,F c 2 `1 2 ´γp1q Φ U,F 2 bγ p1q Ω U,F c 2 `γp1q Ω U,F c 2 bγ p1q Φ U,F 2 ´`γ p1q Φ U,F 2 bγ p1q Ω U,F c 2 ˘˝τ ´`γ p1q Ω U,F c 2 bγ p1q Φ U,F 2 ˘˝τ ¯.
For φ P H n pΛq, the corresponding 2-particle γ p2q φ is trace class and it satisfies (5.76)

› › ›γ p2q φ › › › tr " ż Λ γ p2q φ px 1 , x 2 , x 1 , x 2 q dx
Then,

(5.77)

› › ›γ p2q Ω U,F c 2 › › › tr " `n ´nF 2 ˘`n ´nF 2 ´12 ď 25 2 n 2 ρ 4´2δ and 
(5.78)

› › ›γ p1q Φ U,F 2 b γ p1q Ω U,F c 2 › › › tr " › › › ´γp1q Φ U,F 2 b γ p1q Ω U,F c 2 ¯˝τ › › › tr " n F 2 `n ´nF 2 ˘ď 5n 2 ρ 2´δ .
The same inequalities hold for Φ β,F 2 and Ω β,F c 2 . So, (5.79)

› › ›γ p2q Ψ U ´γp2q Ψ β › › › tr ď 45n 2 ρ 2´δ .
Proof.

(1) Let P a,b :" ti P 1, m , l i P ra, bsu. Then, tchain of size 1u X P a,b " P a,b z ´ti P P a,b , Dj ą i, l j ě l ρ,U , d i,j ď M u Y ti P P a,b , Dj ă i, l j ě l ρ,U , d j,i ď M u

We use Proposition 6.2, Proposition 6.3 and #pAYBq " #A`#B ´#pAXBq to conclude. (2) Let R a,b,c,d :" tpi, jq P 1, m 2 , i ă j, l i P ra, bs, l j P rc, dsu. Then,

tchain of size 2u X R a,b,c,d " R a,b,c,d z ´tpi, jq P R a,b,c,d , Dk ą j, l k ě l ρ,U , d j,k ď M u Y ti P R a,b,c,d , Dk ă i, l k ě l ρ,U , d k,i ď M u
We conclude as for (1). 6.3. Bounds for the interaction of two particles. Lemma 6.3. Set, for ra, bs Ă R a finite interval and i P N, φ ra,bs i pxq " ? 2 ? b ´a sin `π b ´aipx ´aq ˘1ra,bs pxq.

For p, q P N, if l ą 0 is large enough, (6.3) ż U py ´xq ˇˇφ r0,ls p ^φr0,ls q ˇˇ2px, yqdxdy ď Cl ´3pp 2 `q2 q and if l 1 ą 0 is also large enough, and 0 ď d ď M , (6.4) ż U py ´xq ˇˇφ r´l 1 ,0s p ^φrd,d`ls q ˇˇ2px, yqdxdy ď Cl ´3l 1´3 p 2 q 2 with C ą 0 that only depends on U .

Proof. We derive with changes of variables ż U py ´xq ˇˇφ r0,ls p ^φr0,ls q ˇˇ2px, yqdxdy " ż U py ´xq ˆφr0,ls p pxq 2 φ r0,ls q pyq 2 ´φr0,ls p pxqφ r0,ls q pyqφ r0,ls p pyqφ r0,ls q pxq ˙dxdy 

" 4l ´1 ż l ´l ż 1 0 U puq ˆsin 2 pπqpul ´1 `
pyq 2 dxdy " 4l ´1l 1´1 ż l 1 0 ż l 0 U pr `s `dq sin 2 pπprl 1´1 q sin 2 pπqsl ´1qdrds " 4l ´1l 1´1 ż `8 0 ż u 0 U pu `dq sin 2 `πppu ´vql 1´1 ˘sin 2 `πqvl ´1qdudv " 4π 4 l ´3l 1´3 p 2 q 2 ż `8 0 ż u 0 U pu `dqpu ´vq 2 v 2 dudv `Opl ´4l 1´3 `l´3 l 1´4 q ď 8π 4 l ´3l 1´3 p 2 q 2
ż `8 0 U pu `dqu 5 du.

6.4. Proof of Proposition 3.2. The ideas and the structure are inspired by the proof of Proposition 3.1 that one can find in Subsection 6.1.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF]. Set l ą 0, d ą 0 and a ě 1. We consider the operator (6.5)

ˆ´d 2 dy 2 D |r´al,0s ˙b I `I b ˆ´d 2 dx 2 D |rd,d`ls ˙`U px ´yq on L 2 pr´al, 0sq b L 2 prd, d `lsq
By scaling, it is unitarily equivalent to the operator l ´2H l acting on L 2 `r0, 1s 2 ˘where (6.6) H l " ´B2 Bx 2 ´1 a 2 B 2 By 2 `l2 U plx `aly `dq with Dirichlet boundary conditions. Denote E l 0 the ground state of H l and let H 0 be the free operator. One checks that the eigenvalues of H 0 are (6.7) E p,q " π 2 pp 2 `q2 a ´2q for p, q ě 1, with the corresponding eigenfunctions (6.8) ψ p,q px, yq " 2 sinpπpxq sinpπqyq.

Set E 0 :" E 1,1 , ψ 0 :" ψ 1,1 and U l :" H l ´H0 . By Lemma 6.3, (6.9) xψ 0 , U l ψ 0 y ď C a 3 l 4 So, (6.10) E 0 ď E l 0 ď E 0 `xψ 0 , U l ψ 0 y ď E 0 `Opa ´3l ´4q ă E 1,2 . Set δE " E l 0 ´E0 . By the Schur decomposition for pSpanpψ 0 q, Spanpψ 0 q K q, the eigenvalue equation becomes (6.11) Π 0 U l Π 0 ´pδEqΠ 0 ´Π0 U l Π K pH K ´El 0 q ´1Π K U l Π 0 " 0 with Π 0 " |ψ 0 yxψ 0 | the orthogonal projection on Spanpψ 0 q, Π K the orthogonal projection on Spanpψ 0 q K and H K " H |Spanpψ 0 q K . Note that H K " Π K H 0 Π K `ΠK U Π K ě E 1,2 .

We use the following notation (6.12) R K pzq " Π K pH K ´zq ´1Π K .

We prove that one can replace R K pE l 0 q with R K pE 0 q for some negligible cost. Remark that, as }R K pE 0 q} ď pE 1,2 ´E0 q ´1, (6.13) R K pE l 0 q ´RK pE 0 q " ÿ ně1 R K pE 0 q n`1 pδEq n " OpδEq ď Cl ´4.

Then, ˇˇxψ 0 , U l `RK pE l 0 q ´RK pE 0 q ˘U l ψ 0 y ˇˇď

› › › ? U l Π 0 › › › 2 › › ›
? U l `RK pE l 0 q ´RK pE 0 q ˘?U l › › › ď Cl ´6. using (6.9), (6.13) and }U l } ď l 2 }U } 8 . Thus, δE " A l `Opl ´6q where (6.14) A l " xψ 0 , `U l ´U l R K pE 0 qU l ˘ψ0 y.

By (6.10), A l " Opl ´4q. Now we express R K pzq in terms of R 0 K pzq " Π K pH 0 K ´zq ´1Π K . By Krein's formula, one can check that (6.15)

R K pzq " b R 0 K pzq ˆ1 `bR 0 K pzqU l b R 0 K pzq ˙´1b R 0 K pzq.
Denote (6.16) T l " ? U l b R 0 K pE 0 q and φ l 0 " l 2 ? U l ψ 0 .

Using (6.15), one computes l 4 A l " xφ l 0 , I ´T l `1 `T l‹ T l ˘´1 T l φ l 0 y " xφ l 0 , I ´T l T l‹ `1 `T l T l‹ ˘´1 φ l 0 y " xφ l 0 , `1 `T l T l‹ ˘´1 φ l 0 y. (6.17) Define the partial isometry Γ l : where g l,a is a bounded continuous function. So, by dominated convergence theorem, the sequence `a3{2 Γ l φ l 0 ˘lą0 admits the following limit in L 2 pΩq when l Ñ `8:

# L 2 `r0, 1s 2 ˘ÝÑ L 2 pΩq f Þ ÝÑ 1 l ? a 1 Ω l pf
(6.20) ϕpu, vq " 2π 2 a U pu `dqpu ´vqv.

Otherwise, we use the notations (6.7) and (6.8) to write the kernel K l of Γ l T l T l‹ Γ l‹ .

K l pu, v, u 1 , v 1 q " ÿ pp,qq‰p1,1q

1 Ω l pu, vq1 Ω l pu 1 , v 1 q apE p,q ´E0 q a U pu `dq a U pu 1 `dqψ p,q ´u ´v l , v al ¯ψp,q ´u1 ´v1 l , v 1 al ¯.

If f P C 8 c pΩq then, for l large enough, f P C 8 c pΩ l q and (6.21) Lemma 6.4. Define S on C 8 c pΩq such that Sf " L, given by (6.23). Then, the operator S is well-defined and is extended to a bounded operator on L 2 pΩq.

Γ l T l T l‹ Γ l‹ f
Proof. (of Lemma 6.4) We first prove that, for pu, vq P Ω, Lpu, vq, given by (6.23), is well-defined. We consider the singularities separately.

(1) For pα, βq P R 2 , we have 1 x 2 `y2 sinpαxq sinpβyqF g px, y ´xq " p0,0q xy x 2 `y2 αβF g p0, 0q

It gives the integrability in p0, 0q.

(2) By the Paley Wiener theorem, as f P C 8 c pΩq, F g is an entire function and |F g px, yq| ď C j p1`|y|q j for j ě 1. Then,

ˇˇˇ1

x 2 `y2 sinpαxq sinpβyqF g px, y ´xq ˇˇˇď C j px 2 `y2 qp1 `|y ´x|q j .

It gives the integrability at ˘8. So, S is well-defined on C 8 c pΩq.

Take h P C 8 c pR 2 q. We compute ż R 2 `U pu `v `dq ˇˇż R 2 sinpxuq sinpyvq

x 2 `y2 hpx, yqdxdy ˇˇ2dudv ď }h} 2 L 2 ż U pu `v `dq sin 2 pxuq sin 2 pyvq px 2 `y2 q 2 ď }h} 2 L 2 ˜ż U pu `v `dq ż r1,8q 2 1 px 2 `y2 q 2 `ż U pu `v `dqu 2 v 2 ż r0,1s 2

x 2 y 2 px 2 `y2 q 2 ḑ C}h} 2 L 2 . Since the Fourier transform is unitary and U is bounded, we get that S admits an extension on L 2 pΩq.

It concludes the proof of Lemma 6.4.

Thus, by Lemma 6.4, the sequence `Γl T l T l‹ Γ l‹ ˘lą0 converges strongly to some operator S. So does p1 `Γl T l T l‹ Γ l‹ q ´1 to p1 `Sq ´1. The limit only depends on U and d.

For any positive self-adjoint operator A on a Hilbert space H, we know }p1 `Aq ´1} BpHq ď 1. Then, combining it with (6.17), (6.20) and (6.23), for l large, (6.24)

xa 3{2 Γ l φ l 0 , `1 `Γl T l T l‹ Γ l‹ ˘´1 a 3{2 Γ l φ l 0 y L 2 pΩq " xϕ, p1 `Sq ´1ϕy L 2 pΩq `op1q. It yields (6.25)

δE " 1 a 3 l 4 xϕ, p1 `Sq ´1ϕy L 2 pΩq `o´1 l 4

¯.

We set τ pdq " xϕ, p1 `Sq ´1ϕy L 2 pΩq . It concludes the proof of Proposition 3.2.

  ), (4.20) and (4.21), the inequality (4.16) becomes (4.22) E U Np pQq ď nρ p´δ . It concludes the proof of Proposition 4.1. Remark 4.1. If one replaces ψ U Np pQq by Ź IĂNp ψ 0 `I, pq i q ˘then the same bound holds for the energy.

  Lemma 5.3. Recall the definition of the Hausdorff distance d 8 on PpRq. For pA, Bq P PpRq 2 , d 8 pA, Bq :" sup aPA inf bPB |a ´b|.

  Proof of Lemma 2.1. Define the Fermi length l ρ as the length of a piece ∆ for which the ground state energy of the Dirichlet Laplacian ´d2

	dx 2	D |∆ is equal to the Fermi energy. Using formula
	(2.6), one computes	
	(4.1)	

test pΛ,nq › › › tr ď 45ρ 2´δ . Remark 3.1. Proposition 3.3 and Proposition 3.4 show that the state Ψ test is a better approximation of the ground state than the approximated state given in [KV20]. 4. Expressing the ground state energy for a fixed occupation 4.1.

  0 then the number of particles in P p for Q belongs to n ´nρ p´δ , n .

	Under Assumption 4.2, we have
	(4.37)

n ď r"n´nρ p´δ G p prq Ă P p zF p

  equal to pq Monotony of the energy levels. We recall that P 2 is the set of chains each of which carries at most two particles for any ground state.

								Fp i q iPI . So, (4.36) becomes
	(4.38)	Ψ U "	ˆľ IPFp	ψ U `I, pq	QPQ i q iPI ˘˙^ˆÿ Fp	λpQq	IRFp ľ	ψ U `I, pq i q iPI	˘Ṫhis
	concludes the proof of Proposition 4.3.			
			5. Proceeding with the case p " 2
	5.1. Lemma 5.1. Set								
					!				
	(5.1)			Γ 2 "	f			

U pI, kq, I P P 2 , k P t1, 2u

  and d P 0, D ´1 , assuming r ď sThe remainder S r,s,d is negligible with respect to the gap between g 2 pr `1, s, dq and g 2 pr, s, dq (see (5.14)). It yields, for large r ď s,

	(5.22)	g 2 pr, s, dq ď λ	ô	π 2 2s 3 ρ 4β ´r ´σpdρ β q	¯2 ď λρ 2β
				ô	r ě ´π ? λ	2s 3 ρ 3β `σpdρ β q	¯ρ´β
	Thus, combining (5.17), (5.19), (5.20) and (5.22), for λ P pmin Γ β 2 , max Γ β 2 q,
	(5.23)	# " x P Γ β 2 , x P p´8, λs *	"	K 3 ´1 ÿ	p 1 pkq	`K3 ´1 ÿ	p 2 pkq	`D´1 ÿ	ÿ	εpr, sqq 1 pr, s, dq
				k"k 1 pλq	k"k 2 pλq				d"0	pr,sq P Bpλq
			`D´1 ÿ	ÿ	εpr, sqq 2 pr, s, dq
				d"0	pr,sq P Cpλ,dq				
	(5.20)	g 1 pr, s, dq ď λ	ô	s ě max ´r,	π ? λ	ρ ´β Ūsing
		the asymptotic (5.4), for large r ă s and d P 0, D , we compute
	(5.21)	g 2 pr, s, dq "	π 2 ´r ´σpdρ β q 2s 3 ρ 4β ¯2ρ 2β			

`Sr,s,d with S r,s,d " op 1 r 3 ρ 2β q.

  5.49) xH U pΛ, nqΨ U pΛ, nq, Ψ U pΛ, nqy n " xH U pΛ, nqΨ β pL, nq, Ψ β pL, nqy n `Opρ 2´δ q.Proof. We drop the indices "Λ" and "n". Let Ψ U be a ground state of H U . Using the notations of H P 2 pQq and ψ U N 2 pQq P H N 2 pQq, Then,xH U Ψ U , Ψ U y "

	Subsection 4.2, we have			
	(5.50)	Ψ U "	ÿ	λpQqψ U P 2 pQq ^ψU N 2 pQq
			QPQ	
	with λpQq P C, ψ U P 2 pQq P ÿ	|λpQq| 2 ´EU P 2 pQq `EU N 2 pQq (5.51)
			QPQ
			ě min Q	E U P 2

  vqq sin 2 pπpvq ´sinpπppul ´1 `vqq sinpπqpul ´1 `vqq sinpπpvq sinpπqvq ˙dudv

	and					
	ż	U py ´xq ˇˇφ r´l 1 ,0s p	^φrd,d`ls q	ˇˇ2px, yqdxdy "	ż	U px ´yqφ r´l 1 ,0s p	pxq 2 φ rd,d`ls q
				" 4l	´3 ż l ´l ż 1 0	U puqπ 2 u 2 ˆq2 cos 2 pπpvq sin 2 pπqvq
				´pq cospπpvq cospπqvq sinpπpvq sinpπqvq ˙dudv `Opl ´4q
								ż
				ď 10π 2 l ´3pp 2 `q2 q	U puqu 2 du
								R

  U pu 1 `dqf pu 1 , v 1 q sinpπu 1 ξq sinpπv 1 ηq du 1 dv 1 . By Riemann's summation, the limit for l Ñ `8 of (6.21) is `1 x 2 `y2 sinpπpu ´vqxq sinpπvyqG f px, yq dxdy.Using gps, tq " a U ps `dqf ps, tq and its Fourier transformF g pξ, ηq " ş R 2`gps, tqe isξ`itη dsdt, one computesG f px, yq " 1 4´´F g px, y ´xq `Fg px, ´y ´xq ´Fg p´x, x ´yq `Fg p´x, x `yq ¯. `y2 sinpπpu ´vqxq sinpπvyqF g px, y ´xq dxdy.

		pu, vq "	4 al 2	ÿ pp,qq‰p1,1q	1 Ω l pu, vq π 2 p p 2 l 2 `q2 palq 2 q ´E0 l 2	a U pu `dq sin ´πpu´vq	p l	¯sin ´πv	q al	¯Gf	´p l	,	al q	where
		G f pξ, ηq "	ş										
	(6.22)	Lpu, vq "	π 2 1 Ω pu, vq 4	a U pu `dq	ij				
									R 2				
	Then, (6.22) becomes								
	(6.23) Lpu, vq "	´1 π 2 1 Ω pu, vq a U pu `dq	ij	x 2	1		
								R 2				

Ω a
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It concludes the proof of Proposition 5.4. 6. Appendix 6.1. Convex functions and discrete optimization. Definition 6.1. A function F : N Ñ R is convex (resp. strictly convex) iff for every k ě 1, F pk `1q ´F pkq ě F pkq ´F pk ´1q (resp. F pk `1q ´F pkq ą F pkq ´F pk ´1q).

Lemma 6.1. Let pF i q 1ďiďp be nonnegative functions defined on N, with F i p0q " 0. Define (6.1) F :

and G :

Assume that, for every i, F i is strictly convex. Then, (1) the function G is convex;

(2) for r ě 1, Gprq is exactly the sum of the r smallest elements of Γ " F i pk `1q ´Fi pkq, i P 1, m , k P N ( , taken with multiplicity.

Proof.

(1) For r ě 1, choose px r 1 , . . . , x r p q P N p so that Gprq " F px r 1 , . . . , x r p q. We prove that one can set px r`1 1 , . . . , x r`1 p q P N p satisfying (6.2) D!j r`1 P 1, p `xr`1 j r`1 " x r j r`1

Pick py 1 , . . . , y p q P N p with ř p i"1 y i " r `1. Assume that there is y i 0 ą x r i 0 `1. Without loss of generality we consider i 0 " 1. Then F py 1 , . . . , y p q ´F px r 1 `1, x r 2 . . . , x r p q "F py 1 ´1, y 2 , . . . , r `1 ´p´1 ÿ

i"1

x r i q `f1 py 1 q ´f1 py 1 ´1q `f1 px r 1 q ´f1 px r 1 `1q ą0 by definition of px r i q 1ďiďp and because f 1 is strictly convex from 0 to r `1. So x r`1 i ď x r i `1 for all i. Since

, there is j 0 so that x r`1 j 0 " x r j 0 `1. Without loss of generality we can consider j 0 " 1. Pick py 1 , . . . , y p q P N p with ř p i"1 y i " r`1 and y 1 " x r 1 `1. Then, the same calculus gives F py 1 , . . . , y p q ě F px r 1 `1, x r 2 , . . . , x r p q meaning px r 1 `1, x r 2 , . . . , x r p q is a minimizer of F . Thus we set px r i q rě1 by induction and we compute Gpr `1q ´Gprq " f 1 px r 1 `1q ´f1 px r 1 q ą f 1 px r 1 q ´f1 px r 1 ´1q and for all j P 2, p Gpr `1q ´Gprq ě f j px r j q ´fj px r j ´1q because ÿ iRt1,ju f i px r i q `fj px r j q `f1 px r 1 q ď ÿ iRt1,ju f i px r i q `fj px r j ´1q `f1 px r 1 `1q

Hence, Gpr `1q ´Gprq ě Gprq ´Gpr ´1q.

(2) In particular, the sequence `Gpr `1q ´Gprq ¯rě0 is non decreasing and it belongs to Γ. By reductio ad absurdum, assume that there is a P ΓX Gpr `1q´Gprq, r ě 1 ( c . Let r a be such that Gpr a q´Gpr a ´1q ď a ă Gpr a `1q´Gpr a q, and pi a , x a q such that a " F ia px a `1q´F ia px a q. Then, x ra ia " x a and F px ra 1 , . . . , x a `1, . . . , x ra p q " Gpr a q `a ă Gpr a `1q. Contradiction. It concludes the proof of Lemma 6.1. 6.2. Statistical distribution of the pieces. We recall some results about the statistical distribution of pieces. Proposition 6.1. [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF] With probability 1 ´OpL ´8q, the largest piece has a length bounded by logpLq logplogpLqq. Proposition 6.2. [KV20] Fix β P p 2 3 , 1q. For L large and a, b P r0, logpLq logplogpLqqs, with probability 1 ´OpL ´8q the number of pieces of length contained in ra, bs is equal to

3 , 1q and r ě 2. For L large and pa i q 1ďiďr , pb i q 1ďiďr , pc i q 1ďiďr´1 and pd i q 1ďiďr´1 some positive sequences, with probability 1 ´OpL ´8q, the number of pieces such that the length of i-th piece (from left to right) is contained in ra i , b i s, the distance with the pi`1q-th piece is contained in rc i , d i s, is equal to

The proofs of Propositions 6.1, 6.2 and 6.3 are in Appendix A of [START_REF] Klopp | Interacting electrons in a random medium: a simple onedimensional model[END_REF]. From these propositions, we derive the following lemma. Lemma 6.2. Fix β P p 2 3 , 1q and refer to the specific terminology in Definition 4.1. For L large and a, b, c, d, f, g P rl ρ,U , logpLq log logpLqs, with probability 1 ´OpL ´8q,

(1) the number of chains of size 1 with length contained in ra, bs is Lp1 ´M e ´lρ,U q 2 pe ´a ´e´b q `SL L β where |S L | is bounded;

(2) the number of chains of size 2 such that the length of the left piece is contained in ra, bs, the length of the right piece is contained in rc, ds and the distance between the pieces is contained in rf, gs, is equal to

Lp1 ´M e ´lρ,U q 2 pg ´f qpe ´a ´e´b qpe ´c ´e´d q `SL L β

where |S L | is bounded.