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Abstract: Bipartite networks are a natural representation of the inter-
actions between entities from two different types. The organization (or
topology) of such networks gives insight to understand the systems they
describe as a whole. Here, we rely on motifs which provide a meso-scale
description of the topology. Moreover, we consider the bipartite expected
degree distribution (B-EDD) model which accounts for both the density
of the network and possible imbalances between the degrees of the nodes.
Under the B-EDD model, we prove the asymptotic normality of the count
of any given motif, considering sparsity conditions. We also provide closed-
form expressions for the mean and the variance of this count. This allows to
avoid computationally prohibitive resampling procedures. Based on these
results, we define a goodness-of-fit test for the B-EDD model and propose a
family of tests for network comparisons. We assess the asymptotic normal-
ity of the test statistics and the power of the proposed tests on synthetic
experiments and illustrate their use on ecological data sets.
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1. Introduction

Bipartite interaction networks are used to represent a diverse range of inter-
actions in various fields such as biology, ecology, sociology or economics. For
instance, in ecology, bipartite graphs depict interactions between two groups
of species such as plants and pollinators (see e.g. Simmons et al., 2019b; Doré
et al., 2020) or host and parasites (see e.g. Vacher et al., 2008; D’Bastiani et al.,
2020), in agroethnology, they may involve interactions between farmers and crop
species (see Thomas et al., 2015) and in economics, country-product trades as
signals of the 2007-2008 financial crisis (see Saracco et al., 2016). Formally, a
bipartite interaction network can be viewed as a bipartite graph, the nodes of
which being individuals pertaining to two different groups, and an edge between
two nodes being present if these two individuals interact. In the sequel, the two
types of nodes will be referred to as top nodes and bottom nodes, respectively.
Characterizing the general organization of such a network, namely its topology,
is key to understand the behavior of the system as a whole.

The topology of a network can be studied at various scales. Micro-scale anal-
yses typically focus on the degree of each node, the betweenness of each edge
or on the closeness between each pair of nodes. On the opposite, macro-scale
analysis focus on global properties of the network such as its density or its mod-
ularity. The reader may refer to Newman (2003) or Simmons et al. (2019b) for
a general discussion. In this paper, we are mostly interested in the meso-scale
description of the network that is provided by the frequency of motifs (Milo
et al., 2002).
A motif is defined as a given subgraph depicting the interactions between a small
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number of nodes; the count of a motif consists in the number of occurrences of
this subgraph in the observed network. Figures 7 and 8 display the set of all bi-
partite motifs involving up to 6 top or bottom nodes. Counting the occurrences
of a motif is a computationally challenging task (see Milo et al., 2002; Picard
et al., 2008, for simple– i.e. non-bipartite – networks); efficient tools have been
recently proposed by Simmons et al. (2019a,b) for bipartite networks.

Whatever the description scale, the analysis must account for a series of char-
acteristics of the network at hand (such as its dimension or its density) to make
the results comparable. A convenient way to account for such peculiarities is
to define a null model capable to fit the network characteristics. We consider
here a bipartite and exchangeable version of the expected degree distribution
model proposed by Chung and Lu (2002) for simple binary graphs. The bipar-
tite expected degree distribution (B-EDD) model simply states that each (top
or bottom) node is associated with an expected degree and that a pair of nodes
is connected with a probability that is proportional to the product of their re-
spective expected degrees.
The B-EDD model can obviously accommodate to the network dimension (num-
ber of top and bottom nodes), for its density but also for some existing imbal-
ances between the degrees of the nodes. Such imbalances play an important role
in many fields: in ecology they are related to the opposition between generalist
insects (capable of pollinate a large number of plant species) and specialist in-
sects (interacting with a limited number of plant species) (see e.g. Vázquez and
Aizen, 2004; Bascompte and J., 2006; Simmons et al., 2019b). This opposition
is one of the most probable cause for nested structures observed in mutualistic
networks (see Vázquez and Aizen, 2004; Bascompte, 2009).
In addition to its interpretation, this model is attractive because we can calcu-
late the expected frequency of motifs under B-EDD such as their variance.

The distribution of motif counts in simple graphs has been widely studied,
especially for simple motifs like triangles (see e.g. Nowicki and Wierman, 1988;
Stark, 2001; Picard et al., 2008). In this paper, we prove the asymptotic nor-
mality of the count of any given motif under the B-EDD model, under sparsity
conditions. One important feature of the B-EDD model is that the mean and
the variance of the count have close form expressions. The strategy to derive
these moments is related to the one introduced by Picard et al. (2008) for simple
networks.
This property has a major practical impact as the expectation and the variance
of a motif count could not be evaluated via resampling, because of the compu-
tational cost of motif counting event for networks with intermediate size. The
knowledge of the asymptotic distribution of the motif counts opens a series of
possible applications, including goodness-of-fit tests for the B-EDD model and
a series of tests for network comparison in the B-EDD framework.

The paper is organized as follows. Section 2 is devoted to the definition and
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properties of motifs in the B-EDD model and Section 3 to tests for bipartite
networks. More specifically, we establish the asymptotic normality of motif fre-
quencies in Section 3.1 and propose a goodness-of-fit test for the B-EDD model
and comparison tests for two bipartite networks in Section 3.2 and Section 3.3,
respectively. The accuracy of the normal approximation for finite graphs and
the power of the proposed tests are assessed via a simulation study in Section
4. Finally, proofs are given in Section 5.

2. Motifs in the bipartite expected degree model

We consider a bipartite graph  = ( ,) with 𝑁 nodes. The set of nodes is
 = ( 𝑡,𝑏), where  𝑡 = �1, 𝑚� (resp. 𝑏 = �1, 𝑛�) stands for the set of top
(resp. bottom) nodes, and the set of edges is  ⊂  𝑡×𝑏, meaning than an edge
can only connect a top node with a bottom node. The total number of nodes is
therefore 𝑁 = 𝑛+𝑚. We denote by 𝐺 the corresponding 𝑚× 𝑛 incidence matrix
where the entry 𝐺𝑖𝑗 of 𝐺 is 1 if (𝑖, 𝑗) ∈  , and 0 otherwise.

2.1. Bipartite expected degree model

The bipartite expected degree (B-EDD) model is defined as follows:

{𝑈𝑖}1≤𝑖≤𝑚 iid, 𝑈1 ∼ [0,1],

{𝑉𝑗}1≤𝑗≤𝑛 iid, 𝑉1 ∼ [0,1], (1)

{𝐺𝑖𝑗}1≤𝑖≤𝑚,1≤𝑗≤𝑛 indep. |{𝑈𝑖}1≤𝑖≤𝑚, {𝑉𝑗}1≤𝑗≤𝑛, 𝐺𝑖𝑗|𝑈𝑖, 𝑉𝑗 ∼  (𝜌𝑔(𝑈𝑖)ℎ(𝑉𝑗)
)
,

where 𝑔, ℎ ∶ [0, 1] ↦ ℝ+ are bounded functions such that ∫ 𝑔(𝑢)𝑑𝑢 = ∫ ℎ(𝑣)𝑑𝑣 =
1 and 0 ≤ 𝜌 ≤ 1∕ sup𝑢,𝑣∈[0,1] 𝑔(𝑢)ℎ(𝑣).

The parameter 𝜌 controls the density of the graph (𝔼𝐺𝑖𝑗 = 𝜌) whereas the
function 𝑔 (resp. ℎ) encodes the heterogeneity of the expected degrees of the top
(resp. bottom) nodes. More specifically, denoting 𝐾𝑖 =

∑
1≤𝑗≤𝑛 𝐺𝑖𝑗 the degree of

the top node 𝑖, we have that 𝔼(𝐾𝑖 ∣ 𝑈𝑖) = 𝑛𝜌𝑔(𝑈𝑖). The symmetric property holds
for bottom nodes.

Remark 1. Lovász and Szegedy (2006) and Diaconis and Janson (2008) in-
troduced a generic model for exchangeable random graphs called the 𝑊 -graph,
which is based on a graphon function Φ ∶ [0, 1]2 ↦ [0, 1]. The B-EDD model
is a natural extension of the 𝑊 -graph for bipartite graphs with a product-form
graphon function Φ(𝑢, 𝑣) = 𝜌𝑔(𝑢)ℎ(𝑣). The B-EDD model is obviously exchange-
able is the sense that the distribution of the incidence matrix 𝐺 is preserved
under permutation of the top nodes and/or the bottom nodes.

Remark 2. The B-EDD model can also be seen as an exchangeable bipartite
version of the expected degree sequence model studied in Chung and Lu (2002)
and of the configuration model from Newman (2003). Under these two models,
the degree of each node is fixed which makes them non exchangeable.
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Remark 3. In the case where the functions ℎ and 𝑔 are both piecewise constant,
the B-EDD model actually corresponds to a specific form of latent block model
(Govaert and Nadif, 2008), where the connexion probabilities have a product
form.

2.2. Bipartite motifs in the B-EDD model

Bipartite motifs. We are interested in the distribution of the count of motifs
(or subgraphs) in bipartite graphs arising from the B-EDD model. A bipartite
motif 𝑠 is defined by its number of top nodes 𝑝𝑠, its number of bottom nodes
𝑞𝑠 and a 𝑝𝑠 × 𝑞𝑠 incidence matrix 𝐴𝑠. Figures 7 and 8 display the 44 bipartite
motifs involving between two and six nodes, from which we see that

𝐴2 =
(
1 1

)
, 𝐴5 =

(
1 1
0 1

)
, 𝐴15 =

(
1 1 0
1 1 1

)
.

An important characteristic of a graph motif 𝑠 is its number of automorphisms 𝑟𝑠
(Stark, 2001), that is the number of non-redundant permutations of its incidence
matrix (see, e.g. section 2.4 in Picard et al. (2008)):

𝑟𝑠 =
||||||
{

𝐴𝑠
𝜎𝑡,𝜎𝑏 =

(
𝐴𝑠

𝜎𝑡(𝑢),𝜎𝑏(𝑣)

)
1≤𝑢≤𝑝𝑠
1≤𝑣≤𝑞𝑠

∶ 𝜎𝑡 ∈ 𝜎
(

�1, 𝑝𝑠�
)
, 𝜎𝑏 ∈ 𝜎

(
�1, 𝑞𝑠�

)}|||||| . (2)

Note that, because pairs of permutations (𝜎𝑡, 𝜎𝑏) yielding the same matrix 𝐴𝑠
𝜎𝑡,𝜎𝑏

are not counted twice, we obviously have that 𝑟𝑠 ≤ (𝑝𝑠!)×(𝑞𝑠!). In many cases, 𝑟𝑠
turns out to be much smaller: in particular, 𝑟𝑠 = 1 for star-motifs, which will be
defined later. We further denote by 𝑑𝑠

𝑢 the degree of the top node 𝑢 (1 ≤ 𝑢 ≤ 𝑝𝑠)
within motif 𝑠, that is 𝑑𝑠

𝑢 =
∑

1≤𝑣≤𝑞𝑠
𝐴𝑠

𝑢,𝑣. The degree of the bottom node 𝑣

within 𝑠 is defined similarly as 𝑒𝑠𝑣 =
∑

1≤𝑢≤𝑝𝑠
𝐴𝑠

𝑢,𝑣.

Motif occurrence. Counting the occurrences of motif 𝑠 in  simply consists
in considering all possible of 𝑝𝑠 (resp. 𝑞𝑠) top (resp. bottom) nodes among the
𝑚 (resp. 𝑛) and check for each possible automorphism of 𝑠 if an occurrence is
observed. More formally, let us define the set 𝑠 of possible positions for motif 𝑠
as the Cartesian product of the set of the

(𝑚
𝑝𝑠

)( 𝑛
𝑞𝑠

)
possible locations with the set

of the 𝑟𝑠 (top, bottom) permutations giving rise to each of the automorphisms of
𝑠. So, a position results from the combination of a location with a permutation.
Because the graph is bipartite, any position 𝛼 from 𝑠 decomposes as 𝛼 = (𝛼𝑡, 𝛼𝑏)
where 𝛼𝑡 stands for an ordered list of top nodes and 𝛼𝑏 for an ordered list of
bottom nodes. The number of positions for motif 𝑠 in  is precisely

𝑐𝑠 ∶= |𝑠| = 𝑟𝑠

(
𝑚

𝑝𝑠

)(
𝑛

𝑞𝑠

)
. (3)
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Now, for a given position 𝛼 = (𝛼𝑡, 𝛼𝑏) ∈ 𝑠, we define 𝑌𝑠(𝛼) as the indicator
for motif 𝑠 to occur in position 𝛼:

𝑌𝑠(𝛼) =
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
. (4)

Remark 4. Note that the occurrence defined by Equation (4) corresponds to
an induced occurrence, which means that we consider that a motif 𝑠 is observed
at position 𝛼 as soon as all the present edges that are specified by its incidence
matrix 𝐴𝑠 are observed, even if additional edges are also observed. In other
words, we do not check for the absent edges specified by 𝐴𝑠.

Remark 5. As opposed to an induced occurrence, an exact occurrence is ob-
served when both the presence and the absence of edges are satisfied. The in-

dicator variable corresponding to an exact occurrence writes
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏 𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
(1 −

𝐺𝑖𝑗)
1−𝐴𝑠

𝑖𝑗 . Counting induced and exact occurrences in a graph is actually equiv-
alent, as these counts are related in a deterministic manner. For example, each
exact occurrence of motif 6 corresponds to two induced occurrences of motif 5.
We opt for induced occurrences for the ease of theoretical analysis.

Motif probability. The B-EDD model is an exchangeable bipartite
graph model in the sense that, for any pair of permutations (𝜎𝑡 ∈
𝜎
(

�1, 𝑚�
)
, 𝜎𝑏 ∈ 𝜎

(
�1, 𝑛�

)
), we have that ℙ{𝐺 = {𝑔𝑖𝑗}1≤𝑖≤𝑚,1≤𝑗≤𝑛} = ℙ{𝐺 =

{𝑔𝜎𝑡(𝑖)𝜎𝑏(𝑗)}1≤𝜎𝑡(𝑖)≤𝑚,1≤𝜎𝑏(𝑗)≤𝑛} (see e.g. Lovász and Szegedy, 2006; Diaconis and
Janson, 2008, for simple graphs). For any exchangeable graph model, we may
define 𝜙𝑠 as the probability for motif 𝑠 to occur in position 𝛼 = (𝛼𝑡, 𝛼𝑏):

𝜙𝑠 ∶= ℙ
(
𝑌𝑠(𝛼) = 1

)
.

Importantly, because the model is exchangeable, this probability does not de-
pend on 𝛼.

Star motifs. We define a star as a bipartite motif 𝑠 for which either 𝑞𝑠 = 1 or
𝑝𝑠 = 1 (or both). More specifically, we name top stars (resp bottom stars) motifs
for which 𝑝𝑠 = 1 (resp. 𝑞𝑠 = 1). The top stars in Figures 7 and 8 are motifs 1,
2, 7, 17 and 44, and the bottom stars are motifs 1, 3, 4, 8 and 18. Observe that
𝑟𝑠 = 1 for all star motifs, that 𝑑𝑠

𝑣 = 1 for all 𝑣 in all top star motifs, and that
𝑒𝑠𝑢 = 1 for all 𝑢 in all bottom star motifs.
Because they will play a central role in the sequel, we adopt a specific notation
for the probability of star motifs, denoting 𝛾𝑑 the occurrence probability of the
top star with degree 𝑑 and 𝜆𝑑 for the occurrence probability of the bottom star
with degree 𝑑. As a consequence, we have that

𝛾1 = 𝜙1, 𝛾2 = 𝜙2, 𝛾3 = 𝜙7 𝛾4 = 𝜙17, 𝛾5 = 𝜙44, (5)

𝜆1 = 𝜙1, 𝜆2 = 𝜙3, 𝜆3 = 𝜙4 𝜆4 = 𝜙8, 𝜆5 = 𝜙18.
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2.3. Moments of motif counts

Expected count. Let us now denote by 𝑁𝑠 the count, that is the number of
occurrences of a motif 𝑠 in a graph . We simply have that

𝑁𝑠 =
∑
𝛼∈𝑠

𝑌𝑠(𝛼).

As a consequence, the expected count of 𝑠 in  is 𝔼(𝑁𝑠) = 𝑐𝑠𝜙𝑠. We also define
the normalized frequency of motif 𝑠 as

𝐹𝑠 = 𝑁𝑠∕𝑐𝑠,

which is an unbiased estimate of 𝜙𝑠.

Illustration. As an illustration, we consider two of the networks studied by
Simmons et al. (2019a), which include both plant-pollinator and seed disper-
sal networks extracted from the Web of Life database (www.web-of-life.es).
More specifically, we consider the two largest networks of each type, which were
first published by Robertson (1929) and Silva (2002), respectively. The plant-
pollinator network involves 546 plant species and 1044 insects and the seed
dispersal network 207 plant species and 110 seed dispersers (birds or insects).
Our purpose is not to provide a thorough ecological analysis of these networks,
but to exemplify the proposed methodology. Table 1 gives the counts and the
frequency of the star motifs with up to four branches. For the sake of clarity,
we will limit ourselves to motifs up to five nodes in the illustrations. Observe
that both the counts 𝑁𝑠 and the number of possible positions 𝑐𝑠 range over huge
order of magnitudes.

Table 1

Coefficients 𝑐𝑠, counts 𝑁𝑠 and frequency 𝐹𝑠 of all star motifs. Top: plant-pollinator network,
bottom: seed dispersal network. The motif number 𝑠 refers to Figure 7.

plant-pollinator: 𝑚 = 546, 𝑛 = 1044 (Robertson, 1929)
edge top stars bottom stars

𝑠 1 2 7 17 3 4 8

𝑐𝑠 4.76 105 2.48 108 8.62 1010 2.24 1013 1.08 108 1.64 1010 1.86 1012
𝑁𝑠 1.53 104 2.61 105 3.04 106 2.72 107 3.07 105 6.82 106 1.48 108
𝐹𝑠 3.20 10−2 1.05 10−3 3.52 10−5 1.21 10−6 2.84 10−3 4.16 10−4 7.99 10−5

seed dispersal: 𝑚 = 207, 𝑛 = 110 (Silva, 2002)
edge top stars bottom stars

𝑠 1 2 7 17 3 4 8

𝑐𝑠 2.28 104 1.24 106 4.47 107 1.20 109 2.35 106 1.60 108 8.17 109
𝑁𝑠 1.12 103 6.50 103 4.07 104 2.32 105 1.24 104 1.31 105 1.23 106
𝐹𝑠 4.92 10−2 5.23 10−3 9.11 10−4 1.94 10−4 5.28 10−3 8.16 10−4 1.50 10−4

Main property of motif probabilities under B-EDD. The tests we pro-
pose rely on the comparison between the observed count (or normalized fre-
quency) of a motif, with its theoretical counterpart under a B-EDD model. More
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specifically, the motif probabilities denoted by 𝜙𝑠 have a close form expression
under the B-EDD model.

Proposition 1. Under the B-EDD model (1), we have that

𝜙𝑠 =
𝑝𝑠∏
𝑢=1

𝛾𝑑𝑠
𝑢

𝑞𝑠∏
𝑣=1

𝜆𝑒𝑠𝑣

/
(𝜙1)𝑑

𝑠
+ , (6)

where 𝑑𝑠
+ ∶=

∑
𝑢 𝑑

𝑠
𝑢 =
∑

𝑣 𝑒
𝑠
𝑣 stands for the total number of edges in 𝑠.

Proof. This follows from the fact that, under B-EDD, the edges are independent
conditionally on the latent coordinates 𝑈𝑖 and 𝑉𝑗 defined in (1), which are
all independent with respect to one other. Consider an arbitrary position 𝛼 =
(𝛼𝑡, 𝛼𝑏); for the sake of clarity, we identify the elements of 𝛼𝑡 with �1, 𝑝𝑠� and the
elements of 𝛼𝑏 with �1, 𝑞𝑠�. We have

𝜙𝑠 = 𝔼(𝑈𝑖)1≤𝑖≤𝑝𝑠
,(𝑉𝑗 )1≤𝑗≤𝑞𝑠

(
ℙ

{ ∏
1≤𝑖≤𝑝𝑠,1≤𝑣≤𝑞𝑠

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
= 1
|||||| (𝑈𝑖)1≤𝑖≤𝑝𝑠

, (𝑉𝑗)1≤𝑗≤𝑞𝑠

})

= 𝔼(𝑈𝑖)1≤𝑖≤𝑝𝑠
,(𝑉𝑗 )1≤𝑗≤𝑞𝑠

⎛⎜⎜⎝
∏

1≤𝑖≤𝑝𝑠,1≤𝑗≤𝑞𝑠∶𝐴𝑠
𝑖𝑗
=1

𝜌𝑔(𝑈𝑖)ℎ(𝑉𝑗)
⎞⎟⎟⎠

= 𝔼(𝑈𝑖)1≤𝑖≤𝑝𝑠
,(𝑉𝑗 )1≤𝑗≤𝑞𝑠

(
𝜌𝑑𝑠

+
∏

1≤𝑖≤𝑝𝑠

𝑔(𝑈𝑖)𝑑
𝑠
𝑖

∏
1≤𝑗≤𝑞𝑠

ℎ(𝑉𝑗)
𝑒𝑠
𝑗

)

= 𝜌𝑑𝑠
+
∏

1≤𝑖≤𝑝𝑠

(
∫ 𝑔(𝑢)𝑑

𝑠
𝑖 𝑑𝑢

) ∏
1≤𝑗≤𝑞𝑠

(
∫ ℎ(𝑣)𝑒

𝑠
𝑗 𝑑𝑣

)
.

The result then results from the fact that

𝛾𝑑 = 𝜌𝑑 ∫ 𝑔(𝑢)𝑑𝑑𝑢, 𝜆𝑑 = 𝜌𝑑 ∫ ℎ(𝑣)𝑑𝑑𝑣, 𝜌 = 𝜙1. ■ (7)

An important consequence of Proposition 1 is that, under B-EDD, the motif
probability of any motif can be expressed in terms of probabilities of star motifs.
Figure 1 provides an intuition of this: a motif can be decomposed in terms of
top and bottom stars arising from each of its nodes.

In the sequel, to distinguish the motif probability 𝜙𝑠 under an arbitrary ex-
changeable model from the probability under the B-EDD model, we will denote
by 𝜙𝑠 the probability of motif 𝑠 under B-EDD. Figure 7 provides the list of all

𝜙𝑠 expressions.

Probability estimate under B-EDD. Proposition 1 suggests a natural
plug-in estimator for the B-EDD motif probability 𝜙𝑠:

𝐹 𝑠 =
∏𝑝𝑠

𝑢=1 Γ𝑑𝑠
𝑢

∏𝑞𝑠
𝑣=1 Λ𝑒𝑠𝑣

𝐹
𝑑𝑠
+

1

, (8)
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motif top stars bottom stars
15 2 7 3 3 1

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

Fig 1. Decomposition of motif 15 as an overlap of 2 top stars (motifs 2 and 7) and
3 bottom stars (motifs 3, 3 and 1). Because each edge is accounted for twice, we get

𝜙15 = 𝜙2𝜙7𝜙3𝜙3𝜙1∕𝜙5
1 = 𝜙2𝜙7𝜙

2
3∕𝜙

4
1.

where Γ𝑑 (resp Λ𝑑) denotes the normalized frequency of the top (resp. bottom)
star motif with degree 𝑑. Obviously, Γ𝑑 (resp Λ𝑑) is an unbiased estimated of
𝛾𝑑 (resp. 𝜆𝑑).

Variance of the count. We now consider the variance of the count, that is

𝕍 (𝑁𝑠) = 𝔼(𝑁2
𝑠 ) − 𝔼(𝑁𝑠)2,

where

𝑁2
𝑠 =

∑
𝛼,𝛽∈𝑠

𝑌𝑠(𝛼)𝑌𝑠(𝛽) (9)

=
∑
𝛼∈𝑠

𝑌𝑠(𝛼) +
∑

𝛼,𝛽∈𝑠∶|𝛼∩𝛽|=0 𝑌𝑠(𝛼)𝑌𝑠(𝛽) +
∑

𝛼,𝛽∈𝑠∶𝛼≠𝛽,|𝛼∩𝛽|>0 𝑌𝑠(𝛼)𝑌𝑠(𝛽).

When positions 𝛼 and 𝛽 are equal, the product 𝑌𝑠(𝛼)𝑌𝑠(𝛽) is simply given by
𝑌𝑠(𝛼), the indicator of the presence of 𝑠 at position 𝛼. Then, when positions 𝛼

and 𝛽 do not overlap (|𝛼 ∩ 𝛽| = 0), the product 𝑌𝑠(𝛼)𝑌𝑠(𝛽) simply indicates that
two occurrences of motif 𝑠 occur in position 𝛼 and 𝛽, which are independent
under the B-EDD model. When positions 𝛼 and 𝛽 are different and do overlap
(|𝛼∩𝛽| > 0), the product 𝑌𝑠(𝛼)𝑌𝑠(𝛽) becomes the indicator of a super-motif, that
is a motif made of two overlapping automorphisms of 𝑠. We denote by 2(𝑠) the
set of super-motifs generated by the overlaps of two occurrences of the motif 𝑠;
Figure 2 provides some examples of super-motifs.

An expression similar to (9) can be derived for the covariance between two
counts:

ℂov(𝑁𝑠,𝑁𝑡) = 𝔼(𝑁𝑠𝑁𝑡) − 𝔼(𝑁𝑠)𝔼(𝑁𝑡),

where 𝑁𝑠𝑁𝑡 =
∑

𝛼∈𝑠,𝛽∈𝑡

𝑌𝑠(𝛼)𝑌𝑡(𝛽) (10)

=
∑

𝛼∈𝑠,𝛽∈𝑡∶|𝛼∩𝛽|=0 𝑌𝑠(𝛼)𝑌𝑡(𝛽) +
∑

𝛼∈𝑠,𝛽∈𝑡∶𝛼≠𝛽,|𝛼∩𝛽|>0 𝑌𝑠(𝛼)𝑌𝑡(𝛽).

Again, the last term corresponds to occurrences of super-motifs resulting from
an overlap between an occurrence of motif 𝑠 and an occurrence of motif 𝑡. We
denote by 𝑆2(𝑠, 𝑡) the set of these super-motifs. We use the strategy described
in Picard et al. (2008) to determine the sets of super-motifs 2(𝑠) and (𝑠, 𝑠′).
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Observe that these sets do not depend on the observed networks, so, to alleviate
the computational burden, they can be determined and stored once for all.

Eq. (9) shows that 𝔼(𝑁2
𝑠 ) only depends on 𝔼(𝑌𝑠(𝛼)𝑌𝑠(𝛽)), which is 𝜙2

𝑠 when
positions 𝛼 and 𝛽 do not overlap and the probability of the corresponding super-
motif when they overlap. As a consequence, we have that

𝔼(𝑁2
𝑠 ) = 𝜅𝑚,𝑛,𝑠𝜙𝑠 + 𝜅′

𝑚,𝑛,𝑠𝜙
2
𝑠 +

∑
𝑆∈2(𝑠)

𝜅′′
𝑚,𝑛,𝑠,𝑆

𝜙𝑆, (11)

where the 𝜅𝑚,𝑛,𝑠, 𝜅′
𝑚,𝑛,𝑠, 𝜅′′

𝑚,𝑛,𝑠,𝑆
are constants, which depend on the dimensions

of the graph, on the motif 𝑠 and on the super-motif 𝑆. The order of magnitude
of 𝜅′′

𝑚,𝑛,𝑠,𝑆
for large 𝑚 and 𝑛 will be studied in Section 5.1.2.

Because super-motifs are actually motifs, their respective occurrence proba-
bility 𝜙𝑆 under B-EDD are given by Proposition 1 as well, so the expectation

and the variance of 𝑁𝑠 under B-EDD can be expressed as functions of the 𝜙𝑠

and {𝜙𝑆}𝑆∈2(𝑠). An estimate 𝐹𝑆 of each 𝜙𝑆 can be obtained using Eq. (8) in
the same way.

⚪ ⚪ ⚪

◻ ◻

⚪ ⚪ ⚪ ⚫ ⚫ ⚫

◻ ⬔ ◼

⚪ ⚪ ⚪ ⚫ ⚫ ⚫

⬔ ⬔

⚪ ⚪ ◒ ⚫ ⚫

◻ ◻ ◼ ◼

⚪ ⚪ ◒ ⚫ ⚫

◻ ⬔ ◼|𝛼𝑡 ∩ 𝛽𝑡| 0 0 1 1|𝛼𝑏 ∩ 𝛽𝑏| 1 2 0 1

Fig 2. Some super-motifs from 2(𝑠) for motif 𝑠 = 9 (top left) with 𝑝𝑠 = 3 top nodes and
𝑞𝑠 = 2 bottom nodes. |𝛼𝑡 ∩ 𝛽𝑡| (resp. |𝛼𝑏 ∩ 𝛽𝑏|): number of top (resp. bottom) nodes shared by
the overlapping positions 𝛼 and 𝛽. Black: nodes from 𝛼, white: nodes from 𝛽, black/white:
nodes from 𝛼 ∩ 𝛽. There are actually |2(9)| = 396 such super-motifs of motif 9.

Remark 6. The estimate defined in (8) is only based on empirical quantities
(the counts of stars motifs) and does not depend on any parameter estimation.
Especially, the functions 𝑔 and ℎ do not need to be estimated as the frequency
of star motifs provides all necessary information about the degree distributions.
As a consequence, we may define plug-in estimates of the occurrence probability,
the expected count and the variance of the count of any motif under B-EDD.

Illustration. Table 2 compares the empirical frequencies 𝐹𝑠 of a selection of

motifs with their respective estimated probability 𝐹 𝑠. The probability estimates
are computed according to Equation (8), using the star motifs frequencies Γ𝑑 and
Λ𝑒 given in Table 1. Observe that the difference between the observed frequency

𝐹𝑠 and their estimated expectation under the B-EDD model 𝐹 𝑠 are of the same
order of magnitude, if not smaller, than their estimated standard deviations.

3. Tests for bipartite networks

Asymptotic framework. We consider a sequence of B-EDD random graphs
defined as follows.
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Table 2

Empirical frequency 𝐹𝑠, estimated probability 𝐹 𝑠 and estimated standard-deviation of the
frequency according to the B-EDD model for a selection of motifs. All estimates are derived

from the star motifs frequencies given in Table 1.

plant-pollinator
𝑠 5 6 10 15 16

𝐹𝑠 9.21 10−5 1.00 10−5 8.12 10−6 3.32 10−7 4.47 10−8

𝐹 𝑠 9.29 10−5 8.41 10−6 8.23 10−6 2.82 10−7 2.62 10−8√
𝕍 (𝐹𝑠) 1.26 10−5 1.61 10−6 1.58 10−6 6.54 10−8 7.60 10−9

seed dispersal
𝑠 5 6 10 15 16

𝐹𝑠 5.13 10−4 1.15 10−4 5.07 10−5 1.79 10−5 5.96 10−6

𝐹 𝑠 5.61 10−4 1.30 10−4 6.02 10−5 2.26 10−5 8.59 10−6√
𝕍 (𝐹𝑠) 2.25 10−4 7.24 10−5 3.25 10−5 1.59 10−5 7.38 10−6

{𝑁}𝑁≥2 is a sequence of independent graphs, where 𝑁 is a B-EDD random
graph with 𝑚 = ⌊𝜆𝑁⌋ top nodes with 𝜆 ∈ (0, 1), 𝑛 = 𝑁 − 𝑚 bottom nodes and
parameters 𝜌𝑁 , ℎ and 𝑔, where the sequence {𝜌𝑁}𝑁≥2 satisfies 𝜌𝑁 = Θ(𝑚−𝑎𝑛−𝑏)
with 𝑎, 𝑏 > 0. All quantities computed on 𝑁 should be indexed by 𝑁 as well
but for the sake of clarity, we will drop that index in the rest of the paper.

3.1. Asymptotic normality of motif frequencies

This section is devoted to the asymptotic normality of motif frequencies under
the B-EDD model. More precisely, our first main result states the asymptotic
normality of the following statistic 𝑊𝑠 relying on 𝐹𝑠 the empirical frequency of
a given motif 𝑠 in :

𝑊𝑠 =
𝐹𝑠 − 𝐹 𝑠√
𝕍 (𝐹𝑠)

, (12)

where 𝐹 𝑠 denotes the estimator of 𝜙𝑠 defined in (8) and 𝕍 (𝐹𝑠) the one of 𝕍 (𝐹𝑠)
obtained by the plug-in of 𝐹𝑆 (𝑆 being any super-motif generated by two oc-
currences of 𝑠) in the expressions of 𝕍 (𝑁𝑠) given in (9)-(11).

Theorem 1. If 0 < 𝑎 + 𝑏 < 2∕𝑑𝑠
+, then for all non-star motif 𝑠 and under the

B-EDD model, the statistic 𝑊𝑠 is asymptotically normal as 𝑚 ∼ 𝑛 → ∞:

𝑊𝑠

𝐷
⟶  (0, 1).

The proof is based on three results given hereafter in Proposition 2, Lemma
1 and Lemma 2.

Sketch of proof. Let us first consider the following decomposition of the numer-
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ator of 𝑊𝑠:

𝐹𝑠 − 𝐹 𝑠 ∶= 𝐿𝑠 + 𝐶𝑠 where 𝐿𝑠 = 𝐹𝑠 − 𝜙𝑠 and 𝐶𝑠 = 𝜙𝑠 − 𝐹 𝑠.

Under the null B-EDD model, we show that, (𝑖) 𝐿𝑠∕
√
𝕍 (𝐹𝑠) is asymptotically

normal in Proposition 2, it is the leader term, (𝑖𝑖) 𝐶𝑠∕
√
𝕍 (𝐹𝑠) is negligible in

Lemma 1, it is the reminder term. Then, we conclude using Slutsky Theorem
Lemma 2 which states that 𝕍 (𝐹𝑠)∕𝕍 (𝐹𝑠) → 1 in probability. ■

Remark 7. Like 𝐹 𝑠, 𝑊𝑠 is only based on empirical quantities, that is 𝑖) the
empirical frequency of motif 𝑠 and 𝑖𝑖) the empirical frequencies of the stars
motifs forming 𝑠. The expected frequencies of the supermotifs of 𝑠 involved in
𝕍 (𝐹𝑠) also depend only on empirical star frequencies.

Remark 8. Gao and Lafferty (2017b) proved a similar result as Theorem 1 in
the EDD model, for a test statistic which is a linear combination of edges, vees
and triangles empirical frequencies in the case of simple graphs, and under a
specific condition on the graph density. Though their result is not comparable to
ours since triangles can not occur in bipartite graphs and we do not account for
stars motifs. Although they seem similar, a fair comparison between Theorem 1
and the result from Gao and Lafferty (2017b) is not easy (𝑖) because the model is
not the same (we consider bipartite graphs whereas they consider simple graphs)
and (𝑖𝑖) because they only consider vees (which are star-motifs) and triangles
(which do not occur in bipartite graphs).

Remark 9. Let us give some insights about condition 0 < 𝑎 + 𝑏 < 2∕𝑑+
𝑠 . Con-

dition 𝑎+ 𝑏 > 0 is necessary to get the convergence of the estimator 𝐹 𝑠 towards

𝜙𝑠, stated in Lemma 1. This result is also used to prove Lemma 2 and Theorem
1. Condition 𝑎 + 𝑏 < 2∕𝑑+

𝑠 is necessary in Proposition 2 to make sure that the
variance of the reminder term of the quantity of interest vanishes. The latter
result is used both in Lemma 1 and Theorem 1.

In the following proposition, the asymptotic normality of the statistic ruling
the law of 𝑊𝑠 is stated under the null. This statistic involves the empirical fre-
quency of a given non star motif 𝑠 and its theoretical expectation and variance.
The proof of its asymptotic normality mostly relies on tools of martingale the-
ory. We show that we can exhibit conditional martingale difference sequences
relative to a specific filtration. This filtration is generated by the sequence of
graphs 𝑁 (see a proper definition of the filtration in Section 5.1.1). So, we could
apply the central limit theorem of Hall and Heyde (2014).

Proposition 2. If 𝑎+𝑏 < 2∕𝑑𝑠
+, then for all star motif 𝑠 and under the B-EDD

model, we have, as 𝑚 ∼ 𝑛 → ∞,

𝐹𝑠 − 𝜙𝑠√
𝕍 (𝐹𝑠)

𝐷
⟶  (0, 1).
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The complete proof is given in Section 5.2, it relies especially on Lemma 6
and Lemma 7.

Sketch of proof. We first consider the decomposition 𝐿𝑠 = 𝐹𝑠 − 𝜙𝑠 = 𝑀𝑠 + 𝑅𝑠

with 𝑀𝑠 being the difference between 𝐹𝑠 and its expectation conditionally to
the considered filtration and 𝑈, 𝑉 , and 𝑅𝑠 the difference between the latter

conditional expectation and 𝜙𝑠; the proper definitions are given in Section
5.2.1. Lemma 6 shows that, under the null B-EDD model, the reminder term
𝑅𝑠∕
√
𝕍 (𝐹𝑠)|𝑈, 𝑉 → 0 a.s. as 𝑚 ∼ 𝑛 → ∞. Lemma 7 shows that, under the B-EDD

model, the leader term 𝑀𝑠∕
√
𝕍 (𝐹𝑠)|𝑈, 𝑉 is asymptotically normal with vari-

ance 𝕍 (𝑁𝑠|𝑈, 𝑉 )∕𝕍 (𝑁𝑠). Slutsky theorem implies the asymptotic normality of

𝐿𝑠∕
√
𝕍 (𝐹𝑠) conditional on (𝑈, 𝑉 ). Then, Lemma 4 shows that 𝕍 (𝑁𝑠|𝑈, 𝑉 )∕𝕍 (𝑁𝑠)

tends to 1 in probability for all (𝑈, 𝑉 ), which allows deconditionning. ■

The two following lemmas combined with Proposition 2 permit to conclude
to Theorem 1. Their proofs are given in sections 5.3 and 5.4 respectively.

Lemma 1. If 0 < 𝑎 + 𝑏 < 2∕𝑑𝑠
+, then for all non-star motif 𝑠 and under the

B-EDD model, we have, as 𝑚 ∼ 𝑛 → ∞,

𝐹 𝑠 − 𝜙𝑠√
𝕍 (𝐹𝑠)

→ 0 a.s.

Lemma 2. If 0 < 𝑎+ 𝑏 < 2∕𝑑𝑠
+, then for all star motif 𝑠 and under the B-EDD

model, we have, as 𝑚 ∼ 𝑛 → ∞,

𝕍 (𝐹𝑠)∕𝕍 (𝐹𝑠) → 1 a.s.

3.2. Goodness-of-fit tests for the B-EDD model

We consider a bipartite network  and we want to test if it arises from the
B-EDD model: {

𝐻0 ∶  follows a B-EDD model,
𝐻1 ∶  does not follow a B-EDD model.

To this aim, we consider the test statistic 𝑊𝑠 = (𝐹𝑠 − 𝐹 𝑠)∕
√

𝕍 (𝐹𝑠) defined
in (12). The idea is thus to compare the frequency of a motif observed in the
network with its expected value under the B-EDD model.

Remark 10. We can consider more specific hypothesis. Suppose we want to
test the top node heterogeneity under B-EDD, more specifically 𝐻0 ∶  follows
a B-EDD model and 𝑔 is constant. Then, according to (7), we have that 𝛾𝑑 = 𝜌𝑑

under 𝐻0, so a similar statistic to 𝑊𝑠 can be designed by considering 𝐹 𝑠 =∏𝑝𝑠
𝑢=1 𝐹

𝑑𝑠
𝑢

1
∏𝑞𝑠

𝑣=1 Λ𝑒𝑠𝑣
∕𝐹𝑑𝑠

+
1 . In the same manner, a statistic can be designed to test

the bottom node heterogeneity.
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Illustration. Table 3 gives the test statistics 𝑊𝑠 for goodness of fit to the
B-EDD model for the same motifs as in Table 2. According to Theorem 1, these
statistics should be compared with the quantiles of standard normal distribution
 (0, 1). Almost no motif frequency displays a significant deviation from its
expectation under the B-EDD model. Only motif 16 in the plant-pollinator
network displays a higher frequency than expected under B-EDD (with 𝑝-value
7.5 10−3).

Table 3

Test statistics 𝑊𝑠 for the goodness-of-fit of B-EDD for the same motifs as in Table 2.

plant-pollinator
𝑠 5 6 10 15 16

𝑊𝑠 -6.45 10−2 9.96 10−1 -6.63 10−2 7.52 10−1 2.43

seed dispersal
𝑠 5 6 10 15 16

𝑊𝑠 -2.14 10−1 -2.14 10−1 -2.93 10−1 -2.95 10−1 -3.56 10−1

3.3. Tests for the comparison of two bipartite networks

This section is devoted to a test for network comparison. More specifically,
considering two networks assumed to arise from two B-EDD models, we want
to test if they arise from the same B-EDD model, or for, instance, from two
different B-EDD model with same function 𝑔. The rational behind the tests we
propose is to compare the frequency of a motif observed in one network with its
expected value according to the parameters of the other network. To this aim,
we need to introduce specific notations.

Notations. The B-EDD model is parametrized with the (𝑚, 𝑛, 𝜌, 𝑔, ℎ) but all
moments depend on (𝑚, 𝑛, 𝜌, 𝛾, 𝜆), where 𝛾 (resp. 𝜆) stands for the sequence of
occurrence probability of all the top (resp. bottom) star motifs. In the sequel
we denote by 𝐸𝑠 the expected frequency of motif 𝑠:

𝐸𝑠(𝑚, 𝑛, 𝜌, 𝛾, 𝜆) ∶= 𝜙𝑠,

so its plug-in estimate is 𝐸𝑠(𝑚, 𝑛, 𝐹1,Γ,Λ) = 𝐹 𝑠. Similarly, we denote the vari-
ance of the frequency by 𝑉𝑠(𝑚, 𝑛, 𝜌, 𝛾, 𝜆) ∶= 𝕍 (𝐹𝑠) and its plug-in estimate

𝑉𝑠(𝑚, 𝑛, 𝐹1,Γ,Λ) ∶= 𝕍𝑠(𝐹𝑠).

A global test. We consider two bipartite networks 𝐴 and 𝐵 supposed to
arise from B-EDD models with respective dimensions and parameters (𝑚𝐴, 𝑛𝐴,

𝜌𝐴, 𝛾𝐴, 𝜆𝐴) and (𝑚𝐵, 𝑛𝐵, 𝜌𝐵, 𝛾𝐵, 𝜆𝐵). We want to test{
𝐻0 ∶

{
(𝜌𝐴, 𝑔𝐴, ℎ𝐴) = (𝜌𝐵, 𝑔𝐵, ℎ𝐵)

}
,

𝐻1 ∶
{
𝜌𝐴 ≠ 𝜌𝐵 or 𝑔𝐴 ≠ 𝑔𝐵 or ℎ𝐴 ≠ ℎ𝐵

}
.
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This is to test that, although the two networks may have different dimensions
(𝑚, 𝑛), they have the same density (𝜌), the same top node heterogeneity (𝑔) and
the same bottom node heterogeneity (ℎ).

Test statistic. The test statistic is based on 𝐹𝐴
𝑠 and 𝐹𝐵

𝑠 the empirical fre-

quencies of motif 𝑠 in 𝐴 and 𝐵 respectively. The superscript 𝐴 (resp. 𝐵) is
added to all quantities observed in 𝐴 (resp. 𝐵).

𝑊𝑠 =

(
𝐹𝐴
𝑠 − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵

1 ,Γ𝐵,Λ𝐵)
)
−
(
𝐹𝐵
𝑠 − 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐴

1 ,Γ𝐴,Λ𝐴)
)√

𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵
1 ,Γ𝐵,Λ𝐵) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐴

1 ,Γ𝐴,Λ𝐴)
. (13)

Theorem 2. If both 𝑚𝐴∕𝑚𝐵 and 𝑛𝐴∕𝑛𝐵 tend to constants, if 𝑎+ 𝑏 < 2∕𝑑𝑠
+, then

for all non-star motif 𝑠, the statistic 𝑊𝑠 is asymptotically normal as 𝑚𝐴 ∼ 𝑛𝐴 ∼
𝑚𝐵 ∼ 𝑛𝐵 → ∞:

𝑊𝑠 −𝐻𝑠√
𝐾𝑠

𝐷
⟶  (0, 1),

where

𝑉 0
𝑠 = 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵

1 ,Γ𝐵,Λ𝐵) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐴
1 ,Γ𝐴,Λ𝐴),

𝑉 1
𝑠 = 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴

1 ,Γ𝐴,Λ𝐴) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐵
1 ,Γ𝐵,Λ𝐵),

𝐾𝑠 = 𝑉 1
𝑠 ∕𝑉

0
𝑠 ,

and

Δ𝐸𝐴
𝑠 = 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴

1 ,Γ𝐴,Λ𝐴) − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵
1 ,Γ𝐵,Λ𝐵),

Δ𝐸𝐵
𝑠 = 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐵

1 ,Γ𝐵,Λ𝐵) − 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐴
1 ,Γ𝐴,Λ𝐴),

𝐻𝑠 =
(
Δ𝐸𝐴

𝑠 − Δ𝐸𝐵
𝑠

)/√
𝑉 0
𝑠 .

Proof.We follow the same line as for the proof of Theorem 1. Because (𝑚𝐴, 𝑛𝐴) go
to infinity at the same speed as (𝑚𝐵, 𝑛𝐵), Lemma 2 ensures that each estimated
variance converges to its theoretical counterparts, that is:

𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵
1 ,Γ𝐵,Λ𝐵) → 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐵

1 , 𝛾
𝐵, 𝜆𝐵)

𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴
1 ,Γ𝐴,Λ𝐴) → 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴

1 , 𝛾
𝐴, 𝜆𝐴),

(same for the variances referring to 𝐹𝐵). Then, Lemma 1 ensures that the nor-
malized estimation error of the means tends to zero:(

𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴
1 ,Γ𝐴,Λ𝐴) − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴

1 , 𝛾
𝐴, 𝜆𝐴)

) /
𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴

1 , 𝛾
𝐴, 𝜆𝐴) → 0(

𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵
1 ,Γ𝐵,Λ𝐵) − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐵

1 , 𝛾𝐵, 𝜆𝐵)
) /

𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐵
1 , 𝛾

𝐵, 𝜆𝐵) → 0,

(same for the means referring to 𝐹𝐵). Then, Proposition 2 ensures that each
random leading term is asymptotically normal:(

𝐹𝐴 − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴
1 , 𝛾

𝐴, 𝜆𝐴)
) /

𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴
1 , 𝛾

𝐴, 𝜆𝐴)
𝐷
→  (0, 1)
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𝐹𝐵 − 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐵

1 , 𝛾
𝐵, 𝜆𝐵)

) /
𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐵

1 , 𝛾
𝐵, 𝜆𝐵)

𝐷
→  (0, 1).

The rest of the proof relies on Slutsky’s theorem. ■

Corollary 1. Under the same assumptions as Theorem 2 and under

𝐻0 ∶
{
(𝜌𝐴, 𝑔𝐴, ℎ𝐴) = (𝜌𝐵, 𝑔𝐵, ℎ𝐵)

}
,

the statistic 𝑊𝑠 has an asymptotic standard normal distribution:

𝑊𝑠

𝐷
⟶
𝐻0

 (0, 1).

Proof. This follows from the fact that, under 𝐻0, we have that 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴
1 ,

𝛾𝐴, 𝜆𝐴) = 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐵
1 , 𝛾

𝐵, 𝜆𝐵) and 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐵
1 , 𝛾

𝐵, 𝜆𝐵) = 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐴
1 , 𝛾

𝐴,

𝜆𝐴). ■

Corollary 1 enables to define a test procedure with asymptotic level 𝛼 < 1∕2,
which consists in rejecting 𝐻0 as soon as:|𝑊𝑠| > 𝑧1−𝛼∕2,

where 𝑧𝑢 stands for the quantile of order 𝑢 of the standard normal distribution.
The asymptotic power of this test is given by the next corollary, which is as
straightforward application of Theorem 2.

Corollary 2. Under the same assumptions as in Theorem 2, the asymptotic
(as 𝑚𝐴 ∼ 𝑛𝐴 ∼ 𝑚𝐵 ∼ 𝑛𝐵 → ∞) power of the test of:

𝐻0 ∶
{
(𝜌𝐴, 𝑔𝐴, ℎ𝐴) = (𝜌𝐵, 𝑔𝐵, ℎ𝐵)

}
,

is given by:

ℙ
{|𝑊𝑠| > 𝑧1−𝛼∕2

}
⟶ 1 + Φ

(
−𝑧1−𝛼∕2 − ℎ𝑠√

𝑘𝑠

)
− Φ

(
𝑧1−𝛼∕2 − ℎ𝑠√

𝑘𝑠

)
,

where Φ(⋅) stands for the cumulative distribution function of the standard normal
distribution and ℎ𝑠 and 𝑘𝑠 are the theoretical counter parts of 𝐻𝑠 and 𝐾𝑠 defined
in Theorem 2, that is 𝑘𝑠 = 𝑣1𝑠∕𝑣

0
𝑠 with:

𝑣0𝑠 = 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐵
1 , 𝛾

𝐵, 𝜆𝐵) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐴
1 , 𝛾

𝐴, 𝜆𝐴)

𝑣1𝑠 = 𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴
1 , 𝛾

𝐴, 𝜆𝐴) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐵
1 , 𝛾

𝐵, 𝜆𝐵),

and ℎ𝑠 =
(
𝛿𝐸𝐴

𝑠 − 𝛿𝐸𝐵
𝑠

)
∕
√

𝑣0𝑠 with:

𝛿𝐸𝐴
𝑠 = 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐴

1 , 𝛾
𝐴, 𝜆𝐴) − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝜙𝐵

1 , 𝛾
𝐵, 𝜆𝐵)

𝛿𝐸𝐵
𝑠 = 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐵

1 , 𝛾
𝐵, 𝜆𝐵) − 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝜙𝐴

1 , 𝛾
𝐴, 𝜆𝐴).
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Remark 11. The power of the network comparison test is therefore controlled
by the ratio ℎ𝑠∕

√
𝑘𝑠. As expected, the power of the test based on the frequency of

motif 𝑠 mostly depends on the departure between the expected frequencies under
the null and under the alternative (that is 𝛿𝐸𝐴

𝑠 and 𝛿𝐸𝐵
𝑠 ). We observe that the

power also depends on the the ratio between the variance under the alternative
and the null (that is 𝑘𝑠).

Testing equal top nodes heterogeneity. Suppose we want to test that, al-
though the two networks may have different dimensions, different densities, and
different bottom node heterogeneity, they have the same top node heterogeneity,
that is {

𝐻0 ∶
{
𝑔𝐴 = 𝑔𝐵

}
,

𝐻1 ∶
{
𝑔𝐴 ≠ 𝑔𝐵

}
.

Since we allow the two networks to have different densities, one might nor-
malize the probabilities of star motifs given in (5) as follows:

�̃�1 = 1, �̃�2 = 𝜙2∕𝜙2
1 �̃�3 = 𝜙7∕𝜙3

1 �̃�4 = 𝜙17∕𝜙4
1, �̃�5 = 𝜙44∕𝜙4

1,

𝜆1 = 1, 𝜆2 = 𝜙3∕𝜙2
1, 𝜆3 = 𝜙4∕𝜙3

1 𝜆4 = 𝜙8∕𝜙4
1, 𝜆5 = 𝜙18∕𝜙4

1.

This allows to see that we can rewrite 𝐸𝑠(𝑚, 𝑛, 𝜌, 𝛾, 𝜆) = 𝜙𝑠 as an expression of
𝑔 on which relies the test we consider. According to (6) and to the definition of
𝜙𝑠 under the B-EDD model, we get:

𝐸𝑠(𝑚, 𝑛, 𝜌, 𝑔, ℎ) = 𝜌𝑑𝑠
+

𝑝𝑠∏
𝑢=1

�̃�𝑑𝑠
𝑢

𝑞𝑠∏
𝑣=1

�̃�𝑒𝑠𝑣
= 𝜌𝑑𝑠

+

𝑝𝑠∏
𝑢=1

𝑞𝑠∏
𝑣=1

𝑔𝑑𝑠
𝑢
ℎ𝑒𝑠𝑣

,

where 𝑔𝑑 = ∫ 𝑔(𝑢)𝑑𝑑𝑢 and ℎ𝑒 = ∫ ℎ(𝑣)𝑒𝑑𝑣. We may consider the following test
statistic:

𝑊 𝑔
𝑠 =

(
𝐹𝐴
𝑠 − 𝐸𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴

1 , Γ̃𝐵, Λ̃𝐴)
)
−
(
𝐹𝐵
𝑠 − 𝐸𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐵

1 , Γ̃𝐴, Λ̃𝐵)
)

√
𝑉𝑠(𝑚𝐴, 𝑛𝐴, 𝐹𝐴

1 , Γ̃𝐵, Λ̃𝐴) + 𝑉𝑠(𝑚𝐵, 𝑛𝐵, 𝐹𝐵
1 , Γ̃𝐴, Λ̃𝐵)

,

where Γ̃ and Λ̃ are the plug-in estimates of �̃� and 𝜆 respectively. Similar statistics
can be designed to test 𝜌𝐴 = 𝜌𝐵, ℎ𝐴 = ℎ𝐵 or any combination.

Illustration. Both the plant-pollinator and the seed dispersal networks in-
volve plants species. Although these species are not the same, one may be in-
terested in comparing if the level of heterogeneity across plants (encoded in the
function 𝑔) is the same in both networks. From an ecological point of view, this
amounts to test if there is the same the degree of imbalance between specialists
and generalists among plants regarding pollination and seed dispersion, that are
two of the main reproduction means.
Table 4 provides the results of the network comparison test presented above. No
significant difference is observed, suggesting that, although generalist and spe-
cialist plants may exist for both types of interactions (no assumption is made
about the shape of 𝑔), the degree of imbalance between them is comparable
(𝑔𝐴 ≃ 𝑔𝐵).
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Table 4

Network comparison test for 𝐻0 = {𝑔𝐴 = 𝑔𝐵} as defined in Section 3.3 for the same motifs

as in Table 2. Networks: 𝐴 = plant-pollinator, 𝐵 = seed dispersal. �̂�0(⋅) is a shorthand for

the notation 𝐸𝑠(⋯) (idem for 𝕍0(⋅) and 𝑉𝑠(⋯)).

𝑠 5 6 10 15 16

𝐹𝐴
𝑠 9.21 10−5 1.00 10−5 8.12 10−6 3.32 10−7 4.47 10−8

�̂�0𝐹
𝐴
𝑠 1.96 10−4 3.75 10−5 1.74 10−5 4.25 10−6 1.33 10−6

𝐹𝐵
𝑠 5.13 10−4 1.15 10−4 5.07 10−5 1.79 10−5 5.96 10−6

�̂�0𝐹
𝐵
𝑠 2.66 10−4 2.92 10−5 2.85 10−5 1.50 10−6 1.69 10−7

𝐹𝐵
𝑠 − 𝐹𝐴

𝑠 -4.21 10−4 -1.05 10−4 -4.26 10−5 -1.76 10−5 -5.91 10−6

�̂�0(𝐹𝐵
𝑠 − 𝐹𝐴

𝑠 ) -6.96 10−5 8.37 10−6 -1.11 10−5 2.75 10−6 1.16 10−6√
𝕍0(𝐹𝐴

𝑠 ) + 𝕍0(𝐹𝐵
𝑠 ) 2.25 10−4 7.24 10−5 3.26 10−5 1.59 10−5 7.38 10−6

𝑊𝑠 -1.56 -1.56 -0.97 -1.28 -0.96

4. Simulation study

We designed a simulation study to illustrate Theorem 1 and to assess the perfor-
mance of the goodness-of-fit test and the comparison test described in Section
3.2 and Section 3.3 respectively. More specifically, our purpose is to illustrate
the asymptotic normality of the test statistics and evaluate the power of the
tests for various graph sizes, densities and sparsity regimes.

4.1. Asymptotic normality

Simulation design. We simulated series of networks with parameters (𝑚, 𝑛, 𝜌,

𝜇𝑔, 𝜇ℎ) varying according to the following design:

Network dimension: We simulated networks with equal dimensions 𝑚 = 𝑛,
with values in {50, 100, 200, 500, 1000, 2000};

Sparsity regime: We considered equal parameters 𝑎 = 𝑏 in {1∕3, 1∕4, 1∕5,
1∕6};

Network density: The resulting density is 𝜌 = 𝜌0𝑚
−𝑎𝑛−𝑏, 𝜌0 being fixed so

that 𝜌 = .01 when 𝑚 = 𝑛 = 100;
Degree imbalance: We considered the functions 𝑔(𝑢) = 𝜇𝑔𝑢

𝜇𝑔−1 and ℎ(𝑣) =
𝜇ℎ𝑣

𝜇ℎ−1; observe that 𝜇𝑔 = 1 means that 𝑔 is constant so no imbalance
does exist top nodes (resp. for 𝜇ℎ, ℎ and bottom nodes). We set 𝜇𝑔 = 2,
𝜇ℎ = 3.

For each configuration, 𝑆 = 100 networks were sampled and the test applied.

Results. The results are displayed in Figure 3 and Figure 4. In Figure 3, the
Q-Q plots of the 𝑊𝑠 statistic (black dots) defined in (12) and the 𝑊𝑠 statistic
(blue dots) defined in (14) hereafter, are given for four motifs in a network with
dimension 𝑚 = 𝑛 = 1000 and sparsity regime 𝑎 = 𝑏 = 1∕3. Remember that the
larger the power 𝑎, the sparser the graph. We observe that normality of 𝑊𝑠

holds for motifs 6 and 15, but not for motifs 5 and 10.
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Fig 3. Q-Q plots of the test statistics 𝑊𝑠 for 4 motifs in a network with dimension 𝑚 = 𝑛 = 2000
and sparsity regime 𝑎 = 1∕3 (black dots). Blue dots: Q-Q plot for the corrected statistic 𝑊𝑠

defined in Equation (14). Red line: 95% confidence interval for a Q-Q plot with sample size
𝑆 = 100.

Actually, the latter case is due to the fluctuations of 𝐹 𝑠. More specifically, for

non-star motifs, 𝐹 𝑠 is not an unbiased estimate of 𝜙𝑠 and it is not independent
from 𝐹𝑠. As a consequence, for finite dimensions 𝑚 and 𝑛, we both have that

𝔼(𝐹 𝑠) ≠ 𝜙𝑠 = 𝔼(𝐹𝑠) and 𝕍 (𝐹𝑠−𝐹 𝑠) ≠ 𝕍 (𝐹𝑠). Both the bias of 𝐹 : 𝔹(𝐹 𝑠) = 𝔼(𝐹 )−𝜙𝑠

and the variance of the numerator of 𝑊𝑠: 𝕍 (𝐹𝑠 −𝐹 𝑠) can be estimated using the
delta method, which requires the covariance given in Equation (10). This enables

us to define a corrected version 𝑊𝑠 of the test statistic 𝑊𝑠:

𝑊𝑠 ∶= 𝕍
(
𝐹𝑠 − 𝐹 𝑠

)−1∕2 (
𝐹𝑠 − 𝐹 𝑠 + �̂�(𝐹 𝑠)

)
, (14)

where the bias �̂�(𝐹 𝑠) and 𝕍
(
𝐹𝑠 − 𝐹 𝑠

)
are both plug-in estimates.

Illustration. We provide in Table 5 the values of corrected corrected statistics
𝑊𝑠 for the plant-pollinator and the seed dispersal networks, to be compared with
Table 3. Observe that the correction does not yield in different conclusions, in
terms of fit to the B-EDD model for both networks.

Table 5

Corrected test statistics 𝑊𝑠 for the goodness-of-fit of B-EDD for the same motifs as in
Table 2.

𝑠 5 6 10 15 16
plant-pollinator -0.05 1.03 -0.03 0.79 2.49
seed dispersal -0.17 -0.14 -0.20 -0.19 -0.22

Figure 4 displays the Q-Q plots of the corrected test statistics 𝑊𝑠 gathered ac-
cording to the order of magnitude of the expected motif frequencies. All network
sizes, sparsity regimes and non-star motifs are thus considered here together.
As expected, the normality becomes more accurate when the motifs frequency
increases.
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Fig 4. Q-Q plots of the corrected test statistics 𝑊𝑠. The plot displays the results of the
simulation design (i.e for all network size 𝑛, sparsity regime 𝑎 and non-star motifs 𝑠. The
Q-Q plots are gathered accorded to the order of magnitude of the expected count 𝔼(𝑁𝑠), from
the smallest (top left) to the largest (bottom right). Red line: same legend as Figure 3.

4.2. Power of the goodness-of-fit test

Simulation design. In order to illustrate the power of the goodness-of-fit
test, we simulated a series of networks from a mixture of a B-EDD model and a
latent block model (LBM: Govaert and Nadif, 2008), characterizing the presence
of clusters of rows and columns in incidence matrices. Thus, a mixing weight 𝛼

varying from 0 to 1 was considered so that 𝛼 = 0 corresponds to a B-EDD that
is 𝐻0. In details, the following simulation setup was investigated:

Network dimension and density: We considered dimensions similar to the
pollination and seed dispersal binary networks studied in Simmons et al.
(2019b), that is 𝑚 = 𝑛 ∈ {101,… , 103}. To mimic the sparsity of the
same networks, we fitted the density via a linear regression and obtained
log10(𝜌) = 0.3457 − 0.3958 log10(𝑚𝑛);

B-EDD model: We used the same functions 𝑔 and ℎ as in Section 4.1, with
𝜇𝑔 = 2, 𝜇ℎ = 3;

LBM model: We considered 2 groups in rows and 2 groups in columns, all
groups with proportion 1∕2 and all connection probabilities 𝛾𝑘𝓁 = 𝐶𝛾min
for all 1 ≤ 𝑘,𝓁 ≤ 2, except 𝛾22 = 𝐶𝛾max, with 𝐶 set such that 𝐶(𝛾max +
3𝛾min)∕4 = 1. Two regimes were considered: 𝛾max = 0.95 (scenario I: easy)
and 𝛾max = 0.5 (scenario II: hard);

Connection probability: We sampled the {𝑈𝑖}1≤𝑖≤𝑚 and {𝑉𝑗}1≤𝑗≤𝑛 all inde-
pendently and uniformly over [0, 1], and set the {𝑍𝑖}1≤𝑖≤𝑚 and {𝑊𝑗}1≤𝑗≤𝑛

as 𝑍𝑖 = 𝕀{𝑈𝑖 > .5} + 1 and 𝑊𝑗 = 𝕀{𝑉𝑗 > .5} + 1. Finally, the edges were
sampled with probability

ℙ{𝐺𝑖𝑗 = 1 ∣ 𝑈𝑖, 𝑉𝑗} = 𝜌
(
(1 − 𝛼)𝑔(𝑈𝑖)ℎ(𝑉𝑗) + 𝛼𝛾𝑍𝑖𝑊𝑗

)
.

For each configuration, 𝑆 = 500 networks were sampled and the test applied.
Again the test corrected statistic 𝑊𝑠 was used.
Note that Jin et al. (2018) and Gao and Lafferty (2017a) introduced goodness-of-
fit tests for a symmetric version of B-EDD under a block-structured alternative
(similar, but not equivalent to one we consider), using specific motifs (‘graphlets’
or V’s and triangles).



Motif-based tests for bipartite networks 313

Fig 5. Empirical power of the goodness-of-fit tests, averaged over 𝑆 = 500 simulations. Top:
scenario I (easy: 𝛾max = 0.95); bottom: scenario II (hard: 𝛾max = 0.5). From left to right:
𝑚 = 𝑛 = 50, 100, 200, 500. Color = motif: black=5, red=6, green=10, blue=15.

Results. The results are given in Figure 5. For illustration purposes, we only
present the results we obtained for 𝑚 = 𝑛 ranging from 50 to 500. Moreover, for
the sake of clarity, we only consider motifs 5, 6, 10, and 15 which constitute a
representative panel of the set of motifs with size 4 and 5.
As the network dimensions increase, we can clearly observe that the tests become
more powerful. For small networks with 𝑚 = 𝑛 = 50 and 𝑚 = 𝑛 = 100, the LBM
regime with 𝛾max = 0.95 is easier and leads to tests associated with motifs 5
and 6 with higher power. These differences vanish for larger values of 𝑛 and 𝑚.
Overall, we found that motifs 5 and 6 lead to more powerful tests. These results
illustrate that the methodology proposed is relevant and that the goodness-of-
fit tests for different motifs can be used to detect the departure from a B-EDD
model.

4.3. Power of the network comparison test

Simulation design. We also studied the power of the test for network com-
parison introduced in Section 3.3. To this aim, we simulated series of networks
𝐴 with parameters (𝑚𝐴, 𝑛𝐴, 𝜌

𝐴, 𝜇𝐴
𝑔 , 𝜇𝐴

ℎ
) varying according to the same design as

in Section 4.1, where 𝜇𝐴
𝑔 was set to 2.

We focused on the test of 𝐻0 = {𝑔𝐴 = 𝑔𝐵} so, for each network 𝐴, we simulated
a sequence of networks 𝐵 with same dimensions (𝑚𝐵 = 𝑚𝐴, 𝑛𝐵 = 𝑛𝐴), but a with
a different parameter 𝜇𝐵

𝑔 . More specifically, setting 𝜇∗
𝑔 = 1 (absence of degree im-

balance between top nodes), we sampled networks 𝐵 with 𝜇𝐵
𝑔 = (1−𝛼)𝜇𝐴

𝑔 +𝛼𝜇∗
𝑔 ,

with 𝛼 = 0, 0.1, 0.2,…1, so that 𝛼 = 0 corresponds to 𝐻0.
Regarding the two remaining parameters 𝜌𝐵 and 𝜇𝐵

ℎ
, we considered two scenar-

ios:
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I (easy): 𝜌𝐵 = 𝜌𝐴, 𝜇𝐵
ℎ
= 𝜇𝐴

ℎ
, so that the two networks only differ with respect

to 𝜇𝑔;

II (hard): 𝜌𝐵 = 𝜌𝐴∕2, 𝜇𝐵
ℎ
= 2, so that the two network differ in all parameters,

but only the difference in 𝜇𝑔 is tested.

The ‘hard’ scenario is designed to assess the ability of the proposed test statistic
to accommodate to differences in density and bottom node imbalance between
the two networks, when testing the equality of their top node imbalance. For each
configuration, 𝑆 = 500 pairs of networks (𝐴, 𝐵) were sampled and compared.
Following the simulation results presented in Section 4.1, we used the delta-
method to derive a corrected version 𝑊𝑠 of the test statistic 𝑊𝑠 defined in
Equation (13). Similarly to Section 4.1, the performances of the uncorrected

test statistic 𝑊𝑠 become similar to these of the corrected version 𝑊𝑠 for large
networks (results not shown).

Illustration. Again, to illustrate the effect of the proposed correction, we
provide in Table 6 the values of corrected statistics 𝑊𝑠 testing 𝐻0 = {𝑔𝐴 = 𝑔𝐵},
network 𝐴 being plant-pollinator and network 𝐵 being seed dispersal. These
results can be compared with Table 4: The correction yields in (moderately)
higher absolute values, suggesting a gain of power.

Table 6

Corrected test statistics 𝑊𝑠 for 𝐻0 = {𝑔𝐴 = 𝑔𝐵} for the same motifs as in Table 2 and same
networks as in Table 4.

𝑠 5 6 10 15 16

𝑊𝑠 -2.71 -1.90 -1.76 -1.34 -0.96

Results. The results are displayed in Figure 6. We only present the results for
𝑚𝐴 = 𝑛𝐴 = 𝑚𝐵 = 𝑛𝐵 ranging for 50 to 500. Moreover, as in the previous section,
we only consider motifs 5, 6, 10 and 15.
As expected, the test becomes more powerful when the networks dimensions
increase. More interestingly, for small networks, the smaller motifs (5 and 6,
with size 4) turn out to yield a higher power. The difference vanishes when the
dimensions increase.
These conclusions hold under the two scenarios, which shows that the proposed
test statistic does accommodate for departures that may exist between two
networks, not being the departure under study (scenario II ‘hard’). Still, the
power is always better under scenario I: obviously, the test performs better
when focusing on the only difference that actually exists (scenario I ‘easy’).

5. Proofs

5.1. Definitions and technical lemmas

In this section, we introduce notations and useful technical lemmas for establish-
ing proofs of Proposition 2 in Section 5.2, Lemma 1 in Section 5.3 and Lemma
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Fig 6. Empirical power of the network comparison test for 𝐻0 = {𝑔𝐴 = 𝑔𝐵}, averaged over
𝑆 = 500 simulations. Top: scenario I (easy); bottom: scenario II (hard). From left to right:
𝑚 = 𝑛 = 50, 100, 200, 500. Color = motif: same legend as Figure 5.

2 in Section 5.4.

5.1.1. Definitions

Let us remind that we consider a bipartite graph  = ( ,) with 𝑁 nodes. The
set of nodes is  = ( 𝑡,𝑏), where  𝑡 = �1, 𝑚� (resp. 𝑏�1, 𝑛�) stands for the set
of top (resp. bottom) nodes, and the set of edges is  ⊂  𝑡 × 𝑏, meaning than
an edge can only connect a top node with a bottom node. The total number of
nodes is therefore 𝑁 = 𝑛+𝑚. We denote by 𝐺 the corresponding 𝑚×𝑛 incidence
matrix where the entry 𝐺𝑖𝑗 of 𝐺 is 1 if (𝑖, 𝑗) ∈  , and 0 otherwise.

Let us consider now a collection of bipartite graphs (𝓁)𝓁∈�1,𝑁� = (𝓁 ,𝓁)
with 𝓁 nodes. In the following, we introduce notations for subsets of interest
and a filtration we will use to construct differences of martingales involving
motif counts.

Subsets definitions. Let us introduce the following subsets definitions:

• 𝓁 = {(𝑘1,… , 𝑘𝓁) ⊂  𝑡 ∪ 𝑏 with at least one top node and one bottom
node}, 𝓁 ∈ �2, 𝑁�, it is the set of nodes of 𝓁 meaning the 𝓁 selected nodes
among , and 𝑘𝓁 denotes the 𝓁-th and last selected one; we will use 𝑘𝓁
several times hereafter;

• 𝑉 𝑡
𝓁 = 𝓁 ∩ 𝑡 and 𝑉 𝑏

𝓁 = 𝓁 ∩𝑏, these are the sets of top and bottom nodes
in 𝓁;

• 𝑠,𝓁 =
{
(𝑖1,… , 𝑖𝑝𝑠 ) ⊂ 𝑉 𝑡

𝓁

}
×
{
(𝑗1,… , 𝑗𝑞𝑠 ) ⊂ 𝑉 𝑏

𝓁

}
, 𝓁 ∈ �𝑝𝑠 + 𝑞𝑠,𝑁�, it is the

positions set of motif 𝑠 in 𝓁;
• 𝑇𝓁 = {𝑘𝓁 ∈  𝑡} is an event;
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• 𝑠,𝓁 =
{

{𝑠,𝓁−1 ⧵ 𝑖𝑝𝑠} ∪ {𝑖𝑝𝑠 = 𝑘𝓁} if 𝑇𝓁 ,

{𝑠,𝓁−1 ⧵ 𝑗𝑞𝑠} ∪ {𝑗𝑞𝑠 = 𝑘𝓁} otherwise,
it is the positions set of motif 𝑠 in 𝓁 with the particularity that 𝑘𝓁 the
last node added to 𝓁 is part of motif 𝑠.

Filtration. The filtration (𝓁)𝓁∈�2,𝑁� is defined by the 𝜎-algebra 𝓁 = 𝜎
(𝓁).

5.1.2. Technical lemmas

We present here three lemmas which are key arguments in the proofs of Propo-
sition 2, Lemma 1 and Lemma 2.

The following lemma gives the order of magnitude of the variance of a count.
Before, its statement Let us give the order of magnitude of the expected count
of a motif 𝑠 with 𝑝𝑠 top nodes and 𝑞𝑠 bottom nodes. It writes 𝔼(𝑁𝑠) = 𝑐𝑠𝜙𝑠, with

𝑐𝑠 = Θ(𝑚𝑝𝑠𝑛𝑞𝑠 ) (normalizing coefficient specific to 𝑠) (15)

𝜌 = Θ(𝑚−𝑎𝑛−𝑏), with 𝑎, 𝑏 > 0 (graph density) (16)

𝜙𝑠 = Θ(𝜌𝑑𝑠
+) = Θ(𝑚−𝑎𝑑𝑠

+𝑛−𝑏𝑑𝑠
+) (expected frequency of 𝑠), (17)

where 𝑑𝑠
+ stands for the total number of edges in 𝑠 and 𝑐𝑠 being defined in (3).

Lemma 3. We have,

𝕍 (𝑁𝑠)

= Θ
(
max(𝑚2𝑝𝑠−2𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+ , 𝑚2𝑝𝑠−2𝑎𝑑𝑠

+𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+−1, 𝑚2𝑝𝑠−𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−𝑏𝑑𝑠
+−1)
)
.

Proof. Let us observe that, for 𝛼, 𝛽 ∈ 𝑠,𝑁 ,

𝑁2
𝑠 =
∑
𝛼

𝑌𝑠(𝛼) +
∑

𝛼∩𝛽≠∅
𝑌𝑠(𝛼)𝑌𝑠(𝛽) +

∑
𝛼∩𝛽=∅

𝑌𝑠(𝛼)𝑌𝑠(𝛽).

Thus, a general form for the variance is the following:

𝕍 (𝑁𝑠) = 𝔼(𝑁𝑠) +
∑

𝑡∈2(𝑠)
𝔼(𝑁𝑡) +

(|𝑠| − 𝑐2𝑠
)
𝜙2

𝑠 , (18)

where 𝑠 =
{
𝛼, 𝛽 ∈ 𝑠,𝑁 ∶ 𝛼 ∩ 𝛽 = ∅

}
and 2(𝑠) denotes the set of supermotifs

of 𝑠 which are formed by two overlapping occurrences of 𝑠.
Let us evaluate the orders of the three added terms of assertion (18). Con-

sidering that 𝜌 = Θ(𝑚−𝑎𝑛−𝑏), the first term of (18) is Θ(𝑚𝑝𝑠−𝑎𝑑𝑠
+𝑛𝑞𝑠−𝑏𝑑𝑠

+). Then
denoting (𝑎)𝑏 = 𝑎(𝑎 − 1)… (𝑎 − 𝑏), we see that

|𝑠| − 𝑐2𝑠 =
(𝑚2𝑝𝑠−1)

(𝑝𝑠!)2
(𝑛)2𝑞𝑠−1
(𝑞𝑠!)2

−
(𝑚𝑝𝑠−1)

2

(𝑝𝑠!)2
(𝑛)2

𝑞𝑠−1

(𝑞𝑠!)2
(19)
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= Θ

(
(−1)2𝑝𝑠−1𝑝2𝑠𝑚

2𝑝𝑠−1𝑛2𝑞𝑠 + (−1)2𝑞𝑠−1𝑞2𝑠𝑚
2𝑝𝑠𝑛2𝑞𝑠−1

(𝑝𝑠!)2(𝑞𝑠!)2

)
= Θ
(
max(𝑚2𝑝𝑠−1𝑛2𝑞𝑠 , 𝑚2𝑝𝑠𝑛2𝑞𝑠−1)

)
.

Thus the third term is Θ
(
max(𝑚2𝑝𝑠−2𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+ , 𝑚2𝑝𝑠−2𝑎𝑑𝑠

+𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+−1)
)
.

Let us focus now on the second term. When 𝑡 ∈ 𝑘(𝑠), it can result of an
overlap of (𝑖) only top nodes, (𝑖𝑖) only bottom nodes, or (𝑖𝑖𝑖) both. For each
case we have

(𝑖) 𝑝𝑡 < 2𝑝𝑠, 𝑞𝑡 = 2𝑞𝑠, 𝑑𝑡
+ = 2𝑑𝑠

+ so 𝔼𝑁𝑡 = 𝑂(𝑚2𝑝𝑠−1𝑛2𝑞𝑠𝜌2𝑑
𝑠
+) = 𝑂(𝑚2𝑝𝑠−2𝑎𝑑𝑠

+−1 ×
𝑛2𝑞𝑠−2𝑏𝑑

𝑠
+);

(𝑖𝑖) 𝑝𝑡 = 2𝑝𝑠, 𝑞𝑡 < 2𝑞𝑠, 𝑑𝑡
+ = 2𝑑𝑠

+ so 𝔼𝑁𝑡 = 𝑂(𝑚2𝑝𝑠𝑛2𝑞𝑠−1𝜌2𝑑
𝑠
+) = 𝑂(𝑚2𝑝𝑠−2𝑎𝑑𝑠

+ ×
𝑛2𝑞𝑠−2𝑏𝑑

𝑠
+−1);

(𝑖𝑖𝑖) 𝑝𝑡 < 2𝑝𝑠, 𝑞𝑡 < 2𝑞𝑠, 𝑑𝑠
+ < 𝑑𝑡

+ < 2𝑑𝑠
+ so 𝔼𝑁𝑡 = 𝑂(𝑚2𝑝𝑠−𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−𝑏𝑑𝑠
+−1).

Combining the orders of the three terms of assertion (18), we get that the
order of magnitude of the variance of a count is

𝕍 (𝑁𝑠)=Θ
(
max(𝑚2𝑝𝑠−2𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+ , 𝑚2𝑝𝑠−2𝑎𝑑𝑠

+𝑛2𝑞𝑠−2𝑏𝑑
𝑠
+−1, 𝑚2𝑝𝑠−𝑎𝑑𝑠

+−1𝑛2𝑞𝑠−𝑏𝑑𝑠
+−1)
)
.

■

The last argument of proof of Proposition 2, Lemma 7 and Lemma 1 relies
on the following result.

Lemma 4. We have, as 𝑚 ∼ 𝑛 → ∞,

𝕍 (𝑁𝑠|𝑈, 𝑉 )∕𝕍 (𝑁𝑠) → 1 in probability.

Proof. First let us write that

𝔼(𝑁𝑠|𝑈, 𝑉 ) =
∑
𝛼∈𝑠

ℙ
(
𝑌𝑠(𝛼) = 1|𝑈𝛼𝑡 , 𝑉𝛼𝑏

)
𝔼(𝑁2

𝑠 |𝑈, 𝑉 ) =
∑

𝛼,𝛽∈𝑠

ℙ
(
𝑌𝑠(𝛼)𝑌𝑠(𝛽) = 1|𝑈𝛼𝑡 , 𝑉𝛼𝑏 , 𝑈𝛽𝑡 , 𝑉𝛽𝑏

)
.

The proof relies on showing the convergence in probability of the two above ex-
pectations towards

∑
𝛼∈𝑠

ℙ
(
𝑌𝑠(𝛼) = 1

)
and
∑

𝛼,𝛽∈𝑠
ℙ
(
𝑌𝑠(𝛼)𝑌𝑠(𝛽) = 1

)
, respec-

tively. Let us now introduce the equivalence relation R𝑠 and the set 𝑅𝑠 defined
as follows:

R𝑠 ∶ (𝜎𝑡, 𝜎𝑏) ∼ (𝜎𝑡, 𝜎𝑏) ⇔ 𝐴𝑠
𝜎𝑡,𝜎𝑏

= 𝐴𝑠
𝜎𝑡,𝜎𝑏

and 𝑅𝑠 =
(
𝜎
(

�1, 𝑝𝑠�
)
⊗ 𝜎
(

�1, 𝑞𝑠�
))

∕R𝑠.

Then, we can exhibit the two following quantities which are two-samples U-
Statistics (see Section 12.2, p.165 in van der Vaart (2000)):

𝑟𝑠
𝑐𝑠

∑
𝛼∈𝑠

𝑘1
(
𝑈𝛼𝑡 , 𝑉𝛼𝑏

)
and

𝑟𝑠
𝑐𝑠

∑
𝛼∈𝑠

𝑘2
(
𝑈𝛼𝑡 , 𝑉𝛼𝑏 , 𝑈𝛽𝑡 , 𝑉𝛽𝑏

)
,
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with 𝑟𝑆 and 𝑐𝑠 being defined in (2), (3), respectively, 𝑠 denoting the location
relative to a given position for motif 𝑠 and where

𝑘1
(
𝑈𝛼𝑡 , 𝑉𝛼𝑏

)
=
∑
𝜎∈𝑅𝑠

ℙ
(
𝑌𝑠(𝜎(𝛼)) = 1|𝑈𝜎𝑡(𝛼𝑡), 𝑉𝜎𝑏(𝛼𝑏)

)
𝑘2
(
𝑈𝛼𝑡 , 𝑉𝛼𝑏 , 𝑈𝛽𝑡 , 𝑉𝛽𝑏

)
=
∑

(𝜎𝛼,𝜎𝛽 )∈𝑅𝑠

ℙ
(
𝑌𝑠(𝜎𝛼(𝛼))𝑌𝑠(𝜎𝛽 (𝛽)) = 1|𝑈𝜎𝑡

𝛼(𝛼𝑡), 𝑉𝜎𝑏
𝛼 (𝛼𝑏), 𝑈𝜎𝑡

𝛽
(𝛽𝑡), 𝑉𝜎𝑏

𝛽
(𝛽𝑏)

)
,

with 𝑘1(·) and 𝑘2(·) being permutation symmetric kernels in (𝑈𝑖)𝑖 and (𝑉𝑗)𝑗
separately. We conclude by applying the central limit theorem for two-sample
U-Statistics (see Theorem 12.6 in van der Vaart (2000)) which holds under the
assumption that the kernel of the U-statistic has a finite moment of order two.
Here, as it concerns probabilities this assumption is obviously fulfilled. ■

In proofs of Lemma 2, Lemma 6 and Lemma 7, we need to know the cardinal

order of the sets ⊗𝑘
𝑠,𝓁 ⧵ (𝑘)

𝑠,𝓁 , 𝑘 = 2, 4 which contains only dependent 𝑘-uplets of

positions of motif 𝑠 on the event 𝑇𝓁 for which the last node added to 𝓁 is a top
node. Recall that 𝑠,𝓁 is the positions set of motif 𝑠 in the subgraph of  with
nodes in 𝓁 and the particularity that 𝑘𝓁 the last node added to 𝓁 is part of
motif 𝑠. The definition of the other set of interest is the following:

Lemma 5. We have, on 𝑇𝓁,|𝑠,𝓁|𝑘 − |(𝑘)
𝑠,𝓁| = Θ

(
𝓁𝑘(𝑝𝑠−1)−1
𝑡 𝓁𝑘𝑞𝑠

𝑏

)
,

with 𝓁𝑡 and 𝓁𝑏 denoting respectively top and bottom nodes in 𝓁.

Proof. Let us observe that

|𝑠,𝓁| = (𝓁𝑡 − 1
𝑝𝑠 − 1

)(
𝓁𝑏

𝑞𝑠

)
,

|(𝑘)
𝑠,𝓁| = (𝓁𝑡 − 1

𝑝𝑠 − 1

)𝑘( 𝓁𝑏

𝑞𝑠 … 𝑞𝑠 𝓁𝑏 − 𝑘𝑞𝑠

)
+
(

𝓁𝑡

𝑝𝑠 … 𝑝𝑠 𝓁𝑡 − 𝑘𝑝𝑠

)(
𝓁𝑏

𝑞𝑠

)𝑘

+
(

𝓁𝑡

𝑝𝑠 … 𝑝𝑠 𝓁𝑡 − 𝑘𝑝𝑠

)(
𝓁𝑏

𝑞𝑠 … 𝑞𝑠 𝓁𝑏 − 𝑘𝑞𝑠

)
.

The leader term of order Θ
(
𝓁𝑘(𝑝𝑠−1)
𝑡 𝓁𝑘𝑞𝑠

𝑏

)
obviously vanishes and imply the

lost of one order (the calculation omitted here are simply based on the same
arguments as in (19)). ■

5.2. Proof of Proposition 2

For establishing the proof of Proposition 2, we first consider a decomposition
of 𝐿𝑠 = 𝐹𝑠 − 𝜙𝑠 in Section 5.2.1, then we focus on the reminder term of this
decomposition in Lemma 6 and finally show the asymptotic normality of the
leading term in Lemma 7.
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5.2.1. Decomposition of 𝐿𝑠

Let us use the sets introduced in Section 5.1.1 to express 𝐿𝑠 as follows:

𝐿𝑠(𝑈, 𝑉 ) = 𝐹𝑠 − 𝜙𝑠(𝑈, 𝑉 ) = 1
𝑐𝑠

∑
𝛼=(𝛼𝑡,𝛼𝑏)∈𝑠,𝑁

{𝑌𝑠(𝛼) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)}

= 1
𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

{𝑌𝑠(𝛼) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)},

with the random variables 𝑈, 𝑉 of the B-EDDmodel (1). Then Let us decompose
𝐿𝑠 as the sum of two expressions, the first one corresponding to a martingale
difference sequence relative to the filtration (𝓁)𝓁∈�2,𝑁�, the second one being a
term of rest:

𝐿𝑠(𝑈, 𝑉 ) ∶= 𝑀𝑠(𝑈, 𝑉 ) +𝑅𝑠(𝑈, 𝑉 ),
where

𝑀𝑠(𝑈, 𝑉 ) = 1
𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

{𝑌𝑠(𝛼) − 𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )}

𝑅𝑠(𝑈, 𝑉 ) = 1
𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

{𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 ) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)}.

Observe that by construction, 𝑀𝑠,𝓁 =
∑

𝛼∈𝑠,𝓁
{𝑌𝑠(𝛼) − 𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )} is a

conditional martingale difference with respect to (𝓁)𝓁∈�2,𝑁�:

𝔼(𝑀𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 ) = 0.

5.2.2. Study of 𝑅𝑠

Lemma 6. Under the B-EDD model and condition 𝑎 + 𝑏 < 2∕𝑑𝑠
+,

𝑅𝑠(𝑈, 𝑉 )∕
√
𝕍 (𝐹𝑠)|𝑈, 𝑉 → 0 a.s. as 𝑚 ∼ 𝑛 → ∞,

where 𝑅𝑠(𝑈, 𝑉 ) = 1
𝑐𝑠

∑𝑁
𝓁=1
∑

𝛼∈𝑠,𝓁
{𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 ) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)}.

Proof. The proof consists in showing the two following assertions:

(A1) 𝔼
(
𝑅𝑠(𝑈, 𝑉 )∕

√
𝕍 (𝐹𝑠)|𝑈, 𝑉

)
= 0;

(A2) 𝕍
(
𝑐𝑠𝑅𝑠(𝑈, 𝑉 )∕

√
𝕍 (𝑁𝑠)|𝑈, 𝑉

)
→ 0 almost surely as 𝑛 tends to infinity

under condition 𝑎 + 𝑏 < 2∕𝑑𝑠
+.

Let us show assertion (A1):

𝔼
(
𝑅𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
= 𝔼
⎛⎜⎜⎝ 1𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

{𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 ) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏 )}|𝑈, 𝑉

⎞⎟⎟⎠
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= 𝔼
⎛⎜⎜⎝ 1𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )
⎞⎟⎟⎠

− 1
𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏 )

= 1
𝑐𝑠

∑
𝛼=(𝛼𝑡,𝛼𝑏)∈𝑠,𝑁

𝔼(𝑌𝑠(𝛼)|𝑈, 𝑉 )

− 1
𝑐𝑠

∑
𝛼=(𝛼𝑡,𝛼𝑏)∈𝑠,𝑁

𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏 ) = 0.

Let us focus now on assertion (A2). Let us first observe that,

𝕍
(
𝑅𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
= 𝕍
⎛⎜⎜⎝ 1𝑐𝑠

𝑁∑
𝓁=1

∑
𝛼∈𝑠,𝓁

{𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 ) − 𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)}|𝑈, 𝑉

⎞⎟⎟⎠
=

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )|𝑈, 𝑉

⎞⎟⎟⎠ ,
by independance of successive choices of 𝓁. Using definition (4) of the indicator
motif, we see that

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )|𝑈, 𝑉

⎞⎟⎟⎠
=

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

𝔼
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
|𝓁−1;𝑈, 𝑉

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠ .
Then according to measurability with respect to 𝓁−1 and the position (top or
bottom) of 𝑘𝓁 the last selected node, we get

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

𝔼
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
|𝓁−1;𝑈, 𝑉

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠
= ℙ(𝑇𝓁)

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

⎛⎜⎜⎝
∏
𝑗∈𝛼𝑏

𝔼(𝐺𝑘𝓁𝑗
|𝑈, 𝑉 )𝐴𝑠(𝑘𝓁𝑗)

⎞⎟⎟⎠
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡⧵𝑘𝓁 ,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠
+ (1 − ℙ(𝑇𝓁))

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

(∏
𝑖∈𝛼𝑡

𝔼(𝐺𝑖𝑘𝓁
|𝑈, 𝑉 )𝐴𝑠(𝑖𝑘𝓁 )

)⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏⧵𝑘𝓁

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠ ,
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and using the usual notation of the conditional expectation of 𝐺𝑖𝑗 ’s, we have

𝕍
(
𝑅𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
= ℙ(𝑇𝓁)

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

⎛⎜⎜⎝
∏
𝑗∈𝛼𝑏

𝜙1(𝑈𝑘𝓁
, 𝑉𝑗)𝐴

𝑠(𝑘𝓁𝑗)
⎞⎟⎟⎠
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡⧵𝑘𝓁 ,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠
+ (1 − ℙ(𝑇𝓁))

𝑁∑
𝓁=1

𝕍
⎛⎜⎜⎝ 1𝑐𝑠
∑

𝛼∈𝑠,𝓁

(∏
𝑖∈𝛼𝑡

𝜙1(𝑈𝑖, 𝑉𝑘𝓁
)𝐴𝑠(𝑖𝑘𝓁 )

)⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏⧵𝑘𝓁

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠ .
Then, considering the fact that 𝕍 (

∑
𝑖 𝑎𝑖𝑋𝑖) ≤

(∑
𝑖 𝑎𝑖

√
𝕍 (𝑋𝑖)

)2
, we get

𝕍
(
𝑅𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
≤ 2

𝑁∑
𝓁=1

⎛⎜⎜⎜⎝
1
𝑐𝑠

∑
𝛼∈𝑠,𝓁

⎛⎜⎜⎝
∏
𝑗∈𝛼𝑏

𝜙1(𝑈𝑘𝓁
, 𝑉𝑗)𝐴

𝑠(𝑘𝓁𝑗)
⎞⎟⎟⎠
√√√√√𝕍
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡⧵𝑘𝓁 ,𝑗∈𝛼𝑏

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗
|𝑈, 𝑉

⎞⎟⎟⎠
⎞⎟⎟⎟⎠
2

.

From now, we will work on the set ⊗2
𝑠,𝓁 ⧵ (2)

𝑠,𝓁 which contains only dependent

pairs of positions. It follows from the Bernoulli conditional distribution of 𝐺𝑖𝑗

combined with the fact that 𝑎
√

𝑏 <
√

𝑎𝑏 when 𝑎 < 1, that

𝕍
(
𝑅𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
≤ 2

𝑁∑
𝓁=1

⎛⎜⎜⎜⎝
1
𝑐𝑠

∑
𝛼∈⊗2

𝑠,𝓁
⧵(2)

𝑠,𝓁

√∏
𝑗∈𝛼𝑏

𝜙1(𝑈𝑘𝓁
, 𝑉𝑗)𝐴𝑠(𝑘𝓁𝑗)

∏
𝑖∈𝛼𝑡⧵𝑘𝓁 ,𝑗∈𝛼𝑏

𝜙1(𝑈𝑖, 𝑉𝑗)𝐴𝑠(𝑖𝑗)

⎞⎟⎟⎟⎠
2

≤ 2
𝑁∑
𝓁=1

1
𝑐2𝑠

⎛⎜⎜⎜⎝
∑

𝛼∈⊗2
𝑠,𝓁

⧵(2)
𝑠,𝓁

√
𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏 )

⎞⎟⎟⎟⎠
2

≤ 2
𝑐2𝑠

𝑁∑
𝓁=1

(|𝑠,𝓁|2 − |(2)
𝑠,𝓁|) max

𝛼∈⊗2
𝑠,𝓁

⧵(2)
𝑠,𝓁

𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏 ).

In order to evaluate the right-hand side term of the above inequality, recall

that 𝑐𝑠 = Θ(𝑚𝑝𝑠𝑛𝑞𝑠 ) by (15), 𝜙𝑠 = Θ
(
𝑚−𝑎𝑑𝑠

+𝑛−𝑏𝑑𝑠
+
)
by (17) and |𝑠,𝓁|2 − |(2)

𝑠,𝓁| =
Θ
(
𝓁2𝑝𝑠−3
𝑡 𝓁2𝑞𝑠

𝑏

)
by Lemma 5, 𝓁𝑡 and 𝓁𝑏 denoting respectively top and bottom

nodes in 𝓁. Thus, we get

2
𝑐2𝑠

𝑁∑
𝓁=1

(|𝑠,𝓁|2 − |𝑠,𝓁|) max
𝛼∈⊗2

𝑠,𝓁
⧵(2)

𝑠,𝓁

𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)
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= Θ
(
𝑚−2𝑝𝑠𝑛−2𝑞𝑠

) 𝑁∑
𝓁=𝓁𝑡+𝓁𝑏=1

Θ
(
𝓁2𝑝𝑠−3
𝑡 𝓁2𝑞𝑠

𝑏
𝓁
−𝑎𝑑𝑠

+
𝑡 𝓁

−𝑏𝑑𝑠
+

𝑏

)
= Θ
(
𝑚−2𝑝𝑠𝑛−2𝑞𝑠

) 𝑁∑
𝓁=𝓁𝑡+𝓁𝑏=1

Θ
(
𝓁2𝑝𝑠+2𝑞𝑠−𝑎𝑑𝑠

+−𝑏𝑑𝑠
+−3
)

= Θ
(
𝑁−𝑎𝑑𝑠

+−𝑏𝑑𝑠
+−3
)
.

By taking the normalization
√
𝕍 (𝐹𝑠) =

√
𝕍 (𝑁𝑠)∕𝑐𝑠 which order is

Θ
(
max
(
𝑁−2𝑎𝑑𝑠

+−2𝑏𝑑
𝑠
+−1, 𝑁−𝑎𝑑𝑠

+−𝑏𝑑𝑠
+−2
))

by Lemma 2 and (15), we conclude to 𝕍
(

𝑅𝑠(𝑈,𝑉 )√
𝕍 (𝐹𝑠)
|𝑈, 𝑉

)
→ 0 almost surely as

𝑛 tends to infinity under condition 𝑎 + 𝑏 < 2∕𝑑𝑠
+. ■

5.2.3. Study of 𝑀𝑠

Lemma 7. Under the B-EDD model and condition 𝑎 + 𝑏 < 2∕𝑑𝑠
+,

𝑀𝑠(𝑈, 𝑉 )∕
√
𝕍 (𝐹𝑠)|𝑈, 𝑉

𝐷
⟶ 

(
0,

𝕍 (𝑁𝑠|𝑈, 𝑉 )
𝕍 (𝑁𝑠)

)
)

, as 𝑚 ∼ 𝑛 → ∞,

where 𝑀𝑠(𝑈, 𝑉 ) = 1
𝑐𝑠

∑𝑁
𝓁=1
∑

𝛼∈𝑠,𝓁
{𝑌𝑠(𝛼) − 𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )}.

Proof.We will apply the following martingale central limit theorem to the condi-
tional martingale difference sequence 𝑀𝑠,𝓁(𝑈, 𝑉 ) =

∑
𝛼∈𝑠,𝓁

{𝑌𝑠(𝛼)−𝔼(𝑌𝑠(𝛼)|𝓁−1;
𝑈, 𝑉 )} with respect to (𝓁)𝓁∈�2,𝑁�.

Theorem 3 ((Hall and Heyde, 2014)). Suppose that for every 𝑛 ∈ ℕ and
𝑘𝑛 → ∞ the random variables 𝑋𝑛,1,… , 𝑋𝑛,𝑘𝑛

are a martingale difference se-
quence relative to an arbitrary filtration 𝑛,1 ⊂ 𝑛,1 ⊂ … ⊂ 𝑛,𝑘𝑛

. If

1.
∑𝑘𝑛

𝑖=1 𝔼(𝑋
2
𝑛,𝑖
|𝑛,𝑖−1) → 1 in probability,

2.
∑𝑘𝑛

𝑖=1 𝔼(𝑋
2
𝑛,𝑖
𝕀{|𝑋𝑛,𝑖| > 𝜖}|𝑛,𝑖−1) → 0 in probability for every 𝜖 > 0,

then
∑𝑘𝑛

𝑖=1 𝑋𝑛,𝑖


⟶  (0, 1).

Here 𝑋𝑛,𝑖 and 𝑛,𝑖 would be 𝑀𝑠,𝓁(𝑈, 𝑉 )∕(𝑐𝑠
√
𝕍 (𝐹𝑠)) and 𝓁 respectively, and

we have to verify the two following conditions:

(C1) 1
𝕍 (𝑁𝑠)

∑𝑁
𝓁=1 𝔼(𝑀

2
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 ) → 𝕍 (𝑁𝑠|𝑈,𝑉 )

𝕍 (𝑁𝑠)
in probability,

(C2) 1
𝕍 (𝑁𝑠)

∑𝑁
𝓁=1 𝔼

(
𝑀2

𝑠,𝓁(𝑈, 𝑉 )𝕀
{|𝑀𝑠,𝓁(𝑈,𝑉 )|√

𝕍 (𝑁𝑠)
> 𝜖

}|𝓁−1;𝑈, 𝑉

)
→ 0 in proba-

bility for every 𝜖 > 0.
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Let us verify condition (C1). First observe that it follows from properties of
martingale differences, meaning variance decomposition, null conditional expec-
tation and conditional orthogonality of differences, that

𝕍

(
𝑁∑
𝓁=1

𝑀𝑠,𝓁(𝑈, 𝑉 )|𝑈, 𝑉

)

= 𝔼

[
𝕍

(
𝑁∑
𝓁=1

𝑀𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉

)]
+ 𝕍

[
𝔼

(
𝑁∑
𝓁=1

𝑀𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉

)]

= 𝔼

[
𝕍

(
𝑁∑
𝓁=1

𝑀𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉

)]

= 𝔼
⎡⎢⎢⎣𝔼
⎛⎜⎜⎝
(

𝑁∑
𝓁=1

𝑀𝑠,𝓁(𝑈, 𝑉 )

)2 |𝓁−1;𝑈, 𝑉

⎞⎟⎟⎠
⎤⎥⎥⎦

= 𝔼

(
𝑁∑
𝓁=1

𝔼
(
𝑀2

𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉
))

,

and further notice that 𝕍
(∑𝑁

𝓁=1 𝑀𝑠,𝓁(𝑈, 𝑉 )|𝑈, 𝑉
)

= 𝕍
(
𝑐𝑠𝑀𝑠(𝑈, 𝑉 )|𝑈, 𝑉

)
.

Since 𝑀𝑠 = 𝐿𝑠 −𝑅𝑠 (see Section 5.2.1),

𝔼

(
1

𝕍 (𝑁𝑠)

𝑁∑
𝓁=1

𝔼(𝑀2
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 )

)

= 𝕍

(
𝑐𝑠

𝐿𝑠(𝑈, 𝑉 ) −𝑅𝑠(𝑈, 𝑉 )√
𝕍 (𝑁𝑠)

|𝑈, 𝑉

)
→ 𝕍 (𝑁𝑠|𝑈, 𝑉 )∕𝕍 (𝑁𝑠), as 𝑛 → ∞,

in probability and under condition 𝑎+ 𝑏 < 2∕𝑑𝑠
+, because 𝕍

(
𝑐𝑠

𝐿𝑠(𝑈,𝑉 )√
𝕍 (𝑁𝑠)
|𝑈, 𝑉

)
=

𝕍 (𝑁𝑠|𝑈,𝑉 )
𝕍 (𝑁𝑠)

and 𝕍
(
𝑐𝑠

𝑅𝑠(𝑈,𝑉 )√
𝕍 (𝑁𝑠)
|𝑈, 𝑉

)
→ 0 a.s. under condition 𝑎 + 𝑏 < 2∕𝑑𝑠

+ by

Lemma 6.
Now, Let us verify condition (C2). First, by applying the Cauchy-Schwartz

inequality, we get

1
𝕍 (𝑁𝑠)

𝑁∑
𝓁=1

𝔼

(
𝑀2

𝑠,𝓁(𝑈, 𝑉 )𝕀

{|𝑀𝑠,𝓁(𝑈, 𝑉 )|√
𝕍 (𝑁𝑠)

> 𝜖

}|𝓁−1;𝑈, 𝑉

)

≤
𝑁∑
𝓁=1

𝔼

(
𝑀4

𝑠,𝓁(𝑈, 𝑉 )

𝕍 (𝑁𝑠)2
|𝓁−1;𝑈, 𝑉

)1∕2

×
𝑁∑
𝓁=1

ℙ

(|𝑀𝑠,𝓁(𝑈, 𝑉 )|√
𝕍 (𝑁𝑠)

> 𝜖|𝓁−1;𝑈, 𝑉

)1∕2

,
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then applying Bienaymé-Tchebychev inequality implies that

𝑁∑
𝓁=1

𝔼

(
𝑀4

𝑠,𝓁(𝑈, 𝑉 )

𝕍 (𝑁𝑠)2
|𝓁−1;𝑈, 𝑉

)1∕2

×
𝑁∑
𝓁=1

ℙ

(|𝑀𝑠,𝓁(𝑈, 𝑉 )|√
𝕍 (𝑁𝑠)

> 𝜖|𝓁−1;𝑈, 𝑉

)1∕2

≤ 1
𝕍 (𝑁𝑠)2

𝑁∑
𝓁=1

𝔼(𝑀4
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 )

× 1
𝜖2𝕍 (𝑁𝑠)

𝑁∑
𝓁=1

𝔼(𝑀2
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 ),

and by condition (C1), we get

1
𝕍 (𝑁𝑠)

𝑁∑
𝓁=1

𝔼

(
𝑀2

𝑠,𝓁(𝑈, 𝑉 )𝕀

{|𝑀𝑠,𝓁(𝑈, 𝑉 )|√
𝕍 (𝑁𝑠)

> 𝜖

}|𝓁−1;𝑈, 𝑉

)

≤ 1
𝜖2𝕍 (𝑁𝑠)2

𝑁∑
𝓁=1

𝔼(𝑀4
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 ) ×

𝕍 (𝑁𝑠|𝑈, 𝑉 )
𝕍 (𝑁𝑠)

.

Then, we use the following notation for expressing 𝑀𝑠,𝓁:

𝑀𝑠,𝓁 =
∑

𝛼∈𝑠,𝓁

{𝑌𝑠(𝛼) − 𝔼(𝑌𝑠(𝛼)|𝓁−1;𝑈, 𝑉 )} = 𝑁𝑠,𝓁 − 𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 ).

By the binomial formula we thus have

𝔼(𝑀4
𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉 ) = 𝔼

((
𝑁𝑠,𝓁 − 𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 )

)4 |𝓁−1;𝑈, 𝑉
)

= 𝔼
(
𝑁4

𝑠,𝓁|𝓁−1;𝑈, 𝑉
)

−4𝔼
(
𝑁3

𝑠,𝓁𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉
)

+6𝔼
(
𝑁2

𝑠,𝓁𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 )2|𝓁−1;𝑈, 𝑉
)

−4𝔼
(
𝑁𝑠,𝓁𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 )3|𝓁−1;𝑈, 𝑉

)
+𝔼(𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉 )4.

Using the same arguments as in the proof of Lemma 6, observe that

𝐸
(
𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉

)
≤ 2
∑

𝛼∈𝑠,𝓁

⎛⎜⎜⎝
∏
𝑗∈𝛼𝑏

𝜙1(𝑈𝑘𝓁
, 𝑉𝑗)𝐴

𝑠(𝑘𝓁𝑗)
⎞⎟⎟⎠𝔼
⎛⎜⎜⎝
⎛⎜⎜⎝
∏

𝑖∈𝛼𝑡,𝑗∈𝛼𝑏⧵𝑘𝓁

𝐺
𝐴𝑠

𝑖𝑗

𝑖𝑗

⎞⎟⎟⎠ |𝑈, 𝑉

⎞⎟⎟⎠
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≤ 2
∑

𝛼∈𝑠,𝓁

𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏),

and we have,

𝔼
(
𝑁𝑘

𝑠,𝓁|𝓁−1;𝑈, 𝑉
)
= 𝔼
(
𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉

)
+
∑

𝑡∈𝑘(𝑠)
𝔼
(
𝑁𝑡,𝓁|𝓁−1;𝑈, 𝑉

)
+𝔼
(
𝑁𝑠,𝓁|𝓁−1;𝑈, 𝑉

)𝑘
,

where 𝑘(𝑠) denotes here the set of supermotifs of 𝑠 which are here formed by
𝑘 overlapping occurrences of 𝑠. Finally, we get

1
𝕍 (𝑁𝑠)

𝑁∑
𝓁=1

𝔼

(
𝑀2

𝑠,𝓁(𝑈, 𝑉 )𝕀

{|𝑀𝑠,𝓁(𝑈, 𝑉 )|√
𝕍 (𝑁𝑠)

> 𝜖

}|𝓁−1;𝑈, 𝑉

)

≤ 1
𝜖2𝕍 (𝑁𝑠)2

𝑁∑
𝓁=1

𝔼
(
𝑀4

𝑠,𝓁(𝑈, 𝑉 )|𝓁−1;𝑈, 𝑉
)
×
𝕍 (𝑁𝑠|𝑈, 𝑉 )

𝕍 (𝑁𝑠)

≤ 2
𝜖2𝕍 (𝑁𝑠)2

𝑁∑
𝓁=1
|𝑠,𝓁|4 ×( max

𝛼∈𝑠,𝓁
𝜙𝑠(𝑈𝛼𝑡 , 𝑉𝛼𝑏)

)4
×
𝕍 (𝑁𝑠|𝑈, 𝑉 )

𝕍 (𝑁𝑠)
.

Condition (C2) holds since 𝕍 (𝑁𝑠)2 = Θ
(
max
(
𝑁4𝑝𝑠+4𝑞𝑠−4𝑎𝑑𝑠

+−4𝑏𝑑
𝑠
+−2,

𝑁4𝑝𝑠+4𝑞𝑠−2𝑎𝑑𝑠
+−2𝑏𝑑

𝑠
+−4
))

by Lemma 3, |𝑠,𝓁|4 = Θ
(
𝓁4𝑝𝑠−4
𝑡 𝓁4𝑞𝑠

𝑏

)
(see the proof

of Lemma (5)), 𝜙4
𝑠 = Θ

(
𝑁−4𝑎𝑑𝑠

+−4𝑏𝑑
𝑠
+
)

by (17) and 𝕍 (𝑁𝑠|𝑈, 𝑉 )∕𝕍 (𝑁𝑠) = Θ(1)
by Lemma 4. ■

5.3. Proof of Lemma 1

Proof. Let us show that (𝐹 𝑠 −𝜙𝑠)∕
√
𝕍 (𝐹𝑠) → 0 a.s. as 𝑛 → ∞ under the B-EDD

model and condition 𝑎 + 𝑏 < 2∕𝑑𝑠
+ ruling the graph density. Recall (8) the

definition of 𝐹 𝑠:

𝐹 𝑠 =
∏𝑝𝑠

𝑢=1 Γ𝑑𝑠
𝑢

∏𝑞𝑠
𝑣=1 Λ𝑒𝑠𝑣

𝐹
𝑑𝑠
+

1

,

where Γ𝑑 (resp Λ𝑑) denote the normalized empirical frequencies of the top (resp
bottom) star motif with degree 𝑑 and 𝐹1 the one of the edge.

Let us begin with a Taylor expansion of order 1 of 𝐹 𝑠 in parameters (𝛾, 𝜆, 𝜙1)
denoting the top star motif, bottom star motif and edge probabilities respec-
tively:

𝐹 𝑠(Γ,Λ, 𝐹1) = 𝐹 𝑠(𝛾, 𝜆, 𝜙1) + 𝜕𝐹 𝑠(𝛾, 𝜆, 𝜙1)
(
(Γ,Λ, 𝐹1) − (𝛾, 𝜆, 𝜙1)

)
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+𝑜
(
(Γ,Λ, 𝐹1) − (𝛾, 𝜆, 𝜙1)

)
= 𝜙𝑠 + 𝜙𝑠𝜕 log(𝐹 𝑠(𝛾, 𝜆, 𝜙1))

(
(Γ,Λ, 𝐹1) − (𝛾, 𝜆, 𝜙1)

)
+𝑜
(
(Γ,Λ, 𝐹1) − (𝛾, 𝜆, 𝜙1)

)
= 𝜙𝑠

+𝜙𝑠

{
𝑝𝑠∑
𝑢=1

1
𝛾𝑑𝑠

𝑢

(Γ𝑑𝑠
𝑢
− 𝛾𝑑𝑠

𝑢
) +

𝑞𝑠∑
𝑣=1

1
𝜆𝑒𝑠𝑣

(Λ𝑒𝑠𝑣
− 𝜆𝑒𝑠𝑣

) −
𝑑+
𝜙1

(𝐹1 − 𝜙1)

}
+𝑜
(
Γ − 𝛾,Λ − 𝜆, 𝐹1 − 𝜙1)

)
.

Given the two following observations: i) the asymptotic normality of (𝐹𝑠 −
𝜙𝑠)∕
√
𝕍 (𝐹𝑠) holds for any motif 𝑠, including star motifs, under the B-EDD

model and condition 𝑎+𝑏 < 2∕𝑑𝑠
+ by Proposition 2, ii) the empirical frequencies

of motifs converge to the expected ones by the law of large numbers, we get

𝐹 𝑠 − 𝜙𝑠√
𝕍 (𝐹𝑠)

=
𝑝𝑠∑
𝑢=1

Θ
⎛⎜⎜⎝
𝜙𝑠

𝛾𝑑𝑠
𝑢

√
𝕍 (Γ𝑑𝑠

𝑢
)

𝕍 (𝐹𝑠)

⎞⎟⎟⎠+
𝑞𝑠∑
𝑣=1

Θ
⎛⎜⎜⎝
𝜙𝑠

𝜆𝑒𝑠𝑣

√
𝕍 (Λ𝑒𝑠𝑣

)
𝕍 (𝐹𝑠)

⎞⎟⎟⎠+Θ
⎛⎜⎜⎝
𝜙𝑠

𝜙1

√
𝕍 (𝐹1)
𝕍 (𝐹𝑠)

⎞⎟⎟⎠+𝑜 (1)

=
𝑝𝑠∑
𝑢=1

Θ
⎛⎜⎜⎝
𝜙𝑠𝑐𝑠
𝛾𝑑𝑠

𝑢
𝑐𝛾

√
𝕍 (𝑁Γ𝑑𝑠𝑢

)

𝕍 (𝑁𝑠)

⎞⎟⎟⎠+
𝑞𝑠∑
𝑣=1

Θ
⎛⎜⎜⎝
𝜙𝑠𝑐𝑠
𝜆𝑒𝑠𝑣

𝑐𝜆

√
𝕍 (𝑁Λ𝑒𝑠𝑣

)

𝕍 (𝑁𝑠)

⎞⎟⎟⎠+Θ
⎛⎜⎜⎝
𝜙𝑠𝑐𝑠
𝜙1𝑐1

√
𝕍 (𝑁1)
𝕍 (𝑁𝑠)

⎞⎟⎟⎠+𝑜 (1) .

Here and only here, 𝑁Γ𝑑
(resp. 𝑁Λ𝑑

) and 𝑐𝛾 (resp. 𝑐𝜆) denote, by abuse of
notation, the count of top stars (resp. bottom stars) of degree 𝑑 and their
number of positions in the graph. Considering only non-star motifs 𝑠, according
to the orders of magnitude of 𝑐𝑠, 𝜙𝑠 and 𝕍 (𝑁𝑠) given in (15), (17) and Lemma

3 respectively, we conclude to (𝐹 𝑠 − 𝜙𝑠)∕
√
𝕍 (𝐹𝑠) → 0 a.s. as 𝑛 → ∞ because

−2𝑑(𝑎 + 𝑏) < 0, with 𝑑 = 𝑑𝑠
𝑢, 𝑒

𝑠
𝑢 or 1. ■

5.4. Proof of Lemma 2

Proof. Let us show that �̂� (𝐹𝑠)∕𝕍 (𝐹𝑠) → 1 a.s., as 𝑛 → ∞. First, observe that
according to (18), we can write:

𝕍 (𝑁𝑠) =
∑

𝑡∈{𝑠}∪2(𝑠)
𝔼(𝑁𝑡) − 𝔼(𝑁𝑠)2 = 𝑐𝑠𝜙𝑠 +

∑
𝑡∈2(𝑠)

𝑐𝑡𝜙𝑡 − 𝑐2𝑠𝜙
2
𝑠 ,

where 2(𝑠) denotes here the set of super-motifs of 𝑠 which are formed by two
overlapping occurrences of 𝑠. Then considering �̂� (𝑁𝑠) its plug-in version, mean-

ing 𝐹 𝑠 replaces 𝜙𝑠, we get

�̂� (𝑁𝑠) − 𝕍 (𝑁𝑠) = 𝑐𝑠(𝐹 𝑠 − 𝜙𝑠) +
∑

𝑡∈2(𝑠)
𝑐𝑡(𝐹 𝑡 − 𝜙𝑡) − 𝑐2𝑠 (𝐹

2
𝑠 − 𝜙2

𝑠).
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𝑠 1

⚪

◻

𝑐𝑠 𝑚𝑛

𝜙𝑠 𝜙1

𝑠 2 3

⚪

◻ ◻
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4
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2
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◻

⚪ ⚪ ⚪

◻ ◻

⚪ ⚪ ⚪

◻ ◻

⚪ ⚪ ⚪

◻ ◻
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◻ ◻
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𝑚

4
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6
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𝑚

3
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𝑛

2

)
3
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𝑚
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𝑛

2
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6
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𝑚

3
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𝑛
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2
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2
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4
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2
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6
1

𝑠 13 14 15 16 17

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪
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𝑐𝑠 6
(
𝑚

2

)(
𝑛
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𝑚
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𝑛
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)
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2
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2
2∕𝜙

4
1 𝛾23𝜆

3
2∕𝜙

6
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Fig 7. Bipartite motifs of size 2, 3, 4 and 5 as given in Simmons et al. (2019b).

Now we use Lemma 1 stating that, under the B-EDD model and condition
𝑎 + 𝑏 < 2∕𝑑𝑠

+, 𝐹 𝑠 − 𝜙𝑠 = 𝑜(
√
𝕍 (𝐹𝑠)) for all motif 𝑠 and the continuous mapping

theorem, to obtain that

�̂� (𝑁𝑠) − 𝕍 (𝑁𝑠) = 𝑐𝑠𝑜(
√
𝕍 (𝐹𝑠)) +

∑
𝑡2(𝑠)

𝑐𝑡𝑜(
√
𝕍 (𝐹𝑡)) − 𝑐2𝑠 𝑜(𝕍 (𝐹𝑠))
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𝑠 18 19 20 21 22 23

⚪ ⚪⚪ ⚪ ⚪

◻

⚪ ⚪⚪ ⚪

◻ ◻

⚪ ⚪⚪ ⚪

◻ ◻

⚪ ⚪ ⚪ ⚪

◻ ◻
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◻ ◻
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𝑠 24 25 26 27 28 29
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◻ ◻ ◻
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◻ ◻ ◻
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◻ ◻ ◻

⚪ ⚪ ⚪

◻ ◻ ◻

𝑠 36 37 38 39 40 41

⚪ ⚪ ⚪

◻ ◻ ◻
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◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻ ◻

𝑠 42 43 44

⚪ ⚪

◻ ◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻ ◻

⚪

◻ ◻ ◻ ◻

Fig 8. Bipartite motifs of size 6 as given in Simmons et al. (2019b).

= 𝑜(
√
𝕍 (𝑁𝑠)) +

∑
𝑡∈2(𝑠)

𝑜(
√
𝕍 (𝑁𝑡)) − 𝑜(𝕍 (𝑁𝑠)). (20)

Let us discuss now the order of (�̂� (𝑁𝑠)−𝕍 (𝑁𝑠))∕𝕍 (𝑁𝑠). The first and last terms
of (20) divided by 𝕍 (𝑁𝑠) obviously vanish. When 𝑡 ∈ 2(𝑠), we refer to the order
of magnitude of 𝕍 (𝑁𝑠) given in Lemma 3 and its proof (see (𝑖)-(𝑖𝑖)-(𝑖𝑖𝑖)) to get

that
√
𝕍 (𝑁𝑡)∕𝕍 (𝑁𝑠) vanishes under condition 𝑎+𝑏 < (𝑝𝑠+𝑞𝑠)∕𝑑𝑠

+. We can finally

conclude to �̂� (𝐹𝑠)∕𝕍 (𝐹𝑠) → 1 a.s., as 𝑛 → ∞ under condition of Theorem 1. ■
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