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Abstract. In this paper, we study the topological spectrum of weighted Birk–

hoff averages over aperiodic and irreducible subshifts of finite type. We show

that for a uniformly continuous family of potentials, the spectrum is continuous
and concave over its domain. In case of typical weights with respect to some

ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in

case of full shift and under the assumption that the potentials depend only on
the first coordinate, we show that our result is applicable for regular weights,

like Möbius sequence.

1. Introduction. Let T : X 7→ X be a measure preserving transformation of the
standard Borel probability space (X,B, ν). The well-known Theorem of Birkhoff
states that for any f ∈ L1(X,B, ν), the limit

lim
n→∞

1

n

n−1∑
k=0

f(T kx) exists for ν-almost every x.

Moreover, if ν is an ergodic measure with respect to T then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
fdν for ν-almost every x.

The “time” averages 1
n

∑n−1
k=0 f(T kx) are called the Birkhoff averages. If T is

uniquely ergodic then for a continuous potential f ∈ C(X), the limit

limn→∞
1
n

∑n−1
k=0 f(T kx) exists for all x ∈ X and converges to a constant. That

is, there is no multifractal behaviour. However, if the system (X,T ) has a large
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family of ergodic measures (for example, a full shift), one may expect that the limit
of the Birkhoff averages can take a wide variety of values. It is a natural question to
ask, how large (for example, topological entropy, Hausdorff or packing dimension)
is the set of points in X for which the Birkhoff average converges to a prescribed
value α? It leads to the multifractal analysis and there has been a considerable
amount of works on this.

As far as we know, the first work is due to Besicovitch [4] where he studied the
Hausdorff dimension of sets given by the frequency of digits in dyadic expansions.
Then it was subsequently extended by Eggleston [7]. For further results on digit
frequencies, see Barreira, Saussol and Schmeling [2]. For multifractal analysis of
Birkhoff averages, we refer to [12, 14, 24, 28, 18, 16, 13, 3] and references therein.

Let X be a compact metric space, let T : X 7→ X be a continuous transformation,
and let ϕ : X 7→ R be a continuous potential. Takens and Verbitskiy [29] showed
under the condition that the system (X,T ) has specification that for an α ∈ R, the
topological entropy of the set

E(α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑
k=0

ϕ(T kx) = α

}
equals to the Legendre transform of the topological pressure, which is equal to the
supremum of the entropy of all invariant and ergodic measures for which the “space”
average (i.e. the integral of ϕ) equals to α.

In this paper, we are interested in the generalisation of the problem above for
weighted Birkhoff averages. Let w = {wk}k∈N be a sequence of bounded reals and
let ϕ : X 7→ Rd be a continuous potential and let α ∈ Rd. Is it possible to determine

htop

({
x ∈ X : lim

n→∞

1

n

n−1∑
k=0

wkϕ(T kx) = α

})
=?

Weighted Birkhoff averages were studied since 1940’, since the celebrated The-
orem of Wiener and Wintner. Since then several generalisations of the weighted
ergodic theorems appeared, see for example [8, Chapter 21]. The first study of
weighted Birkhoff averages in the context of spectrum was by Fan [9]. Lately, there
were an additional motivation for this problem by Sarnak’s conjecture [27]. Let us
recall the definition of the Möbius sequence, µ : N 7→ {−1, 0, 1},

µ(n) =

{
(−1)k if n is a product of k distinct primes,

0 if there exists a ≥ 2 such that a2|n.

Sarnak’s conjecture [27] claims that if T : X 7→ X is continuous over the compact
metric space X with topological zero entropy then for every x ∈ X and every
continuous potential ϕ : X 7→ R

lim
n→∞

1

n

n−1∑
k=0

µ(k)ϕ(T kx) = 0.

Even though Sarnak’s conjecture has been verified for various special dynamical
systems (e.g. rotations on the circle, automorphism of the torus with entropy zero
etc.), it is still widely open in general. We refer to [19] for a survey of many recent
results on Sarnak conjecture. El Abdalaoui, Ku laga-Przymus, Lemańczyk and de
la Rue [1] showed Birkhoff’s type ergodic theorem with Möbius weight.
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Theorem ([1]). Let T be an automorphism of a standard Borel probability space
(X,B, ν) and let f ∈ L1(X,B, ν). Then, for ν-almost every x ∈ X, we have

lim
n→∞

1

n

n−1∑
k=0

µ(k)f(T k(x)) = 0.

Fan [10] proved a similar result for a more general family of sequences, like
Davenport’s type. Hence, the usual method of calculating the spectrum for weighted
Birkhoff averages, that is, to show that it is equal to the supremum of the entropy
of invariant measures, is not applicable. This paper is devoted to present a method,
which allows us to calculate the spectrum. Recently, Fan [11] studied the same
question, but with strictly different methods. We will point out the main differences
between our and his results.

2. Results. Let A = {1, . . . ,K} be a finite alphabet, and let Σ = AN. Let us
denote the left-shift operator on Σ by σ. Denote Σn the set of n-length finite word.
Moreover, denote Σ∗ the set of all finite prefixes of the infinite words in Σ. For
an i = (i0, i1, . . .) ∈ Σ and m > n ≥ 0 let i|mn = (in, . . . , im) be the subword of i
between the positions n and m, and for short denote by i|n the first n element of
i, i.e. i|n = i|n−1

0 . For an i ∈ Σ∗, denote |i| the length of i and let [i] denote the
corresponding cylinder set, that is, [i] := {j ∈ Σ : j||i| = i}. We use l(·) to denote
the level of cylinder. Moreover, The space Σ is clearly metrisable with metric

d(i, j) = e−min{n≥0:in 6=jn}. (2.1)

In some cases, we extend our interest to a special family of σ-invariant compact
sets. Let A be a K ×K matrix with entries 0, 1, and we say that the set ΣA ⊆ Σ
is subshift of finite type if

ΣA = {i = (i0, i1, . . .) ∈ AN : Aik,ik+1
= 1 for every k = 0, 1, . . .}.

We call the matrix A the adjacency matrix. Let us denote the set of admissible
words with length n (i.e. n-length subwords of some element in ΣA) by ΣA,n and
denote ΣA,∗ the set of all admissible words. Without loss of generality, we may
assume that ΣA,1 = A. Moreover, we say that ΣA is aperiodic and irreducible if
there exists r ≥ 1 such that every entry of Ar is strictly positive.

2.1. Topological entropy. Before we turn to our main results, let us recall here
the definition of topological entropy on the shift space. Let Σ = AN be the symbolic
space. Let E ⊂ Σ. Define

Hsr(E) := inf
α

∑
C∈α

e−sl(C)

where α is taken over all covers consisting of cylinders of levels large than r. Clearly,
Hsr(E) is increasing as a function of r. We define

Hs(E) := lim
r→∞

Hsr(E) ∈ [0,+∞].

The topological entropy of E is the value where the above limit jumps from +∞
to 0, that is,

htop(E) := inf{s ≥ 0 : Hs(E) < +∞}.
An upper bound of htop(E) is given by

htop(E) ≤ lim inf
n→∞

1

n
log #{i ∈ Σn : [i] ∩ E 6= ∅}. (2.2)
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In fact, the reason is that we can always take a cover with cylinders of level n when
estimating Hsn(E). If E is a closed σ-invariant set, then the equality holds (see
for example [22, Theorem 2.6]). However, the equality does not necessarily hold in
general, because there might exist a better cover (in the sense that we could get
smaller value of

∑
C∈α e

−sl(C)) than covers consisting of cylinders of level n.
To get the lower bound, one has a version of Frostman Lemma as follows.

Lemma 2.1. Let E ⊂ Σ. Suppose that there exists a probabilistic measure µ on
E satisfying that there is a constant c such that for every cylinder C, we have
µ(C ∩ E) ≤ ce−sl(C). Then htop(E) ≥ s.

2.2. Continuity of the entropy. The first aspect of the study is the continuity
of the entropy in a more general setting than weighted Birkhoff averages. That is,
let ΣA be an aperiodic and irreducible subshift of finite type and let φi : ΣA → R
be a sequence of continuous potentials. We say that the sequence of potentials {φi}
are uniformly equicontinuous if

ρ(1)
n := sup

i
varn(φi), (2.3)

is finite for every n and converges to 0 as n tends to ∞, where

varn(φ) := sup
i∈Σn

sup
j,k∈[i]

{|φ(j)− φ(k)|}.

For i ∈ ΣA, let

A(i) := lim sup
n→∞

1

n

n−1∑
i=0

φi(σ
ii),

A(i) := lim inf
n→∞

1

n

n−1∑
i=0

φi(σ
ii).

Moreover, if the limit exists let

A(i) := lim
n→∞

1

n

n−1∑
i=0

φi(σ
ii).

Given α ≤ β ∈ R, let

LA(α, β) = {i ∈ ΣA : A(i) = α and A(i) = β}.

For short, let LA(α) := LA(α, α). Now we state our first main result.

Theorem 2.2. Let ΣA ⊆ Σ be an aperiodic and irreducible subshift of finite type.
For every sequence φi : ΣA 7→ R of uniformly equicontinuous potentials, the function
α 7→ htop(LA(α)) is continuous and concave over its domain, which is a (possibly
empty) closed interval.

In his paper, Fan [11] gave upper and lower bounds for htop(LA(α)) in case of
full shift by using a generalized topological pressure generated by the sequence φi.
If the pressure is sufficiently smooth then these bounds agree.

It is a natural question how large is the set of irregular points, that is, let

D :=

{
i ∈ ΣA : lim

n→∞

1

n

n−1∑
i=0

φi(σ
ii) does not exists

}
.
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Theorem 2.3. Let ΣA ⊆ Σ be an aperiodic and irreducible subshift of finite type.
Let φi : ΣA 7→ R be a sequence of uniformly equicontinuous potentials. Assume
that A(i) takes at least two possible values, that is, the domain of the function
α 7→ htop(LA(α)) is a non-trivial interval. Then

htop(D) = htop(ΣA).

2.3. Random weights. Let us now extend our symbolic space Σ = AN. Namely,
Let Λ = {1, . . . , N} be another finite alphabet, and let Ω = ΛN be compact left-
shift invariant subsets. Let us define the extended symbolic space Γ := Ω × Σ.
As an abuse of notation, we denote the left-shift operator on Ω, and Γ by σ too.
Adapting the notations for Ω and Γ, let Ωn and Γn be the set of n-length finite
words, and denote Ω∗ and Γ∗ the set of all finite words. The spaces Ω,Σ and Γ
are clearly metrisable with the same metric defined in (2.1). For short, denote
i ∧ j = min{n ≥ 0 : in 6= jn}.

For an aperiodic and irreducible subshift of finite type ΣA ⊆ Σ, the set ΓA =
Ω × ΣA is an aperiodic and irreducible subshift of finite type as well. Denote the
set of finite admissible words by ΓA,∗ and that of words of length n by ΓA,n. Let
f : ΓA 7→ Rd be a continuous potential. For a given sequence w ∈ Ω and α ∈ Rd let

Ew(α) :=

{
i ∈ ΣA : lim

n→∞

1

n

n−1∑
k=0

f(σkw, σki) = α

}
.

Our goal is to determine the topological entropy of Ew(α), at least for the case of
typical w ∈ Ω. In order to do so, we need to introduce further regularity properties
on f and on the choice of w.

We say that the potential f : Ω× ΣA 7→ Rd has summable variation if

∞∑
k=0

max
(w,i),(z,j)∈ΓA,∗:

(w,i)∧(z,j)=k

|f(w, i)− f(z, j)| <∞.

Let ν be a σ-invariant ergodic measure on Ω. We say that ν is quasi-Bernoulli if
there exists C > 0 such that for every w, z ∈ Ω∗ with wz ∈ Ω∗

C−1ν([w])ν([z]) ≤ ν([wz]) ≤ Cν([w])ν([z]).

Denote by Π the natural projection Π: Ω × Σ 7→ Ω, that is, Π(w, i) = w. Denote
by Eν(Γ), Eν(ΓA) the set of ergodic σ-invariant measures on Γ and ΓA respectively,
whose marginal is ν, i.e., Π∗µ = ν. Denote by Mν(Γ) and Mν(ΓA) the set of
σ-invariant measures on Γ and ΓA with marginal ν. Let

PA = {α ∈ Rd : there exists µ ∈Mν(ΓA) such that

∫
fdµ = α}. (2.4)

Denote the relative interior of PA by PoA.
Moreover, let us define the conditional pressure of a potential f : ΓA 7→ R by

Pν(f) = lim
n→∞

1

n

∫
log

∑
i∈Σn

sup
j∈[i]

eSnf(w,j)dν(w), (2.5)

where Snf = f + f ◦ σ + · · ·+ f ◦ σn−1 and log is taken in the base e. Throughout
the paper, we will use the convention that 0 · log 0 = 0. Moreover, we note that we
define the supremum over an empty set as −∞ and the topological entropy of an
empty set as −∞. Now, we can formalise our second theorem.
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Theorem 2.4. Let ΣA ⊆ Σ be an aperiodic and irreducible subshift of finite type,
and let ν be a quasi-Bernoulli σ-invariant ergodic measure on Ω. Moreover, let
f : Ω × ΣA 7→ Rd be a continuous map with summable variation. Then for every
α ∈ PoA and for ν-almost every w ∈ Ω,

htop(Ew(α)) = sup{hµ : µ ∈ Eν(ΓA) and

∫
fdµ = α} − hν

= sup{hµ : µ ∈Mν(ΓA) and

∫
fdµ = α} − hν

= inf
p∈Rd

Pν(〈p, f − α〉).

Furthermore, there exists α0 ∈ Rd such that for ν-almost every w,

htop(Ew(α0)) = htop(ΣA). (2.6)

Combining Theorem 2.2 and Theorem 2.4 we get the following stronger result
for real valued potentials, which shows that for a typical sequence of weights it is
possible to calculate the whole spectrum.

Theorem 2.5. Let ΣA ⊆ Σ be an aperiodic and irreducible subshift of finite type,
and let ν be a quasi-Bernoulli σ-invariant ergodic measure on Ω. Moreover, let
f : Ω× ΣA 7→ R be a continuous map with summable variation. Then for ν-almost
every w ∈ Ω,

htop(Ew(α)) = sup{hµ : µ ∈ Eν(ΓA) and

∫
fdµ = α} − hν

= sup{hµ : µ ∈Mν(ΓA) and

∫
fdµ = α} − hν

= inf
p∈R

(Pν(p · f)− α · p) for every α ∈ R.

Moreover, for ν-almost every w, the map α 7→ htop(Ew(α)) is continuous and
concave over its domain PA.

Fan [11] proved some similar results. Namely, he showed a version of Theorem 2.5
for full shifts with the choice f(σkw, σki) = wkϕ(σki), where (wk)k is an ergodic
sequence of real random variables or deduced from a uniquely ergodic dynamical
system, and ϕ depends only on a finite number of coordinates. In this cases, he
shows analyticity of the conditional topological pressure, while our result only gives
continuity.

2.4. Potentials depending on the first coordinate. Let us assume that f : Ω×
Σ 7→ R depends only on the first symbol, that is, f(w, i) = fw0,i0 . Then for a w ∈ Ω,

Ew(α) :=

{
i ∈ Σ : lim

n→∞

1

n

n−1∑
k=0

fwk,ik = α

}
.

Let q = (q1, . . . , qN ) ∈ SN be a probability vector, where SN denotes the (N−1)-
dimensional simplex. We say that w ∈ Ω is q-frequency regular, if

lim
n→∞

#{k ∈ [0, n] ∩ Z : ωk = i}
n

= qi for every i = 1, . . . , N. (2.7)

Notice that there is a bijection between SN and the probability Bernoulli measure
on Ω. In this case, we choose ν = νq to be the Bernoulli measure on Ω. Then for
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the potential f : Γ 7→ R, the conditional pressure has the form

Pq(〈p, f − α〉) =

N∑
j=1

qj log

K∑
i=1

e〈p,fj,i−α〉. (2.8)

Denote by Bq(Γ) the set of all Bernoulli measures on Γ with marginal ν. That

is, let (pj,i)
N,K
j=1,i=1 ∈ Bq(Γ) ⊂ SNK such that

∑K
i=1 pj,i = qj . Our third main result

is as follows.

Theorem 2.6. Let w ∈ {1, . . . , N}N be a q-frequency regular sequence with fre-
quencies (q1, . . . , qN ). Then for every α ∈ R.

htop(Ew(α)) = sup
(pj,i)∈Bq(Γ)

−∑
i,j

pj,i log pji :
∑
i,j

pj,ifj,i = α

+

N∑
i=1

qi log qi

= inf
p∈R

{
Pq(p · f)− pα

}
.

Comparing Theorem 2.4 with Theorem 2.5, in the general setup of Theorem 2.4
we are only able to show that for any possible value of α one can find a full measure
set Ωα, which might depend on α, while in Theorem 2.5 in the one dimensional case,
we manage to show that there exists a universal full measure set Ω, for which any
w ∈ Ω the spectrum α 7→ htop(Ew(α)) can be determined. Comparing Theorem 2.6
with Theorem 2.5, we can construct a Bernoulli measure with probabilities q = (qi)i,
for which the q-frequency regular sequences will be a set of full measure. That is,
we can explicitly construct the set Ω of full measure for which the spectrum can be
determined. In this sense Theorem 2.6 is a strengthening of Theorem 2.5 for this
particular class of systems.

Fan [11] also gave a similar result in his recent paper. Namely, Fan shows Theo-
rem 2.6 under a weaker condition that ϕ depends on finitely many coordinates but
under the stronger assumption that it takes only values −1, 1.

Now we state the corresponding version of Theorem 2.3 for the frequency regular
case. Similarly, let

Dw =

{
i ∈ Σ : lim

n→∞

1

n

n−1∑
k=0

fwk,ik does not exists

}
.

Theorem 2.7. Let w ∈ {1, . . . , N}N be a q-frequency regular sequence with fre-

quencies (q1, . . . , qN ). Suppose that gi =
∑N
j=1 qjfj,i is not constant as function of

i. Then

htop(Dw) = logK.

2.5. Examples: weighted Birkhoff averages with frequency regular weights.
Now, we show examples and demonstrate our result on the spectrum of real valued
potentials depending on the first coordinate and frequency regular weights. Here
we assume again that our potentials are supported on the whole spaces Σ = AN,
Ω = ΛN and the potential ϕ : Σ 7→ R and the weight λ : Ω 7→ R depend only on the
first symbol, that is, ϕ(i) = ϕi0 and λ(w) = λw0 . Then for a w ∈ Ω, let

Ew(α) :=

{
i ∈ Σ : lim

n→∞

1

n

n−1∑
k=0

λwkϕik = α

}
.
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Let q = (q1, . . . , qN ) ∈ SN be a probability vector, and let w ∈ Ω be an arbitrary
q-frequency regular sequence. Denote by ϕmax = max{ϕi : 1 ≤ i ≤ K} and
ϕmin = min{ϕi : 1 ≤ i ≤ K}. To avoid the trivial case, we assume ϕmax 6= ϕmin.
Finally, let

I =

ϕmin

∑
λj>0

qjλj + ϕmax

∑
λj<0

qjλj , ϕmax

∑
λj>0

qjλj + ϕmin

∑
λj<0

qjλj

 . (2.9)

Now we show a compatible form of htop(Ew(α)) in order to compute some examples.

Example 2.8. Let w ∈ {1, . . . , N}N be a q-frequency regular sequence with frequen-
cies (q1, . . . , qN ). Then for every α ∈ I

htop(Ew(α)) =

N∑
j=1

qj log

K∑
i=1

ep(λjϕi−α),

where p is the unique solution of the equation

N∑
j=1

qjλj

∑N
i=1 ϕie

pλjϕi∑N
i=1 e

pλjϕi
= α. (2.10)

Moreover, if α /∈ I, infp Pν(fp) = −∞, that is, there is no p∗ ∈ Rd such that
infp Pν(fp) = Pν(fp∗).

Proof. Let α ∈ I. For sake of simplicity, denote P (p) = Pq(p(λϕ − α)). It is easy

to check by (2.8) that

P (p) =

N∑
j=1

qj log

N∑
i=1

epλjϕi − pα.

It follows that

P ′(p) =

N∑
j=1

qjλj

∑N
i=1 ϕie

pλjϕi∑N
i=1 e

pλjϕi
− α,

and

P ′′(p) =

N∑
j=1

qjλ
2
j

(
∑N
i=1 ϕ

2
i e
pλjϕi)(

∑N
i=1 e

pλjϕi)− (
∑N
i=1 ϕie

pλjϕi)2

(
∑N
i=1 e

pλjϕi)2
.

Since ϕmax 6= ϕmin, by Cauchy-Schwarz inequality, we see that P ′′(p) > 0 for all
p ∈ R. A simple computation shows that

P ′(−∞) = ϕmin

∑
λj>0

qjλj + ϕmax

∑
λj<0

qjλj − α < 0,

and

P ′(+∞) = ϕmax

∑
λj>0

qjλj + ϕmin

∑
λj<0

qjλj − α > 0.

Thus P ′(p) = 0 has a unique solution at which P achieves minima.
Now let α /∈ I. It is easy to calculate that

P (−∞) = lim
p→−∞

p(ϕmin

∑
λj>0

qjλj + ϕmax

∑
λj<0

qjλj − α),
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and

P (+∞) = lim
p→−∞

p(ϕmax

∑
λj>0

qjλj + ϕmin

∑
λj<0

qjλj)− α).

Thus infp P (p) = −∞.

Example 2.9. Let us consider again the Möbius sequence with the potential ϕ(i) =
i0 for i ∈ Σ = {0, . . . , N − 1}N. The Möbius function is frequency regular with

lim
n→∞

#{0 ≤ i ≤ n− 1 : µ(i) = ±1}
n

=
3

π2
and

lim
n→∞

#{0 ≤ i ≤ n− 1 : µ(i) = 0}
n

= 1− 6

π2
,

see for example [6]. As a special case of Example 2.8 for ϕ : {0, . . . , N − 1}N 7→ R
with ϕ(i) = i0, we get

htop(Eµ(α)) =

(
1− 6

π2

)
log(N) +

6

π2
log

(
epN − 1

ep − 1

)
−
(

(N − 1)
3

π2
+ α

)
p,

where H(p) = −
∑
i pi log pi. and p is the unique solution of

(e(N+1)p − 1)(N − 1)− (N + 1)(eNp − ep)
(eNp − 1)(ep − 1)

=
π2α

3
, for α ∈

[
−(N − 1)3

π2
,

(N − 1)3

π2

]
.

A corollary of the above results is that non-degenerate weights and potentials
give us non-degenerate weighted spectrum.

Corollary 2.10. Let w ∈ Ω be a frequency regular sequence with frequencies

(q1, . . . , qN ) with non-degenerate weights, i.e.
∑N
j=1 qj |λj | > 0. Let ϕ : Σ 7→ R

be a potential depending only on the first coordinate. Then there exists α0 ∈ I such
that htop(Ew(α0)) = logK. Moreover, the domain I is a non-degenerate closed
interval unless the potential ϕ(i) = ϕi0 is constant. In particular, either the limit of
the weighted Birkhoff average at every point exists and equals α0 or the set of points
at which the limit of the weighted Birkhoff average does not exist has full topological
entropy.

Proof. The first assertion follows by Theorem 2.6 for fj,i = λjϕi with the choice

pj,i =
qj
K and α0 =

(∑K
i=1

ϕi
K

)(∑N
j=1 qjλj

)
. Moreover, (2.9), Theorem 2.8 and the

continuity of the spectrum give the second claim by some algebraic manipulation.
The proof can be finished by applying Theorem 2.7.

The difference between the usual Birkhoff averages and weighted Birkhoff aver-
ages is shown by the following example:

Example 2.11. On the full shift system Σ = {0, 1}N there exist a potential ϕ : Σ 7→
R depending only on the first symbol and a bounded sequence of weights w = (wi)i
(which is not frequency regular) such that

– The α = 0 is the only possible value of the limit of a weighted Birkhoff average,
– 0 < htop(Ew(0)) < log 2. At all the points in Σ \ Ew(0) the limit of the

weighted Birkhoff average does not exist.

In particular, to have non-degenerate weighted spectrum, the frequency regular-
ity of the weights is somewhat necessary. The proof of the example will be given in
the last section.
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Structure of paper. In Section 2.1, we recall the definition and basic properties
of topological entropy. In Section 3, we prove Theorem 2.2 and Theorem 2.3. In
Section 4, we prove Theorem 2.4 and Theorem 2.5. In Section 5, as an application
of Theorem 2.2 and Theorem 2.4, we show Theorem 2.6 and Theorem 2.7. We
remark that the proof of Theorem 2.2 and that of Theorem 2.4 are independent.
Thus the readers who are interested in Theorem 2.4 may read directly Section 4.

3. Continuity and concavity of the spectrum. Let us recall the conditions and
notations of Theorem 2.2. That is, we assume that ΣA ⊆ Σ = AN is an aperiodic
and irreducible subshift of finite type. Moreover, let φi : ΣA → R be a sequence of
uniformly equicontinuous potentials. For i ∈ ΣA, let

A(i) := lim sup
n→∞

1

n

n−1∑
i=0

φi(σ
ii) and A(i) := lim inf

n→∞

1

n

n−1∑
i=0

φi(σ
ii).

Given α ≤ β ∈ R, let

LA(α, β) = {i ∈ Σ : A(i) = α and A(i) = β}.
For short, let LA(α) := LA(α, α). Define

Bnm(i) :=

n−1∑
i=m

φi(σ
ii)

and Anm(i) = 1
n−mB

n
m(i). Let

ρ(2)
n := sup

i∈ΣA,n

sup
j,k∈[i]

|An0 (j)−An0 (k)|,

for m,n ∈ N with n > m. It is clear that

ρ(2)
n ≤

1

n

n∑
i=1

ρ
(1)
i . (3.1)

Since ρ
(1)
n converges to 0 as n tends to ∞, so does ρ

(2)
n .

Lemma 3.1. Let ε > 0 and N ∈ N. Suppose that |An0 (i) − α| < ε for all n > N .
Then for m,n > N we have

|Anm(i)− α| ≤ εn+m

n−m
.

Proof. The statement follows simply from (n−m)Anm(i) = nAn0 (i)−mAm0 (i).

We remind that for an aperiodic and irreducible subshift of finite type ΣA there
exists a constant r such that for any two admissible words i, j ∈ ΣA,∗ there exists a
word k of length r such that the concatenation ikj is admissible, moreover one can
choose k depending only on the last symbol of i and the first symbol of j. We fix r
for the rest of the section.

We will need the following technical lemma. Note that although the sequence φi
is defined only on ΣA ⊆ Σ, it can be naturally extended to Σ in such a way that
the sequence remains uniformly equicontinuous. For instance, for every i ∈ Σ let

n(i) = inf{n ≥ 0 : i|n0 ∈ ΣA,∗}, that is, i|n(i)
0 is the longest admissible prefix of i and

let φi(i) := max
j∈[i|n(i)

0 ]
φi(j). We consider a map π in the following lemma, which

illustrates that the concatenation of a sequence of admissible words can be changed
into an admissible infinite sequence without changing the weighted Birkhoff average.
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Lemma 3.2. Let (qj)
∞
j=1 be an increasing sequence of integers satisfying qj/j →∞

and qj+1 − qj > 2r. Let π : Σ→ Σ be a map satisfying the following properties for
every n ∈ N:

i) if i|n0 = j|n0 then (πi)|qj0 = (πj)|qj0 for j such that qj < n ≤ qj+1,
ii) if i|nn 6= (πi)|nn then n ∈ {qj + 1, . . . , qj + r} for some j.

Then there exists a sequence ρ
(3)
n ↘ 0 such that for every i ∈ Σ and for every n

|An0 (πi)−An0 (i)| < ρ(3)
n .

Moreover, for every X ⊂ Σ

htop(π(X)) = htop(X).

Proof. Taking j such that qj < n ≤ qj+1 we get

|An0 (πi)− An0 (i)| ≤
(j + 1)r

n
max

i≥0,i∈AN
|φi(i)|+

1

n

j∑
i=1

qi−qi−1−r∑
`=0

ρ
(1)
` +

1

n

qj+1−qj−r∑
`=max{qj+1−qj−r−n,0}

ρ
(1)
` ,

≤
(j + 1)r

n
max

i≥0,i∈AN
|φi(i)|+

1

n

j∑
i=1

(qi − qi−1 − r)ρ(2)
qi−qi−1−r

+ ρ
(2)
n .

Observe that 1
n

∑j
i=1(qi − qi−1 − r)ρ(2)

qi−qi−1−r → 0 as n → ∞. Indeed, since qj −
qj−1 − r →∞ as j →∞, for every ε > 0 there exists J > 0 so that for every i ≥ J
ρ

(2)
qi−qi−1−r < ε and thus, 1

n

∑j
i=1(qi− qi−1− r)ρ(2)

qi−qi−1−r ≤
qj−qJ−1

n ε+
qJρ

(2)
1

n . This
proves the first assertion.

To prove the second assertion, we need a lower and an upper bound. For the
upper bound we notice that the image under π of a cylinder whose level is not of
form {qj +1, . . . , qj +2r} is contained in a cylinder of the same level. As for any set
X we can construct a family of covers realizing the topological entropy using only
cylinders of levels not of form {qj + 1, . . . , qj + 2r}, the images of those cylinders
will give us a family of covers of π(X) realizing the same topological entropy.

For the lower bound, let µ be a measure supported on X such that for every
cylinder C of level `(C) = n we have

µ(C ∩X) ≤ e(htop(X)+ε)`(C).

Then if n is not of form {qj + 1, . . . , qj + 2r} but qj < n ≤ qj+1 then for every
cylinder C ′ of level n we have

π∗(µ)(C ′) ≤ K(j+1)re(htop(X)+ε)`(C).

Intuitively speaking but not quite precisely, the map π acting on initial words
of length ≤ qj+1 is at most K(j+1)r-to-1. As j = o(qj), the factor Kr(j+1) is
subexponential in qj and thus we get the lower bound from Lemma 2.1.

The proof of Theorem 2.2 relies on the following technical proposition. It is
a weighted version of the w-measure construction in Gelfert and Rams [20, Sec-
tion 5.2]. In simple but very vague words, we have some collections of sequences
with given weighted Birkhoff averages αi and we concatenate proper parts of them
to construct ’Frankenstein’ sequences with weighted Birkhoff average limαi. Impor-
tant part is that if our starting collections were large (of large topological entropy),
we can do it in a way that the constructed set of sequences also has large topological
entropy.
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Proposition 3.3. Let εn > 0 and αn be sequences of reals such that
lim supn→∞ αn = αmax, lim infn→∞ αn = αmin and limn→∞ εn = 0. Moreover,
assume that for every n ≥ 1 there exists a set Mn ⊂ ΣA and a positive integer
Tn > 0 such that for every i ∈Mn and m ≥ Tn∣∣∣∣∣ 1

m

m−1∑
k=0

φk(σki)− αn

∣∣∣∣∣ < εn.

Then htop(LA(αmin, αmax)) ≥ lim infn→∞ htop(Mn).
Moreover, in case limn→∞ αn = α then there exists a set M ⊂ LA(α) such that

the convergence An0 (i)→ α is uniform on M and htop(M) ≥ lim supn→∞ htop(Mn).

For a subset M ⊂ Σ, we denote by M [a, b] = {i ∈ Ab−a+1 : ∃j ∈ M, j|ba = i}.
That is, the collection of (b−a+1)-words occurring in certain element of M starting
at place a and ending at place b. Moreover, we use the notation Zba(M) = #M [a, b−
1] for convenience. It is clear that for a < b < c, we have Zca(M) ≤ Zba(M) ·Zcb (M).

Lemma 3.4. Let M be a set with htop(M) > 0. Then for every h < htop(M) there
exists a sequence (zi)i∈N of N such that for every zi and for every n > zi we have

logZnzi(M) > (n− zi)h.

Proof. Indeed, if it fails then we would be able to find an increasing subsequence
(ni)i∈N of N such that logZ

ni+1
ni (M) ≤ (ni+1−ni)h, and by summing them up this

would imply logZni0 (M) ≤ (ni − n0)h+ logZn0
0 (M) , hence htop(M) ≤ h, which is

a contradiction.

Proof of Proposition 3.3. Let Mk be the sequence of subsets and Tk as in the as-
sumption. Moreover, let infk htop(Mk) > δ > 0 be arbitrary but fixed. Then by
Lemma 3.4, for every k ∈ N there exists a sequence (zki )i∈N such that

logZnzki
(Mk) > (n− zki )(htop(Mk)− δ) for every n ≥ zki . (3.2)

We choose a subsequence (Nk)k∈N of N satisfying the following properties:

• N0 = 0, Nk−1 > Tk;
• Nk ∈ (zk+1

i )i∈N;

• limk→∞
Nk+1∑k
j=1 Nj

=∞;

• logZn0 (M1) ≥ n(htop(M1)− δ) for all n ≥ N1.

Now, let us define sequences 2 ≥ rk > 1 and m(k) ∈ N such that

(rk)m(k) =
Nk
Nk−1

, lim
k→∞

rk = 1 and lim
k→∞

(rk − 1)ε−1
k =∞.

Define a sequence (tki )
m(k)
i=0 by tki = b(rk)iNk−1c for i = 0, . . . ,m(k). By definition,

tkm(k) = tk+1
0 . It is easy to check that

rk −
1

Nk−1
≤
tki+1

tki
≤ rk +

2

Nk−1
for 1 ≤ i ≤ m(k)− 1.
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Finally, let

M̃ = {i ∈ AN : i|N1−1
0 ∈M1[0, N1 − 1],

i|t
k
i+1−1

tki
∈Mk[tki , t

k
i+1 − 1],∀0 ≤ i ≤ m(k)− 1,∀k ≥ 2}

= M1[0, N1 − 1]×
∞∏
k=2

m(k)−1∏
i=0

Mk[tki , t
k
i+1 − 1].

In other words, on positions 0, . . . , N1 − 1 we can put any sequence that appears
in M1. For k > 1, on positions in each [tki , t

k
i+1 − 1] we can put any sequence that

can appear (on those positions) in Mk. Note that M̃ is not necessarily a subset of
ΣA, since it might happen that these concatenations are forbidden. We will use
this set to construct one with the properties claimed in the statement, but first we

show that M̃ is a prototype of our goal set. Namely, we will first show that the set

M̃ ⊆ Σ satisfies

(i) αmin ≤ lim infn→∞An0 (i) ≤ lim supn→∞An0 (i) ≤ αmax for every i ∈ M̃ ,

(ii) htop(M̃) ≥ lim infn→∞ htop(Mn).

Consider i ∈ M̃ and n ∈ N. Take k ∈ N with Nk ≤ n < Nk+1. Let m be the
largest number such that n− tk+1

m > 0. Remark that

Bn0 (i) = BN1
0 (i) +

k∑
j=2

m(j)−1∑
`=0

B
tj`+1

tj`
(σt

j
` i) +

m−1∑
`=0

B
tk+1
`+1

tk+1
`

(σt
k+1
` i) +Bn

tk+1
m

(σt
k+1
m i).

Observe that for every tj` there exists a j ∈ Mj such that for every tj` ≤ i < tj`+1,

|φi(σii)− φi(σij)| ≤ vartj`+1−i
(φi), and thus

B
tj`+1

tj`
(σt

j
` i) =

tj`+1−1∑
i=tj`

φi(σ
ii) ≤

tj`+1−1∑
i=tj`

φi(σ
ij) +

tj`+1−1∑
i=tj`

vartj`+1−i
(φi).

Hence, by Lemma 3.1

B
n
0 (i) ≤α1N1 +

k∑
j=2

αj(Nj −Nj−1) + (n−Nk)αk+1 + ε1N1

+
k∑
j=2

m(j)−1∑
`=0

εj(t
j
`+1 + t

j
`) +

m−1∑
`=0

εk+1(t
k+1
`+1 + t

k+1
` ) + (n+ t

k+1
m )εk+1

+
k∑
j=2

m(j)−1∑
`=0

t
j
`+1
−1∑

i=t
j
`

var
t
j
`+1
−i

(φi) +

m−1∑
`=0

t
k+1
`+1
−1∑

i=t
k+1
`

var
t
k+1
`+1
−i

(φi) +

n−1∑
i=t

k+1
m

var
t
k+1
m+1

−i
(φi).

Observe that

m(j)−1∑
`=0

εj(t
j
`+1 + tj`) ≤

m(j)−1∑
`=0

εjr
`
j(rj + 1)Nj−1 ≤

3εjNj−1(r
m(j)
j − 1)

rj − 1
≤ 3εjNj
rj − 1

.
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Hence,

1

n

 k∑
j=2

m(j)−1∑
`=0

εj(t
j
`+1 + tj`) +

m−1∑
`=0

εk+1(tk+1
`+1 + tk+1

` ) + (n+ tk+1
m )εk+1


≤ 1

n

 k∑
j=2

3εj
rj − 1

Nj +
3εk+1Nk(rmk+1 − 1)

rk+1 − 1
+ (n+ tk+1

m )εk+1


≤ O(

∑k−1
j=2 Nj

Nk
) +

3εk
rk − 1

+
3εk+1(tk+1

m + 1)

n(rk+1 − 1)
+

(n+ tk+1
m )εk+1

n

≤ O(

∑k−1
j=2 Nj

Nk
) +

3εk
rk − 1

+
6εk+1

rk+1 − 1
+ 2εk+1 = o(1).

On the other hand, since ρ
(1)
i → 0 as i→∞, where ρ

(1)
i is defined in (2.3), we get

1
i

∑i
j=1 ρ

(1)
j → 0 as i→∞ and hence,

k∑
j=2

m(j)−1∑
`=0

tj`+1−1∑
i=tj`

vartj`+1−i
(φi) +

m−1∑
`=0

tk+1
`+1−1∑
i=tk+1

`

vartk+1
`+1−i

(φi) +

n−1∑
i=tk+1

m

vartk+1
m+1−i

(φi)

≤
k∑
j=2

m(j)−1∑
`=0

tj`+1−1∑
i=tj`

ρ
(1)

tj`+1−i
+

m−1∑
`=0

tk+1
`+1−1∑
i=tk+1

`

ρ
(1)

tk+1
`+1−i

+

n−1∑
i=tk+1

m

ρ
(1)

tk+1
m+1−i

≤
k∑
j=2

m(j)−1∑
`=0

(tj`+1 − t
j
`)o(1) +

m−1∑
`=0

(tk+1
`+1 − t

k+1
` )o(1) + (n− tk+1

m − 1)o(1)

= n · o(1).

The lower bound is similar, thus we get for every Nk ≤ n < Nk+1

An0 (i) =
αkNk + (n−Nk)αk+1

n
+ o(1).

This together with Nk+1/Nk → ∞ implies (i). Moreover, if αk → α, this shows

that the convergence An0 → α is uniform on M̃ . So it only remains to show (ii).
We pick arbitrarily tk` ≤ n < tk`+1 for some k ∈ N and 0 ≤ ` ≤ m(k) − 1. By

definition of M̃ and (3.2), we have

Z
tk`
Nk−1

(M̃) ≥ Zt
k
`

Nk−1
(Mk) ≥ exp((tk` −Nk−1)(htop(Mk)− δ))

The last inequality is due to the fact that Nk−1 ∈ (zki )i∈N. Similarly, we see that

ZNkNk−1
(M̃) ≥ exp((Nk −Nk−1)(htop(Mk)− δ)).
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Since M̃ [Ni−1, Ni − 1] M̃ [Nj−1, Nj − 1] are independent for i 6= j, we have

Z
tk`
0 (M̃) = Z

tk`
Nk−1

(M̃) ·
k−1∏
i=1

ZNiNi−1
(M̃)

≥ exp

(
(tk` −Nk−1)(htop(Mk)− δ) +

k−1∑
i=1

(htop(Mi)− δ)(Ni −Ni−1)

)
≥ exp

(
tk` (lim inf

i→∞
htop(Mi)− o(1)− δ)

)
. (3.3)

We define a probability measure µ as follows. For any i ∈ Σn, let k ∈ N and
0 ≤ ` ≤ m(k)− 1 be the unique integer such that tk` < n ≤ tk`+1, and let

µ([i]) =
#{A ∈M [0, tk`+1 − 1] : [i] ⊃ [A]}

Z
tk`+1

0 (M̃)

It is easy to see that µ is a well defined measure supported on M̃ . Indeed, if
|i| < tk`+1 then

∑
j∈A

µ[ij] =
∑
j∈A

#{A ∈ M̃ [0, tk`+1 − 1] : [ij] ⊃ [A]}

Z
tk`+1

0 (M̃)

=
#{A ∈ M̃ [0, tk`+1 − 1] : there exists j ∈ A such that [ij] ⊃ [A]}

Z
tk`+1

0 (M̃)

=
#{A ∈ M̃ [0, tk`+1 − 1] : [i] ⊃ [A]}

Z
tk`+1

0 (M̃)
,

and if |i| = tk`+1 then

∑
j∈A

µ([ij]) =
∑
j∈A

#{A ∈ M̃ [0, tk`+2 − 1] : [ij] ⊃ [A]}

Z
tk`+2

0 (M̃)

=
#{A ∈ M̃ [0, tk`+2 − 1] : there exists j ∈ A such that [ij] ⊃ [A]}

Z
tk`+1

0 (M̃)Z
tk`+2

tk`+1

(M̃)

=
Z
tk`+2

tk`+1

(M̃)δ
i∈M̃ [0,tk`+1−1]

Z
tk`+1

0 (M̃)Z
tk`+2

tk`+1

(M̃)
,

where with a slight abuse of notation we used the tkm(k)+1 := tk+1
1 .

By (3.3), we have that for every i ∈ M̃

lim inf
n→∞

− logµ([i|n0 ])

n
≥ lim inf

n→∞

tk`
n

(
lim inf
i→∞

htop(Mi)− o(1)− δ
)

≥ lim inf
k→∞

rk

(
lim inf
i→∞

htop(Mi)− o(1)− δ
)

= lim inf
i→∞

htop(Mi)− δ.

By Lemma 2.1, we get (ii).
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We are now almost done. We have constructed the set M̃ which has almost all the
demanded properties, the only one that is still missing is that M̃ is not necessarily
a subset of ΣA. The last step is to find a map π satisfying the assumptions of

Lemma 3.2 and such that π(M̃) ⊂ ΣA. Observe that the assertion of Lemma 3.2

will guarantee that the set M = π(M̃) will satisfy the assertion of Proposition 3.3.
It is easy enough to do. Let us put the points (tki )i,k in the increasing order and

denote this sequence by (qj) (ignoring the initial finitely many terms we can freely
assume that qj+1−qj > 2r). Observe that each sequence i|qj+1

qj+1 is an admissible word

in ΣA,∗. We can thus modify i only on positions qj+1, . . . , qj+r; j = 1, 2, . . . so that
we obtain a sequence in ΣA. Each modification on positions qj+1, . . . , qj+r can be
chosen depending only on i|qjqj−1+1 and i|qj+1

qj+r+1, that is, there exists j ∈ ΣA,r such

that i|qjqj−1+1ji|
qj+1

qj+r+1 ∈ ΣA,∗. Thus, choosing those modifications in a consistent

way we can construct a map π : Σ → Σ satisfying the assumptions of Lemma 3.2

and such that π(M̃) ⊂ ΣA.
Finally, to obtain the second part of the assertion let us consider the case when

limn→∞ αn = α. By taking a subsequence nk such that lim supn→∞ htop(Mn) =
limk→∞ htop(Mnk), and applying the previous argument for the sequences {αnk}k
and {εnk}k and {Mnk}k we get the claimed statement.

Corollary 3.5. If LA(α) 6= ∅ then for every δ > 0 there exists ∅ 6= M ⊂ LA(α)
such that htop(M) > htop(LA(α)) − δ and the convergence of An0 (i) → α on M is
uniform.

Proof. Take a sequence εn → 0 be arbitrary but fixed. Since An0 (i)→ α as n→∞
for every i ∈ L(α), there exists Nn(i) such that for every m ≥ Nn(i), |Am0 (i)−α| <
εn. For every n ≥ 1 and T ≥ 1, let

Mn,T = {i ∈ LA(α) : Nn(i) ≤ T}.

Since LA(α) =
⋃∞
T=1Mn,T we get that there exists a Tn such that htop(Mn,Tn) >

htop(L(α))− δ.
By applying Proposition 3.3 for the sequence αn ≡ α, εn and Mn := Mn,Tn , we

get that there exists a set M ⊂ LA(α) such that htop(M) ≥ lim supn→∞ htop(Mn,Tn) ≥
htop(LA(α))− δ, and the convergence is uniform on M .

Corollary 3.6. The map α 7→ htop(LA(α)) is upper semi-continuous.

Proof. Let αn → α be such that LA(αn) 6= ∅. Then we can use Corollary 3.5 to
find in each LA(αn) a large entropy subset Mn with uniform convergence of the
Birkhoff averages, then we apply Proposition 3.3 to get the assertion.

Lemma 3.7. The domain of α 7→ htop(LA(α)) is compact.

Proof. Suppose A(ik) = αk for ik ∈ ΣA, k ∈ N satisfying that αk → α as k → ∞.
We will show α ∈ D(LA). Fix ε > 0. Then there exists (Nk)k∈N of positive integers
such that for any n ≥ Nk, |An0 (ik)− αk| < εk with εk → 0. We pick two sequences
(mk)k∈N and (nk)k∈N satisfying the following conditions:

• m0 = 0, mk < nk = mk+1 − r for k ∈ N.
• nk ≥ Nk+1 for k ∈ N.
• nk−1

nk
→ 0 as k →∞.

• The set {n ∈ N : n /∈ [mk, nk],∀k} has density 0.
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Then we take an i ∈ ΣA such that i|nkmk = ik|nkmk for k ∈ N (such i exists but may
not be unique due to that ΣA is irreducible). It follows from Lemma 3.1 that for
mk ≤ n ≤ nk, we have

|An0 (i)− α| ≤ nk−1

n
|Ank−1

0 (i)− α|+ n−mk

n
|αk − α|+

r

n
+ 2εk.

Since nk−1

nk
→ 0, αk → α and r is a constant, we conclude that An0 (i) → α as

n→∞.

The following proposition is in a sense similar to Proposition 3.3. Like there, we
have some given collections of sequences with prescribed weighted Birkhoff averages
and use them to construct the large set of their ’Frankenstein’ offspring. However,
the technical process of constructing the concatenated sequences is noticeably dif-
ferent.

Proposition 3.8. The domain of f : α 7→ htop(LA(α)) is a (possibly empty) closed
convex set and f is a concave function.

Proof. Let α, α′ be in the domain of f . Assuming that LA(α) and LA(α′) are non-
empty, we want to prove that LA(pα + (1 − p)α′) is non-empty and that f(pα +
(1 − p)α′) ≥ pf(α) + (1 − p)f(α′) for all p ∈ (0, 1). Pick arbitrarily ε > 0. By
Corollary 3.5, for every ε > 0 there exist subsets M(α) ⊂ LA(α) and M(α′) ⊂
LA(α′) such that

• htop(M(α)) > f(α)− ε and htop(M(α′)) > f(α′)− ε;
• there exists an increasing sequence (Nk)k∈N such that for every i ∈M(α) and

every i′ ∈M(α′), for every k for every n > Nk we have |An0 (i)−α| ≤ 1/k and
|An0 (i′)− α′| ≤ 1/k.

We choose two sequences (ti)i∈N, (si)i∈N satisfying the following conditions.

(i) t0 = 0, ti ↗∞ and ti+1/ti ↘ 1.
(ii) si →∞.

(iii) (ti+1 − ti) is divisible by si and ti+1−ti
si

↗∞.

(iv) 2siti+1

n(ti+1−ti) → 0 where n is the largest number such that Nn < ti.

For example, we can choose ti+1/ti ∼ 1 + n−1/2 and si ∼ n1/3 where n is the
largest number such that Nn < ti. We divide each interval [ti, ti+1−1] into si equal
subintervals, with endpoints zi0 = ti, z

i
1 = ti + (ti+1 − ti)/si, . . . , zisi = ti+1. We will

construct a set M̃ ⊂ Σ step by step as follows.
Step 0. At positions 0, . . . , t1 − 1 we can put anything.
Step i (i ≥ 1). We put the si numbers

W i
k := logZ

zik+1

zik
(α)− logZ

zik+1

zik
(α′); k = 0, 1, . . . si − 1

in an increasing order and we choose bpsic largest ones. At those chosen intervals

the sequences in M̃ will be taken from M
zik+1

zik
(α), at the not chosen intervals from

M
zik+1

zik
(α′).

It is enough to show that M̃ ⊂ Σ has the following properties:

Claim 1: for i ∈ M̃ we have

A(i) = pα+ (1− p)α′.

Claim 2: htop(M̃) ≥ pf(α) + (1− p)f(α′).
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Indeed, just like in the proof of Proposition 3.3, we will prove that there exists a

map π : Σ 7→ Σ such that π(M̃) ⊆ ΣA and the assumptions of Lemma 3.2 hold.

Proof of Claim 1. As ti+1/ti → 1, it is enough to check that Ati0 (i)→ pα+(1−p)α′
as i tends to ∞. Pick i and n such that Nn < ti ≤ Nn+1. By Lemma 3.1, we have

|Ati+1

ti (i)− (pα+ (1− p)α′) |

=|
si−1∑
k=0

1

si
A
zik+1

zik
(i)− (pα+ (1− p)α′) |

≤Ii1 + Ii2 + Ii3,

where

Ii1 =

si−1∑
k=0

1

si
ρ

(2)
ti+1−ti

si

= ρ
(2)
ti+1−ti

si

,

Ii2 =

si−1∑
k=0

1

si
·
zik + zik+1

n
(
ti+1−ti
si

) ≤ 2siti+1

n(ti+1 − ti)
,

and

Ii3 =

∣∣∣∣ 1

si
(bpsicα+ (si − bpsic)α)− (pα+ (1− p)α′)

∣∣∣∣ .
By (ii), it is easy to see that Ii3 converges 0 as i tends to ∞. By (iii) and the fact

that ρ
(2)
` → 0 as ` → ∞, we see that Ii1 converges 0 as i tends to ∞. By (iv), Ii2

converges 0 as i tends to∞. Thus we obtain that A
ti+1

ti (i) converges pα+(1−p)α′ as

i tends to∞. Since Ati0 (i) = 1
ti

∑i−1
j=0(tj+1− tj)A

tj+1

tj (i), we complete the proof.

Proof of Claim 2. Observe that the constructions for different j are completely in-

dependent from each other: whatever the initial tj symbols of i ∈ M̃ , we allow any
admissible tj+1 − tj symbols to follow. Thus we have

Zti0 (M̃) = Zt10 (M̃) ·
i−1∏
k=1

Z
tk+1

tk
(M̃) (3.4)

and

Z
tk+1

tk
(M̃) ≥

(
sk−1∏
`=0

Z
zk`+1

zk`
(M(α))

)bpskc/sk
·

(
sk−1∏
`=0

Z
zk`+1

zk`
(M(α′))

)1−bpskc/sk

, (3.5)

for 1 ≤ k ≤ i− 1. Moreover, we have

sk−1∏
`=0

Z
zk`+1

zk`
(M(α)) ≥ Ztk+1

tk
(M(α)) (3.6)

and
i−1∏
k=1

Z
tk+1

tk
(M(α))| ≥ Ztit1(M(α)). (3.7)

The same holds for α′. We define the probability measure µ such that for an i ∈ Σn
let ti−1 < n ≤ ti and

µ([i]) =
#{A ∈ M̃ [0, ti − 1] : [i] ⊃ A}

Zti0 (M̃)
.



WEIGHTED BIRKHOFF AVERAGES 19

Similarly to the proof of Proposition 3.3, µ is a well defined probability measure

supported on M̃ . By (3.4), (3.5), (3.6) and (3.7), as ti+1/ti → 1, we have that

lim inf
n→∞

− logµ(Cn ∩ M̃)

n

≥ lim inf
i→∞

1

ti

(
p logZti0 (M(α)) + (1− p) logZti0 (M(α′))

)
≥pf(α) + (1− p)f(α′),

for any decreasing sequence (Cn)n∈N of cylinders with Cn∩ M̃ 6= ∅. By Lemma 2.1,
this completes the proof.

As in the proof of Proposition 3.3, we have now obtained a set M̃ satisfying all
the necessary properties except for one: it does not have to be contained in ΣA.
Again, we have the same solution to this problem: we will find a map π satisfying

the assumptions of Lemma 3.2 such that π(M̃) ⊂ ΣA. It is done in almost the same

manner: we define (qj)j = (zik)k,i and then we modify each sequence i ∈ M̃ on the
initial r positions of every interval (qj , qj+1].

Therefore, we complete the proof.

Proof of Theorem 2.2. Since any concave function is clearly lower semi-continuous,
Lemma 3.7 and Proposition 3.8 together with Corollary 3.6 implies the claim.

Proof of Theorem 2.3. There are two cases. Consider first the simple case:
htop(LA(α0)) = htop(ΣA).

Fix some ε > 0. We assume that the spectrum domain is larger than one
point, hence by Theorem 2.2 we can find a value α1 such that htop(LA(α1)) >
htop(LA(α0)) − ε. By Corollary 3.5 we can find a set M0 such that htop(M0) >
htop(LA(α0)) − ε and that the convergence An0 (i) → α0 is uniform in M0 and we
can find a set M1 such that htop(M1) > htop(LA(α1))− ε and that the convergence
An0 (i) → α1 is uniform in M1. We then apply the Proposition 3.3 to the sequence
of sets M1,M0,M1,M0, . . ., with αn being α0 or α1 depending on n being even or
odd. We get

htop(LA(α0, α1)) ≥ htop(LA(α0))− 2ε.

Naturally, LA(α0, α1) ⊂ D, hence passing with ε to zero ends the proof.
The complicated case is when htop(LA(α0)) < htop(ΣA). Note that we can still

freely assume that htop(ΣA \D) = htop(ΣA), otherwise we would have htop(D) =
htop(ΣA) immediately. We start with a simple observation.

Lemma 3.9. There exists β0 such that the sets {i ∈ ΣA;A(i) < β0} and {i ∈
ΣA;A(i) > β0} are both of full entropy htop(ΣA).

Proof. The function β → htop(
⋃
α<β LA(α)) is non-decreasing and left continuous,

hence the set {β : htop(
⋃
α<β LA(α)) = htop(ΣA)} is closed. So is the set {β :

htop(
⋃
α>β LA(α)) = htop(ΣA)}, for analogous reason. Hence, the two sets must

intersect – otherwise we would have some β which would belong to neither, and this
is impossible because

ΣA \D =
⋃
α<β

LA(α) ∪
⋃
α>β

LA(α) ∪ LA(β)

and all three sets on the right would have entropy strictly smaller than the one on
the left.
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We fix ε > 0. Using again the left-continuity of the function β → htop(
⋃
α<β LA(α))

we can find some β1 < β0 such that htop(
⋃
α<β1

LA(α)) > htop(ΣA) − ε. Let

M+ =
⋃
α>β0

LA(α) and M− =
⋃
α<β1

LA(α).
We now need a one-sided version of Proposition 3.3.

Proposition 3.10. Let εn > 0, εn → 0. Let αn be a sequence such that α2k → β0

and α2k+1 → β1. Moreover, assume that for every n ≥ 1 there exists a set Mn ⊂ ΣA

and a positive integer Tn > 0 such that for every i ∈Mn and m ≥ Tn we have

1

m

m−1∑
k=0

φk(σki) > αn − εn

(if n is even) or

1

m

m−1∑
k=0

φk(σki) < αn + εn

(if n is odd). Then we can find a set M ⊂ ΣA such that for i ∈M we have A(i) ≤ β1

and A(i) ≥ β0 and that htopM ≥ lim inf htopMi.

Proof. The proof is virtually identical with the proof of Proposition 3.3. The con-
struction and the calculation of entropy is the same, the only difference is that when
the sets Mi give only one-sided bounds on the behaviour of the Birkhoff sums, we
can only get a weaker statement about A and A. We skip the details.

We can now fix any sequence εn → 0 and use the sets M− and M+ defined
above to construct the sets Mn satisfying the assumptions of Proposition 3.10,
in such a way that htopM2k > htopM+ − ε and htopM2k+1 > htopM− − ε (by
choosing T2k, resp. T2k+1, large enough). Using now Proposition 3.10 with those
sets Mn we construct a set M which is by construction contained in D, moreover
htopM > htop(ΣA)− 2ε. Passing with ε to 0 we end the proof of this case.

4. Typical weights. First, we need to introduce some notations. Let ΣA be an
aperiodic and irreducible subshift of finite type, Ω = ΛN and ΓA = Ω × ΣA. Let
f : ΓA 7→ R be a continuous potential. Let us recall that Snf denotes the nth
Birkhoff sum of f , that is, Snf = f + f ◦ σ + · · ·+ f ◦ σn−1. For every w ∈ Ω let

Zn(f,w) =
∑

i∈ΣA,n

sup
j∈[i]

eSnf(w,j),

and define the conditional pressure of f on ξ(w) by

P (f,w) = lim sup
n→∞

1

n
logZn(f,w). (4.1)

The pressure defined in (4.1) corresponds to the definition of the pressure given
in Fan [11, page 3] in case of fk(i) := f(σkw, i) without the extra requirement that
it exists as a limit. Later, we will show that for typical w with respect to an ergodic
quasi-Bernoulli measures ν it equals to the pressure defined in (2.5).

The following theorem was shown by Ledrappier and Walters [23]. They proved
a more general statement but we state here only the form which corresponds to our
main setup.
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Theorem 4.1 (Ledrappier, Walters). Let ν be a σ-invariant measure on Ω and let
f : ΓA 7→ R be a continuous potential. Then

sup{hξµ +

∫
fdµ : µ ∈Mν(ΓA)} =

∫
P (f,w)dν(w).

Unfortunately, this theorem itself does not provide enough regularity conditions
in order to do multifractal analysis on weighted Birkhoff averages. So we adapt
the idea of Ledrappier and Walters [23] combining with the methods of Takens and
Verbitskiy [29], Feng [17] and Heurteaux [21].

4.1. Pinsker’s formula. Let us recall that Π is the natural projection Π: Ω×Σ 7→
Ω, that is, Π(w, i) = w. Let µ be an ergodic σ-invariant measure on Γ. Clearly,
if µ is σ-invariant and ergodic then Π∗µ is σ-invariant and ergodic on Ω too. By
Shannon-McMillan-Breiman’s Theorem,

hµ = lim
n→∞

−1

n
logµ[(w, i)|n] for µ-almost every (w, i),

hΠ∗µ = lim
n→∞

−1

n
log Π∗µ[w|n] for Π∗µ-almost every w.

(4.2)

Denote ξ the partition generated by the inverse branches Π−1(w) = {w} × Σ =
ξ(w). By Rohlin’s Disintegration Theorem, there exists a family of probability
measures {µξw} such that

1. µξw is supported on ξ(w);
2. for every A ∈ BΓ, the map w 7→ µξw(A) is BΩ-measurable;
3. µ =

∫
µξwdΠ∗µ(w).

The family {µξw} of measures is unique up to a zero Π∗µ-measure set. Let us define
the conditional entropy of µξw by

hξµ :=

∫
− logµξΠ(w,i)([i0])dµ(w, i).

The following theorem is the corresponding version of Pinsker’s formula [26], which
we need to establish relation between the conditional entropy, and the entropy of
the projection.

Theorem 4.2 (Pinsker’s formula). If µ is an ergodic σ-invariant measure then for
Π∗µ-almost every w, we have

lim
n→∞

−1

n
logµξw([i|n]) = hξµ for µξw-a.e. i. (4.3)

Moreover,

hµ = hΠ∗µ + hξµ.
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For completeness, we give a proof here. Observe that the map (w, i) 7→ − logµξΠ(w,i)([i0])

is in L1(Γ, µ). Indeed,

hξµ =

∫
− logµξΠ(w,i)([i0])dµ(w, i)

=

∫ ∞
0

µ({(w, i) : − logµξΠ(w,i)([i0]) > x})dx

=

∫ ∞
0

∫
1{− log µξ

Π(w,i)
([i0])>x}(w, i)dµ(w, i)dx

=
∑
k∈A

∫ ∞
0

∫
1{− log µξ

Π(w,i)
([i0])>x}(w, i)µ

ξ
Π(w,i)([k])dµ(w, i)dx

≤
∑
k∈A

∫ ∞
0

∫
e−xdµ(w, i)dx = K.

Let us denote the partition with respect to the cylinders on Γ by P. Then clearly,

σ∗
(
µξ∨Pw

)
= µξσw, for Π∗µ−a.e. w (4.4)

Indeed, σ∗µ
ξ∨P
w is supported on Π−1(σw), and by the definition of conditional

measures, ∫
σ∗
(
µξ∨Pw

)
dΠ∗µ(w) = σ∗

∫ (
µξ∨Pw

)
dΠ∗µ(w) = σ∗µ = µ

=

∫
µξwdΠ∗µ(w) =

∫
µξσwdΠ∗µ(w).

Thus, (4.4) follows by the uniqueness of the conditional measures.

Proof of Theorem 4.2. Let us first show the first assertion of the theorem. By (4.4),
we have

µξΠ(w,i)([i|n]) = µξΠ(w,i)([i|1])

n∏
k=2

µξΠ(w,i)([i|k])

µξΠ(w,i)([i|k−1])

= µξΠ(w,i)([i|1])

n∏
k=2

µ
ξ∨Pk−1

Π(w,i) (σ−(k−1)[σk−1i|1])

= µξΠ(w,i)([i|1])

n∏
k=2

µξ
Π◦σk−1(w,i)

([σk−1i|1]).

Taking logarithm and applying Birkhoff’s Ergodic Theorem, we get −1
n

logµξΠ(w,i)([i|n]) =
1
n

∑n−1
k=0 − logµξ

Π◦σk(w,i)
([σki|1]) → hξµ for µ-almost every (w, i). Thus, (4.3) follows

by Fubini’s Theorem.
Now, we show that hµ = hΠ∗µ+hξµ. By Egorov’s Theorem, for every ε > 0 there

exists J1 ⊂ Γ such that µ(J1) > 1 − ε and the convergences (4.2) and (4.3) are
uniform. That is, there exists C > 0 such that for every n ≥ 1 and every (w, i) ∈ J1

C−1e−hΠ∗µn ≤ Π∗µ([w|n]) ≤ Ce−hΠ∗µn and C−1e−nh
ξ
µ ≤ µξw([i|n]) ≤ Ce−nh

ξ
µ .

By Lebesgue’s density Theorem and Egorov’s Theorem, there exists J2 ⊂ J1 such
that µ(J2) > 1 − 2ε and there exists N ≥ 1 such that for every (w, i) ∈ J2 and
n ≥ N

µ(J1 ∩ [(w, i)|n]) ≥ 1

2
µ([(w, i)|n]) and µξw(J1 ∩ [(w, i)|n]) ≥ 1

2
µξw([(w, i)|n]).
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Thus, for every (w, i) ∈ J2 and every n ≥ N
µ([(w, i)|n]) ≤ 2µ(J1 ∩ [(w, i)|n])

= 2

∫
µξΠ(w,i)(J1 ∩ [(w, i)|n])dµ(w, i)

= 2

∫
Π−1[w|n]

µξΠ(w,i)(J1 ∩ [(w, i)|n])dµ(w, i)

≤ 2Π∗µ([w|n])Ce−nh
ξ
µ ≤ 2C2e−n(hΠ∗µ+hξµ).

On the other hand, for every (w, i) ∈ J2

µ([(w, i)|n]) ≥ µ(J1 ∩ [(w, i)|n])

=

∫
µξΠ(w,i)(J1 ∩ [(w, i)|n])dµ(w, i)

=

∫
Π−1[w|n]

µξΠ(w,i)(J1 ∩ [(w, i)|n])dµ(w, i)

≥ 1

2

∫
Π−1[w|n]

µξΠ(w,i)([(w, i)|n])dµ(w, i)

≥ 1

2
Π∗µ([w|n])C−1e−nh

ξ
µ ≥ 1

2
C−2e−n(hΠ∗µ+hξµ).

Thus, the statement follows by Shannon-McMillan-Breiman Theorem.

4.2. Regularity of conditional pressure. In this part of the section, we study
the regularity properties of the conditional pressure P (f,w) under stronger as-
sumptions than the setup of Ledrappier and Walters. Namely, we assume that f
has summable variation, that is,

∞∑
k=0

max
(x,k)∈ΓA,k

sup
(w,i),(z,j)∈[(x,k)]

|f(w, i)− f(z, j)| <∞.

Moreover, we assume that the measure ν is quasi-Bernoulli. Note that for a quasi-
Bernoulli measure ν, the transformation σm is ergodic for every m ≥ 1.

The following lemma is an easy calculation.

Lemma 4.3. For every w ∈ Ω,

P (f,w) = P (f, σw).

Moreover, if f → g uniformly then P (f,w)→ P (g,w).

Proof. Since f : ΓA 7→ R is continuous over a compact set, we get that |f | is bounded
by C. Hence, ∑

i∈ΣA,n+1

sup
j∈[i]

eSn+1f(w,j) =
∑

i∈ΣA,n+1

sup
j∈[i]

eSnf(σw,σj)ef(w,j)

≤
∑

i∈ΣA,n+1

sup
j∈[i]

eSnf(σw,σj)eC

≤ KeC
∑

i∈ΣA,n

sup
j∈[i]

eSnf(σw,j).

The direction
∑

i∈ΣA,n+1
supj∈[i] e

Sn+1f(w,j) ≥ e−C
∑

i∈ΣA,n
supj∈[i] e

Snf(σw,j) is sim-

ilar.
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The second observation follows by the fact that if sup(w,i)∈ΓA
|f(w, i)−g(w, i)| <

ε then |Snf − Sng| ≤ εn.

Since ν is ergodic, a simple corollary of Lemma 4.3 is that we can define the
conditional pressure with respect to ν

Pν(f) :=

∫
P (f,w)dν(w) = P (f,w) for ν-almost every w. (4.5)

Here, we abused a notation slightly, since Pν(f) of (4.5) does not necessarily equal
to the defined conditional pressure in (2.5). However, we will show in equation
(4.12) that it is indeed equal to the pressure defined in (2.5).

For short, for w ∈ Ω and i ∈ ΣA,∗ let

V (f,w, i) := sup
j∈[i]

eS|i|f(w,j),

and for an w ∈ Ω∗ let

Y (f,w, i) := sup
z∈[w]

V (f, z, i) and W (f,w) := sup
z∈[w]

Z|w|(f, z).

We also use the convention that Zm(f,w) = 1 for m ≤ 0.
Since f has summable variation, there exists constant C > 0 such that for every

n ≥ 1 and every (w, i), (z, j) ∈ ΓA with |(w, i) ∧ (z, j)| = n

|Snf(w, i)− Snf(z, j)| < C. (4.6)

Thus, for every w ∈ Ω and every, i, j ∈ ΣA,∗ with ij ∈ ΣA,∗

V (f,w, ij) ≤ V (f,w, i)V (f, σ|i|w, j) ≤ eC · V (f,w, ij). (4.7)

So clearly, for every w ∈ Ω

Zn+m(f,w) ≤ Zn(f,w)Zm(f, σnw). (4.8)

On the other hand,

Zn(f,w)Zm(f, σnw) ≤ Krer|f |Zn(f,w)Zm−r(f, σ
n+rw)

≤ Kre2r|f |+2CZn+m(f,w),
(4.9)

where r ≥ 1 is such that Ar is strictly positive.
Applying the bounded distortion again, we get for every (w, i) ∈ ΓA,∗, and every

z ∈ [w] that

V (f, z, i) ≤ Y (f,w, i) ≤ eCV (f, z, i) (4.10)

and therefore
Z|w|(f, z) ≤W (f,w) ≤ eCZ|w|(f, z). (4.11)

By (4.8) and Kingman’s subadditive ergodic theorem, we have that for ν-almost
every w ∈ Ω the limit

lim
n→∞

1

n
logZn(f,w) = P (f,w) = Pν(f)

exists and

Pν(f) = lim
n→∞

1

n

∫
logZn(f,w)dν(w)

= lim
n→∞

1

n

∑
w∈Ωn

ν([w]) logW (f,w),
(4.12)

where in the last equation we used (4.11) too.
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The next theorem is adapting the result and method of Feng [17, Section 4]
for the situation of subshift of finite type and to the condition on the marginal
measures.

Theorem 4.4. Let ν be an ergodic σ-invariant quasi-Bernoulli measure on Ω and
let f : ΓA 7→ R be a continuous potential with summable variation. Then there exists
a unique ergodic σ-invariant measure µ such that there exists a constant C > 0 such
that for every (w, i) ∈ ΓA,∗

C−1 Y (f,w, i)

W|w|(f,w)
ν([w]) ≤ µ([w, i]) ≤ C Y (f,w, i)

W|w|(f,w)
ν([w]). (4.13)

In particular, Π∗µ = ν and

hξµ +

∫
fdµ = Pν(f).

Proof. Let z be a generic point such that 1
n

∑n−1
k=0 δσkz → ν as n→∞. Then let

ηm = Zm(f, z)−1
∑

i∈ΣA,m

V (f, z, i)δ(z,ij),

where j ∈ ΣA is arbitrary but fixed. Moreover, let

νn =
1

n

n−1∑
k=0

η2n ◦ σ−k.

Let {nj} be a subsequence such that
limj→∞

1
nj

logZnj (f,w) = P fν and νnj → µ. Clearly, µ is a σ-invariant measure on

ΓA.
Fix (w, i) ∈ ΓA,∗ with |w| = |i|. Choose n sufficiently large such that n > |w| =

|i|. Then by (4.7) and (4.9) there exists C ′ > 0 such that

νn([w, i]) =
1

n

n−1∑
k=0

∑
(α,β)∈ΓA,k,(γ,τ)∈ΓA,2n−|i|−k:

(αwγ,βiτ)∈ΓA,2n

η2n([(αwγ, βiτ)])

=
1

n

n−1∑
k=0

∑
β∈ΣA,k,τ∈ΣA,2n−|i|−k:

βiτ∈ΣA,2n

V (f, z, βiτ))

Z2n(z)
1[w](σ

kz)

≤ C ′

n

n−1∑
k=0

∑
β∈ΣA,k,

τ∈ΣA,2n−|i|−k

V (f, z, β)V (f, σkz, i)V (f, σ|w|+kz, τ)

Zk(z)Z|i|(σkz)Z2n−k−|i|(σ|i|+kz)
1[w](σ

kz)

=
C ′

n

n−1∑
k=0

V (f, σkz, i)

Z|i|(σkz)
1[w](σ

kz).

Thus, by Birkhoff’s ergodic theorem

µ([w, i]) = lim
j→∞

νnj ([w, j])

≤ C ′
∫
V (f, z, i)

Z|i|(z)
1[w](z)dν(z)

≤ C ′′ Y (f,w, i)

W|w|(f,w)
ν([w]),
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where we used (4.10) and (4.11).
Now, we show the other inequality. Similarly by using (4.7), (4.8), we have

νn([w, i])

≥ 1

n

n−1∑
k=0

∑
β∈ΣA,k,τ∈ΣA,2n−|i|−k:

βiτ∈ΣA,2n

V (f, z, β)V (f, σkz, i)V (f, σ|w|+kz, τ)

Zk(z)Z|i|(σkz)Z2n−k−|i|(σ|i|+kz)
1[w](σ

kz)

≥ e−2|f |r

n

n−1∑
k=0

∑
β′∈ΣA,k−r

τ ′∈ΣA,2n−|i|−k−r

V (f, z, β′)V (f, σkz, i)V (f, σ|w|+k+rz, τ ′)

Zk(z)Z|i|(σkz)Z2n−k−|i|(σ|i|+kz)
1[w](σ

kz)

≥ e−2|f |r

n

n−1∑
k=0

V (f, σkz, i)

Z|i|(σkz)Zr(z)Zr(σ|i|+kz)
1[w](σ

kz)

≥ e−4|f |rK−22r

n

n−1∑
k=0

V (f, σkz, i)

Z|i|(σkz)
1[w](σ

kz)

and thus, taking the subsequence nj and using (4.10) and (4.11), we have

µ([w, i]) ≥ C ′−1 Y (f,w, i)

W|w|(f,w)
ν([w]).

Now, since ν is quasi-Bernoulli, by (4.7)-(4.8) and (4.10)-(4.11) we have

µ([(wx, ij)]) ≥ C ′−1 Y (f,wx, ij)

W|wx|(f,wx)
ν([wx])

≥ C ′−2 Y (f,w, i)

W|w|(f,w)
ν([w])

Y (f,x, j)

W|x|(f,x)
ν([x])

≥ C ′−4µ([(w, i)])µ([(x, j)]).

This implies that µ is ergodic. Since µ was an arbitrary accumulation point and
two equivalent ergodic measures are equal, we get that µ is unique.

For every w ∈ Ω∗, and every z ∈ [w]

Π∗µ([w]) =
∑

i∈ΣA,|w|

µ([w, i])

≤ C
∑

i∈ΣA,|w|

Y (f,w, i)

W|w|(f,w)
ν([w])

≤ C3
∑

i∈ΣA,|w|

V (f, z, i)

Z|w|(f, z)
ν([w])

= C3ν([w]).

The other inequality Π∗µ([w]) ≥ C−3ν([w]) is similar. Since Π∗µ and ν are both
ergodic, we have Π∗µ = ν.
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Finally, by (4.12)

hµ = lim
n→∞

1

n

∑
(w,i)∈ΓA,n

µ([w, i]) logµ([w, i])

= lim
n→∞

−1

n

∑
(w,i)∈ΓA,n

µ([w, i]) log

(
Y (f,w, i)

W|w|(f,w)
ν([w])

)

= hν −
∫
fdµ+ Pν(f).

By Theorem 4.2, hξµ = hµ − hν , which proves the statement.

The next theorem is a modification of the argument of Heurteaux [21].

Theorem 4.5. Let ν be a σ-invariant ergodic quasi-Bernoulli measure on Ω and
let f, g : ΓA 7→ R be a continuous potentials with summable variation. Then the
function p : t 7→ P ((1− t)g + tf) is differentiable at t = 0. In particular,

p′(0) =

∫
(f − g)dµg.

Proof. It is clear by the bounded distortion (4.6) that there exists a constant C > 0
such that for every t ∈ R and every (w, i) ∈ ΓA,∗

C−1Y (tf + (1− t)g,w, i) ≤ Y (f,w, i)tY (g,w, i)1−t ≤ CY (tf + (1− t)g,w, i).
Let µf and µg be the unique ergodic measures defined in Theorem 4.4. Then for

every t ∈ R and every (w, i) ∈ ΓA,∗

C−2Y (tf + (1− t)g,w, i)
W (f,w)tW (g,w)1−t ν(w) ≤ µf ([w, i])tµg([w, i])

1−t

≤ C2Y (tf + (1− t)g,w, i)
W (f,w)tW (g,w)1−t ν(w).

Hence,

Pν((1− t)g + ft)

= (1− t)Pν(g) + tPν(f) + lim
n→∞

1

n

∑
w∈Ωn

ν([w]) log
∑

i∈ΣA,n

µf ([w, i])tµg([w, i])
1−t

ν([w])
.

Thus, it is enough to show that

H(t) = lim
n→∞

1

n

∑
w∈Ωn

ν([w]) log
∑

i∈ΣA,n

µf ([w, i])tµg([w, i])
1−t

ν([w])

is differentiable.

Claim: There exists a constant C > 0 such that the sequence

Hn(t) =
∑

w∈Ωn

ν([w]) log
∑

i∈ΣA,n

Cµf ([w, i])tµg([w, i])
1−t

ν([w])

is submultiplicative Hn+m(t) ≤ Hn(t) +Hm(t) and

Hn(t) =
∑

w∈Ωn

ν([w]) log
∑

i∈ΣA,n

C−1µf ([w, i])tµg([w, i])
1−t

ν([w])

is supermultiplicative Hn+m(t) ≥ Hn(t) +Hm(t).
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Proof of the Claim. By Theorem 4.4 and the equations (4.7)-(4.11), we have that
the measures µf and µg are quasi-Bernoulli, and hence, there exists a constant
C > 0 such that∑

ij∈ΣA,n+m

µf ([w, ij])tµg([w, ij])
1−t

≤ C
∑

ij∈ΣA,n+m

µf ([w|n, i])tµf ([σnw, j])tµg([w|n, i])tµg([σnw, j])t

≤ C
∑

i∈ΣA,n

j∈ΣA,m

µf ([w|n, i])tµf ([σnw, j])tµg([w|n, i])tµg([σnw, j])t.

On the other hand,∑
ij∈ΣA,n+m

µf ([w, ij])tµg([w, ij])
1−t

≥ C−1
∑

ij∈ΣA,n+m

µf ([w|n, i])tµf ([σnw, j])tµg([w|n, i])tµg([σnw, j])t

C−1C ′
∑

i∈ΣA,n−r
j∈ΣA,m−r

µf ([w|n−r, i])tµf ([σn+2rw, j])tµg([w|n−r, i])1−tµg([σ
n+2rw, j])1−t

≥ C−1C ′K−2r
∑

i∈ΣA,n

j∈ΣA,m

µf ([w|n, i])tµf ([σnw, j])tµg([w|n, i])1−tµg([σ
nw, j])1−t.

Since H(0) = 0 and Hn(t) is differentiable for every n, we get for every n ≥ 1

lim sup
t→0

H(t)

t
≤ lim sup

t→0

Hn(t)

nt

=
1

n

∑
w∈Ωn

ν([w])

∑
i∈ΣA,n

µf ([w,i])tµg([w,i])1−t(log µf ([w,i])−log µg([w,i]))

ν([w])∑
i∈An

µf ([w,i])tµg([w,i])1−t

ν([w])

∣∣∣∣∣∣
t=0

=
1

n

∑
w∈Ωn

ν([w])
∑

i∈ΣA,n

µg([w, i])(logµf ([w, i])− logµg([w, i]))

ν([w])

=
1

n

∑
w∈Ωn
i∈ΣA,n

µg([w, i])(logµf ([w, i])− logµg([w, i]))

≤ C

n
+

1

n

∑
w∈Ωn
i∈ΣA,n

µg([w, i])(log
Y (f,w, i)ν([w])

W (f,w)
− logµg([w, i]))

→
∫
fdµg − hν − Pν(f) + hµg as n→∞,

where we applied again Theorem 4.4. The other inequality,

lim inf
t→0

H(t)

t
≥
∫
fdµg − hν − Pν(f) + hµg as n→∞
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is similar. Hence,

p′(0) = −Pν(g) + Pν(f) +

∫
fdµg − hν − Pν(f) + hµg =

∫
fdµg −

∫
gdµg.

4.3. Weighted Birkhoff average. For α, p ∈ Rd, let us consider the potential
fp : ΓA 7→ R defined as

fp := 〈p, f − α〉.
First, we show the upper bound in Theorem 2.4.

Lemma 4.6. For every w ∈ Ω and α ∈ Rd

htop(Ew(α)) ≤ inf
p∈Rd

P (fp,w).

Proof. The proof is standard, but for completeness, we give it here.
Let s > s0 > infp∈Rd P (fp,w). Hence, there exists p ∈ Rd such that s0 >

P (fp,w). Thus there exists N ′ ≥ 1 such that for every n ≥ N ′∑
i∈ΣA,n

e〈p,Snf−nα〉 < es0n.

By definition,

Ew(α) =

∞⋂
M=1

∞⋃
N=1

⋂
n≥N

{
i ∈ X :

∣∣∣∣ 1nSnf(w, i)− α
∣∣∣∣ < 1

M

}
. (4.14)

Since f(w, ·) : ΣA 7→ Rd is continuous over a compact set, we get that it is uniformly
continuous. Thus, for every M ≥ 1 there exists C > 0 such that for every n ≥ 1,
i ∈ ΣA,n and every j ∈ [i]∣∣∣∣∣Snf(w, j)− sup

j∈[i]

Snf(w, j)

∣∣∣∣∣ ≤ Cn

M
.

Choose M ≥ 1 such that |p| 1+C
M < (s − s0)/2. By (4.14), we get that for every N

sufficiently large

HsN (Ew(α)) ≤
∞∑
n=N

∑
i∈ΣA,n

|supj∈[i] Snf(w,j)−nα|<(1+C)n/M

e−ns

≤
∞∑
n=N

e−n(s−s0)/2
∑

i∈ΣA,n

|supj∈[i] Snf(w,j)−nα|<(1+C)n/M

e−ns0+〈p,Snf−nα〉

≤
∞∑
n=N

e−n(s−s0)/2 → 0 as N →∞.

Recall that

PA = {α ∈ Rd : there exists µ ∈Mν(ΓA) such that

∫
fdµ = α}. (4.15)

It is easy to see that PA is a closed and convex set. Moreover, without loss of
generality, we may assume that PA has an interior point. Indeed, if PA does not
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contain interior point then there exists a d′-dimensional hyperplane V such that
PA ⊂ V . By changing coordinates, we may assume that f : ΓA 7→ Rd′ . Also, for
ν-almost every w,

PA = {α ∈ Rd : there exists i ∈ ΣA such that lim
n→∞

1

n
Snf(w, i) = α}.

Indeed, take the sequence µn = 1
n

∑n
k=0 δσkw,σki and let µ be an accumulation point

of the sequence µn in the weak*-topology, we get
∫
fdµ = limk→∞

∫
fdµnk = α and

for every g ∈ L1(Ω),
∫
gdΠ∗µ = limk→∞

∫
g ◦ Πdµnk = limk→∞

1
nk

∑nk
`=0 g(σ`w) =∫

gdν. Moreover, since σ∗µn = µn − 1
nδw,i + 1

nδσn+1w,σn+1i, we get that µ is σ-
invariant.

Theorem 4.4 implies that for every p ∈ Rd there exists a σ-invariant ergodic
measure µp such that

Pν(fp) = hξµp +

∫
fpdµp. (4.16)

Lemma 4.7. The conditional pressure p 7→ Pν(fp) is convex.

Proof. Let β1, β2 > 0 be with β1 + β2 = 1 and p
1
, p

2
∈ Rd. Then there exist a

measure µ = µβ1p
1
+β2p

2
∈ Eν(ΓA) such that

Pν(fβ1p
1
+β2p

2
) = hξµ +

∫
fβ1p

1
+β2p

2
dµ

= β1h
ξ
µ + β2h

ξ
µ + β1

∫
fp

1
dµ+ β2

∫
fp

2
dµ

≤ β1Pν(fp
1
) + β2Pν(fp

2
).

Lemma 4.8. For every α ∈ PoA, there there exists p∗ ∈ Rd such that infp Pν(fp) =

Pν(fp∗), where PoA denotes the interior of PA.

Proof. Suppose that α ∈ PoA. Then there exists an η > 0 such that for every p ∈ Rd
with |p| = 1 there exists µ ∈ Mν(ΓA) such that

∫
fdµ − α = ηp. Thus, for every

c > 0

Pν(fcp) ≥ hξµ +

∫
〈cp, f − α〉dµ ≥ cη|p|2 = cη.

Thus, lim|p|→∞ Pν(fp) = ∞ and by the convexity of the conditional pressure

Lemma 4.7, we get the statement.

Lemma 4.9. Let p∗ ∈ Rd be such that infp Pν(fp) = Pν(fp∗) and let µp∗ be the

conditional equilibrium defined in Theorem 4.4. Then∫
φdµp∗ = α.

Proof. Let us argue by contradiction. Suppose that
∫
φdµp∗ 6= α. Let q =

∫
φdµp∗−α

|
∫
φdµp∗−α|

.

Observe that for any p
1
, p

2
∈ Rd and t ∈ R, tfp

1
+ (1 − t)fp

2
= ftp

1
+(1−t)p

2
.

Hence, by Theorem 4.5, the function p : t 7→ Pν(f(1−t)p∗+(p∗+q)t) is differentiable at
t = 0, moreover,

p′(0) =

∫
fp∗+q − fp∗dµp∗ .
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But p has a minimum at t = 0 so

0 = p′(0) =

∫
fp∗+q − fp∗dµp∗ = 〈q,

∫
φdµp∗ − α〉 =

∣∣∣∣∫ φdµp∗ − α
∣∣∣∣ ,

which is a contradiction.

Proof of Theorem 2.4. It is enough to show that for every α ∈ PoA and ν-almost
every w

htop(Ew(α)) ≥ hµp∗ − hν ,
where µp∗ is the conditional equilibrium of Pν(fp∗) = infp∈Rd Pν(fp) defined in

Theorem 4.4. Indeed, Theorem 4.2, Lemma 4.9 and Theorem 4.4 imply that

hµp∗ − hν = hξµp∗ = hξµp∗ +

∫
fp∗dµp∗ = Pν(fp∗) = inf

p∈Rd
Pν(fp).

The upper bound follows by equation (4.5) and Lemma 4.6.
Let µξw be the family of conditional measures with respect to the partition ξ and

µp∗ defined by Rohlin’s Disintegration Theorem. By Theorem 4.2,

lim
n→∞

−1

n
logµξw([i|n]) = hµp∗ − hν for µp∗ -almost every (w, i) ∈ ΓA.

By Egorov’s theorem, for every ε > 0 there exists a set J1 ⊂ ΓA and a constant
C > 0 such that µp∗(J1) > 1− ε and for every (w, i) ∈ J1 and n ≥ 1

µξw([i|n]) ≤ Ce−n(hµp∗−hν−ε).

Since 1− ε < µp∗(J1) =
∫
µξw(J1)dν(w), by Markov’s inequality, we get that

ν({w ∈ Ω : µξw(J1 ∩ ξ(w)) > 1−
√
ε) > 1−

√
ε.

By Birkhoff’s Ergodic Theorem and Lemma 4.9,

lim
n→∞

1

n

n−1∑
k=0

f(σkw, σki) = α.

Hence, there exists J ⊂ J1 such that ν(J1\J) = 0 and for every w ∈ J , µξw(Ew(α)∩
J1) > 1−

√
ε. Thus, by Lemma 2.1 for every w ∈ J

htop(Ew(α)) ≥ htop(Ew(α) ∩ J1) ≥ hµp∗ − hν − ε.

Since ε > 0 was arbitrary, the statement follows.
Finally, let µ̃ be the ergodic σ-invariant measure on ΣA such that hµ̃ = htop(ΣA).

Then for α0 =
∫∫

f(w, i)dµ̃(i)dν(w) we get htop(Ew(α0)) ≥ htop(ΣA) for ν-almost
every w.

Proof of Theorem 2.5. Let I be the domain of the map

p : α 7→ inf
p∈R

Pν(p · (f − α)) = inf
p∈R

(Pν(p · f)− pα) .

If I is empty or a single point then there is nothing to prove, so we might assume that
I has non-empty interior. By Theorem 4.5, the map p 7→ Pν(p · f) is differentiable
and by Lemma 4.7, the derivative p 7→ P ′ν(p · f) =

∫
fdµp is increasing. Hence,

I = [limp→−∞ P ′ν(pf), limp→∞ P ′ν(pf)]. Moreover, the map α 7→ p(α) is concave
and continuous over I.

By Theorem 2.4, for every α ∈ Io and ν-almost every w, htop(Ew(α)) = p(α).
Then by Fubini’s Theorem, for ν-almost every w and Lebesgue almost every α ∈ Io,
htop(Ew(α)) = p(α).
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Using Theorem 2.2 with the choice φi(i) := f(σiw, i), the map α 7→ htop(Ew(α))
is continuous for every w ∈ Ω. This together with the continuity of the map
α 7→ p(α) implies that p(α) ≡ htop(Ew(α)) over I for ν-almost every w.

5. Frequency regular sequences. In the rest of the paper, we assume that
ΣA = Σ, that is, we need to work on the full shift. In this section, we estab-
lish the connection between ν-typical and frequency regular sequences and prove
Theorem 2.6. The proof of our main theorem relies on the following construction,
which first appeared in Rams [25].

Let w,w′ ∈ Ω be two q-frequency regular sequences with the same frequency.
We define a permutation γ on N such that

γ(k) = ` if ωk is the nth appearance of the symbol of ωk in w

then ` is the position of the nth appearance of ωk in w′.
(5.1)

More precisely, let

Mn,λi(w) = min{k ≥ 1 : #{1 ≤ j ≤ k : wj = λi} = n}
and

Pk(w) = #{1 ≤ i ≤ k : wi = wk}.
Then

γ(k) = MPk(w),wk(w′).

By the definition of γ(k), we have wk = w′γ(k). Finally, we set the map

Gw,w′(i) := (iγ(1), iγ(2), . . .). (5.2)

Lemma 5.1. For w,w′ ∈ Ω as above, for every α < 1 there exists C > 0 such that
for every i, j ∈ Σ

d(Gw,w′(i), Gw,w′(j)) ≤ Cd(i, j)α. (5.3)

Moreover, Gw,w′ ◦Gw′,w(i) = i.

Proof. The construction clearly implies that Gw,w′ ◦Gw′,w is the identity map on
Σ.

Since w,w′ ∈ Ω are frequency regular sequences, we have that λi appears in-
finitely often in w,w′. Thus, for every n ≥ 1 we can define mn such that mn is
the smallest positive integer such that {1, . . . , n} ⊆ {γ(1), . . . , γ(mn)}. Hence, for
every n ≥ 1

if d(i, j) = e−mn−1 then d(Gw,w′(i), Gw,w′(j)) = e−n−1.

Thus, to prove (5.3), it is enough to show that

lim
n→∞

mn

n
= 1. (5.4)

Clearly mn ≥ n, so lim infn→∞
mn
n ≥ 1. By the definition of mn, for every

i = 1, . . . , N ,

#{1 ≤ k ≤ mn : wk = λi} ≥ #{1 ≤ k ≤ n : w′k = λi}, (5.5)

and there exists (at least one) j = j(n) such that

#{1 ≤ k ≤ mn : wk = λj} = #{1 ≤ k ≤ n : w′k = λj}. (5.6)

By frequency regularity, for every 0 < ε < mini qi/2 there exists N ≥ 1 such that
for every n ≥ N
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∣∣∣∣#{1 ≤ k ≤ n : wk = λi}
n

− qi
∣∣∣∣ , ∣∣∣∣#{1 ≤ k ≤ n : w′k = λi}

n
− qi

∣∣∣∣ < ε.

Hence, by (5.6) for every n ≥ N

mn

n
(qj(n) − ε) ≤

mn

n

#{1 ≤ k ≤ mn : wk = λj(n)}
mn

=
#{1 ≤ k ≤ n : w′k = λj(n)}

n
≤ qj(n) + ε.

Thus, for every n ≥ N , mn
n ≤ 1 + 4ε.

Proposition 5.2. For every two q-frequency regular sequences w,w′ with the same
frequency

htop(Ew(α)) = htop(Ew′(α)). (5.7)

Proof. Let w,w′ be q-frequency regular sequences. Let Gw,w′ be the map defined
in (5.2). It is enough to show that

Gw,w′(Ew′(α)) ⊆ Ew(α). (5.8)

Indeed, by (5.3),

htop(Ew′(α)) = htop(Gw′,w◦Gw,w′(Ew′(α)) ≤ htop(Gw,w′(Ew′(α)) ≤ htop(Ew(α)).

The other inequality follows by symmetry.
Let γ : N 7→ N be the map defined in (5.1). Let us define pn as the largest

non-negative integer such that {1, . . . , pn} ⊆ {γ(1), . . . , γ(n)}. In other words,
pn = min{k ≥ 1 : k /∈ {γ(1), . . . , γ(n)}} − 1. Similarly to (5.4) one can show that

lim
n→∞

pn
n

= 1. (5.9)

Let i ∈ Ew′(α). Then by (5.9)

1

n

n−1∑
k=0

f(σkw, σkGw,w′(i)) =
1

n

n−1∑
k=0

fwk,iγ(k)

=
1

n

n−1∑
k=0

fw′
γ(k)

,iγ(k)

=
1

n

pn−1∑
k=0

fw′k,ik +
1

n

n−1∑
k=0

γ(k)>pn

fw′
γ(k)

,iγ(k)

≤ pn
n

1

pn

pn−1∑
k=0

fw′k,ik +
n− pn
n

max
i,j

fi,j → α,

as n→∞. Similarly,

1

n

n−1∑
k=0

wkφ(σkGw,w′(i)) ≥
pn
n

1

pn

pn−1∑
k=0

fw′k,ik +
n− pn
n

min
i,j

fi,j → α

as n→∞. Hence, Gw,w′(i) ∈ Ew(α) which verifies (5.8).
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Proof of Theorem 2.6. Let ν be the Bernoulli measure associated to the weights q =
(q1, . . . , qN ). Simple calculations show that the conditional pressure Pν(〈f − α, p〉)
defined in (2.5) equals to Pq(〈f − α, p〉) in (2.8).

Hence, by applying Theorem 2.4 we get that for every α and ν-almost every w

htop(Ew(α)) = sup{hµ : µ ∈ Eν(Γ) and

K,N∑
i,j

fj,iµ([j, i]) = α} − hν

= inf
p∈Rd

Pq(〈p, f − α〉).

By convexity, infp∈Rd Pq(〈p, f − α〉) is attained at p∗. By Theorem 4.4, we know

that the measure µp∗ where the supremum is attained can be chosen such that

C−1
Y (fp∗ ,w, i)

W|w|(fp∗ ,w)
ν([w]) ≤ µp∗([w, i]) ≤ C

Y (fp∗ ,w, i)

W|w|(fp∗ ,w)
ν([w]),

hold for some uniform constant C > 0, where fp∗(w, i) = 〈p, λw0φi0 −α〉. However,

in this case,

η([w, i]) =
Y (fp∗ ,w, i)

W|w|(fp∗ ,w)
ν([w]) =

|w|−1∏
k=0

qwke
〈p∗,λwkφik−α〉∑K

i=1 e
〈p∗,λwkφi−α〉

is clearly an ergodic Bernoulli measure on Γ, since µp∗ is equivalent to η, we have

η = µp∗ . This shows that the supreme is attained at Bernoulli measures.

Finally, since ν-almost every sequence w is q-frequency regular, the statement
follows by Proposition 5.2.

Proof of Theorem 2.7. Since the function g(i) =
∑N
j=1 qjfj,i is not constant by

assumption, the possible values of α, for which
∑
i,j pj,ifj,i = α and

∑
i pj,i = qj

form a non-trivial closed interval. Hence, the statement follows by Theorem 2.3.

Now we finish the paper by showing the necessity of the frequency regular condi-
tion to have non-degenerate spectrum. Example 2.11 follows by the next example.

Example 5.3. There exists a sequence w ∈ {0, 1}N, which is not frequency regu-
lar, such that the following holds: For every continuous potential ϕ : {0, 1}N 7→ R,
Ew(α) = ∅ for every α ∈ R \ {0}.

Moreover, if ϕ depends only the first symbol then Ew(0) 6= ∅ if and only if
ϕ0ϕ1 ≤ 0, moreover if additionally ϕ0 6= −ϕ1 then htop(Ew(0)) < log 2.

Proof of Example 5.3. First, let us define the sequence w ∈ {0, 1}N. Let {Mn}∞n=0

be a fast increasing sequence, that is, suppose that 2Mn < Mn+1 for every n ≥ 0

and limn→∞

∑n
j=1 Mj

Mn+1
= 0. Let w := (w0, w1, . . .), where

wk =

{
0 if 2Mn−1 < k ≤Mn,

1 if Mn < k ≤ 2Mn.

Clearly, w is not frequency regular. Moreover, since for every i ∈ Σ∣∣∣∣∣ 1

Mn

Mn∑
k=0

wkϕ(σki)

∣∣∣∣∣ ≤ maxi∈Σ |ϕ(i)|
∑n−1
`=0 M`

Mn
→ 0 as n→∞,
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we get that Ew(α) = ∅ for every α 6= 0. On the other hand, if mini∈Σ ϕ(i) > 0 then

1

2Mn

2Mn∑
k=0

wkϕ(σki) ≥
mini∈Σ ϕ(i)

∑n
`=0M`

2Mn
→ mini∈Σ ϕ(i)

2
as n→∞,

so Ew(0) = ∅ as well. Similarly, Ew(0) = ∅ also in the case if maxi∈Σ ϕ(i) < 0.
Now, suppose that ϕ(i) = ϕi0 . Using the previous calculations if ϕ0ϕ1 > 0 then

Ew(α) = ∅ for every α ∈ R. So we may assume that ϕ0ϕ1 ≤ 0. If ϕ0 = 0 then
the sequence (0, 0, . . .) belongs to Ew(0), so let us assume ϕ0 < 0 < ϕ1. Then let
us define the sequence i inductively by the rule im+1 = 0 if and only if Am(i) > 0.
Thus, i belongs to Ew(0).

Additionally, suppose that ϕ0 6= −ϕ1. For every m, let nm be such that Mnm <
m ≤Mnm+1. By the definition of w we get that

Am(i) =
1

m

m∑
k=0

wkϕik =

Mnm

Mnm∑
k=0

wkϕik

mMnm

+

min{m,2Mnm}∑
k=Mnm+1

ϕik

m
.

Since

Mnm∑
k=0

wkϕik

Mnm
→ 0 as m → ∞ and

Mnm

m is bounded, we get Am(i) → 0 if and

only if ∑
`=0,1 #{Mnm < k ≤ min{m, 2Mnm} : ik = `}ϕ`

m
→ 0.

In particular, Am(i)→ 0 implies that

#{Mn < k ≤ 2Mn : ik = 0}
Mn

→ ϕ1

ϕ1 − ϕ0
as n→∞. (5.10)

Denote F the set of all i ∈ Σ, which satisfy (5.10). Then htop(Ew(0)) ≤ htop(F ).
For short, let p = ϕ1

ϕ1−ϕ0
. Well known (for example, it is an application of

Stirling’s formula) that there exists K(p) > |H ′(p)|, where H(p) = −p log p− (1−
p) log(1− p) such that for every ε > 0 there exists L ≥ 1 such that for every n ≥ L

#

{
i ∈ {0, 1}n :

∣∣∣∣#{0 < k ≤ n : ik = 0}
n

− p
∣∣∣∣ < ε

}
≤ e(−p log p−(1−p) log(1−p)+K(p)ε)n

and by (2.2),

htop(F ) ≤ lim inf
n→∞

1

2Mn
log # {i ∈ Σ2Mn

: F ∩ [i] 6= ∅}

≤ lim
n→∞

1

2Mn
log

n∏
k=1

2Mk−2Mk−1e(−p log p−(1−p) log(1−p)+K(p)ε)Mk

=
log 2− p log p− (1− p) log(1− p) +K(p)ε

2
.

Since ε > 0 was arbitrary and by assumption p 6= 1/2, we get htop(F ) < log 2,
which completes the proof.
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