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Abstract

Background: The amount of available textual health data such as scientific and biomedical literature is constantly growing and
becoming more and more challenging for health professionals to properly summarize those data and practice evidence-based
clinical decision making. Moreover, the exploration of unstructured health text data is challenging for professionals without
computer science knowledge due to limited time, resources, and skills. Current tools to explore text data lack ease of use, require
high computational efforts, and incorporate domain knowledge and focus on topics of interest with difficulty.

Objective: We developed a methodology able to explore and target topics of interest via an interactive user interface for health
professionals with limited computer science knowledge. We aim to reach near state-of-the-art performance while reducing memory
consumption, increasing scalability, and minimizing user interaction effort to improve the clinical decision-making process. The
performance was evaluated on diabetes-related abstracts from PubMed.

Methods: The methodology consists of 4 parts: (1) a novel interpretable hierarchical clustering of documents where each node
is defined by headwords (words that best represent the documents in the node), (2) an efficient classification system to target
topics, (3) minimized user interaction effort through active learning, and (4) a visual user interface. We evaluated our approach
on 50,911 diabetes-related abstracts providing a hierarchical Medical Subject Headings (MeSH) structure, a unique identifier for
a topic. Hierarchical clustering performance was compared against the implementation in the machine learning library scikit-learn.
On a subset of 2000 randomly chosen diabetes abstracts, our active learning strategy was compared against 3 other strategies:
random selection of training instances, uncertainty sampling that chooses instances about which the model is most uncertain, and
an expected gradient length strategy based on convolutional neural networks (CNNs).

Results: For the hierarchical clustering performance, we achieved an F1 score of 0.73 compared to 0.76 achieved by scikit-learn.
Concerning active learning performance, after 200 chosen training samples based on these strategies, the weighted F1 score of
all MeSH codes resulted in a satisfying 0.62 F1 score using our approach, 0.61 using the uncertainty strategy, 0.63 using the
CNN, and 0.45 using the random strategy. Moreover, our methodology showed a constant low memory use with increased number
of documents.

Conclusions: We proposed an easy-to-use tool for health professionals with limited computer science knowledge who combine
their domain knowledge with topic exploration and target specific topics of interest while improving transparency. Furthermore,
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our approach is memory efficient and highly parallelizable, making it interesting for large Big Data sets. This approach can be
used by health professionals to gain deep insights into biomedical literature to ultimately improve the evidence-based clinical
decision making process.

(J Med Internet Res 2022;24(1):e27434) doi: 10.2196/27434
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Introduction

Clinical Decision Support Systems for Literature
Summary
Evidence-based medicine combines clinical experience with
the value of the patient and the best available research
information to guide decision making about clinical management
[1]. In order for health care professionals to practice
evidence-based medicine for clinical decision making properly,
efficient literature search skills are necessary [2], yet limits in
time, knowledge, or skills are frequent barriers [3], explaining
why only 1 in every 5 medical decisions is based strictly on
evidence [4]. Clinical decision support systems offer a
possibility to assist health professionals in improving health
care delivery by enhancing medical decisions with targeted
clinical knowledge, patient information, and other health
information [5]. However, major challenges for efficient clinical
decision support are using clinical knowledge such as extracted
free-text information and transforming it into a usable form and
mining large clinical databases to create new clinical decision
support [6]. High-quality clinical decision support capabilities
for clinicians are needed to appropriately interpret the
exponentially growing data [6,7], such as electronic health
records, laboratory results, doctor-patient interactions, social
media, and biomedical literature [8-11], to improve clinical
knowledge in the decision process.

Machine Learning to Analyze Textual Data
Machine learning and in particular natural language processing
(NLP) techniques offer a solution to transform these health data
into actionable knowledge [12] such as disease phenotypes,
patient cohort identification [13,14], and decision support [15].

Despite the progress of machine learning techniques, the
adoption of these methods in real practice is limited when the
models lack interpretability and explainability, which are
essential in the health care domain [16,17], or when models are
challenging to apply for people with limited computer science
skills [18]. In addition, many of the existing machine learning
approaches to biomedical data analysis do not make the effort
to integrate available expert knowledge into their models to
improve model interpretability [19].

Well-established methods to explore unstructured textual
information are topic models, such as latent Dirichlet allocation
[20], which connect documents that share similar patterns and
discover patterns of word use. Alternatively, word embeddings
such as Word2Vec [21,22], FastText [23], or Bidirectional
Encoder Representations from Transformers (BERT) [24] can

be combined with a clustering algorithm such as K-means [25]
to cluster documents [9].

However, these algorithms suffer from several limitations. In
most clustering algorithms, the number of topics to be
determined must be defined beforehand [26]; topic models lack
scalability, and applied on large corpora, they are memory
intensive [27]. As these topics are synthetic, they do not take
prior knowledge of humans regarding the corpus domain into
consideration [27]. Furthermore, topic models and most
clustering algorithms are static systems. It is not possible to add
more documents with time to the model without a complete
retraining. Last, these models are not interactive in the sense
that a user can influence and act on the topic exploration.

Objectives
In this paper, we propose an online decision support algorithm
that provides a way for nonexperts, people without computer
or data science knowledge, to discover topics of interest and
classify unstructured health text data. We propose a single
methodology for biomedical document classification and topic
discovery that improves interpretability, (2) we provide an
open-source tool for users without programming skills that can
run on machines with limited calculation power and on big data
clusters, and (3) we evaluate this methodology on a real-world
use case to show it can reach a near state-of-the-art performance
when compared with noninteractive and noninterpretable
systems.

With our methodology, we aim to analyze a wide set of different
clinical texts in different scenarios. Scientific interest over time
based on publications or the evolution of public health opinion
in social media can be evaluated as our approach is dynamic in
the sense that new documents can easily be added to the model
allowing the analysis over time. Furthermore, the combination
of free text and multiple-choice answers on surveys or extracting
cohort participant opinions from free-text content such as
questionnaires can be studied. Another use case will be the
classification of medical-related documents such as medical
records, reports, and patient feedback.

The aim of this study is not to set a new benchmark in terms of
performance but rather to tackle the existing limitations of NLP
approaches in terms of usability in the health care domain to
ultimately improve the literature exploration in the clinical
decision-making process.
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Methods

High-Level Overview
In the proposed methodology, documents are clustered in a
hierarchical tree in a top-down fashion. A user alters this tree
in an iterative process via an interactive user interface until a
user-defined clustering solution of the documents is obtained.
A high-level overview of this process is shown in Figure 1. Two
types of nodes, clustering and classification, exist in the tree.
A clustering node splits documents in an unsupervised way
based on automatically detected headwords best describing the
overall documents that have passed through it. Classification
nodes are placed at the top of the tree via user interaction as
users discover topics being represented by positive and negative
training instances, discovered by exploration, describing a
user-defined concept. A classification node is a binary machine
learning algorithm acting as a barrier that lets documents pass
to the underlying nodes only if they correspond to the defined
concept.

In step 0, all documents start at the root node, referred to as “In
Scope.” The documents are then streamed one by one to
construct the tree from the top to the bottom. The initial built
tree consists of the root node, and all underlying nodes are
clustering nodes. This fully automatic hierarchical procedure
is detailed in the next section. Based on the clustering tree
created, at each iteration a user starts exploring the tree and tries
to identify a clustering node that summarizes a specific topic
or concept via the interface, which provides information about
the headwords and most important documents for each clustering
node. When such a node is identified (eg, a node regrouping
documents referring to type 2 diabetes), the user first creates a
classifier node through the interface. The user then chooses
sample documents that refer to type 2 diabetes (the positive
instances) and sample documents that do not refer to type 2
diabetes (the negative instances). These instances will serve as
training data for the underlying machine learning classifier of
the classifier node. At the end of an iteration, the classifier nodes
are trained and a new clustering tree is built, taking the trained
classifiers into consideration. The idea is that each classifier
groups together the documents corresponding to its user-defined
concept or theme in the subtree below it. In this subtree, the
documents continue to be clustered, allowing the exploration
of subconcepts. At the next iteration, the user can explore the
newly created tree, create new classifiers, choose training

instances, and fix possible misclassifications via the interface.
A sample iteration is shown in Figure 2, where a user identifies
a cluster node referring to type 2 diabetes and creates a classifier
node in the following iteration.

At each iteration, several classifier nodes can be created.
Classifier nodes are always children of another classifier node
near the top of the tree and start with a single clustering node
child. With this active interaction between the user and the
system, each iteration improves the performance of the classifier
nodes, resulting in a better regrouping of similar documents and
finally leading the model to converge toward a better
user-defined solution. The results of this interactive process are
a fine-tuned visualization tool for a given corpus or domain and
a cascade of classifiers able to drive new documents to the most
appropriate node of the tree.

Figure 3 illustrates a sample tree obtained after several iterations
containing classifier nodes at the top of the tree and clustering
nodes that continue to cluster documents. NLP methods were
applied to represent documents and words. Word embeddings
were used that transform each word into a vector representation
[21,22]. A useful property of these word vector representations
is that words similar in semantics are also close in this word
vector space. Cosine similarity, a widely used metric in text
analysis, was used as the distance measurement to decide
whether 2 words were similar in semantics [28,29]. To determine
if 2 documents were similar, the average over the word vectors
of the documents were compared.

In the following sections, our approach is detailed in 4 parts:
(1) a novel hierarchical clustering algorithm that processes
documents in a streaming fashion; (2) user-defined classifiers
to target topics; (3) a visual user interface through which the
user explores the tree, annotates documents, and corrects
misclassifications; and (4) a fully parallelizable interactive and
iterative process leading to an accelerated convergence and
minimized user annotation effort by combining the interpretable
tree structure with active learning.

The methodology is implemented in the programming language
Scala and the large-scale data processing framework Apache
Spark. The word embeddings are streamed using Apache
Lucene. The visual interface was created using the JavaScript
language and the visualization library D3. The client server
interaction is implemented using the open source toolkit Akka.
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Figure 1. Overview of user interaction with the visual interface. SVM: support vector machine.

Figure 2. Iterative user interaction via the user interface following the 3 steps of exploring, annotating, and reiterating. To simplify, in iteration 1, no
more classifiers are created. In a real-case scenario, a user usually defines several classifiers in the first iterations.
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Figure 3. Classification and clustering tree after several iterations.

Hierarchical Clustering
Hierarchical clustering is a form of clustering in which the
solution is presented in the form of trees. The different levels
of the tree represent different levels of abstraction of the data.
The consistency of the clustering solution at different levels of
granularity allows flat partitions of different granularity to be
extracted during data analysis, making them ideal for interactive
exploration and visualization [30]. In many practical
applications, it is more natural to discover the underlying
structure of the data in a hierarchical manner rather than a flat
one [31,32].

In our approach, the hierarchical clustering starts with a single
clustering node that processes documents one by one leading
to the creation of a binary tree structure where each node splits
into two child nodes. During iterations, it is also possible to
create several child nodes for a node through user interaction
when classifier nodes are created. The tree is not equilibrated
resulting in leaf nodes at different depths of the tree as some
nodes stop splitting into children earlier than others.

A key feature of our algorithm is that each document is
processed individually, avoiding keeping all documents in
memory or needing to know their total number, leading to a
radical gain in memory use. This feature allows our approach
to be dynamic, as more documents can be added over time
allowing the study of cluster dynamics and evolution over time.

A clustering node is defined by headwords, which are the words
that best represent the documents having descended the node.
A clustering node can be split into further clustering nodes.
Intuitively, the headwords of a node aim to summarize its

documents. The objective is that a person could read the
headwords and have an immediate understanding of the included
documents, which considerably improves interpretability. We
try to capture this notion by using the word embeddings
semantic features and finding a set of tokens for which the sum
of its word embeddings will be as close as possible to the sum
of word embeddings of all tokens on all documents that went
through the node. The semantic similarity of words is measured
using cosine similarity.

To decide which path the document takes in the clustering
process, given a document at a clustering node, it is compared
to both clustering node children and associated to the one with
the highest children score. This score is obtained by aggregating
scores of each token based on the cosine similarity to its closest
headword in the child nodes. For more information on the score
calculation, please see Multimedia Appendix 1.

Each document traverses the tree and finds its way through
comparison against the headwords of each node. If a document
has reached a clustering node that is a tree leaf, two new
clustering children are created and the document is then
compared to the headwords to determine the child to which the
document will be associated. Clustering node children will only
be created when a minimum number of documents (default: 50)
have passed the parent. The tree building continues until a
user-defined number of maximal nodes is reached. After all
documents have been processed to build the tree, the entire
procedure is repeated, the documents are sent again one-by-one,
such that headwords keep improving as long as the sum of all
headword scores reaches a local maximum. Figure 4 provides
an example of a real clustering node with its children and sample
documents.
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Figure 4. Real clustering example of a node, showing the headwords of its children. For each child, 3 sample titles of an abstract are provided. Note:
only the titles and not the entire abstract are shown due to limited space.

Hierarchical Clustering Evaluation
As we use clustering as an exploration tool, our evaluation
approach focuses on the overall quality of generated cluster
hierarchies. One measure that takes into account the overall set
of clusters represented in the hierarchical tree is the F1 score
as introduced by Larsen and Aone [33] and used by Zhao and
Karypis [30]. A detailed view of this score is provided in
Multimedia Appendix 2.

Classification
A classifier node represents a user-defined topic. Internally, a
support vector machine [34] classifier is embedded and predicts
whether a document can be associated to the user-defined topic.
Support vector machines have been shown to work well on
textual data [35-37]. The classifier node acts as a filter and lets
only these documents classified as the user-defined topic pass
to the underlying nodes, where clustering continues.

The root node of each tree is a special “In Scope” classifier
node. Using their domain knowledge, the user defines words
that may represent what they are looking for and other words
that may seem relevant. Assuming that a user expects to discover
topics related to diabetes, possible words used as positive
instances might be diabetes, insulin, hypoglycemia, pain,
treatment, and risk. By default, stopwords such as and, of, or,
and for are predefined as negative training examples. Based on
the predefined words, the “In Scope” classifier is trained and
used to separate locally relevant documents and noisy or
irrelevant documents. Iteration 0 in Figure 2 illustrates the initial
tree.

The user starts exploring the tree via the interface and tries to
identify a clustering node that might represent a topic of interest
based on headwords and most important documents. Targeting

such a node k leads to the creation of a classifier node at the top
of the tree, a clustering node child under the created classifier
node, and a clustering node brother on the same level as the
classification node as depicted in iteration 1 in Figure 2. A user
chooses appropriate documents serving as positive and negative
instances to train the classifier. When the tree is built again,
each document entering the tree will first be fed to the type 2
classifier node. If the classifier predicts the document is related
to type 2, the document passes the classifier node to its
clustering node child. If the classifier rejects the document, the
document is redirected to the clustering node brother, where
clustering continues.

Iteration 1 in Figure 2 shows the purity of some nodes with
regard to the proportion of documents related to type 2 diabetes
in light red. Ideally, the nodes under a classifier only group
documents relevant to the user-defined topic. In practice, and
especially in the first iterations, this is not the case, as only a
few instances served to train the classifier, affecting prediction
performance. The user can interact with the interface to improve
the classifier performance in 2 ways:

• Correcting misclassifications in the nodes under a classifier
(by moving those documents to the negative training
instances)

• Focusing on other parts of the tree that may contain
documents related to type 2 that were not recognized by
the classifier (to add them as positive training instances)

At the end of each iteration, the classifiers are retrained with
the updated dataset, resulting in a steadily improving
classification performance. During the exploration, if a user
identifies a subtopic of an already created classifier, they can
create a classifier child under a classifier node (Figure 3). In
this iterative cycle, the user continues to create classifiers,
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choose appropriate documents to train the classifiers, and correct
misclassifications. This process eventually converges to form
a user-desired clustering solution of topics of interest. A
classifier node can increase its training set by using training
instances of its surrounding classifiers. For more details, please
see Multimedia Appendix 3.

Interactive Interface
An interactive interface has been developed in D3, jQuery, and
JavaScript that visualizes the hierarchical clustering tree via

nested circles (Figure 5). Moreover, each node provides
information about its headwords and lists the sentences that run
through this node ordered from the most to the least
representative document. This order can also be reversed. On
the bottom left, the documents for each node are shown. The
colored nodes represent classifier nodes. Through the
visualization, the transparency and interpretability of our
methodology will be improved.

Figure 5. Visual user interface where colored circles represent user-defined topics (classifiers). Clicking on one of the nodes zooms into the node and
shows the documents of the node on the bottom left. The headwords are shown in the white circles for each node.

Active Learning
Manual annotation is critical for the development and evaluation
of machine learning classifiers to target topics. However, it is
also time-consuming and expensive and thus remains
challenging for research groups [38,39]. Active learning is a
sample selection approach in the machine learning field that
aims to minimize the annotation cost while maximizing the
performance of machine learning–based models by choosing
the training data in a smart way [40]. In active learning, only
the most informative instances from an unlabeled dataset are
selected to be labeled by an oracle (ie, a human). By choosing
which instances should be labeled, an active learning algorithm
can reduce time, effort, and resources needed to train a
predictive model. This approach is attractive in scenarios where
unlabeled data are widely available but labels are expensive.
Several strategies exist to evaluate the informativeness of
unlabeled data and choose training data [40]. Simplest and most
commonly used is uncertainty sampling, in which the active
learner chooses the instance about which it is the least certain
how to label [41]. For example, for a binary probabilistic
classifier, uncertainty sampling queries the instances where the
posterior probability of being positive is nearest to 0.5. Other
strategies used less often are the more theoretically motivated
query-by-committee strategy [42] and the decision-theoretic
approach in which the model selects the instance that would
impart the greatest change to the current model if its label were
known [43]. Active learning has been applied widely to textual

data [35,44,45] and in clinical NLP [39,46]. Lu et al [47] showed
that using modern word embeddings (Word2Vec, FastText,
BERT) achieves significant improvement over more commonly
used vector representations such as bag of words.

In this paper, we explore how our approach benefits from the
combination of the active learning strategy uncertainty sampling
and the hierarchical tree structure to minimize the user
annotation effort and rapidly converge toward a user-guided
clustering solution.

We developed an active learning strategy to automatically
choose the best training instances for a given class, a Medical
Subject Headings (MeSH) code in our case, by selecting
documents from deeper levels of the tree. Figure 6 illustrates
the details of the strategy for the MeSH code type 1 diabetes.
In the first iteration, the tree is built containing only clustering
nodes and followed by the creation of the type 1 classifier, which
has no training instances yet. The depth level Dmax, which is
the level containing the most nodes in the tree, is then
determined, and from each of those nodes, documents are chosen
randomly consecutively. The parameter batchSize defines the
number of chosen documents per iteration (default: 50). The
first 50 documents will serve as initial instances to train the
classifier node for the next iteration. In the next iteration, the
tree is rebuilt taking the classifier with its instances into
consideration leading to the tree in Figure 6. The tree can be
separated into a positive tree (the subtree under the classifier,
which concentrates documents of a specific topic: in this
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example, type 1) and a negative tree (under the clustering brother
of the classifier, which concentrates documents that don’t refer
to the class type 1). Usually the negative tree is larger as it
concentrates documents from all other classes (MeSH codes).
The idea is to add 25 (batchSize/2) documents as new training
instances from each of the two subtrees. Similar to the first
iteration, in both subtrees, the level Dmax is identified and
documents are chosen following the uncertainty sampling
strategy contrary to the random selection of documents. From
each node, the document the model is the most uncertain about
to be of the specific class C is selected and added as a training
instance. The assumption behind picking training instances from
the level containing the most nodes is that documents in those
nodes are best distributed in the vector space, which
consequently provides well-distributed instances and avoids

instances of being too similar. A concrete selection process on
the positive tree is shown in Figure 6. Level Dmax contains the
nodes A, B, C, and D. In this example, the documents are chosen
consecutively from these 4 nodes, which the model is most
uncertain about. Uncertainty is measured as a prediction
probability of being closest to 0.5.

The user has the choice of applying the automatic active learning
strategy or the manual uncertainty sampling active learning
strategy via the interface. In the interface, each node shows the
headwords and documents in the node. The documents can be
ordered from highest to lowest (to determine which documents
are the most representative of the node) or lowest to highest (to
determine the documents about which the model is most
uncertain); the user can subsequently choose training instances
based on these documents.

Figure 6. In active learning strategy, the positive tree is the subtree under the classifier node type 1, and the negative tree is the subtree under its
clustering brother. On the left side, a sample of the document selection process is provided.

Active Learning Evaluation
Performance is addressed for each MeSH code individually.
Given a MeSH code, all associated documents are considered
the positive class while all other documents are considered the
negative class. This leads to highly imbalanced datasets for
most MeSH codes. Thus, it is also interesting to inspect the
number of positive instances each strategy is able to detect.

A random subset of 2000 documents is chosen and randomly
split into a training and test set of 1000 abstracts each. We
evaluated the performance for 50, 100, 150, and 200 training
instances per strategy to see if an increased performance can be
observed in the first iterations. In the literature, most proposed
active learning methods evaluated their performance only on a
single measure, accuracy. However, Ramirez-Loaiza et al [48]
showed that choosing only one metric to measure active learning
performance can lead to unexpected and unwarranted

conclusions. Hence, we evaluated our active learning method
on accuracy, precision, recall, and F1 score.

The proposed methodology is embedded in an open source tool
called Feedback Explorer (MadCap Software Inc). A video
illustration of how Feedback Explorer functions is provided in
a short video in Multimedia Appendix 4.

Results

Overview
In this section, we compare our hierarchical clustering and our
active learning algorithm to the most popular existing
algorithms. To that aim, we use a labeled classification dataset
to assess the quality of our outcomes. The purpose of this study
is not to establish a new state of the art but rather to show that
our algorithm reaches near state-of-the-art performance while
addressing the above-mentioned limitations of current systems
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such as usability for nonexperts, memory consumption, and
lack of interpretability.

Data
PubMed abstracts were downloaded from the US National
Library of Medicine to test our algorithm [49]. In this corpus,
abstracts are already classified in a hierarchical manner via
MeSH codes [50]. We focused only on diabetes abstracts. Each
selected abstract contained at least one diabetes MeSH code,
which is an identifier for a topic. Due to a memory limitation
of 30 GB for our analyses, we further reduced the dataset to be
able to compare against more memory-intensive algorithms. To
establish the maximum number of abstracts our system could
handle, we started by setting the threshold at 1000, indicating

the maximum number of abstracts per MeSH code. MeSH codes
with fewer abstracts than the given threshold were fully
included; otherwise a random sample of 1000 abstracts was
chosen. We steadily increased this threshold by 1000 abstracts
each iteration and reached a maximum threshold that our system
could handle of 5000 abstracts per MeSH code. Table 1 provides
an overview over all MeSH codes and the number of documents
included for each code. The abstract publication dates range
from 1949 to 2020.

In order to transform words into vectors, we used the biomedical
word embeddings trained on biomedical texts from
MEDLINE/PubMed [51], which are well adapted to our use
case.

Table 1. Diabetes related MeSHa codes with number of documents per MeSH code.

NDiabetes mellitus (C19.246)

5000Diabetes complications (C19.246.099) 

3026Diabetic angiopathies (C19.246.099.500)  

4424Diabetic foot (C19.246.099.500.191)   

5000Diabetic retinopathy (C19.246.099.500.382)   

386Diabetic cardiomyopathies (C19.246.099.625)  

97Diabetic coma (C19.246.099.750)  

97Hyperglycemic hyperosmolar nonketotic coma (C19.246.099.750.490)   

1308Diabetic ketoacidosis (C19.246.099.812)  

5000Diabetic nephropathies (C19.246.099.875)  

3662Diabetic neuropathies (C19.246.099.937)  

4424Diabetic foot (C19.246.099.937.250)   

1282Fetal macrosomia (C19.246.099.968)  

5000Diabetes, gestational (C19.246.200) 

5000Diabetes mellitus, experimental (C19.246.240) 

5000Diabetes mellitus, type 1 (C19.246.267) 

228Wolfram syndrome (C19.246.267.960)  

5000Diabetes mellitus, type 2 (C19.246.300) 

85Diabetes mellitus, lipoatrophic (C19.246.300.500)  

39Donohue syndrome (C19.246.537) 

16Latent autoimmune diabetes in adults (C19.246.656) 

1261Prediabetic state (C19.246.774) 

aMeSH: Medical Subject Headings

Hierarchical Clustering
We compared the hierarchical clustering part of Feedback
Explorer with the hierarchical agglomerative clustering (HAC)
algorithm. This algorithm has been implemented in several
open-source libraries; we used the implementation in the popular
machine learning library scikit-learn with complete linkage
criterion, which provides an efficient hierarchical clustering
algorithm [52].

For an equal comparison we ran both algorithms with two
configurations, one with 32 leaf nodes and one with 64. We ran

Feedback Explorer’s clustering 10 times with random document
order due to its streaming character which leads to different
clustering solutions for a different order of documents. The F1
scores for the HAC algorithm were 0.76 for the 32 leaf nodes
and 0.77 for the 64 leaf nodes, whereas the F1 scores for the
Feedback Explorer clustering were 0.73 (95% CI 0.712-0.757)
for the 32 leaf nodes and 0.74 (95% CI 0.717-0.760) for the 64
leaf nodes. Confidence intervals are not needed for the HAC
algorithm as it is stable. In both cases, the HAC performance
was superior; nevertheless, the F1 score for our approach with
0.73 and 0.74 comes close to the HAC performance.

J Med Internet Res 2022 | vol. 24 | iss. 1 | e27434 | p. 9https://www.jmir.org/2022/1/e27434
(page number not for citation purposes)

Ahne et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Active Learning
To address the active learning classification performance, we
compared 4 strategies. The first was the random strategy, in
which the algorithm chose the documents randomly to train the
classifier, followed by the uncertainty sampling strategy, in
which the model chose the instances about which it was most
uncertain [41]. Third was the Feedback Explorer strategy,
introduced earlier in Methods. The fourth and last strategy,
introduced by Zhang et al [45], combined convolutional neural
networks [53] with the active learning strategy expected gradient
length to classify text. Their proposed strategy selected
documents if they contained words that were likely to most
affect the word embeddings. This was achieved by calculating
the expected gradient length with respect to the embeddings for
each word [54]. The code of this approach is provided on
GitHub by the authors [55].

Table 2 provides a performance overview over all MeSH codes
(weighted average of accuracy, precision, recall, F1 score). The
average confusion matrices over all MeSH codes for each
strategy can be found in Multimedia Appendix 5. The scores

after 200 training instances are similar within the 3 nonrandom
approaches.

However, these averaged values mask the important variations
of these systems depending on the MeSH codes they consider.
In particular, MeSH codes with only a few relevant documents
generally lead to very low performance. For a detailed overview
of all MeSH codes, please refer to the table in Multimedia
Appendix 6. For some MeSH codes, Feedback Explorer’s
strategy shows the highest performance after 200 iterations
while for others the methods by Zhang et al [45] is superior.
However, both strategies are similar in most cases. Multimedia
Appendix 7 highlights specific results for 3 MeSH codes and
additionally shows information about the positive and negative
number of instances in the training set. For the MeSH code
diabetes complications (D048909), Feedback Explorer reaches
the highest performance after 200 training instances; for the
MeSH code diabetic angiopathies (D003925), the method by
Zhang et al [45] achieved best performance. The last MeSH
code, diabetic cardiomyopathies (D058065), shows bad results
for all strategies as only very few positive documents are
contained in the dataset.

Table 2. Weighted average of active learning performance over all Medical Subject Headings codes.

CNNa ZhangFeedback ExplorerUncertainty samplingRandom# training data

F1RecPrecAccF1RecPrecAccF1RecPrecAccF1eRecdPreccAccb

0.200.310.240.810.490.440.630.880.500.600.560.830.510.570.620.8750

0.420.590.390.860.560.510.710.900.620.640.680.880.490.510.620.86100

0.550.720.520.880.600.590.750.900.630.620.750.900.470.460.680.88150

0.630.790.580.900.620.580.710.910.610.530.770.910.450.430.620.89200

aCNN: convolutional neural network.
bAcc: accuracy.
cPrec: precision.
dRec: recall.
eF1: F1 score.

Memory Consumption
Figure 7 provides an overview of the memory consumption in
MB and execution time in minutes. Increasing the number of
documents hardly changes the memory consumption for

Feedback Explorer whereas HAC memory use grows
exponentially. The memory efficiency of Feedback Explorer
goes along with an expanding running time compared with the
scikit-learn algorithm.
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Figure 7. Memory consumption and execution times per volume of documents.

Discussion

Principal Findings
A visual interactive user interface has been developed, enabling
users without computer science knowledge to discover and
target topics of interest in unstructured clinical text to improve
the literature exploration in the evidence-based clinical decision
making process. An underlying HAC algorithm structures
documents in an interpretable manner via headwords. The
proposed method minimizes training instances effort in 2 ways:
active learning strategy combines uncertainty sampling with
the tree structure and manual intervention via the interface
selects relevant documents about which the model is most
uncertain as instances.

Feedback Explorer reaches near state-of-the-art performance
in terms of hierarchical clustering as well as the active learning
strategy. Furthermore, it addresses several existing limitations
in common machine learning algorithms to extract information
from text data: the challenge of adding domain knowledge to
the model, the need to specify the desired number of clusters
beforehand, the combination of classification and clustering in
one methodology, and the difficulty of applying advanced
machine learning algorithms for nonexperts without
programming skills. These features make it an ideal asset for
health professionals to analyze electronic health records,
laboratory results, and social media data. We have shown that
the memory consumption remains stable with an increased
number of documents, which makes the algorithm particularly
attractive in handling large datasets. The growing execution
time can be minimized by heavier parallelization of the
underlying Spark framework.

This methodology can be especially useful in complex clinical
cases or for specialists who need to get a rapid overview of the
existing literature concerning a specific topic.

Comparison With Prior Work
Several general purpose NLP systems have been developed to
extract information from clinical text. The most frequently used
tools are the Clinical Text Analysis and Knowledge Extraction
System [56], MetaMap [57], and the Medical Language
Extraction and Encoding System [58], according to the review
by Wang et al [59]. These systems have been applied to
information extraction tasks such as the identification of
respiratory findings [60] or the detection of smoking status [56].
However, Zheng et al [61] showed that these systems are
challenging to set up and customize, leading to general
dissatisfaction that prevents adoptability.

The NLP Clinical Language Annotation, Modeling, and
Processing toolkit (University of Texas Health Science Center
at Houston) addresses this problem of difficult customization
by also providing interaction via an interface to allow nonexperts
to quickly develop customized clinical information extraction
pipelines [62]. Besides the fact that the targeted task is quite
different, this tool lacks generalizability beyond the domains it
was trained on, and it is still difficult to add domain knowledge
as opposed to our approach in which a user can use their
expertise to specifically discover topics of interest [63].

In a recent literature survey concerning artificial intelligence in
clinical decision support, Montani et al [64] emphasize the need
for transparency and explainability in artificial intelligence
systems such that users fully understand all generated
suggestions. This is in line with our methodology as the user is
directly involved and creates a user-defined solution. A more
original approach is Plutchik, a voice-enabled, embodied
artificial intelligence chatbot that can perform searches in
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medical databases and retrieve and communicate medical
information. But the integration of more sophisticated analysis
methods, such as machine learning and deep learning methods,
is still under development [65].

To the best of our knowledge, Feedback Explorer is the first
decision support tool that combines topic exploration, topic
targeting, user-friendly interface, minimization of memory
consumption, and an annotation effort in a single methodology.
This allows health professionals to rapidly gain insights about
a clinical textual dataset to improve decision making.

Strength and Limitations
One of the key strengths of our methodology is that nonexperts
with no programming knowledge are able to explore and target
topics of interest in an unstructured textual dataset via an
interactive and user-friendly interface. The fact that we visualize
the headwords and the tree structure greatly improves
transparency. Vellido Alcacena et al [66] also suggest that
proper visualization can increase the transparency of machine
learning. Moreover, since humans are directly included in the
model creation, human interpretability is increased, as has also
been shown by Lage et al [67]. Transparency of clinical decision
support systems is key to ensure adoption by clinicians [68].
Due to its streaming nature, it is very memory efficient and can
be used on a computer with limited memory. Additionally, the
implementation is built on the basis of the large-scale data
processing framework Apache Spark, which allows fast
execution time through heavy parallelization of our algorithm
resulting in the ability to handle large datasets. This is
particularly interesting for the analysis of large text corpora,
which usually are quite computation intensive [69]. Being able
to dig into topics when an interesting cluster is found in
combination with an interpretable result in terms of headwords
and most important documents makes it particularly interesting
for health care professionals. In addition, the proposed active
learning strategy allows minimizing the annotation effort to
train the classifiers by picking the most impactful training
instances and enabling misclassification correction. The
limitation in a classic clustering algorithm of specifying the
desired number of clusters beforehand is addressed, as this
parameter is not needed in our methodology. Currently it is still

challenging to combine domain knowledge with topic extraction.
Here, a health professional can apply their domain knowledge
to search for specific topics of interest and test hypotheses to
improve clinical decision making. This can be particularly
helpful in the field of rare diseases, where clinical practice based
on valid evidence is challenging [70]. Additionally, our model
can be adapted to different languages by providing the
corresponding word embeddings, which can be found easily in
the web.

A limitation of our approach is that the number of classifiers a
user can create is limited, as manual interaction is needed. In
further investigations, our results should be confirmed on other
datasets to ensure generalization and portability in other
contexts. Also, the algorithm may construct marginally different
tree structures that could affect data interpretation. The fact that
the active learning performance is not always steadily increasing
with more training instances but may sometimes oscillate is an
open question in the active learning field [71]. This could be a
future topic of investigation. A next step will be the evaluation
of the proposed methodology on a sample of end users of various
profiles and levels of expertise in clustering techniques. This
will be the subject of a follow-up publication.

Conclusion
In this study, we proposed an interactive user interface for
people without computer or data science knowledge to explore
unstructured clinical text information as clinical decision
support. The visualization of headwords and active participation
of the user to drive the algorithm to converge to a user-defined
solution greatly improves transparency. It combines several
advantages such as using domain knowledge to target topics of
interest, minimizing the manual annotation effort through active
learning leading to a faster convergence, and minimizing
memory consumption due to scalability, allowing processing
of large corpora thanks to Spark’s parallelism capabilities. We
have shown that by combining all these advantages, we can
reach near state-of-the-art performance. Such a tool can be of
great assistance to health care professionals with limited
computer science skills who want a rapid overview of specific
topics while ultimately improving the literature exploration in
the clinical decision-making process.
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