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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic
contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date,
including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the
most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies
to address this.

Methods: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis
(GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS),
Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses)
were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with ‘omics
reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed
up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene
knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO).

Results: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10−6), but there was no simple SNP/expression
relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from
blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional
rating score, p = 5.5 × 10−3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein
data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo
indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control,
swim distance = 112 ± 28mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53mm/s, respectively, p for all < 0.0001), which
were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression.
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Conclusions: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject
a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1,
a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-
depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected
GWAS findings.

Keywords: Motor neurone disease, MND, Genome-wide association study, Computational biology, Zebrafish,
Neurodegenerative diseases, Quantitative trait loci, Genes, Regulator, Disease progression

Background
The genetic contribution to the risk of the lower and
upper motor neurone degenerative disease amyotrophic
lateral sclerosis (ALS) is complex, with evidence for both
Mendelian and non-Mendelian inheritance patterns [1].
Known mutations in 16 genes (implicated with un-
equivocal evidence [1]) are found in up to 15% of cases
with ALS and its ALS-overlapping syndromes. For the
remaining cases, genome-wide association studies
(GWAS) and heritability estimates (h2 = 0.43) [2] pro-
vide evidence to support a polygenic contribution to
genetic liability. Despite the likely polygenic genetic li-
ability for the majority of cases with ALS, the current re-
ported GWAS SNP-based heritability estimates for ALS
are relatively low (h2SNP = 0.018–0.08, range across stud-
ies) [3, 4] compared to other common CNS diseases (for
example 0.26 for schizophrenia) [5] or neurological dis-
orders (for example 0.23 for Parkinson’s disease) [6].
This could indicate that DNA variants not tagged by
common SNPs are more important for ALS than for
other diseases (i.e. a contribution of rare variants) but
may also reflect recognised technical artefacts of ALS
GWAS cohorts, i.e. case-only or control-only samples
could weaken the real genetic signal through the strin-
gent quality control (QC) process that must be applied
to such data.
Nonetheless, the majority of ALS cases are expected to

carry a portfolio of risk variants [3, 4, 7–9]. This portfo-
lio remains relatively unknown with just 10 genomic re-
gions identified through the three largest GWAS to date
[3, 9, 10] (represented by their most significantly associ-
ated SNPs and closest gene body): rs3849943 (C9orf72),
rs75087725 (C21orf2), rs117027576 (KIF5A), rs616147
(MOBP), rs10139154 (SCFD1), rs34517613 (SARM1),
rs74654358 (TBK1), rs12608932 (UNC13A), rs58854276
(ZDHHC6) [11] and a region we initially identified,
rs10463311 (GPX3/TNIP1) [4] (Additional file 1: Table
S1). Exome sequencing and rare-variant burden testing
have linked three lead SNP variants to their nearest gene
(C21orf2, KIF5A, TBK1) [3, 9] while expression data has
implicated five loci (Additional file 1: Table S1).

We had previously identified links with known ALS
genes on each side of the lead variant rs10463311
(GPX3/TNIP1) on chromosome five [4]. TNIP1 (encod-
ing TNFAIP3 Interacting Protein 1) has the closest gene
body to this sentinel SNP, but the second closest tran-
scriptional start site (TSS) ~ 56 kb downstream (as it is
on the reverse strand). Briefly, TNIP1 is a nuclear factor
kappa-B (NF-κB) that interacts with proteins encoded by
two known ALS genes OPTN and TBK1 [12, 13]. Up-
stream of the sentinel SNP is GPX3, which encodes
glutathione peroxidase 3. The TSS for GPX3 is located
~ 10 kb upstream (forward strand), and it is a well-
known glutathione peroxidase that performs antioxidant
functions linked with the most recognised ALS gene,
SOD1 [14]. To identify and understand putative mechan-
istic contributions of the implicated genes, it is critical
to fine-map GWAS-associated loci. Unclear is which
method/s are most likely to identify the causal gene from
ALS GWAS loci or other neurological conditions.
Bioinformatic methods can quickly and cost-effectively

integrate SNP-disease trait GWAS results with SNP-
functional trait annotations. Harnessing GWAS results
with relevant datasets (genome-wide) can allow the
search space to be narrowed to a single region/gene that
is likely to contribute to the association. Complementing
this with subsequent analyses specific to the disease can
help determine mechanisms that could be relevant to
target therapeutically [15–17].
Here, a set of complementary bioinformatic ap-

proaches implicate both GPX3 and TNIP1 genes in the
context of ALS risk, with straightforward follow-up ap-
proaches that could investigate future ALS GWAS loci.
Our in vivo (disease cohorts and a zebrafish model) but
not in vitro (human motor neurons) studies offer sup-
port for targeting GPX3 in future studies.

Methods
In silico annotation of GWAS summary data
The FUMA pipeline and five complementary tools
(GCTA-COJO, S-LDSC, PoPS, SMR- HEIDI, TWAS)
were used to perform post-GWAS analysis using the
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most recent published ALS summary data (n = 20,806
cases, n = 59,804 controls) [9] (Fig. 1). These analyses
use the full GWAS summary data (unless specified) to
provide a genome-wide result overview prior to analyses
on the GPX3/TNIP1 locus in chromosome five [4, 9].
The GWAS summary statistics [9] (i.e. SNP ID, allele
frequency, association effect size and p-value) already
controlled for variables, such as sex and ancestry, were
run through a standard quality control (QC) pipeline.
Briefly, the European 1000 Genome phase 3 reference
data was used to ensure that the reference and alterna-
tive alleles were correct, SNPs were removed with MAF
< 0.01 and/or if strand-ambiguous (AT or GC alleles).
This process resulted in 10,031,417 SNPs passing QC,
ready for post-GWAS analysis. SNP-based heritability
was estimated by using LD-score regression [5]. This
was applied to GWAS summary statistics to estimate the

contribution of common genetic variants to variation in
the liability of ALS [24]. Lifetime disease risk of 0.0025
was used in the conversion of the estimate to the liability
scale.

FUMA
The FUMA (v1.3.5d) pipeline [19] annotated the
GWAS results based on positional and functional infor-
mation of SNPs. Briefly, significantly associated SNPs
are characterised as risk loci by incorporating linkage
disequilibrium (LD) structure to prioritise genes that
are likely to be involved in ALS (SNP2GENE). Func-
tionally annotated SNPs are mapped to genes based on
three strategies, positional mapping (functional conse-
quences on genes), expression (expression quantitative
trait loci (eQTLs)) and chromatin interactions of
phenotype-relevant tissue types (eQTL and chromatin

Fig. 1 Summary of the in silico, in vitro and in vivo follow-up of ALS GWAS findings. Causal genes/genomic loci implicated by a SNP association
are not necessarily the closest (empirical estimate of those that are ~ 30%, Zhu et al. [18]) and the flowchart provides a stepped example on how
this paper integrated complementary bioinformatic methods on GWAS summary statistics to prioritise GPX3 and TNIP1 for follow-up in disease
cohorts and in vitro (human spinal motor neurons) and in vivo (zebrafish-MO) models. Relevant bioinformatic tools and processes used in this
paper are described [5, 18–23]. GWAS genome-wide association study, h2SNP proportion of heritability explained by SNPs, FUMA Functional
Mapping and Annotation pipeline, S-LDSC Stratified Linkage Disequilibrium Score regression, GCTA-COJO conditional and joint analysis, SMR-
HEIDI Summary Mendelian Randomisation and the HEterogeneity In Dependent Instruments test, TWAS-CONTENT transcriptome-wide association
study and context-specific genetics test, PoPS Polygenic Priority Score, siRNA short interfering RNA, iPSC induced pluripotent stem cells, Zebrafish-
MO zebrafish morpholino, UKB UK-biobank, chr chromosome
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interaction mapping). GWAS summary statistics were
uploaded and run using the default SNP2GENE job set-
tings using available biological data repositories and
tools. Available data repositories used in FUMA (and
other tools) have been through prior quality control
pipelines to adjust and control for variables such as sex
and age. To identify independent significant SNPs, a p-
value threshold of < 5 × 10−8 was used and an LD r2 of
< 0.6 with other more significantly associated SNPs.
Within this pool of independent SNPs, lead SNPs
were defined as those most highly associated and in-
dependent from other lead SNPs (LD of r2 < 0.1).
The lead SNPs and those in LD with them were an-
notated as risk loci (a 250 kb window, r2 ≥ 0.6). The
1000 genomes phase 3 data [25] were used as the LD
reference (all ancestries as recommended [19]). The
MAGMA gene-set analysis [26] was used to identify
significant genes (from a total of 19,290 genes from
Ensemble v92) (Bonferroni-adjusted p-value of 0.05/
19,290 = 2.6 × 10−6). These were used for MAGMA
pathway analysis (using the full distribution of p-
values and 5917 GO terms obtained from
MsigDBv6.2, and a Bonferroni-adjusted p-value of 8.4
× 10−6) [27]. Gene-based test association results were
used to identify relevant tissue enrichment (n = 54
tissues GTEx v8) [28] and BrainSpan [29].
We also tested the relationships between ALS GWAS

associations and the single-cell gene expression profiles
and associations. The analysis was based on a regression
model and a one-sided test (βE > 0) [20] using 11 single-
cell datasets (Additional file 2: Supplementary Methods)
with an FDR multiple correction applied.

S-LDSC
Stratified Linkage Disequilibrium Score Regression (S-
LDSC) [21, 22] was applied to the ALS GWAS summary
statistics [9] to determine the genomic functional anno-
tations most relevant to the common variant association
signal. The GWAS summary statistics were subset to
HapMap3 SNPs and used as the input (S-LDSC default).
For functional annotations, SNP-based heritability was
partitioned into 52 categories in S-LDSC based on refer-
ence data from ENCODE [30] and Roadmap Epige-
nomics Consortium data [31], including elements such
as UCSC, UTRs, promoters, intronic regions and con-
served regions. For the S-LDSC cell-type annotation
analysis, SNP-based heritability was partitioned to com-
pare across cell-specific annotations, including GTEx
[32] and Franke lab data [33] set comprising 205 tissues
and cell types (categorised to nine broad tissues categor-
ies for visualisation). We used the LDSC Python com-
mand line tool [5] to run the analysis and an FDR-
corrected p-value of < 0.05 to determine significance.

GCTA-COJO
To determine if GWAS associations at the chromosome
5 locus could represent more than one causal variant,
we performed a conditional and joint multiple SNP ana-
lysis implemented in GCTA software (GCTA-COJO)
analysis [34]. The QC’ed ALS GWAS summary statistics
were used with LD reference from imputed-genotyping
data of UK Biobank (20,000 individuals randomly sam-
pled of European descent). We used the default settings
limited to chromosome 5 (using --chr 5 option) to iden-
tify both the lead SNP and the top 10 independent SNPs.
Then, to detect if there was evidence for collinearity, we
conditioned on the lead SNP. Using a similar method,
we examined the top eQTL SNP for GPX3/TNIP1 from
eQTLgen summary statistics (rs12518386) by condition-
ing on the lead SNP and comparing the top eQTL SNP
effects and p-values. If the effects become very small or
p-values become less significant, this means the top
eQTL SNP effect is driven, at least in part by LD with
the lead SNP, while the opposite result is a sign/possibil-
ity of independent effects. To validate/confirm the result,
we then conditioned on top eQTLgen SNP.

SMR-HEIDI
We conducted a Summary data-based Mendelian Ran-
domisation (SMR) analysis [18] to investigate if ALS
SNP associations were mediated through expression.
This method applies a Mendelian Randomisation frame-
work to infer causality by testing the association between
GWAS and expression quantitative trait loci (eQTL)
summary statistics. We also apply the HEterogeneity In
Dependent Instrument (HEIDI) test to distinguish,
where possible given the data, causality (or pleiotropy)
from linkage [18]. When an SMR association passes the
HEIDI test to indicate low heterogeneity (p > 0.05), the
data are consistent with the ALS-associated SNP reflect-
ing differences in gene expression of the risk and pro-
tective alleles. For the analysis, the QC’ed ALS GWAS
summary statistics were used with LD reference from
imputed-genotyping data of UK Biobank (20,000 individ-
uals randomly sampled of European descent). For the
expression data, we used eQTL data with the largest
sample size (blood gene expression eQTLGen, n =
31,684) [35] as well as relevant ALS tissues (brain, cell-
type annotation results) [36]. The brain samples had
been previously meta-analysed by Qi et al. [36] (GTEx,
version 7.35 [28], the CommonMind Consortium [37],
the Religious Orders Study and Memory and Aging Pro-
ject (ROSMAP) project [38], Brain eQTL Almanac pro-
ject (Braineac; 10 brain regions) [39]) (effective sample
size of n = 1194) and the PsychENCODE brain pre-
frontal cortex eQTL data (n = 1387) (SCZ, bipolar dis-
order and autism spectrum disorder) [40] (Ntotal =
2581). The large sample size (eQTLgen) is best powered

Restuadi et al. Genome Medicine            (2022) 14:7 Page 4 of 22



for detection of QTLs [32] and can be used as a proxy,
given top cis-eQTLS are correlated across tissues [32]
including those between independent brain and blood
samples [36]. To ensure relevant tissue-specific eQTLs
for ALS are still considered, we use eQTL data from
brain samples (despite their smaller sample sizes and
hence reduced power for detection of eQTLs (compared
to the blood eQTLgen data)). For all of the eQTL data,
we excluded cis-eQTL with MAF < 0.01 and the MHC
region (to avoid misinterpretation due to the LD com-
plexity). We chose the significant probes from SMR ana-
lysis with stringent Bonferroni-corrected threshold for
SMR p-value (0.05/number of probes) and > 0.05 as the
HEIDI test p-value threshold. Given blood eQTL data
were used as a proxy for more ALS-relevant tissues due
to its large sample size, significant SMR findings were
followed up in the brain meta-analyses using Bonferroni
threshold corrected for significant findings (rather than
genome-wide probe number). The use of both SMR and
HEIDI methods is ideal for prioritising loci for func-
tional follow-up if studies are sufficiently powered and
conservative thresholds are applied.

TWAS and TWAS-CONTENT
Transcriptome-wide association studies (TWAS) can
provide insight into gene-trait associations by summaris-
ing the effects of eQTLs into a single, powerful predictor
of gene expression [41]. First, we built genetic models of
gene expression (training an elastic net on a tissue-by-
tissue basis) (GTEx v7 consortium) [28] before running
the gene-tissue weights and ALS summary statistics [9]
through TWAS. In addition to the original TWAS ap-
proach, we performed a similar analysis using CONtexT
spEcific geNeTics (CONTENT) [42] based on the meth-
odology and decomposition of a previous work by Lu
et al. [43]. CONTENT uses individual-level data to first
decompose a gene-tissue’s expression into both a tissue-
shared component as well as a tissue-specific compo-
nent, then trains an elastic net on each component sep-
arately (Additional file 2: Supplementary Methods).
CONTENT then builds a final predictor—termed the
CONTENT “full” model—which combines both pre-
dicted components of the expression. Consequently,
CONTENT can discover for a given eGene a component
that is shared across all tissues, components that are
specific to tissues, and/or a predictor that includes both
the tissue-shared and tissue-specific components. As
there are multiple tests to determine whether a gene
contains a heritable component, CONTENT leverages a
hierarchical FDR set at 0.05 [44] to conservatively cor-
rect for multiple testing. Identifying tissue-specific
eQTLs may provide additional insight relevant to disease
phenotypes rather than eQTLs that affect expression
across multiple tissues.

PoPS
We utilised a similarity-based gene prioritisation
method, Polygenic Priority Score (PoPS) [23], to identify
top gene candidates in each chromosome. Using the
ALS summary GWAS [9], PoPS excludes the locus of
interest and uses marginal feature selection to weight
those considered relevant. Briefly, it performs a gene-
based association using MAGMA [26] and then per-
forms an enrichment analysis for each gene feature and
those that are nominally significant are retained (p <
0.05). The features are created from expression data,
single-cell datasets, pathway data and protein-protein
interaction networks (many of which are not jointly con-
sidered in other tools). Joint enrichment (of the selected
features) is computed using a generalised least squares
(GLS) regression model which also includes a matrix of
gene-level covariates such as gene length. A leave one
chromosome out (LOCO) framework is then used to
compute a polygenic priority score for each gene, per
chromosome, by multiplying its row vector of gene fea-
tures. In this manner, PoPS provides a score for each
gene (independent of the GWAS data on the chromo-
some where the gene is located) to prioritise a gene in
the locus of interest for each chromosome.

Human samples
To examine GPX3 and TNIP1 expression in the context
of disease, Australian ALS cases and controls were re-
cruited (2016–2019) with written consent obtained from
all individuals (discovery cohort Ncases = 50, Ncontrols = 50;
replication cohort Ncases = 200, Ncontrols = 28) (Table 1).
The discovery sample cohort was from a single site (The
Royal Brisbane and Women’s Hospital (Brisbane), while
the replication cohort (independent samples) included
three additional Australian sites, Flinders University
(Adelaide), Fiona Stanley Hospital (Perth) and Calvary
Health Care Bethlehem (Melbourne). Each site had study
approval from their local Human Research Ethics Com-
mittee (HREC). Clinical data were recorded (research
nurses/neurologists) on a single secure server that in-
cluded the generation of a de-identified subject ID. This
ID was used during subsequent processing at The Univer-
sity of Queensland. ALS cases fulfilled the revised El Es-
corial criteria for possible, probable (lab-supported) or
definite ALS. Retrospective analysis using the Gold Coast
diagnostic criteria [45] was also applied, and a subset ana-
lysis removing subjects not meeting the criteria was ap-
plied (Additional file 2: Supplementary Methods). Control
subjects were unrelated, age-matched individuals free of
neuromuscular diseases, recruited as either partners or
friends of patients with ALS or community volunteers.
Available demographic and clinical data was matched with
the subject and collection ID (Table 1). All participants
were confirmed to be of European ancestry with
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genotyping data when possible [3, 4] with previously pub-
lished data utilised for genotype [3, 4] and methylation
[46] analyses.

mRNA in ALS cases and controls
Microarray expression data from blood with matched
genotyping data from a Netherlands cohort (n = 942,
Ncases = 347, Ncontrols = 595) were examined for evidence
of changes in expression with reference to the risk allele
[47]. Briefly, mRNA was isolated and purified using

PAXgene tubes and extracted according to the instruc-
tions (QIAGEN RNA extraction kit). Samples were
hybridised to two different platforms (HumanHT-12 v3
and v4 BeadChips) according to the manufacturer’s
protocol (Illumina, Inc., San Diego, CA, USA). Standard
normalisation (using overlapping probes) and QC were
carried out including sex checks. Surrogate variable ana-
lysis was used to calculate residuals to correct for known
and unknown technical effects in a linear regression
model [48]. All associations included covariates to

Table 1 Clinical details of the cohort utilised for the ELISA assays

Cohort (location) Preliminary (discovery cohort)
Australian (Brisbane-based)

Independent replication cohort
Australian (Australia-wide*)

Sample ALS cases Controls ALS cases Controls

Number 50 50 200 28

Age (yrs, ± 95% CI) 61 ± 2.3 60 ± 1.9 62.7 ± 1.6 52.9 ± 5.4

Sex (F/M) 13/37 18/32 59/141 15/12

BMI 25.7 ± 1.0 26.8 ± 1.2 NA NA

Smoker (ever) Yes = 20
No = 30
NA = 0

NA Yes = 15
No = 79
NA = 106

NA

ALSFRS-R 38 ± 1.2 NA 32.9 ± 1.2 NA

Age at onset 59.0 ± 2.4 NA 60.3 ± 1.8 NA

Age at diagnosis 60.7 ± 2.5 NA 61.5 ± 1.9 NA

ALS onset site B = 11 (22%)
UL = 13 (26%)
LL = 21 (42%)
Other = 5 (10%)

NA B = 44 (26%)
UL = 51 (30%)
LL = 70 (41%)
Other = 6 (4%)
NA = 29

NA

ALS type Classic = 30
UMN = 8
LMN = 8
Other = 4

NA Classic = 97
UMN = 8
LMN = 13
Other = 81

NA

Family history 0 NA 22 (11%) NA

FVC (seated) 3.6 ± 0.3 NA NA NA

NIV 3 NA NA NA

PEG 5 NA NA NA

Riluzole 25/50 NA NA NA

rs10463311
Genotype n (%)

TT = 23 (50%)
TC = 17 (37%)
CC = 6 (13%)
NA = 4

TT = 26 (59%)
TC = 15 (34%)
CC = 3 (7%)
NA = 6

TT = 114 (62%)
TC = 59 (32%)
CC = 11 (6%)
NA = 16

TT = 12 (44%)
TC = 14 (52%)
CC = 1 (4%)
NA = 1

Months between onset and assessment 22.4 ± 5.1 NA 33.5 ± 4.5 NA

Months between diagnosis and assessment 9.3 ± 3.1 NA 22.92 ± 5.9 NA

Comorbidity 32/50 30/50 NA NA

GPX3 level (ng/ml) 1742.2 ± 350.3 1908.0 ± 315.0 4907.8 ± 225.1 5368.4 ± 599.9

TNIP1 level Not detectable Not detectable NA NA

Days between blood collection and plasma extraction 0 ± 0 0 ± 0 1.7 ± 0.1 0.9 ± 0.3

Visit to the clinic which the sample was collected NA NA 1.35 ± 0.1 NA

Rate of progressionκ NA NA 0.71 ± 0.09 NA

F female, M male, BMI body mass index, ALSFRS-R Amyotrophic Lateral Sclerosis Functional Rating Score – Revised (range 0–48 (48 = no physical disability)), FVC
forced vital capacity, NIV non-invasive ventilation, PEG percutaneous endoscopic gastrostomy. *Samples were collected from four clinics, κ = change in ALSFRS per
month since onset ((48-ALFRS at visit)/(months between onset and visit date)) (n = 128, Additional file 2), ±error indicates 95% confidence interval
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correct for batch effects and sex. GPX3 and TNIP1 gene
expression were examined between cases and controls
with respect to the risk variant.

GPX3 and TNIP1 protein expression in blood plasma
GPX3 and TNIP1 expression were measured in plasma
in ALS cases (N = 50) and controls (N = 50) using com-
mercially available sandwich enzyme-linked immuno-
sorbent assays (ELISA). GPX3 expression was
subsequently measured in a set of independent samples
(replication cohort, Ncases = 200, Ncontrols = 28). All
plasma samples were extracted from venous blood col-
lected in an EDTA tube. These were stored at room
temperature during transportation and then centrifuged
at 1000g. Plasma was frozen in 500-μl aliquots and
stored in a −80 freezer before being thawed on ice be-
fore use. TNIP1 activity measured using the ELISA kit
(MyBiosource, Inc, San Diego, cat:MBS925301) was not
detectable, and no standard curve could be generated
despite running plasma at the highest possible concen-
tration. GPX3 activity was detected in plasma samples,
and after a standard curve optimisation following kit in-
structions (Adipogen, Liestal Switzerland, cat: AG-45A-
0020YEK-KI01), case and control plasma was diluted at
1 in 200 (ELISA Buffer 1X) and run in duplicate for the
assay following kit instructions (Additional file 2: Sup-
plementary Methods). As described above, this was car-
ried out in two batches, a preliminary discovery cohort
(Ntotal = 100) and an independent replication cohort
(Ntotal = 228) (Table 1). All cases had a time-matched
ALSFRS score recorded. In the discovery cohort, fifty
cases and fifty controls were used to measure GPX3.
These blood samples had been collected in EDTA tubes,
spun and frozen within 24 h. The replication set con-
sisted of a larger sample size in which blood samples
had been collected, spun and plasma frozen between 0
and 4 days (200 cases and 28 plate controls) (Table 1).
Methods for GPX3 detection were identical in each set,
and cases and controls were randomised across plates.
Fluorescence was directly proportional to the concentra-
tion of GPX3 in the samples and was calculated based
on the plate standard. Data analysis was carried out in R.
Preliminary analyses assessed covariates such as age, sex,
BMI and days post-collection (0–4) to determine if they
had an effect on GPX3 expression (only sex had a de-
tected effect and was included as a covariate). To assess
the risk allele on GPX3 expression, available genotype
data was matched with samples in both the discovery
and replication cohorts. To meta-analyse the results
using both additive and recessive models, GPX3 levels
were standardised (mean of 0 and standard deviation of
1) in each experiment.
Just under half the participants with ALS provided

blood samples and clinical data at multiple clinic visits

allowing a preliminary longitudinal analysis to be con-
ducted (Ncases = 89, Nmeasurements = 224 (2–5 visits)).
Change in ALSFRS-R (a clinical questionnaire assessing
functional disability and extent of neuronal loss with
scale 48 to 0 (48 = indicating normal physical function
and no disability)) uses months since diagnosis and
months since first visit as the dependent variable in a
linear regression on GPX3 level. While the date of the
first symptom and diagnosis date were both available, we
used the latter for consistency. Diagnosis is provided by
a neurologist and is reliable and memorable while symp-
tom onset is reliant upon a subjective report of symp-
toms, i.e. the decision of which symptoms represent the
onset of disease and so can be more variable. Months
since the first visit was used to visualise the data as a
few subjects joined the study quite late (~ 50months
post-diagnosis), acknowledging that long survival is a
likely ascertainment bias in prevalent ALS samples.

GPX3 and TNIP1 DNA methylation
A subset of the Australian ALS case-control cohort
(Ncases = 782, Ncontrols = 613) had data generated from
Illumina 450k arrays. These had been previously ana-
lysed in a methylome-wide association study with stand-
ard quality control and covariates accounted for (i.e.
batch effects, cell type, age, sex) [46]. We thus inspected
the DNA methylation levels of probes annotated to
GPX3 and TNIP1 [49] and their corresponding associ-
ation summary statistics noting that non-variable probes
(s.d. < 0.02) were excluded.

In vitro knockdown of GPX3 and TNIP1 in human motor
neurons
To test if cell GPX3 or TNIP1 are required for the devel-
opment and survival of human spinal motor neurons,
siRNAs were targeted to these genes. Briefly, H9 human
embryonic stem cells (WA09 line, RRID:CVCL_9773,
WiCell Research Institute) [50] were differentiated [51]
with modifications as previously described [52]. At day
19 of the differentiation, motor neurons were co-
transfected with Hb9-GFP reporter constructs and target
or scrambled siRNAs (human siRNA Oligo Duplex,
locus ID 2878 or 10318, Origene) as described in detail
previously [52]. After 48 h, the motor neurons were har-
vested for gene expression, or morphological and viabil-
ity analysis using n = 3 independent differentiations
(normalised to Hb9-GFP only transfected cells). Target
siRNA knockdown of GPX3 or TNIP1 gene expression
was confirmed with real-time qPCR as previously de-
scribed [52] using primers against GPX3, TNIP1 and the
housekeeping gene HPRT1 (Additional file 2: Supple-
mentary Methods). Live human motor neuron cultures
were imaged using HB9-GFP fluorescence on a CellDis-
coverer 7 microscope (Zeiss) and assessed for motor
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neuron morphology and defects in neurite outgrowth
[53]. Cell viability was measured using the Thiazolyl
Blue Tetrazolium Blue (MTT) reduction assay (Sigma).
Both these assays have been linked with known ALS/
MND genes. Cell viability is impacted by FUS [54] and
SOD1 [55] (cell types, SH-SY5Y, NSC-34), and axonal
length defects have been identified by KD of full-length
SMN (to model spinal muscular atrophy) [56]. Quantifi-
cation of GPX3 and TNIP1 gene expression suggested
that greater than 50% of the cells were transfected to
provide good sensitivity to detect the viability effect. The
axon quantification assays were independent of transfec-
tion efficiency as only GFP-positive transfected motor
neurons were quantified.

In vivo knockdown of GPX3 and TNIP1 expression in
zebrafish
To investigate the consequences of lowered GPX3 or
TNIP1 levels in vivo (as lower gpx3 expression corre-
lated with worse physical function in disease), zebrafish
knockdown (GPX3 and TNIP1) experiments were con-
ducted using antisense morpholino oligonucleotides
(MO) to block translation of each human orthologue
(one of each; gpx3 and tnip1) (similar to methods previ-
ously used for investigation of other ALS-associated
genes [57]). As a control, we designed and used a 5-
base-pair mismatch MO. Oligonucleotides were de-
signed using Gene Tools LLC (Philomath, OR; http://
www.gene-tools.com/) (Additional file 2: Supplementary
Methods). To define the optimal dosage, titration experi-
ments were performed using five doses (dose range
0.25–1.2 mM) and injected embryos monitored.
Briefly, adult and larval zebrafish (Danio rerio) were

maintained at a dedicated zebrafish facility (Imagine In-
stitute and ICM, Institut du Cerveau et de la Moelle épi-
nière, Paris, France) and bred according to the National
and European Guidelines for Animal Welfare. Wild-type
(AB background) and transgenic (Tg(Mnx1:eGFP)) zeb-
rafish embryos were raised at 28 °C in E3 medium sup-
plemented with 0.01 mg/L methylene blue. Antisense
morpholino (MO) sequences (Additional file 2: Supple-
mentary Methods) were designed to complementarily
bind to GPX3 and TNIP1 genomic DNA sequences and
encompassed the respective ATG start codon (to block
transcription). Blastomeric microinjections were per-
formed at one-cell stage using glass microcapillaries
(Sutter Instrument) and a Picospritzer III pressure in-
jector (General Valve Corporation, Fairfield, NJ, USA).
Injected embryos were cultivated in standard incubator
condition and development observed for 5 days (dissect-
ing microscope and manual observation) before selecting
the most appropriate concentration to perform motor
testing. The touch-evoked escape response (TEER) as-
says were performed at 2 dpf (days post-fertilisation) as

previously described [58]. Sex was not considered to
have an effect at this early stage of development and was
not included in the analyses.

Zebrafish mRNA injection and MO-rescue and
overexpression experiments
To both test the potential pathogenicity of GPX3 over-
expression and its ability to rescue/validate the observed
GPX3-LOF motor phenotype, we designed a custom-
GPX3 mRNA (cstGPX3) with a modification of the first
two codons (Additional file 2: Supplementary Methods)
to protect the synthetic mRNA from being targeted by
the aforementioned GPX3-MO, while maintaining the
same protein sequence. The cstGPX3 mRNA was syn-
thesised as described in Additional file 2: Supplementary
Methods and then purified and stored at −80 °C prior to
the experiments. Injections and titrations were per-
formed as described above with a dose ranging from 50
to 250 pg final. Rescue experiments were performed at a
final concentration of 100 ng/μl [58].

Results
Prior to proposing the follow-up of any ALS risk locus,
we conducted a suite of post-GWAS analyses on the
most recent ALS GWAS summary statistics [9]. These
analyses were not included in that study and thus were
carried out here (Fig. 1). This provided support for the
hypothesis that the GWAS association signal includes
true positive information (i.e. evidence consistent with a
CNS/neurological disease basis), despite the low SNP-
based heritability that we estimated from these data
using LDSC regression (h2SNP = 0.018, SE 0.0038).

Annotation of full ALS GWAS identifies enrichments
consistent with known disease processes
The Functional Mapping and Annotation pipeline
(FUMA v1.3.6) detected six significant genomic risk
loci associated with ALS (Additional file 1: Table S1-
S2). Within these loci, 201 candidate SNPs (r2> 0.6
(measure of linkage disequilibrium)) and 43 inde-
pendent (r2< 0.6) significant SNPs were identified,
resulting in 92 prioritised genes (p < 2.6 × 10−6)
(Additional file 1: Tables S2-S5, Additional file 2:
Figs. S1-S2). The gene-property analysis (using
MAGMA [26]) identified the following top gene
ontology pathways “go central nervous system
neuron axonogenesis” (category: GO biological pro-
cesses p-value = 2 × 10−4), “go presynaptic cytoskel-
eton” (category: cellular component, p-value = 6 ×
10−4) (disease process [59];) and “go adenosine deam-
inase activity” (category: molecular function cellular
component p-value = 5 × 10−4) (disease process [60];)
(Additional file 1: Table S6).
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Stratified LD-score regression (S-LDSC) [5] provided
functional annotation and cell-type SNP-based heritabil-
ity enrichment (i.e. the proportion of SNP-based herit-
ability divided by the proportion of SNPs in the
category) estimated from GWAS summary statistics.
Seven annotation categories were significantly enriched
(FDR-corrected p-value of < 0.05) with the two most sig-
nificant enrichments identified as “Intron” and “Super
enhancer” regions (both with 500-bp extension) (Add-
itional file 2: Fig. S3 and Additional file 1: Table S7). S-
LDSC analysis using cell-type annotation identified nine
cell types with gene expression enrichment. This was
dominated by cells in the tissue category of the “Central
Nervous System” (6/9) and the most significant cell en-
richment corresponded to “Muscle-Skeletal” (Additional
file 2: Fig. S4, Additional file 1: Table S8). Functional an-
notation of the full GWAS summary data similarly iden-
tified enrichment in the “Brain Cerebellum” and the
“Brain Cerebellar Hemisphere” (p-value < 3 × 10−10)
based on gene expression in 54 tissue types from GTEx
v8 (Fig. 2A). We did not identify further fine-scale en-
richments specific to age (i.e. Brainspan data, 29 ages/11
developmental stages) or single-cell type (brain, blood
and muscle).

Annotation of the locus on chromosome 5 implicates
GPX3 and TNIP1
The GWAS enrichment in genes differentially expressed
in the CNS and relevant functional pathways (despite
the low overall SNP-based heritability) provided confi-
dence to continue with more in-depth analyses of the
chromosome five locus (5:150,401,796 -5:150,410,835). A
suite of tools were utilised (Fig. 1) as combining results
from different methods yields more robust results [61].
Three candidate SNPs identified in FUMA included

the sentinel SNP rs10463311 (p = 4 × 10−8) and two cor-
related SNPs rs4958872 (r2 = 0.62, p = 6 × 10−8) and
rs3828599 (r2 = 0.64, p = 8 × 10−8) (Additional file 1:
Table S4). Each SNP was in an intronic region with a
CADD (PHRED) score (a measure of deleteriousness of
single nucleotide variants) that did not indicate any evi-
dence for deleteriousness (scores of 1.03, 0.69 and 4.61,
respectively, which are in the bottom 95% of all refer-
ence single nucleotide variants in scaled CADD units)
(Additional file 1: Table S4). Their RegulomeDB scores
(5, 4 and 5, respectively) indicated the locus was associ-
ated with transcription factor (TF) binding and/or a
DNase peak, and the minimum (and most common) 15-
core chromatin state across 127 tissue/cell types suggests
that these are typically in areas of open chromatin (Add-
itional file 1: Table S4).
To determine, in a formal statistical framework,

whether there is evidence for one or multiple signals in
the locus, we applied conditional and joint analysis to

the GWAS summary statistics using GCTA-COJO [34].
These analyses (Additional file 1: Table S9-S10) were
consistent with just one association signal (rs10463311).
Genes in the region were then prioritised by functional

mapping using eQTL (SNPs associated with variation
between people in gene expression) and available chro-
matin interaction data. Five genes were identified. Three
genes (RBM22, ANXA6, GM2A) were linked via regional
SNP-chromatin interactions (one or two cell types)
(Additional file 1: Table S11) but were not linked to al-
tered expression. GPX3 and TNIP1 had regional SNP-
chromatin interactions in multiple cell types and were
also identified as eQTLs in multiple tissues to support
them as the lead candidates (Fig. 2B) (Additional file 1:
Tables S5 and S11).

SMR implicates both GPX3 and TNIP1 in blood and GPX3
in the brain
Summary-based Mendelian Randomisation (SMR) and
its methodological partner HEterogeneity In Dependent
Instruments (HEIDI) [18] provide a statistical framework
to evaluate evidence for whether a SNP-trait (here SNP-
ALS) association is being mediated via gene expression
through integration with eQTLs identified as associated
at the level of genome-wide significance. We used both
whole blood and meta-analysed brain eQTL data to
carry out SMR analyses. Whole blood eQTL data were
used a proxy to detect relevant genes as the sample size
(n = 31,684 eQTLgen consortium [35]) is much bigger
than ALS-relevant tissues (i.e. our brain meta-analyses
Ntotal = 2581), and it is recognised that many eQTLs are
shared across cell types [32, 36]. The SMR analysis iden-
tified colocalisation of SNP-trait and eQTL associations
in six genes including C9orf72 (chr9), GPX3, TNIP1
(chr5) and TRIP11, SCFD1 and RP11-529 (chr14) (Add-
itional file 1: Tables S12-13). Both GPX3 (BSMR = 0.30 ±
0.062, p = 1.1 × 10−6) and TNIP1 (BSMR = −0.31 ± 0.064,
p = 1.2 × 10−6) (Fig. 3, Additional file 2: Fig. S5) had the
same top SNP rs12518386, which was in low LD (r2 =
0.13) with the lead GWAS SNP rs10463311.
We then used the HEIDI test to consider the pattern

of the eQTL SNP associations. This determines if the as-
sociation signals of SNPs that are physically close to the
most significant SMR-association SNP follow a pattern
expected by their correlation (LD) structure. The SMR
association at rs12518386 did not pass the HEIDI test (p
< 0.003 (pass threshold > 0.05)) which implies a more
complex association pattern than a single SNP relation-
ship (Additional file 1: Table S13). With current data, we
cannot exclude that the significant SMR results reflect
linkage between the trait-associated SNP rs10463311
and eQTL SNP rs12518386. Hence, larger sample sizes
for both ALS GWAS and eQTL are needed to further
clarify these results. While this limits our conclusions on

Restuadi et al. Genome Medicine            (2022) 14:7 Page 9 of 22



Fig. 2 (See legend on next page.)
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whether there is a simple SNP-gene expression relation-
ship, the same genes GPX3 and TNIP1 remain impli-
cated in the locus.
The SMR analyses in brain eQTL data combined sev-

eral consortia in two meta-analyses (PsychENCODE [40]
and Brainmeta (CommonMind [37], Braineac [39],
GTEx v7 [28] and ROSMAP [38], n = 1194–1387)).
With much smaller sample sizes, only C9orf72 was de-
tected using the genome-wide probe-corrected threshold
(BSMR = 0.07, p = 1.77 × 10−6) (Additional file 1: Table
S13). To examine the correlation between blood and
brain eQTLs (many eQTLs are shared across cell types
[32, 36] but not all [62]), we examined the genome-wide
significant eQTLs in blood and the GWAS risk-allele in
the two brain eQTL datasets. Four genes (of six) discov-
ered in blood were further replicated in brain eQTL
SMR analysis at the nominal threshold (Bonferroni-cor-
rected p-value < 0.0083), indicating that these genes
(GPX3, C9orf72, SCFD1, RP11-529H20.6) are also likely
to contribute to ALS risk in the brain (Additional file 1:
Table S14). GPX3 was a brain eQTL which was de-
creased with the risk allele in both brain SMR meta-
analyses (opposite direction to blood) Beffects = −0.40
and −0.18, p-values = 2.7 × 10−23 and 1.4 × 10−2 (Psy-
chENCODE and brain-meta, respectively). Both of the
top SNPs did not pass the HEIDI test to infer the causal
SNP (not unexpected since the sample size is still small).
One SNP was identical to top blood eQTLgen SNP
(rs12519636, Brain-meta) and one that was in moderate
LD with the top GWAS SNP (rs4958874, r2 with
rs10463311 = 0.61). TNIP1 was not replicated in either
of the eQTL brain SMR meta-analyses (Additional file 1:
Table S14-S15).

Prioritised genes using TWAS
GWAS summary statistics and different transcriptome-
wide association study (TWAS) models were used to de-
tect significantly associated genes. This looked at the
proportion of tissue-shared and tissue-specific expres-
sion (CONTENT and tissue-by-tissue elastic net) to
identify 11 genes that passed a conservatively adjusted p-
value threshold [44]. ATXN3, C9orf72, SCFD1, CAAP1,
M0B3B, PLAA, SHMT2, RP11-114F3.5, TRIP11,
ZSWIM8 and DYNLL2 all demonstrated at least one
genetic component of expression that is associated with
ALS (Additional file 1: Table S16-S17). While these
genes need further follow-up, none was linked to the

locus in chromosome five. To identify tissue-specific ex-
pression patterns for GPX3 and TNIP1, we used TWAS-
CONTENT. Both genes had a significant heritable com-
ponent (1.7 × 10−40 and 1.8 × 10−6, respectively), and
profiling the total variability explained by the CON-
TENT found tissue-specific patterns of expression were
each detected in brain tissue (Additional file 2: Fig. S6).
The findings do not distinguish GPX3 or TNIP1 but do
identify tissues to follow up, including particular regions
of the brain (the frontal cortex) that are common to
both GPX3 and TNIP1 (Additional file 1: Table S18).

Gene expression variability analysis of the top two
candidates: GPX3 and TNIP1
Given that the SMR results indicate that the risk allele
of rs10463311 is associated with increased expression of
GPX3 and decreased expression of TNIP1, we used
GTEx consortium data to investigate whether, across in-
dividuals and tissues, there was evidence for a relation-
ship between GPX3 and TNIP1 expression. GPX3 had
higher levels of expression overall (Additional file 2: Fig.
S2) but a correlation between the two could imply a
common functional relationship [63]. As a benchmark,
we initially tested the correlation between their known
ALS partners. GPX3 and SOD1 are involved in reactive
oxygen species degradation, and their correlation was
0.18 ± 0.07 across all tissues (Additional file 2: Fig. S7A).
TNIP1 and OPTN are negative regulators of NF-kappa-B
signalling (correlation of 0.36 ± 0.07) and TNIP1 and
TBK1 interact via ubiquitin-binding domain to restrict
inflammatory response (correlation 0.12 ± 0.07)
(Additional file 1: Table S19, Additional file 2: Fig. S7A).
When we tested GPX3 and TNIP1, we found the average
correlation of expression across tissues was positive (sig-
nificant in > 50% tissues, p < 0.0001) and was similar or
higher than their respective known ALS partners, 0.28 ±
0.07. This correlation was above the median correlation
(0.12 ± 0.03) of 16 genes (implicated with unequivocal
evidence in ALS and ALS overlap syndromes [1])
(Additional file 1: Table S20, Additional file 2: Fig. S7B).

Gene-level Polygenic Priority Score
Next, we calculated the Polygenic Priority Score (PoPS)
[23] for each chromosome (Additional file 1: Table S21).
This is a similarity-based gene prioritisation method
which integrates the full polygenic GWAS signal with
gene features (derived from RNA expression data, 73

(See figure on previous page.)
Fig. 2 Functional annotation of ALS GWAS. A Using the full GWAS summary data, enrichment of association signal is identified in genes
expressed in brain tissue using GTEx v8 (n = 54 tissues). B Circos plot of chromosome 5 with the risk locus in blue (middle circle); outer circle
shows SNP associations (grey circles) with -log10(p-value) on the Y-axis. The lead SNP (rs10463311) is labelled, and other SNPs are coloured if they
are in LD of the lead SNP (yellow to red, low to high r2, see Fig. 3 for detail). Inner circle: The mapped genes are labelled black if chromatin
interaction is detected (GM2A, ANXA6, RBM22), and blue if both a chromatin interaction and an eQTL is detected (TNIP1, GPX3)
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single-cell datasets, predicted protein-protein interaction
networks and pathway data) that were not simultan-
eously considered in other tools, to rank priority genes.
It excludes the locus of interest (i.e. chromosome 5) and

then uses marginal feature selection to perform enrich-
ment analysis for each gene feature separately before
retaining features that pass a nominal significance
threshold (p < 0.05), to reduce the noise and

Fig. 3 Summary statistics-based Mendelian Randomisation (SMR) analysis identifies GPX3 and TNIP1. Regional map association plot of GPX3 and
TNIP1 from summary statistics-based SMR analysis. The x-axis, chromosome position, is the same in all plots. A Grey dots represent the GWAS p-
values, with the purple diamonds representing the SMR test p-values for the two genes (GPX3 and TNIP1) probes that pass the SMR genome-
wide significance threshold (dashed line). The purple crosses are the association p-values between the SNP and gene probe. The SNP most highly
associated with both GPX3 and TNIP1 expression is rs12518386 (GWAS association pGWAS = 8.33 × 10−7, Beffect GWAS = 0.08, peQTL:GPX3 = 1.05 ×
10−171, peQTL:TNIP1 = 2.04 × 10−163). The SNP most associated with ALS is rs10463311 (pGWAS = 4.00 × 10−8, Beffect GWAS = 0.09, peQTL:GPX3 = 4.85 ×
10−18, peQTL:TNIP1 = 1.80 × 10−36) (Additional file 1: Table S12). B The locus is in a region of open chromatin (each row is a cell type, 13 tissue/cell
categories in total on the left) including transcriptional areas and enhancers (coloured legend on the right) between GPX3 (transcribed on the
forward strand) and TNIP1 (transcribed on the reverse strand)
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computational complexity of fitting the joint model.
These features are then used to score on the locus of
interest. Of the 848 genes on chromosome 5, GPX3
was ranked first (score: 2.15) (followed by MEF2C
and CD74, scores: 1.93 and 1.66, respectively)
(Additional file 1: Table S21) while TNIP1 was ranked
522nd (score: −0.055). To determine the sensitivity of
this result without the C9orf72 signal on chromosome
9, we re-ran the analysis by removing this locus. This
had a minimal effect on ranks and scores (i.e. GPX3
= 1st, TNIP1 = 656th) and may reflect different path-
ways of action to C9orf72.

GPX3 expression is altered with disease stage in ALS
cases
To test the relationship between GPX3 expression and
disease, we examined available RNA microarray data in
an ALS case-control cohort from the Netherlands (Ntotal

= 942 blood samples, Ncases = 347/Ncontrols = 595) [47]
(Additional file 1: Table S22). There was no difference in
either TNIP1 or GPX3 expression between ALS cases
and controls (p = 0.36 and 0.12, respectively), and the
lead risk SNP did not identify an association with ex-
pression (Additional file 2: Fig. S8A-D). In ALS cases, an
additive and recessive model of GPX3 expression was
tested with the risk SNP to suggest lower expression in
risk allele carriers (p = 0.12 and p = 0.02, respectively),
while for TNIP1 the p-value was n.s. (0.22 and 0.21,
respectively).
To examine protein levels of GPX3 and TNIP1 in

blood plasma, we ran a sandwich ELISA in a discovery
cohort of Australian ALS cases and controls. TNIP1
levels were below limits of detection (LOD = 23.5 pg/ml;
despite loading the highest concentration possible).
Similar to the RNA microarray, the level of GPX3 did
not differ between cases and controls and there was no
detected association with risk allele genotype (Additional
file 2: Fig. S9A-B).
Interestingly, within cases, we identified a linear asso-

ciation with GPX3 expression and ALS functional rating
score (ALSFRS-R (scale from 48 to 0, where 48 is a nor-
mal physical function)), p = 6.2 × 10−3, R2 = 0.16, Beffect

± standard error = 125 ± 39 ng/ml/ALSFRS unit, n = 50
ALS cases (Additional file 2: Fig. S9C), to suggest a
higher ALSFRS correlated with higher GPX3 (sex in-
cluded as a covariate). The direction was consistent with
time since onset (Additional file 2: Fig. S9D). To validate
these findings, we used an independent replication co-
hort of Australian samples (N = 200). We found male
cases had higher GPX3 protein levels than female cases
(Beffect = 626 ± 249 ng/ml, p = 0.013) and thus sex was
included as a covariate (Additional file 2: Fig. S10A).
Other variables, such as age at onset, C9orf72 status,
bulbar onset and cognitive problems, had no association

with GPX3. The change in the level of GPX3 with ad-
vancing disease symptoms (Fig. 4A) was consistent with
the rate of disease progression (change in ALSFRS since
onset (p = 2.5 × 10−2, adjusted R2 = 0.042 (Fig. 4B)), days
since symptom onset (p = 2.5 × 10−2, adjusted R2 =
0.040, Additional file 2: Fig. S10C), King’s Staging Scale
(a burden of disease measure) (p = 1.1 × 10−2, R2 =
0.040, Additional file 2: Fig. S10D)). Introducing the
Gold Coast diagnostic criteria meant n = 10 cases did
not meet the diagnostic criteria. Reanalysing the data
without these samples (n = 188) still identified a signifi-
cant association between GPX3 and ALSFRS (p-value =
1.0 × 10−2, R2 = 0.045, adjusted for sex). In all of these
analyses, the effect size of the clinical variables and
GPX3 was small, relative to the sex effect on GPX3, and
thus sex could be driving these associations.
We looked at preliminary data for longitudinal

changes for cases that had two or more visits (n = 89 in-
dividuals, n = 224 observations, 1–5 visits) using a linear
mixed-model analysis, fitting individual as a random ef-
fect. Examining the change in ALSFRS-R in months
since first visit and months since diagnosis, we identified
a linear decrease of 0.54 points (0. 42–0.66 95% CI, p =
7.2 × 10−17) and 0.10 (0.034–0.17 95% CI, p = 2.8 ×
10−16) each month, respectively. The rate of GPX3
change over time was not significant with the mean
change per month since the first visit: −7.4 ng/ml (−53.5
to 38.6 95% CI) and since diagnosis: −2.18 ng/ml
(−17.9–13.50 95% CI). We asked whether the GPX3 level
could help explain ALSFRS by including both GPX3 and
time in the model but there was no association
(Additional file 2: Fig. S11).

No change in DNA methylation in blood between ALS
cases and controls
Given the alterations of GPX3 expression in ALS cases
and the SMR results for GPX3 and TNIP1, we queried
the summary statistics from a methylome-wide associ-
ation study [46] and conducted a subset of the Austra-
lian ALS case-control cohort (Ncases = 782, Ncontrols =
613). We narrowed our query to probes annotated to
GPX3 and TNIP1 [49]. None of the queried probes was
statistically significant in the MOMENT analysis or the
beta methylation value comparisons (probes nearest or
within these genes) (Additional file 2: Fig. S12).

In vitro knockdown of GPX3 or TNIP1 in differentiated
human spinal motor neurons
To understand the functional implications of expression
changes in GPX3 and TNIP1, differentiated human
spinal motor neurons were used as an in vitro model.
Target GPX3 and TNIP1 small interfering RNAs
(siRNA) constructs were able to knockdown (KD) mean
expression by 75.5 ± 8.8% and 53.3 ± 17.3%, respectively,
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compared to the scrambled siRNA (p = 1 × 10−3 and p
= 0.03) (quantification by real-time qPCR). Cell viability
assessed using an assay for metabolic activity (MTT re-
duction assay) showed no significant change following
knockdown of either GPX3 or TNIP1. Live-cell imaging
conducted on HB9-GFP-labelled motor neurons identi-
fied no gross morphological defects and no significant
effect on the dominant neurite length, total neurite
length, or the number of branches/neurites per neuron
(unpaired t-test) following GPX3 or TNIP1 knockdown
(Additional file 2: Fig. S13).

Knockdown of gpx3 (but not tnip1) in zebrafish-MO is
associated with deficits in motor function
In parallel, we conducted in vivo functional loss-of-
function (LOF) experiments (Fig. 5). The zebrafish gen-
ome carries 1 orthologue for GPX3 (gpx3) and 1 ortholo-
gue for TNIP1 (tnip1). Both are highly conserved, having
98% and 97% amino-acid similarity to the human genes,
respectively. Using morpholino-mediated (MO) knock-
down of tnip1 in zebrafish embryos, we did not detect
any significant motor neuron development or motor
function phenotype from 1 to 5dpf (days after birth)
(data not shown). However, injection of anti-gpx3 MO
did impact the motor functions of the zebrafish larvae,

without triggering any obvious significant developmental
abnormalities such as growth malformation or prema-
ture death (Fig. 5B, Additional file 1: Table S23).
Using an optimised dose of gpx3-mRNA MO (Fig. 5B),

we further investigated the excess number of motor phe-
notypes by measuring swim distance, time and speed (n =
151) compared to mismatch injected controls (n = 67).
Swim distance, time and speed were significantly shorter
in the gpx3-MO compared to the control (mean differ-
ence and 95% CI: 112 ± 28mm, 1.29 ± 0.59 s, 32.0 ± 2.53
mm/s, respectively, p-value for all < 0.0001) (Fig. 5C–E).
To further validate the specificity of these findings, we

co-injected a custom-made MO-insensitive gpx3-mRNA
(cstGPX3) (n = 158) and performed the same assay. The
presence of the custom gpx3-mRNA significantly re-
duced (rescued) the observed GPX3-MO-induced motor
deficits (Fig. 5C–E).
To test the potential pathogenicity/motor phenotype of

GPX3 overexpression, we injected increasing doses of
cstGPX3. There was no impact to the motor functions of
the zebrafish larvae or obvious significant developmental
abnormalities across three doses (Additional file 2: Fig.
S14, Additional file 1: Table S24). At the dose with (<
50%) death/monster phenotypes (to indicate no significant
generalised toxicity) (100 pg (1mM)), there were < 5% of

Fig. 4 GPX3 protein expression is correlated with clinical measures of ALS function. A Linear regression of ALS functional rating score (matched
visit) and GPX3 protein level in plasma (ALSFRS-R, a measure of physical function, high score implies better function) (sex included as a covariate)
identifies a positive correlation in ALS cases with functional rating score (ELISA assay, n = 200, p = 0.0055, adjusted R2 = 0.042, y = 3625.4 + 27.4x,
SE 13.3). B Linear regression of change in ALSFRS-R per month since time of onset (0 indicates slow progression, 2 indicates fast progression) and
GPX3 expression (n = 126, p = 0.025, adjusted R2 = 0.042, y = 4326.7 − 126.3x, SE 284.0) (sex included as a covariate). A similar result was
identified in a larger cohort when using proxy dates (when onset date was missing) (Additional file 2: Supplementary Methods) (R2 = 0.031, p =
0.049, for every unit increase rate of progression resulted in a −96 ± 137 ng/ml of GPX3 (mean ± SE) (n = 190) vs. a decrease of −126 ± 284 ng/
ml of GPX3 (mean ± SE))
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Fig. 5 Knockdown of gpx3 in zebrafish-MO results in a motor phenotype. A Zebrafish embryos were injected at the one-cell stage with or
without control MO (Control-MO), anti-gpx3 MO (gpx3-MO) or combined anti-gpx3 MO with 100 pg of cst-gpx3 mRNA (gpx3-rescue).
Morphological and behavioural analyses were carried out post-fertilisation. B A range of MO concentrations targeting gpx3 indicated a dose-
dependent motor-phenotype effect, which peaked at 1 mM without developmental abnormalities (age: 2dpf). C–E The gpx3-MO (1 mM) injected
animals moved a smaller distance, for fewer minutes and with an overall lower speed compared to both un-injected and CTR-MO-injected
controls. The motor defects were all significantly rescued following co-injection with MO-insensitive gpx3-mRNA (cst-gpx3) (n = 67–158, mean ±
95% CI). Significance indicates the comparison between control-MO and gpx3-MO (p < 0.001). Graphs show individual values, mean and 95% CI
error bars. Swim distance, time and speed mean difference and 95% CI: 112 ± 28mm, 1.29 ± 0.59 s and 32.0 ± 2.53 mm/s, respectively

Restuadi et al. Genome Medicine            (2022) 14:7 Page 15 of 22



MO with a mild-motor phenotype (n = 5/107) and none
with a severe motor phenotype.

Discussion
Here, we use a comprehensive suite of tools to identify
the most likely target gene for ALS risk on chromosome
five. It follows up our initial trans-ethnic GWAS findings
[4] and utilises in silico, in vitro and in vivo approaches
(Fig. 1) to prioritise GPX3 and lend some support for
TNIP1. While we focus on chromosome five, candidate
genes detected in other loci could be further investigated
using relevant in vivo and in vitro models. Our approach
is atypical with few previous examples of similarly in-
depth investigations of risk loci in ALS (and other com-
plex neurological/neurodegenerative diseases) and thus
our multi-platform approach (Fig. 1) with other exem-
plars [15–17] could be applied to new GWAS-risk loci
in the future.
ALS is a complex, polygenic disease, and our initial re-

sults using the latest ALS GWAS summary statistics [9]
provided basic reassurance that the chromosome 5 locus
could be a true positive despite concern that the SNP-
based heritability estimated from these data was low
(h2SNP = 0.018 ± 0.0038). Integration of GWAS results
with independent gene expression data showed results
that are consistent with the neurodegenerative disease
processes in ALS [59, 60]. Functional annotation enrich-
ment was also consistent with other GWAS results [21]
and included enrichment in intronic regions, areas of ac-
tive methylation and open chromatin. Prioritising 92
genes by functional mapping [19], we identified enrich-
ment of expression in the brain (GTEx), neuron-specific
top gene ontology (GO) pathways and a heritability en-
richment of cell types that included the central nervous
system, frontal lobe, dendritic cells and muscle (FUMA,
S-LDSC).
Using conditional and joint approach (GCTA-COJO)

[34] identified one signal driving the significant GWAS
association, and the SNP with the strongest support was
rs10463311. Positional mapping, expression quantitative
trait loci (eQTL) (GTEx) [28] and chromatin interaction
mapping indicated locus links to five genes using FUMA
[19] but only two, GPX3 and TNIP1, were consistently
linked across all three techniques (Fig. 2). Independently,
the use of the gene prioritisation tool, PoPS [23], to
combine gene features based on expression, pathways
and protein interactions ranked GPX3 as the lead candi-
date (top in chromosome 5) with little support for
TNIP1 or other candidates. PoPS has good sensitivity for
prioritising known genes for other conditions but is yet
to be tested for ALS, and as recommended [23], follow-
up analyses are still required.
To test if the SNP-ALS association could be mediated

through a SNP-gene expression association, we ran SMR

using the largest available eQTL sample for whole blood
(n = 31,684) to identify GPX3 and TNIP1. The top eQTL
SNP (rs1258386, peQTL = 1.1 × 10−171) was in low LD (r2

= 0.13) with the top GWAS SNP (rs10463311). Condi-
tioning on the top GWAS SNP (rs10463311) (Additional
file 1: Table S10) is suggestive that the rs12518386
GWAS association is not driven by shared LD alone
(ALS association p-value for rs12518386 retained a sig-
nificant effect after conditioning on rs10463311, p = 2.1
× 10−3, Beffect = 0.049 out of 0.078) and thus a second
locus may be identified in future GWAS studies. Con-
sistent with this, the associations did not pass the HEIDI
test which meant a simple relationship between the asso-
ciated SNP and ALS via gene expression could not be
determined. Despite no causal SNP identified (given the
complexity of the region), the GWAS-associated risk al-
lele and its correlated rs1258386 eQTL allele increased
GPX3 expression and decreased TNIP1 expression. The
difference in direction of expression in blood is notable
given that across tissues the mean levels of expression
between GPX3 and TNIP1 are positively correlated (0.28
± 0.07, Additional file 2: Fig. S7).
Given the brain is a relevant tissue in ALS (but re-

mains much smaller in size to blood expression data),
we tested if the six identified significant blood eQTL
genes were also detected in the brain using a nominal
threshold. Four genes discovered in blood tissue were
also significant in brain eQTL SMR analysis, to indicate
that these genes (GPX3, C9orf72, SCFD1, RP11-
529H20.6) are also likely to contribute to ALS risk in the
brain (Additional file 1: Table S14). Interestingly, the
brain eQTL SMR results identified that chromosome 5
risk locus decreased GPX3 expression which was oppos-
ite to blood (Additional file 1: Table S14). While further
investigations are needed to understand why the risk al-
lele may differentially alter the expression of GPX3 in
blood vs. brain (a phenomenon in ~ 5% of blood cis-
eQTLs [64]), also pertinent to examine was the level of
expression in an ALS cohort.
Examining expression in those diagnosed with ALS

found that the chromosome 5 risk locus correlated with
a lower GPX3 level (TNIP1 level could not be detected).
Two independent ALS cross-sectional studies, while be-
ing underpowered (Additional file 2: Fig. S15, [65]), sug-
gested risk allele homozygotes had lower levels of GPX3
expression (p = 0.02 and p = 0.06, microarray and pro-
tein, respectively). This change in expression with the
risk allele was consistent with brain eQTL data. Pairing
GPX3 expression levels with ALSFRS score (a clinical
questionnaire assessing functional disability and extent
of neuronal loss) demonstrated that GPX3 expression
was lower in those with a more progressed disease (p =
6 × 10−3, Beffect = 125 ± 39 ng/ml/ALSFRS unit, n = 48
ALS cases, adjusted for sex). This was replicated in a
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larger, independent cohort (p = 5.5 × 10−3, n = 198), and
while the correlation was again relatively weak (R2 =
0.042, Beffect = 27.35 ± 13.3 ng/ml/ALSFRS unit, adjusted
for sex), it suggested a reduction in GPX3 corresponded
to lower in ALSFRS. This result was similar when look-
ing at the rate of disease progression, those with a lower
GPX3 level had a faster rate of progression (R2 = 0.042,
p = 2.5 × 10−2) (Fig. 4B). These findings are reminiscent
of previous findings in a SOD1 rat model of ALS [14]
that identified significantly lower levels of gpx3 at the
end stage of disease, compared to wild-type age-matched
controls [14]. Interestingly, there was a higher gpx3 level
in SOD1 pre-symptomatic rats (when the highest levels
of oxidative damage were identified), to suggest GPX3
levels are dynamic in blood both prior and during
disease.
We did carry out a preliminary longitudinal analysis of

ALS cases, but this did not reveal an association with
time (despite a significant relationship between ALSFRS
and time). It is relevant to acknowledge that prevalent
ALS participants (i.e. those well enough to attend mul-
tiple clinics over a long period) can inevitably bias time-
based analyses and none was enrolled prior to symptom
onset.
TNIP1 expression analyses were more difficult to as-

sess as protein levels were below the limits of ELISA de-
tection and, on microarray, there were no differences
between ALS cases and controls.
To rapidly characterise the functional impact of these

prioritised genes, we used in vivo (zebrafish embryo) and
in vitro (human motor neurons) models amenable to ex-
pression changes. Manipulation of zebrafish embryos fit-
ted these requirements and perturbation of expression
has previously been used to identify genes contributing
to neurodegenerative diseases including ALS [66, 67].
The tnip1 knockdown did not trigger any obvious motor
phenotype in the zebrafish-MO, consistent with two
other reported tnip1-MO knockdown results [68, 69].
However, the gpx3-loss-of-function (LOF/knockdown)
zebrafish larvae did have a phenotype, with decreased
motor functions, with swim distance, swim time and
overall speed significantly reduced without any obvious
morphological defects. Importantly, the observed motor
phenotypes were rescued via co-expression of a synthetic
gpx3 mRNA (insensitive to the injected anti-gpx3 MO).
In contrast, gpx3 overexpression did not show any speci-
ficity for a motor phenotype. This is consistent with
in vitro [70, 71] and in vivo [72] reports that overexpres-
sion of GPX3 has been shown to protect, rather than
damage cells. While the suite of gpx3-MO support loss
of GPX3 affecting motor function (rather than gain), fur-
ther studies would be required to further understand the
pathogenic role of gpx3 on the motor function in our
zebrafish model.

Modelling knockdown in vitro in human motor neu-
rons using an siRNA approach, we found no gross alter-
ations in motor neuron development or survival for
either gene. This result was expected given that genes
associated with ALS risk and even pathogenic ALS mu-
tations may have only subtle effects and this model may
not be sensitive enough to detect these. Other specific
assays testing electrophysiology properties [73], age ac-
celeration [74] or other cell types involved in neuronal
health may be more relevant (but are also yet to be
tested for sensitivity to risk loci). Further characterisa-
tion is needed with particular attention made to address
these limiting factors. No known ALS risk genes were
identified in a recent CRISPRi screen [75] (day 7 neu-
rons), while a known causal ALS gene, SOD1, was found
to alter survival (day 14 and day 28). Interestingly, when
neurons were stressed with the knockdown of essential
survival genes (UBA1/MAT2A) both TNIP1 and GPX3
expression significantly increased in single-cell RNA se-
quencing. Notably, their expression pattern changed
alongside many thousands of other genes and thus it re-
mains important to elucidate their contribution to neur-
onal function both in vitro and in vivo, particularly as
non-cell autonomous mechanisms (disease arising from
a combination of motor neurons and their cellular part-
ners) have been proposed in ALS [1].
Our GPX3 analysis suggests that the protein expres-

sion of GPX3 decreases with disease progression and its
levels may relate to the ALS GWAS-risk locus (Fig. 6).
The motor phenotype of the zebrafish-gpx3-MO model
supports GPX3 as a potential disease modifier and thera-
peutic target in ALS. Oxidative stress is one of several
mechanisms directly linked to ALS via causal gene mu-
tations [1] and resonates with the known functions of
GPX3. As a glutathione peroxidase, it is part of the
body’s arsenal of antioxidant enzymes, reducing oxida-
tive stress (downstream of superoxide dismutases
(SODs)) by scavenging hydrogen peroxide in the pres-
ence of reduced glutathione [76]. GPX3 is a distinct
glutathione peroxidase as it is secreted (produced in the
kidney) and found abundantly in blood plasma and other
tissues, including neurons and the brain (Additional file
2: Fig. S16) [75, 77]. Deficiency of GPX3 in humans [78,
79] has been associated with stroke and ischemic heart
disease, and Gpx3-knock-out mice have a prothrombotic
state and vascular dysfunction due to the accumulation
of reactive oxygen species (ROS) [80]. The presence of
oxidative stress biomarkers in ALS and animal models
of SOD1 mutations support a crucial role for cellular
antioxidant defences in stopping cell death [81, 82].
Interestingly, increased levels of SOD1 and GPX have
been suggested to protect neuronal cells from antioxi-
dant damage [83, 84] and maybe a relevant therapeutic
to investigate for those with ALS. GPX3 is a
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selenoprotein as it contains a selenocysteine (Sec) codon
(UGA) and thus transcription can be altered by dietary/
exogenous selenium. Interestingly, the use of Ebselen, an
organo-selenium compound that increases gpx3 and re-
duces mutant SOD1 aggregation [85], was considered
neuroprotective as it delayed disease onset in SOD1G93A

mouse (but not survival) [86]. The establishment of
stable zebrafish lines to mechanistically address how the
level of GPX3 might contribute and/or abate oxidative
stress and how this may be a contributing cause and/or
effect of ALS is an avenue for further follow-up.
Associations with TNIP1 were more difficult to detect

in human ALS cohorts, and no changes in vivo were
identified. Additional analyses are needed to determine
if TNIP1 is also a genuine target with the possibility that
both genes in this single locus contribute to disease risk.
Further investigations into the mechanisms are war-

ranted, and we note several limitations to our study. The
correlations we have performed with protein levels of
GPX3 and ALSFRS and progression, while replicated, do
not specifically indicate the cause or risk associated with
disease and further in-depth analyses are needed. One
such analysis for follow-up is the effect of sex and GPX3
expression. Our replication cohort detected higher
GPX3 protein expression in male cases. The GPX3/sex
effect was larger than the subsequently tested clinical as-
sociations such as rate of progression and time since on-
set and thus could be driving these associations. Larger
sample sizes will help to determine the role of sex,

disease progression and other clinical variables (i.e. onset
location) and levels of GPX3. Carrying out these expres-
sion analyses (overexpression and knock-out) in a variety
of cell types, tissues or models, including the brain
motor cortex/motor neurons, expected to be more sali-
ent for risk than those that are currently available may
be helpful in this regard. Specific to our GWAS results,
with our current sample size and available data, we can-
not rule out causality/pleiotropy from linkage at this
locus. The ALS GWAS sample sizes are expected to in-
crease which will generate more associated regions, and
in the future, there will be improved high-throughput
methods to follow up each associated locus in ALS for
in-depth investigations in a consistent approach. Exam-
ining sequencing data in the future may be useful as
current data reveals very few loss of function GPX3 vari-
ants [87]. These are rare (< .0001) and none is in a
homozygous state and so it cannot be determined
whether or not they contribute to ALS. Future SNP-
array/sequencing studies across different ancestries re-
main relevant, particularly as the lead GWAS risk allele
(rs10463311) is more frequent in East Asian (0.48) vs.
European (0.26) ancestry populations. We highlight that
investigation of common-loci contribution in neuro-
logical conditions is not well determined and future de-
velopment of efficient model systems that are sensitive
to detect risk genes rather than causal genes remains im-
portant and relevant for the research community. Des-
pite these limitations, we do not expect future analyses

Fig. 6 Proposed mechanism to explain GPX3 expression with respect to genotype and disease. In healthy individuals carrying an ALS risk allele,
GPX3 levels are increased in blood but decreased in the brain compared to non-carriers (SMR from ALS GWAS, eQTLgen n = 31,684 and brain
meta-analyses n = 2581). The ALS SOD1H46R rat model [14] shows an increased level of GPX3 compared to wild-type (WT) controls prior to
disease onset. This might indicate GPX3 is being secreted into the circulation to support homeostasis/healthy cellular function via antioxidant
mechanisms. In disease, cross-sectional analysis of ALS cases, there is reduced expression level with a more progressed disease (Fig. 4), and at
end-stage of disease in SOD1H46R rats, GPX3 levels are lower vs. WT controls. Analysis of cross-sectional ALS cases data shows a trend for
homozygotes of the risk allele to have lower levels of GPX3 (microarray and protein, p = 0.02 and p = 0.06 respectively, Additional file 2: Figs. S8
and S9). Independently, an in vivo zebrafish-MO model with knockdown of endogenous gpx3 demonstrates a motor phenotype (reduced
swimming time, distance, speed) that is rescued with gpx3 expression, to support its essential role in motor function (Fig. 5), while overexpression
of variable doses of GPX3 does not result in a motor specific phenotype (Additional file 2: Fig. S14)
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to contradict the bulk of our results, all of which com-
plement the genomic studies of this disease (and previ-
ous literature) and could be used as a basis for future
investigations.

Conclusions
To conclude, we report GPX3 as a lead target to investi-
gate in ALS risk with support from human-derived data
and a motor phenotype in a zebrafish model. While add-
itional characterisation is still needed, i.e. larger studies
may help elucidate the link between the causal SNP and
GPX3, and/or in vivo models may investigate modulating
its expression, our findings support it as a lead candidate
relevant to understanding mechanisms of disease and
therapy development in ALS. We note that for follow-up
analyses it was difficult to rule out the contribution of
TNIP1 at this locus. TNIP1 was implicated in silico and
in SMR but not in disease cohorts or with the in vivo
zebrafish model. Future studies should still consider
whether TNIP1 has a role in ALS risk and whether this
is independent of GPX3 (given their correlated expres-
sion). With few ALS treatments available, and the major-
ity of those with ALS not identified with a single causal
mutation [88, 89], starting pre-clinical studies based on
candidates derived from human ALS GWAS follow-up
studies could be a worthwhile avenue to pursue.
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