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Computational Model of the Transition from Novice to Expert Interaction
Techniques

GILLES BAILLY, Sorbonne Université, CNRS, France
MEHDI KHAMASSI and BENOÎT GIRARD∗, Sorbonne Université, CNRS, France

Despite the bene�ts of expert interaction techniques, many users do not learn them and continue to use novice ones. This article aims
at better understanding if, when and how users decide to learn and ultimately adopt expert interaction techniques. This dynamic
learning process is a complex skill-acquisition and decision-making problem. We �rst present and compare three generic benchmark
models, inspired by the neuroscience literature, to explain and predict the learning process for shortcut adoption. Results show that
they do not account for the complexity of users’ behavior. We then introduce a dedicated model, Transition, combining �ve cognitive
mechanisms: implicit and explicit learning, decay, planning and perseveration. Results show that our model outperforms the three
benchmark models both in terms of model �tting and model simulation. Finally, a post-analysis shows that each of the �ve mechanisms
contribute to goodness-of-�t, but the role of perseveration is unclear regarding model simulation.

CCS Concepts: • Human-centered computing ! HCI theory, concepts and models.

Additional Key Words and Phrases: Computational models; Interaction Techniques; Shortcut; Menus; Computational Rationality

ACM Reference Format:

1 INTRODUCTION

Expert interaction techniques such as keyboard shortcuts, gesture shortcuts or command languages allow users to reach
a high level of performance in comparison with novice interaction techniques such as menus, palettes or ribbons. Expert
interaction techniques are generally faster and let users focus on their main task because they do not rely on visual
search [7]. However, they require an initial e�ort to learn how to use them and memorize the mapping between the
commands and the corresponding shortcuts. This learning e�ort might be too high and many users, even experienced
users do not adopt expert interaction techniques and continue to use what might appear as ‘suboptimal’ interactions
[26, 87]. It results that several commercial (e.g. ShortcutFoo, KeyRocket, CheatSheet, Application Shortcut Mapper) and
academic methods (e.g.[40, 44, 58, 65, 71, 72, 99, 99, 103]) are regularly developed to address this problem.

While several methods have been proposed, it remains unclear what are the human factors and cognitive mechanisms
facilitating expert interaction technique adoption. Several theoretical constructs and frameworks have been proposed
to explain why many users do not adopt expert interaction techniques [18, 36, 41, 43, 69]. This includes the Einstellung
∗Both authors contributed equally to this research.
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2 Bailly et al.

e�ect [69], the "soft constraint hypothesis" [43] or the paradox of the active user [18]. For instance, users tend to
"exploit" prior experiences (or previous techniques such as menus) to achieve the task (short term productivity) rather
than "exploring" more e�cient techniques such as shortcuts for long-term e�ciency [18]. While these theories and
frameworks present high-level explanations, they do not allow �ne-grained predictions, i.e. simulating various cognitive,
individual and environmental factors to test hypothetical designs and scenarios.

Predicting why, when and how users adopt or do not adopt expert interaction techniques is challenging because
several phenomena are involved. First, it is a high-level decision making problem as the two interaction techniques
co-exist: for each action, the users can decide to use the novice or expert interaction technique. This is also a learning
problem as users, for instance, need to learn the mapping between the commands and the shortcuts to successfully
exploit the expert interaction technique. Users can also forget what they have previously learned due to memory decay
introducing complex learning and decision making dynamics.

In this paper, we focus on scenarios where a single operation can be performed with one among two possible
interaction techniques, always available in a Graphical User Interface (GUI). One is dedicated to novice users and the
other provides a higher level of performance for experienced users but requires learning e�orts. A typical scenario is
the transition from menus to keyboard shortcuts in the aim of selecting commands more e�ciently. We present and
compare computational models predicting the whole learning process leading (or not) to the adoption of shortcuts. In
other words, the models explain and predict if and when users decide to learn shortcuts, then how they learn them and
if ultimately they adopt them. Our general approach relies on computational rationality.

Computational rationality is at the convergence of arti�cial intelligence, cognitive science and neuroscience [39, 66].
The key idea is that humans (or animals) are rational agents with bounds: they choose actions maximising long-term
expected rewards (or utility) given their limited cognitive resources (e.g. their own neural architecture), the constraints
of the environment (e.g. task, technique, device) and their own experience. In practice, it consists of computing the
values of actions, re�ecting the long-term outcomes associated with these actions under uncertainty. In our context, we
assume that users make a choice among three high-level actions before executing a command (as opposed to low-level
actions, such as clicking): deciding to execute a command as fast as possible (1) within the novice technique or (2) with
a known expert technique or (3) deciding to learn the expert technique now to be able to successfully use it later on.
The problem the users face is which action to choose now to minimize time on a �nite horizon given limited cognitive
resources, e.g. memorization, and the constraints of the environments, i.e. the available set of commands and their
relative frequencies.

Reinforcement Learning (RL) is an appropriate formal framework for computational rationality and to study subtle
interactions between learning and decision-making [27, 39, 57, 96]. For instance, it is extensively used in neuroscience
[57, 96], cognitive sciences [27] and more recently in HCI [21, 22] to determine the policies that maximise long-term
expected utility.

We �rst introduce three benchmark RL models in neuroscience, which are widely used in decision-making tasks
involving a learning process [101]: Rescorla-Wagner, Choice Kernel and the combination of both. They have in common
to rely on an exploration - exploitation mechanism. While the Rescorla-Wagner model learns the expected value of
each action based on the history of previous rewards, the Choice Kernel model captures the tendency of users to repeat
previous actions regardless of their outcome. Rescorla-Wagner+Choice Kernel mixes the two models. These model-free
RL models, i.e. RL models without a representation of the environment, have several advantages to model how users
adopt expert interaction techniques. They are task-independent, have few free parameters, are easy to implement, are
fast and have been shown to well capture learning and decision-making dynamics in di�erent contexts [101].
Manuscript submitted to ACM
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Computational Model of the Transition from Novice to Expert Interaction Techniques 3

We compare these models on the data collection of Grossman et al. [44] investigating the impact of three interaction
methods on keyboard shortcut adoption. One key aspect is to apply cutting-edge methods from the decision-making
�eld [101] to HCI: We �rst compare their goodness of �t to re�ect the capacity of these models to replicate each
participant’s trial-by-trial action choice, i.e. whole learning process for each participant. We then estimate the best
parameters for each model and each participant. We �nally simulate these models with the best parameters to test
whether they do reproduce the main behavioral properties of the participants. The results suggest that these benchmark
models are not su�cient to capture the complexity of shortcut adoption.

We then present a novel computational model, called T���������, dedicated to explain and predict shortcut adoption.
It relies on the computational rationality principles and is inspired by neuroscience. The core of this model is the
combination of �ve mechanisms to update the cognitive state of the users:

(1) a planning mechanism re�ects the ability of users to consider several actions ahead. This mechanism is necessary
to explain why users invest some time now foreseeing the bene�ts of using shortcuts later.

(2) a mixture of implicit and explicit learning mechanisms serves to consolidate at di�erent learning rates the
command-to-shortcut mapping in memory.

(3) a decay mechanism re�ecting that the command-to-shortcut mappings encoded in memory fades due to the
passage of time.

(4) a perseveration mechanism, based on evidence in neuroscience [101], re�ects the fact that users are likely to
repeat the previous strategy, regardless of the strategy.

We tested our model on the Grossman et al. data collection [44]. Results show our T��������� model outperforms
the three benchmark models both in term of likelihood and BIC score. The T��������� model also synthesises more
realistic data when simulating.

We then conducted a post-analysis to better understand the impact of the di�erent mechanisms involved in our
model. To achieve this, we compared �ve variants of the model by enabling/disabling the di�erent mechanisms. Results
show that (1) all the proposed mechanisms play a role in shortcut adoption as they improve the goodness-of-�t; but (2)
the variant of the T��������� model without the perseveration mechanism better synthesizes human behavioral data.

From a methodological point of view, these results highlight the importance of combining the two evaluation
methods [80] — goodness of �t and model simulation — to validate models of shortcut adoption as they provide di�erent
perspectives on the model and its variants.

In summary, our primary contribution is the development, analysis and evaluation of a new computational model
of expert interaction technique adoption and more precisely shortcuts adoption. This model is a �rst step towards a
better understanding of the complex learning dynamics involved in expert interaction technique adoption; Our long
term objective is to facilitate designers work�ow to choose interaction techniques. Indeed, computational models can
serve to analyze di�erent designs and scenarios by running model simulations, reducing the cost (time, money) of
experimental studies. Once these models can evaluate a design, they can be integrated in optimisation algorithms to
propose high-value solutions [10] for a population of users. Finally, these models can be embedded in intelligent systems
to dynamically predict the e�ect of an intervention at the level of an individual (instead of the population). They allow
for an AI to assist individual users and promote the adoption of interaction methods best suited at their task [94].

Finally, our contribution is also to promote valuable cross-disciplinary exchanges on questions, models and methods
between neuroscience and HCI about user behavior with interactive systems involving subtle interactions between
learning and decision making such as the challenging transition from novice to expert interaction techniques.

Manuscript submitted to ACM
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4 Bailly et al.

2 RELATEDWORK

We �rst contextualize our research in the �eld of command selection with a focus on the transition from novice to
expert interaction techniques. We then provide background in Reinforcement Learning on which our computational
models are built.

2.1 Command Selection

2.1.1 Novice and expert Interaction Techniques. Common interfaces make several interaction techniques available to
select a command. Novice interaction techniques such as menus, toolbar, ribbons, palette etc. require little training as
they rely on visual guidance (recognition). They are easy to discover, to learn and to use [7]. However, they require
visual attention, and several operations to execute a command. For instance, selecting the command "Edit > Find >
Replace" in Microsoft Word menubar requires three pointing and click operations which are time consuming.

Expert interaction techniques such as keyboard shortcuts, gesture shortcuts and command lines generally rely on
"recall" forcing users to make some e�orts to learn how to execute commands [7]. Expert interaction techniques are
intented for more experienced users. They have been shown to be faster as they require less operations [4, 17, 59, 77,
79, 85]. For instance, users can execute a command and choose the parameters with a simple gesture. Moreover, expert
interaction techniques can be performed partially or totally eyes-free, i.e. without visual feedback, letting users focus
on their main task [7].

Several studies show that many people do not use these expert interaction techniques despite their bene�ts [60, 81, 92].
These studies motivated the design of several methods to favor the transition from novice to expert interaction techniques.
For instance, in the context of keyboard shortcuts, previous methods include the use of advanced feedback mechanisms,
e.g. visual or audio feedback [11, 44, 72, 102], feedforward mechanisms [40, 71], the use of easy-to-learn mappings
[11, 65, 99, 103] or temporal penalties [44, 58]. For instance, Grossman et al. [44] present and compare di�erent methods:
A���� is a method playing the keyboard shortcut orally by a voice synthesizer when a command is executed in the
menu to expose the users to the shortcut; D������� is a method letting the user navigate through the menu, but does
not allow clicking on the items to execute it. It forces users to execute keyboard shortcuts. Both methods favor keyboard
shortcut use. Similar methods (feedback, feedforward, penalty, etc.) have been proposed to favor the use of gesture
shortcuts, e.g. [4, 8, 45, 59] as well as command lines [87, 95].

These methods aim at promoting awareness of the expert techniques, motivate their use, facilitate the learning
and/or improving their performance to favor adoption. We build on this literature to elaborate our model as it identi�es
and highlights key factors (e.g. temporal cost of the method, the nature of the feedback, etc. ). However, it remains a
long term challenge to predict and explain how these factors precisely interact together and their magnitude. It also
remains unclear why users do not adopt expert interaction techniques.

2.1.2 Theories and framework. Several theoretical constructs have been proposed to explain why users do not use expert
interaction techniques [18, 36, 41, 43, 69, 87]. This includes the Einstellung e�ect [69], the "soft constraint hypothesis"
[43] or the paradox of the active user [18]. For instance, users tend to "exploit" prior experiences (or previous methods
such as menus) to achieve the task (short term productivity) rather than "exploring" more e�cient methods such as
shortcuts for long-term e�ciency [18]. Users tend to favor well-practiced methods with fast and incremental feedback
rather than methods based on recall [36].

Some frameworks [42, 87] characterize phenomena related to intramodal and intermodal expertise development. For
instance, Scarr et al. [87] highlight three main reasons why users would not adopt an expert interaction technique:
Manuscript submitted to ACM
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Computational Model of the Transition from Novice to Expert Interaction Techniques 5

users are not aware that a (more e�cient) expert interaction technique is available; they can under-estimate the bene�ts
of the these techniques; the temporal performance dip when switching is perceived as too high. Gray and Lindstedt
[42] extend this framework and study how individuals discover and invent new methods to develop their expertise. In
particular they highlight three main phenomena: plateaus, dips and leaps. Users �rst reach a performance "plateau" (or
performance ceiling [87]) with a given method (i.e. novice interaction technique) after practice. Authors distinguish
performance plateaus and performance asymptote, the latter being reached only with the optimal method (typically
the expert interaction technique). "Dips", refer to the performance dip, when users explore, experiment, learn and
switch modalities, typically when they make the transition from the novice to the expert interaction technique. This
performance dip is essential because it can prevent users to adopt the expert interaction technique and maintain users in
a local optimum. They would then not be able to experience performance "leaps" o�ered by the use of expert interaction
techniques. In neuroscience, several studies show similar human (and animal) behaviors where the decision process
is not necessarily based on long-term rewards, but also on short-term rewards [32], in particular when a learning
e�ort is required [100] or even without rewards [73], e.g. habits, intrinsic motivations, etc. These studies suggest that
Reinforcement Learning (model-free, model-based, or both) can play a key role to explain these behaviors [30].

These works present high-level explanations. However, they do not allow for �ne-grained predictions. They do not
permit to predict which users, when and how they make the transition from novice to expert interaction techniques. In
this article, we build on this theoretical grounding and present a computational model of this transition allowing to
simulate various cognitive, individual and environmental factors to test hypothetical designs and scenarios.

2.1.3 Computational Models. Several computational models have been proposed in the �eld of command selection.
They generally predict selection time in linear menus depending on several factors such as menu organisation, menu
length, item position or item frequency [9, 15, 21, 24, 25, 47, 61, 67]. They rely on empirical laws of pointing (Fitts’ law
[35]) and visual search (e.g. [12]). However, only few of them focus on the learning process by considering practice as a
factor [9, 25, 67, 94]. Among them, Bailly et al. [9] combine two visual search strategies (serial and directed search) and
a pointing component which are modulated by practice. The learning component relies on the Power Law of Practice
(PLP) [76]. This law is appropriate at the population level, but does not capture individual learning dynamics.

Very few computational models have been proposed to estimate the production time of expert interaction techniques
and focus on gesture shortcuts [16, 49, 63, 83]. For instance, the CLC model [16] predicts the amount of time it takes for
users to make a gesture shortcut based on its geometry. The model partitions the gesture into segments, where each
segment is a Curve, a straight Line, or a Corner. The total time to execute this gesture shortcut is the sum of the time to
produce each segment. However, the model includes neither a learning component to re�ect how users performance
evolves with practice nor a decision making component to predict if and when users adopt gesture shortcuts. We are
not aware of a computational model to explain or predict how users switch from a novice to an expert interaction
technique.

Our work is also related to computational models of habits and/or behavioral change [13, 55, 74, 93], where “habits"
refers to the cognitive associations between users’ behaviors and the triggering of contexts. These models aim to predict
the habit strength as a function of behavior repetition. While these models can be su�cient to explain the behavior
of users who only use menus, they can not explain the behavior of users who switch to shortcuts without external
interventions. Our models include a perseveration mechanism (as a Choice Kernel, see below) to re�ect habits, but also
learning and planning mechanisms necessary to explain shortcuts adoption.

Manuscript submitted to ACM
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6 Bailly et al.

2.1.4 Summary. In summary, the transition from novice to expert interaction techniques is a well identi�ed and
long-time challenge in HCI with several technical, theoretical, and empirical contributions. However, no computational
model has been proposed to predict how users adopt expert interaction techniques probably because it involves both
learning and decision making phenomena. Existing computational models mainly focus on human performance with
menus or well learned gesture shortcuts. In contrast, this article presents a computational model to predict and explain
how users adopt shortcuts. It relies on the Reinforcement Learning framework.

2.2 Reinforcement Learning

2.2.1 Markov Decision Process. Markov Decision Process (or MDP) is a mathematical framework for decision making
under uncertainty [48]. The MDP is a four-tuple ((,�, %,') where ( is a set of states (also called state space), � a set
of actions (action space), % the state transition probability for going from a state B to state B 0 after performing action
0 (% (B 0 |B,0)) and ' a function (' : ( ⇥ � ! IR ) returning the immediate reward as a function of the state B and the
performed action 0. The goal for an agent in a Markov Decision Process is to perform the serie of actions that maximize
the expected cumulative random reward:

⇢ [
C=1’
C=0

W'(BC ,0C )]

where W 2 [0, 1] is the discount factor determining the importance of future rewards.
In several applications, the agent is a user, an animal, a robot; the actions are the behaviors of the agent (e.g., clicking

a button, pressing a lever) and the state characterizes the environment (e.g. current state of the interface, a position
within a maze) and the rewards are obtained from the environment (e.g. task achieved, food). Sometimes, the agent
can not fully observe the environment. The problem can then be formulated as a POMDP, a partially observable MDP.
This speci�c formulation have been used several times in HCI [21, 22], cognitive science [28] and neuroscience [30] to
model human behaviour.

2.2.2 Reinforcement Learning. Reinforcement Learning (RL) solves MDP (or variants such as POMDP) by learning state
action value function & (B,0). & (B,0) is a real scalar value which represents the estimated expected value of executing
action 0 in the state B as a common currency for potentially any type of long-term reward, i.e. time, food, money, etc.
There are two main classes of algorithms: model-free and model-based. Model-free algorithms use neither the state
transition probability function nor the reward function from the MDP to estimate the Q-values. Examples of model-free
algorithms include Q-Learning, Rescolar-Wagner (RW), Choice Kernel (CK). In the following sections, we use (and detail)
the RW and CK algorithms as well as their combination (RWCK) to predict human behavior and shortcut adoption.

In contrast, Model-based algorithms exploit the state transition probability function and the reward function from
the MDP. They have the advantage to be much more e�cient to �nd the optimal solutions [51], but at the expense of a
high computational cost [19, 34]. In the second part of this article, we present model-based algorithms to predict and
explain shortcut adoption.

2.2.3 Reinforcement Learning and HCI. Reinforcement Learning is receiving an increasing interest in many �elds
(cognitive science, neuroscience) and recently in HCI [13, 20–22, 37, 38, 52, 62, 64, 70, 89, 94]. In HCI, several perspectives
are used to represent the user and the system in the MDP framework. In the “machine perspective", the agent represents
the system and the user is part of the environment providing some reward, i.e. teaching to the system how to react to users
actions [33]. In the “user” perspective, the agent represents the user, the environment includes the system/interface.
The primary goal is then to understand users’ behavior, for instance, understanding how visual search strategies
Manuscript submitted to ACM
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spontaneously emerge based on previous experiences with the interface [21]. However, these models can also be
embedded in the system. For instance, Todi et al. [94] present a system simulating di�erent machine and user behaviors
and choose the best adaptions.

Our approach relies on the latter (user perspective). Our models aim at predicting and explaining users’ behavior
when facing both novice and expert interaction techniques. It is a �rst step towards the elaboration of intelligent
systems that dynamically predict and trigger interventions to foster the adoption of expert interaction techniques.

2.2.4 “Learning" as a cognitive process? “Learning" in Reinforcement Learning (RL) refers to how the algorithm
incrementally updates the State-action values (Q-values) to determine the optimal policy. However, the dynamic of the
Q-values does not necessarily re�ect the cognitive process of skill/knowledge acquisition of the agent. It depends on
the objective and thus the �eld of research: Machine Learning or Neuroscience.

In Machine Learning, the dynamic of the Q-values only re�ects the quality of the solver. The faster the Q-values
converge during the training phase, the better is the solver to �nd the optimal policy. Previous RL-based HCI models
generally adopt this perspective. During the training phase, the dynamics of the Q-values do not re�ect how the
user/agent learns. Once the optimal policy is determined, the model can be simulated using static Q-values. The model
then predicts how users behave once they reach a plateau of performance, i.e. once they have already learned the task
[13, 21, 22, 38]. For instance, Chen et al. [21] study visual search in previously unseen menus and acknowledge that
their RL model does not aim to explain “how people learn speci�c menus and the location of speci�c items". Todi et al.
[94] recently proposed a model-based RL algorithm to predict how users �nd and select items in a linear menu. While
they introduce a learning component, the Q-values are only used to train the model. The learning dynamic is encoded
in the model, i.e. it is estimated from the history of actions by using the base-level equation (ACT-R [3]) at the end of
each session.

In Neuroscience, the approach is generally di�erent. The dynamic of the Q-values in RL models is of importance
as it re�ects how the agent (human, animal) learns [101]: the Q-values varies during the simulation of the model and
illustrates the fact that the choice of actions for a same state can evolve with practice. The dynamics of Q-values’
evolution is also of paramount importance in Neuroscience since it can be used to analyze whether neural representations
of action values, as recorded with brain imaging, re�ect the same dynamics as reinforcement learning models or not.
Finally, precisely analyzing the dynamic of the Q-values as obtained with model simulations is also important in this �eld
so as to compare whether the learned Q-values of di�erent models can account for behavioral properties observed in
humans at di�erent moments across task learning. Such simulations are critical to not only compare di�erent parameter
values of the same model and whether they are consistent with the dynamic of Q-values, but also to compare di�erent
models and eliminate those that cannot account for the properties of human behavior [101].

Our approach builds on this Neuroscience perspective as we aim at predicting and explaining how the users learn the
task, i.e. e�ciently executing commands, when repeatedly facing the same set of commands. This is a more challenging
objective as our models should predict all trial-by-trial actions (instead of the last trials once participants reached a
plateau of performance).

2.2.5 Summary. Our main contribution is the elaboration and validation of the �rst computational model of the
transition from menus to shortcuts. Because we address complex phenomena related to not only decision making and
learning dynamics, we build on the �eld of neursocience, approaching the RL framework di�erently.
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3 APPROACH

Command selection relates to the execution of commands (e.g. "Open") using several interaction techniques. In this
article, we consider the Menu (M) as novice interaction technique and Shortcuts (S) as expert interaction techniques,
although the following models could be extended to other methods (e.g. palettes, ribbons). We now describe the type of
decisions the models focus on, the formulation of the problem and the general approach.

3.1 Type of decisions

When the users have to execute a command, they make several decisions:

• Decision about the strategy. Users �rst choose which strategy to use: executing the command as fast as possible
(1) using the menu, (2) using a known shortcut or (3) learning the shortcut now to be able to successfully use it
later.

• Decision about the mapping. The second level of decision is choosing which item to click on, the gesture to
perform or which keys to press given the chosen strategy. For instance, given the functionality "Quit" and the
choice of using keyboard shortcuts, users have to decide which combination of keys to press (e.g. Ctrl+Q or
Shift+Q). This can also happen when interacting with the menu as the user does not necessarily know how the
desired functionality is entitled in the menu [7].

• Decision about execution. Finally, the last level of decision is a plan for movement. For instance, for executing
"Ctrl+Q" without looking at the keyboard, users might decide which �nger to use, which might depend on the
keyboard layout.

So, choosing between behavioral strategies is hierarchically organized [46, 56]. Our main goal is to better understand
when users decide to learn, then learn and then adopt shortcuts. We therefore focus on understanding how users choose
strategies (the highest level of this hierarchy).We thus leave as future work several phenomena related to the interaction
within a menu (e.g. the position of items) and the speci�cities of the shortcuts (e.g. the position of keys on the keyboard,
the shape of the gesture). In particular, we do not aim at explaining the nature of errors, e.g. explaining why users press
“Shift+Q" or “Ctrl+A" when executing the command “Quit". Instead, we focus on behavioral changes at the strategy
level.

3.2 Problem formulation

The problem of shortcut adoption can be described as a discrete-time stochastic control of Markov Decision process.

3.2.1 State space S:. A state B 2 ( represents the target command to execute (e.g. “Open"). A speci�city of our de�nition
is that the next state only depends on the frequency of the commands. In the next sections, we indi�erently use state or
command when referring to B .

3.2.2 Action space A:. Given a command, the user chooses an action 0 2 �. In our context the set of actions are the
Menu strategy (0" ), the (keyboard or gesture shortcut) Shortcut strategy (0( ) and the Learning strategy (0!). 0" and 0(
are characterized by the fact that users execute the command as fast as possible with the corresponding method (menu
or shortcut). In contrast, the learning strategy (0!) consists in opening the menu, dedicating some time to explicitly
learn the shortcut mapping and then executing the command (either with the menu or a shortcut). Indeed, opening a
menu does not only serve to select a command but also to gather information about the shortcut by gazing at the visual
cue on the right side of the menu item [7].
Manuscript submitted to ACM
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3.2.3 Q-Value. The expected value of an action 0 in a state B at the time C is represented by the Q-value & (BC ,0). In our
context, a Q-value represents the relative expected bene�t of using a speci�c strategy for executing a given command.
During the simulation of an interaction task, the Q-values of each strategy are not static, they evolve, trial after trial,
based on the history of interactions and the environment and thus constitute predictions of each participant’s upcoming
behavior.

The way the Q-values are updated, or used to choose actions is model-dependent and described in the following
sections.

3.2.4 Model’s Input/output. The input of the model is a command BC and its output is the chosen strategy (or action)
for this command. We remind that our model describes a whole learning process (the policy is not �xed). The strategies
evolve over time depending on the evolution of the Q-values.

3.3 Computational rationality

Our problem formulation is inline with the computational rationality view of human behavior [39, 66] where the users’
strategies (policy) emerge from the user’s goal (utility), their cognitive mechanisms and the task environment:

3.3.1 Utility. The user aims at minimizing total execution time for executing commands.

3.3.2 Cognitive mechanisms. Plethora of cognitive mechanisms are likely to be involved in the learning and decision
making process of adopting shortcuts. In this article, we consider �ve main mechanisms: decay, perseveration, planning,
implicit learning and explicit learning and their di�erent combinations. We detail these mechanisms in the following
sections.

3.3.3 Task environment. We consider two main aspects for de�ning the task environment. First, the sequence of
commands. Liu et al. [68] show that the user’s behavior is sensitive to di�erent frequency distributions and the
execution time of a given command depends on, not only its frequency, but also the frequency of the other commands. It
is thus important to re�ne the de�nition of sequence of commands because three components might in�uence shortcut
adoption: 1) the size of the set of unique commands (e.g. “Open”, “Save”), 2) the total number of command execution
and 3) the relative frequency distribution (e.g. uniform distribution, Zip�an distribution, etc. [68]).

The second aspect is related to the teaching methods available to favor shortcut usage. While several methods
have been proposed, it still remains unclear how they modify users’ behavior (see Section Related Work). In this article,
we focus on the three teaching methods tested in [44]: Traditional, Audio and Disabled.

3.4 Outline

We �rst introduce three benchmark RL models in neuroscience, which are widely used in decision-making tasks
involving a learning process [101] (section 4). We then present the data collection of Grossman et al. [44] (section 5)
and state-of-the art methods from the decision-making �eld (section 6) to evaluate and compare the models. Results
(section 7) show that these benchmark models are not su�cient to capture the complexity of shortcut adoption. We
then present our model in sections 8 and 9 and evaluate it in the sections 10 and 11.
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Table 1. Key notations

Notation Description
B State: Target command
0 Action: User strategy
& (B,0) Q-Value
0? Previous action

Table 2. Free (top) and task-related (bo�om) parameters of the model.
The range of the free parameters is the one used to fit the models

Symbol Range Description
U (U', ,U⇠ ) [0, 1] Learning rate
V (V', , V⇠ ) [1, 20] Softmax inverse temperature
) ( 0.9 Keyboard shortcut strategy time
)" 2 Menu strategy time
)! 3.8 Learning strategy time
2? 3 temporal penalty associated to an error

4 BENCHMARK RL MODELS

We are not aware of existing models of shortcut adoption. We thus chose three benchmark models in Cognitive
Neuroscience which are widely used in decision-making tasks involving a learning process [101]. These models are
especially appropriate for multiarmed bandit problem[5] where the agent receives a reward after each action. Indeed, in
our context, users choose a strategy and immediately receive a reward (e.g. the inverse of the execution time) at each
trial. The di�erent notations and parameters are summarized in the Table 1 and Table 2.

4.1 Rescorla-Wagner (RW)

In this model, the agent learns the expected value & of each action based on the history of previous rewards:

& (BC+1,0) = & (BC ,0) + U ( A (BC ,0) �& (BC ,0) ) (1)

where U is the learning rate and A (0, C) is the reward of using the action 0 at the date C . Here, the reward, is the
inverse of the execution time. To simplify the problem, we assume that the time only depends on the strategy with:
)( < )" < )! Where )( , )" , )! are respectively the execution times of the strategies Shortcut, Menu and Learning,
which are empirically estimated. The RWmodel is a myopic version of standard temporal-di�erence learning algorithms
[90], such as Q-learning, where the discount factor W = 0.

To compare and choose the action given the Q-values, the model relies on a Boltzmann soft-max function. This
function converts the Q-values into action probabilities % (0 |BC ):

% (0 |BC ) =
4V & (BC ,0)Õ
0 4V & (BC ,0)

(2)

where the parameter V is the inverse temperature which controls the trade-o� between exploitation and exploration, i.e.
a small value of V re�ects almost random choice (exploration) while a high value of V indicates that the user always
chooses the action with the highest Q-value (exploitation).

This model has only two parameters U (eq. 1) and V (eq. 2)

4.2 Choice Kernel (CK)

This model captures the tendency of users to repeat previous actions regardless of execution time. It computes ⇠ 
values:

⇠ (BC+1,0) = ⇠ (BC ,0) + U ( (0 == 0? ) �⇠ (C,0) ) (3)
Manuscript submitted to ACM
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where U is the learning rate and 0? the previous action. The equation 2 then converts the ⇠ values into action
probabilities. The Choice Kernel model also has two parameters (U , V⇠ ).

The CK model is thus insensitive to the rewards. While this model can appear too simple, several models without
rewards have been shown to well capture human behavior in di�erent contexts [73]. The CK model is part of these
models and focuses on the perseveration e�ect: It is based on evidence in neuroscience [101] that human beings are
likely to repeat the previous strategy: not only repeating the Menu strategy, but potentially also the Shortcut strategy
once the shortcuts have been learned.

4.3 Rescorla-Wagner + Choice Kernel (RWCK)

This model mixes the two previous models, following the principle that subjects both try to maximize reward and tend
to show some degree of perseveration at the same time. The model estimates the action probabilities according to the
equation 4:

% (0 |BC ) =
4V', & (BC ,0)+V⇠ ⇠ (BC ,0)Õ
0 4V', & (C,0)+V⇠ ⇠ (C ,0) (4)

The behavior of the agent is thus sensitive to the reward (inverse of the execution time) and to the strategies previously
used. This model has four parameters (U', ,V', , U⇠ ,V⇠ ).

4.4 Discussion

These three models have in common to rely on an exploration - exploitation mechanism. While the Rescorla-Wagner
model learns the expected value of each action based on the history of previous rewards, the Choice Kernel model
captures the tendency of users to repeat previous actions regardless of the reward. Rescorla-Wagner+Choice Kernel
mixes the two models. These model-free RL models have several advantages to model how users adopt expert interaction
techniques. They are task-independent, have few free parameters, are easy to implement, are fast and have been shown
to well capture learning and decision-making dynamics in di�erent contexts [101].

5 DATA COLLECTION

We compare the three models (RW, CK, RWCK) on Grossman et al. data [44]. We summarize the experimental design
and the collected data.

5.1 Experimental Design

The interface consists of a menu bar opening 6 drop-down menus and a button at the bottom of the screen (Figure 1).
The participants move the cursor within the button and press the space bar to start the trial. The button then displays an
image representing the command to be executed as a stimulus (1). The participants execute the command by selecting
the corresponding item in the menu (2-3) or by executing the corresponding keyboard shortcut. When an error occurs,
the participants have to wait for 3s before the command can be executed again. The trial ends when the participants hit
again the space bar with the cursor within the button (4).

This study compares three interaction techniques: (1) theTraditionalmenu visually highlights the keyboard shortcut
of the selected item; (2) the Audio menu o�ers audio feedback: The keyboard shortcut was played orally by a voice
synthesizer once the command was executed from the menu. Finally, (3) the Disabled menu lets the user navigate
through the menu, but does not allow clicking on the item to execute it. This forces users to use keyboard shortcuts.
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Fig. 1. Experimental task. Participants move the cursor within the bu�on at the bo�om of the screen and hit the space bar to
display the stimulus, an image representing the command to select (1). The participants then execute this command by selecting the
corresponding item (“Pencil”) in the menu (2-3) or by executing the corresponding keyboard shortcut (Ctrl+R). The trial finishes when
the participants press again the space bar with the cursor within the bu�on. Reprinted from [44] with the permission of the authors.

The fourteen commands have di�erent frequencies. The most frequent commands are executed 144 times and the
least frequent commands are executed 12 times. Each of the 42 participants (12 female, 30 male, ranged in ages from
18-28) is assigned to a technique (14 participants per techniques) and executes 720 commands organized in 12 blocks
of 30 executions. Figure 9-top shows the 144 executions of the most frequent command of the user 1 with the Audio
technique.

position the cursor inside of it, and then hit the space bar

5.2 Collected Data and derived strategies

At each trial, the participant’s id, technique, block, trial, target command with frequency, name and keyboard shortcut
are recorded. The dependent variables are time (ms), success (0/1) and the method: Menu or Keyboard shortcuts. Because
they are not directly recorded in the logs, we derive the three strategies as:

• Menu strategy when the user only uses the menu method.
• Shortcut strategy when the user only uses the keyboard shortcut method.
• Learning strategy when the menu is visited, but the keyboard shortcut is executed1

1When the participant learned the keyboard shortcut, but executed the command in the menu, the Learning strategy cannot be detected. This behavior is
interpreted as the Menu strategy. The number of Learning is thus under-estimated and the number of Menu is over-estimated.
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5.3 Task-related parameters

This study includes a 3s penalty (2? = 3) when an error occurs. We also analyzed the empirical data and estimated the
correct execution time for each strategy: )" = 2.0, ) ( = 0.9, )! = 3.8. We used the mode (rather than the mean or the
median) because the distributions were highly skewed.

6 EVALUATION METHODS

The objective of this section is to present the methods to estimate the parameters of the three models as well as the
methods to compare them.

6.1 Parameter estimation

A main challenge in elaborating and using computational cognitive models is the number of parameters as well as their
variability across individuals. In some contexts, the value (or the distribution of values) of the parameters are known
and can be directly adopted from the literature [21, 52]. However, in our context of shortcut adoption, we do not have
speci�c priors on the values of these parameters (see table 2). We thus aim to estimate values of the parameters that
best explain behavioral data, i.e. the parameters that minimize the �tness function.

6.1.1 Maximum-Likelihood Approach. The �tness function re�ects the capacity of a model to replicate a participant’s
trial-by-trial action choice. In Bayesian terms, it is the likelihood of the data given the model, that is the maximum
probability that the model chooses the same series of actions as the participant [27, 96]. It consists of analyzing the
posterior prediction of the model conditioned on the past history, i.e. evaluating the likelihood of the participant’s action
0C given the past data 31:C�1, where the past data includes the actions made by the participant, not the actions made by
the model. Formally, we estimate :

!!(<, ?) =
’
C

log % (0?C |(
?
1:C�1,<, \?<) (5)

where< is the tested model, ? , a given participant, \?< the set of parameters of the model< for the participant ? and
(?1:C the sequence of actions performed by the participant until the date C . We use the di�erential evolution algorithm as
optimization method (from the Scipy.opimize python library [97]) to �nd the set of parameters \?< which maximizes
!!(<, ?) for each model< and each participant ? .

6.1.2 Fitness function properties. Our �tness function has two key properties. First, it considers individual models
(i.e. a di�erent set of parameters for each participant) rather than a population model (the same set of parameters for
all participants), which is important to address inter-individual variability in decision-making problems [52]. Indeed,
di�erent users can have radically di�erent policies leading to di�erent behaviors. Consider an extreme case with two
users, one using only Menu and one using only Keyboard shortcuts. The notion of "average" user does not mean that
she will use 50/50 Menu and Keyboard shortcuts.

Moreover, our �tness function considers trial-by-trial action choices rather than aggregate �tting as it �ts each action
individually. While it is not common practice in HCI, this approach is now well adopted in cognitive sciences and
neuroscience [27, 96]. This permits to model the temporal evolution of participant’s behavioral strategy, e.g. initially
using menus and then progressively switching to shortcuts, rather than modeling again an average 50/50 Menu and
Keyboard shortcuts for a single participant.
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6.2 Model fi�ing

6.2.1 Log-Likelihood comparison. We aim to determine which of the three models best describes the behavioral data, as
a way to understand which mechanisms underlie behavior. Given the best identi�ed parameters \?< , we compare their
likelihood !!(<, ?) (equation 5). The model with the largest likelihood is likely to better explain the observed data.

6.2.2 BIC score comparison. In the process of model comparison, it is common to include a penalty term for model
complexity, i.e. for the number of parameters [101]. The Bayesian Information Criterion (BIC) is commonly used [23]
and estimated as ⌫�⇠ = �2!! + : ⇥ ;>6(# ) where !! is the likelihood (equation 5), : , the number of parameters and # ,
the number of points to predict. As each participant executes 720 commands in the experiment, # = 720. It is common
practice to consider that there is a “strong evidence" in favor of the winning model when the BIC di�erence is > 6 [84].

Table 3 and 6 report both likelihood and BIC score.

6.3 Model Simulations

We can use the best set of parameters \?< to simulate the di�erent models. In some cases, model simulation can lead to
very di�erent results from model �tting if the path of actions sampled by the participant is widely di�erent from the
paths likely to be selected by the model [80, 101]. It is thus important to also simulate the models and verify that they
do reproduce the main behavioral properties of the participants [101], in our context, the evolution of the percentage of
correct shortcut execution, which is commonly used to compare interaction techniques favoring shortcuts [7]. For each
model, we ran 50 simulations2 per participant using individual parameters, (i.e. 50 ⇥ 42 = 2100 B8<D;0C8>=B per model).
We then aggregated per technique (14 participants).

Table 3. Comparisons of three benchmark model-free RL models and our T��������� model in term of free parameters, total number
of free parameters (N), Likelihood and BIC. Our T��������� model minimizes both the inverse of the likelihood and the Bic score.

Model Free parameters N - Likelihood BIC
Rescorla-Wagner (', ) V', , U', 2 193.7 400.7
Choice Kernel (⇠ ) V⇠ , U⇠ 2 174.0 361.2
',⇠ V', , U', , V⇠ , U⇠ 4 159.5 345.4
T��������� U⇢ , U� , 3 , ⌘,F , V 6 148.5 336.5

7 RESULTS

We now present our �tting and simulation results at di�erent levels of granularity.

7.1 Fi�ing Results for Action Choices

7.1.1 Model. Table 3 indicates the likelihood and BIC score for the three benchmark RL models. As expected, there
are strong evidence (BIC di�erence > 6) that the combination of the Rescorla-Wagner model and Choice Kernel
model, RWCK (!! = �159.5; ⌫�⇠ = 345.4) outperforms each model individually, ie, Choice Kernel, CK (!! = �174.0;
⌫�⇠ = 361.2) and Rescolar-Wagner, RW (!! = �193.7;⌫�⇠ = 400.7) even when considering the penalty associated to the
BIC score for additional parameters. Interestingly, the CK is the second best model while it is myopic to rewards and
tends to repeat the previous strategies.
2a compromise between testing models and a reasonable expenditure of experimenter e�ort
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Fig. 2. Model comparisons in term of likelihood (LL) and BIC Score for each technique. The lower the be�er. Error bars show 95%
bootstrap confidence intervals. T��������� outperforms the three benchmark RL models (Rw, CK and RWCK) both in term of
Likelihood and BIC score.

7.1.2 Interaction Method level. Figure 2 compares the three models for each interaction method. Results indicate strong
evidence (BIC di�erence > 6) that RWCK outperforms CK and RW for both Audio (RWCK: 463.4; CK: 486.4; RW:531.4)
and Disable (RWCK: 323.6; RW: 348.6; CK: 349.5). However, for Traditional, where users are less likely to transition and
thus to repeat the same Menu strategy, both CK (247.8) and RWCK (249.2) outperform RW (322.0).

7.1.3 User level. Finally, we analyze the data for each participant. Results indicate that ',⇠ is the best model (BIC
score) for 26 participants, ⇠ for 9 participants (7 of them using Traditional) and ', for 7 participants. These results
provide a complementary picture illustrating the variety of users’ behavior, i.e. there is not a single model that best �ts
all participants. "Simple" behaviors such as rarely using shortcut can be explained with a simple ⇠ model (e.g. only
implementing the perservation mechanism). However, this model fails as soon as the users really make a transition.

7.1.4 Parameters. Figure 3 illustrates the distribution of the values of parameters for the three models.

7.2 Model simulations

7.2.1 Block-by-block: Evolution of shortcuts. Figure 4 shows the evolution of shortcut use (%) per block and per method
for the three benchmark models. We also report the Mean Square Error (MSE) as a measure of discrepancy. Surprisingly,
we observe here that RWCK is not the best model to synthesize users’ behavioral data. RW (MSE=274.9) outperforms
RWCK (MSE=329.9) and CK (MSE=855.1) is by far the last model. However, a closer inspection reveals that none of
them is fully satisfactory. First the initial percentage of shortcut use is too high regardless of the model and the method.
Second, the performance of Audio is always under-estimated, regardless of the model.

7.2.2 Trial-by-trial: individual participant actions. We visually inspected the 588 (42 users ⇥ 14 commands) sequences
of strategies for each model. Figure 9 is one example illustrating the limit of the RWCK simulations to reproduce users’
behavior. Indeed, we observe several instances where the models switch back to menus (or learning) for a long period
(> 7CA80;B). This can be explained by the fact that "optimal" V', and/or V⇠ are small enough to favor exploration
even after having switched to shortcuts. In comparison, we did not observe this pattern in participants’ data.
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RWCK

RW CK

Traditional Audio Disabled

Fig. 3. Summary of the parameters per technique and per model.

Fig. 4. Shortcut use (%) per block and method. Observed participants’ data are represented with dots. Synthetised data (solid line)
are produced by aggregating 50 simulations per participant with individual parameters.

7.3 Discussion

In summary, these model �tting results indicate that the Rescorla-Wagner+Choice Kernel (RWCK) model better accounts
for the empirical data, suggesting that both the adaptation to reward (from RW) and the perseveration (from CK)
mechanisms play a role in explaining and predicting the transition from menus to shortcuts. Moreover, the Choice
Kernel (CK) is the second best model while it is myopic to the rewards, suggesting that perseveration is an important
mechanism to explain users’ behavior. However, simulation results suggest that Resocla-Wagner (RW) better synthetizes
users’ behavioral data. So, the role of perseveration is at this point not clear: while it signi�cantly contributes to the
Manuscript submitted to ACM
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goodness-of-�t (model �tting), the data produced by the models without perseveration better re�ect participants’
behavior (model simulation).

From a methodological point of view, our results highlight the importance of combining model �tting and model
simulation [80] to validate models of shortcut adoption as they show a di�erent picture. Finally, a close inspection of
our results suggests that this �rst set of classical models are not satisfactory as they tend to overestimate initial shortcut
adoption and underestimate the performance of the Audio technique. This motivates us to elaborate a dedicated model
of shortcut adoption, called T���������.

8 TRANSITION: MODEL OVERVIEW AND THEORETICAL ASSUMPTIONS

In the previous sections, we showed that the benchmark model-free RL models in neurosciences are not su�cient
to explain users’ behaviors. In this section, we present a model-based RL model dedicated to explain and predict
shortcut adoption. It also relies on the computational rationality principles but combines �ve mechanisms, grounded in
neuroscience and cognitive science, likely to participate in the transition from menus to shortcuts:

The �rst mechanism, planning [29, 31, 53, 78, 88], means that the users are able to consider ⌘ actions ahead for a
given command, i.e. they mentally simulate their future strategy choices in response to the ⌘ next times. A higher ⌘
means that the users are more likely to transition as they can foresee the future bene�ts of learning shortcuts now.
Moreover, humans do not necessarily value all future actions/strategies with the same weight [18, 88]. A discount factor
is generally introduced to determine the importance of future rewards [91]. However, this planning mechanism is not
su�cient alone as it can only explain behavior when users never transition (short horizon) or transition immediately
(larger horizon).

Then, implicit and explicit learning mechanisms consolidate at di�erent learning rates the command-to-shortcut
mapping in memory. When repeatedly selecting an item in the menu, users unconsciously and slowly gather information
about the shortcut thanks to their peripheral vision (implicit learning). When reaching a certain level of knowledge,
users can then perceive the bene�ts of intentionally learning shortcuts (explicit learning). Some evidence in neuroscience
indicate that learning for action selection relies on a balance between planning and implicit/explicit learning [78].

A decay mechanism [3, 14] re�ects that the command-to-shortcut mappings encoded in memory fades away due to
the passage of time.

The �fth mechanism, perseveration, re�ects the fact that users are likely to repeat the previous strategy. This general
behavioral tendency, at the heart of the Choice Kernel Model, has been documented for a long time in decision-making,
from psychological, neuroscience and modeling points of view [1, 39, 57, 101].

In the next section, we describe our model using the RL formalism (e.g. states, actions, Q-Values, etc.). We then
evaluate it and further demonstrate that these mechanisms are necessary altogether to explain and predict the transition
from menus to shortcuts. Finally, we discuss the limitations of the model and provide several directions to re�ne it.

9 TRANSITION: MODEL DEFINITION

The di�erent notations and parameters are summarized in Table 4 and Table 5.

9.1 State and Action

We reused the same de�nitions for the states (the target to execute) and the actions: the Menu strategy (0" ), the
Shortcut strategy (0( ) and the Learning strategy (0!).
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Table 4. Key notations

Notation Description
B State: Target command
0 Action: User strategy
& (B,0) Q-Value
⇠ (B,0) (Temporal) Cost
⇢⇠ (B,0) Expected Cost
⇢⇠⇠ (B,0) Expected Cumulative Cost
⇠) (B,0) Successful execution cost
⇠' (B,0) Repair cost
 (B,0) User knowledge
0? Previous action

Table 5. Free (top), fixed (center) and task-related (bo�om)
parameters of the model. The range of the free parameters
is the one used to fit the model

Symbol Range Description
V [1, 20] Softmax temperature
F [0, 1] tendency to repeat the previous action
U⇢ [0, 1] Explicit learning rate
U� [0, 0.33] Implicit learning rate
3 [0, 0.02] Decay
⌘ [0, 7] Horizon
W 0.9 Discount factor [91]
) ( 0.9 Keyboard shortcut strategy time
)" 2 Menu strategy time
)! 3.8 Learning strategy time
2? 3 temporal penalty associated to an error

9.2 Q-values

& (BC ,0) remains the expected value of an action 0 in a state B at the time C . To compare those Q-values and �nally
choose an action, the model relies on the Boltzmann soft-max function of Equation 2. The expected value & (BC ,0) is
now calculated as:

& (BC ,0) = (1 �F) ⇥ (�⇢⇠⇠ (BC ,0)) + (0 = 0? ) ⇥F (6)

where ⇢⇠⇠ (BC ,0) is the expected cumulative temporal cost of using the strategy 0 to execute the command BC ; 0? is
the previous action used for the command BC andF 2 [0, 1] is a weight re�ecting the tendency of people to repeat the
previous action, i.e. the degree of perseveration. In other words, Equation 6 re�ects the fact that the agent faces a
multi-objective optimization problem by trying to minimize the expected cumulative temporal cost of current command
execution while maximizing stability in the choice of the strategy. The formulation of the action values is thus quite
similar to the one of RWCK 4, which corresponds to weighting into a common currency the RW values (reward) and
CK values (perseveration).

Before de�ning the expected cumulative cost ⇢⇠⇠ , i.e. the cost associated to a sequence of actions, we �rst need to
de�ne the cost function ⇠ (BC ,0) and the expected cost ⇢⇠ .

9.3 Cost function ⇠ (BC ,0)

The temporal cost ⇠ to execute a command is the sum of the execution time ⇠) and the repair time ⇠' in case of error:

⇠ (BC ,0) = ⇠) (BC ,0) + 1 ⇥⇠' (BC ,0) (7)

where BC is the target command at time C , 0 the chosen strategy and 1 a Boolean indicating whether users perform an
error or not. To simplify the problem, we assume that the correct execution time ⇠) only depends on the strategy with:

)( < )" < )! (8)

where )( , )" , )! are respectively the correct execution times of the strategies Shortcut, Menu and Learning. The repair
Time ⇠' is the sum of the time to analyse the error (or penalty) 2? and the time to correctly re-execute the command.
Manuscript submitted to ACM
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To simplify, we consider the users reuse the Menu strategy to repair their errors:

⇠' (BC ,0) = ⇠) (BC ,0) + 2? (9)

9.4 Expected cost ⇢⇠ (BC ,0)

⇢⇠ (BC ,0) is the expected temporal cost of using the strategy 0 to execute the command BC . It derives from Equation 7 and
is the weighted sum of the correct execution time ⇠) (BC ,0) and incorrect execution time ⇠' (BC ,0), where the weight
depends on the user knowledge  (BC ,0):

⇢⇠ (BC ,0) =  (BC ,0) ⇥⇠) (BC ,0) + (1 �  (BC ,0)) ⇥ (⇠) (BC ,0) +⇠' (BC ,0C )) (10)

9.5 Knowledge  

9.5.1 Definition.  (BC ,0) 2 [0, 1] is a latent variable representing the knowlegde of the user. It is the probability
to successfully execute the command BC with the strategy 0. More precisely,  (BC ,0" ) =  (BC ,0!) and represents
how well the mapping between a command and its location in the menu is encoded in the user’s memory (the user
only interacts with the menu with these two strategies). Reciprocally,  (BC ,0( ) represents how well the mapping
Command-to-Shortcut is encoded in the user’s memory.
 (BC ,0( ) is a key variable to explain the transition from menus to shortcuts. Indeed, it is likely that users will not try

to execute shortcuts if they do not have enough prior knowledge, i.e. if the probability of success is not high enough. In
contrast the knowledge of item locations  (BC ,0" ) ==  (BC ,0!) is likely to have an impact on menu selection time
(amount of visual search), but less on accuracy (pointing task in a menu has a high accuracy) and the transition to
shortcuts. For this reason, one simpli�cation is to assume that the users have a “perfect" knowledge of the location of
menu items for a given command, i.e. the probability of successfully selecting the target item in the menu is equal to 1:

 (BC ,0" ) =  (BC ,0!) = 1 (11)

We can then rewrite Equation 10 for the strategies Menu and Learning, assuming that users do not make errors:

⇢⇠ (BC ,0) =  (BC ,0) ⇥⇠) (BC ,0), 0 2 {0" ,0!} (12)

9.5.2 Updating Knowledge. We propose 2+1 mechanisms to update  (BC ,0( ). The two �rst mechanisms are explicit
and implicit learning. Explicit learning occurs when users successfully use the Learning strategy or the Shortcut
strategy: The users intentionally read/learn the shortcut cue or execute the shortcut correctly. Implicit learning occurs
when users repeatedly execute a command in the menu: the users unconsciously gather information in the surroundings
thanks to their peripheral vision. Explicit and implicit learning depend on the strategy and are used to increase the
knowledge of shortcuts:

 (BC ,0( ) =  (BC ,0( ) + U⇢ ⇥ ( 1 �  (BC ,0( ) )

 (BC ,0( ) =  (BC ,0( ) + U� ⇥ ( 1 �  (BC ,0( ) )
(13)

Where U⇢ and U� 2 [0, 1] are the explicit and implicit learning rates. While explicit learning is more e�cient than
implicit learning to memorize the shortcut mapping ( U⇢ >> U� ), we will demonstrate (section Results) that implicit
learning is essential for explaining the transition from menus to shortcuts.
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The third mechanism is decay. At each time step, the shortcut knowledge of each command BC is updated to account
for memory decay:

8B 2 (,  (BC ,0( ) =  (BC ,0( ) + 3 ⇥ ( 0 �  (BC ,0( ) ) =  (BC ,0( ) ( 1 � 3 ) (14)

Where 3 2 [0, 1] is the decay factor. The mechanisms to update memory (U⇢ , U� , 3) are related to the ones in ACT-R [3]
but this de�nition is more appropriate to an RL framework and does not require to store the whole user history.

9.6 Expected Cumulative Cost ⇢⇠⇠

We can now de�ne the expected cumulative cost ⇢⇠⇠ used in Equation 6. We formulate the problem of command
selection as a planning problem with an horizon ⌘, i.e. users plan a sequence of ⌘ actions for a given command to
minimize the expected cumulative cost for this command:

⇢⇠⇠ (B,0,⌘) = ⇢⇠ (B,0) + W ⇥ ⇢⇠⇠ (B,0A6<8=0 ( ⇢⇠ (B,0) ),⌘ � 1) (15)

where ⇢⇠ (BC ,0) is the expected temporal cost (Equation 10), ⌘ is the horizon, and W 2 [0, 1] is a discount factor
determining the importance of future rewards. Typically, W close to 0 indicates that users only consider the temporal
cost of the current strategy, while W close to 1 indicates that the weight of each strategy in a given horizon is very
similar. In the RL literature [91], it is common to choose W = 0.9. The two parameters ⌘ and W allow to control for the
cognitive bias consisting in valuing more the present than the future (in line with theoretical constructs such as the
paradox of active users [18]). Our hypothesis is that users with a large horizon are more likely to perceive the bene�ts
of learning shortcuts now so as to use them in the future. In practice, the users estimate the cumulative cost ⇢⇠⇠ (BC ,0)
of each of the 3⌘ decision branches and choose the one with the minimal cost as if the commands were performed in a
row. To achieve this, they simulate each decision and their e�ect on the internal values, i.e. the shortcut knowledge
necessary to estimate the utility of each strategy.

10 VALIDATION

10.1 Methods

We test our model, T���������, on the Grossman et al. data collection [44] and compare its likelihood and simulation
performance to the three benchmark models RW, CK and RWCK.

10.2 Fi�ing results for Action Choices

10.2.1 Overall. Table 3 indicates the likelihood and BIC score of the T��������� model. The results indicate that our
model outperforms the best benchmark RL model, RWCK in terms of likelihood ( T���������: -148.5; RWCK: -159.4).
More surprisingly, despite the larger number of parameters, the results indicate strong evidence (BIC di�erence >6) in
favor our model (T���������: 336.5; RWCK: 345.4).

10.2.2 Method level. Figure 2 compares T��������� to the three benchmark RL models for each method. Results
indicate a strong evidence (BIC score >6) that T��������� outperforms the best benchmark models for Traditional (
T���������: 230.6; CK: 247.9) and for Disabled ( T���������: 316.3; RWCK: 323.6). Results do not show signi�cant
di�erences between T��������� (462.7) and RWCK (463.4) regarding the Audio method.

10.2.3 User level. Results indicate that the best model (BIC score) is T��������� for 31 participants, RWCK for 8
participants, RW for 2 participants and CK for 1 participant. It is a strong di�erence with the comparison of the three
Manuscript submitted to ACM
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Fig. 5. Summary of the T��������� model parameters per methods: Traditional (blue), Audio (orange), Disabled (green).

benchmark models where RWCK was the best model for 21 participants. These results indicate that T��������� better
captures the variability of users’ behavior, regardless of the interaction method.

10.2.4 Parameters analysis. Figure 5 illustrates the distribution of values for each parameter and each method. To
analyze these parameters we distinguish Traditional and Audio which have three actions and Disabled which has only
two (The menu strategy is not available).

Regarding Traditional and Audio, results con�rm that the distribution of values for parameters related to users’
pro�le – ability to plan ⌘, decay 3 and tendency to repeat previous actionsF – seem independent from the interaction
method. Results also con�rm that participants tend to learn explicitly U⇢ and to try V shortcuts more often with Audio
than with Traditional. More surprisingly, Audio feedback seems to also in�uence implicit learning U� while we were
expecting this to be method-independent.

Regarding the user pro�les’ parameters of Disabled (⌘, 3 ,F ), the results are similar except thatF appears higher
probably due to the fact that this method relies on two actions instead of 3. Similarly, users tend to learn and try
shortcuts more easily than Traditional. Finally, Disabled does not have an implicit learning parameter U� (as the Menu
Strategy is not available) explaining probably the longer tail for U⇢ .

10.3 Model simulations

10.3.1 Block-by-block: Evolution of shortcuts. Figure 6 illustrates the percentage of correct shortcuts per block and
per method. The results indicate that T��������� synthesizes data which better re�ect users’ behavior (MSE=40.7)
than the three benchmark RL models (RW: 274.9; RWCK:329.9; CK: 855.1). Indeed, we observed that the simulation of
T��������� better captures the learning dynamics and thus does not su�er from the two limitations of the simulation
of the benchmark RL models: The initial performances predicted by the model are now close to the one observed for
our participants and the prediction of the relative performance between the methods (in particular Audio) well re�ects
the one of the actual techniques. However, a closer inspection reveals that the predicted performances of the three
methods are slightly over-estimated during the �rst blocks (0-6) and slightly under-estimated during the last blocks
(7-11) in comparison with observed participants’ data.

10.4 Discussion

Our results indicate that our T��������� model outperforms the three benchmark models both in terms of model
�tting (likelihood and BIC score) and simulation. The results are especially impressive regarding the quality of the
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Fig. 6. Shortcut use (%) per block and method for the T��������� model. Observed participants’ data are represented with dots.
Synthetised data (solid line) are produced by aggregating 50 simulations per participant with individual parameters.

Table 6. Comparison of the T��������� model with five variants where one mechanism has been disabled in term of free/fixed
parameters, total number of free parameters (N), Likelihood and BIC. Removing one mechanism from the T���������model decreases
not only the likelihood but also the BIC score suggesting that the five mechanisms contribute to explain and predict the transition
from novice to expert interaction techniques.

Model Free parameters Fixed parameters N - Likelihood BIC
T��������� U⇢ , U� , 3 , ⌘,F + V W = 0.9 6 148.5 336.5
T��������� - U⇢ - , U� , 3 , ⌘,F + V W = 0.9 + U⇢ = 0 5 199.2 431.4
T��������� - U� U⇢ , - , 3 , ⌘,F + V W = 0.9 + U� = 0 5 164.8 362.5
T��������� - 3 U⇢ , U� , - , ⌘,F + V W = 0.9 + 3 = 0 5 162.2 357.3
T��������� - ⌘ U⇢ , U� , 3 , - ,F + V W = 0.9 + ⌘ = 1 5 156.1 345.1
T��������� -F U⇢ , U� , 3 , ⌘, - + V W = 0.9 + F = 0 5 175.9 384.7

synthetized data for our model in comparison with the ones synthetized by the benchmark RL models. Indeed, our
T��������� model well re�ects for each method the absolute and relative evolution of shortcut use over time.

11 MODEL VARIANTS

Our model combines �ve key mechanisms, but it remains unclear whether all of them are useful to replicate the
trial-by-trial evolution of strategy choices. We thus decided to compare �ve variants of our models (Table 6). Each of
these variants corresponds to the T��������� model where one of the mechanism (e.g. implicit learning) has been
disabled. The objective is to study the in�uence of disabling each mechanism on likelihood and BIC score.

11.1 Fi�ing Results for Action Choices

11.1.1 Overall. Table 6 summarizes the �ve variants of our model depending on the di�erent combinations of free and
�xed parameters. We observe that the best model both in terms of likelihood and BIC score is the one implementing the
�ve mechanisms, thus the full T��������� model (Table 6): implicit learning U� , explicit learning U⇢ , decay 3 , planning
⌘, and perseveration (F ). The second best model is the one without planning which has a di�erence of BIC score larger
Manuscript submitted to ACM
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Fig. 7. Comparison of the T��������� with its variants where a mechanism has been disabled in term of Likelihood (Le�) and BIC
Score (Right) per technique. The lower, the be�er. Error bars show 95% bootstrap confidence intervals

than 6 (336.5 vs. 345.1). These results suggest that all �ve mechanisms contribute to explain the transition from menus
to shortcuts in these participants.

11.1.2 Method level. Figure 7 summarizes the goodness-of-�t (likelihood and BIC) of each model variant per method.
We observe that the model implementing all �ve mechanisms, T���������, outperforms (Likelihood and BIC) all
variants for Traditional and Audio.

Regarding Disabled, T��������� and the variant without U� has the same likelihood (138.4) and outperform the
other variants. The fact that, that these two models have the same likelihood is not surprising as the implicit learning
mechanism is not used in this interaction method: Disabled does not let users use the Menu strategy and thus can not
implicitly learn shortcuts. However, T��������� is penalized with the BIC score as U� is not used. In term of BIC score,
the variant without planning ) � ⌘ (312.9) is similar to ) � U� (312.6) and outperform T��������� (316.3). These results
re�ne our understanding of interacting with the Disabled technique: Not only users do not implicitly learn keyboard
shortcuts as the menu is disabled but they also do not need to plan as the choice of strategies is limited.

11.1.3 User level. Results indicate that the best model (likelihood) is T��������� for 24 participants, the one without
planning for 7, the one without implicit learning for 4, the one without decay for 4, the one without explicit learning for
2 and �nally the one without perseveration for 1. However, when considering the BIC score, no model really emerges:
none of the models is the best model for more than 12 participants out of 41. Altogether, these results indicate that the
5 mechanisms are necessary but not with the same weight for each participant / interaction method.

11.2 Model simulations

We analyze the simulated data at di�erent levels of granularity:

11.2.1 Block-by-block: Evolution of keyboard shortcuts. Figure 8 illustrates the percentage of shortcuts per block and
per interaction method for each model variant. The simulation of model variants provides a slightly di�erent picture
than model �tting. Indeed, two model variants, the one without decay 3 (MSE=26.3) and the one without perseveration
F (MSE=26.3) outperform T��������� (MSE=39.9).

These results echo the ones obtained when comparing the three benchmark RL models. Indeed, both RWCK and
T��������� were the best models in term of goodness of �t, but their variants without perseveration (i.e. RW and

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Bailly et al.

T��������� - F ) better synthesize data. The good performance of the variant without decay 3 is surprising. One
possible explanation is that the absence of decay arti�cially compensates for the presence of perseveration when
simulating data. For this reason, we also analysed the performance of the variant T�3 � F corresponding to the
T��������� model without the decay and perseveration mechanisms. Regarding goodness-of-�t, as expected T�3 �F
does not outperform the previous variants in terms of likelihood (206.4) and BIC score (439.2). Regarding model
simulation, the results are similar, where T�3 �F (MSE = 41.4) does not outperform the variant without decay T�3
(MSE=26.3) and T�F (MSE=26.3), con�rming our hypothesis that the absence of decay arti�cially compensates for the
presence of perseveration when simulating data. Further investigations are necessary to precisely understand the role
of perseveration.

Fig. 8. Keyboard shortcut use (%) per block and interaction method for each model variant: observed participants’ data are represented
with dots. Synthetised data (solid line) where produced by aggregating 50 simulations per participant with individual parameters.
MSE is calculated for each model variant.

11.2.2 Trial-by-trial: individual participant actions. Figure 9 shows one of the sequences of command executions for
one participant using the audio method: The �rst row shows the participant data. For the de�nition of the transition
(yellow box), we used the data of [6] where two experts annotated all the sequences of strategies from the Grossman
et al. experiment [44]. The second and third rows illustrate the synthesized data from the T��������� model and its
variant (T�F ) without the perseveration mechanism. From our observations, we found that the T�F model better
re�ects the participant’s transition than the T��������� model both in terms of beginning and duration as well as in
terms of variability of the strategies before, during and after the transition. The example of Figure 9 is representative of
many sequences.

11.3 Discussion

In summary, (1) the results indicate that I������� ��������, �������� ��������, D���� and P������ mechanisms play
a role both in explaining and predicting the transition from menus to keyboard shortcuts; (2) the role of �������������
is less clear: while it signi�cantly contributes to the goodness-of-�t (model �tting), the data produced by the models
without ������������� better re�ect participants’ behavior (model simulation). Altogether, the models T��������� and
) �, appear the most promising models for the transition from menus to shortcuts. Finally, (3) our results highlight
the importance of studying model variants as well as combining model �tting and model simulation [80] to validate
models of shortcut adoption.
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Fig. 9. Simulation comparisons ( T��������� (T), T�F, ',⇠ ) for a single command and a single user using the AUDIO interactive
method. Each dot represents one command execution (144 executions for this command). The color encodes the strategy (Menu:
Blue; Keyboard shortcut: Green; Learning: Pink); The height encodes the execution time; Finally, large dots indicate errors. For this
participant (top row), the model T�F (third row) be�er reflects the observed transition (indicated as a yellow box on the participant
data). The green line indicates the probability of the agent to execute shortcuts. We observe that this one is much more stable for
T�F than the two other models because of the lack of the perseveration mechanism.

12 DISCUSSION AND FUTUREWORK

In this section, we summarize our main contributions regarding the design and the empirical evaluation of the
T��������� model. We then analytically evaluate this model in light of the criteria of Jacobs and Grainger [50]
providing directions for future work. Finally, we discuss the opportunities of neuroscience research to model complex
HCI tasks such as the transition from novice to expert interaction techniques.

12.1 Model of the transition from novice to expert interaction techniques

In this paper, we presented a new model, T���������, to predict the transition from novice to expert interaction
techniques. One key aspect of our approach was to model the whole learning process of expert technique adoption, i.e
to explain whether, when and how users make the transition. Another key aspect was to rely on the Reinforcement
Learning framework appropriate to address learning and decision-making problems, where we considered three
high-level strategies (Menu; Shortcut and Learning) as actions.

12.2 Empirical evaluation of the model

The T��������� model has been empirically evaluated on the Grossman et al. database [44]. A key contribution of our
work is the variety of approaches used to evaluate our model, increase transparency and avoid potential evaluation
biases. First, despite the lack of dedicated models of shortcut adoption in HCI, we compared our model to three
benchmark models in neuroscience (RW, CK and RWCK), which are widely used in decision-making tasks involving a
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learning process [101]. Second, we analyzed our model both in terms of goodness-of-�t and simulation. These two
methods have been shown to be complementary as they can lead to di�erent conclusions [80, 101]. Third, we analyzed
our model at four levels of granularity [9]: Overall, interaction method, participant and sequence of actions. This is
important to avoid the risk to over-interpret aggregated data. Fourth, we compared our model to variant models where
each of the �ve involved mechanisms have been alternatively disabled to ensure all mechanisms are useful.

Altogether our results show that the T��������� model outperforms the three benchmark RL models and the �ve
mechanisms contribute to shortcut adoption.

12.3 Analytical evaluation of the model

We now critically discuss our model in light of the criteria of Jacobs and Grainger [50]:

12.3.1 P����������� ��� E����������. T��������� is well grounded in the cognitive science and neuroscience litera-
tures, both in terms of problem formulation and model design.

First, our problem formulation is in line with the computational view of human behavior [39, 66] where the users’
strategies (policy) emerge from the user’s goal (utility), their cognitive mechanisms and the task environment. Moreover,
we acknowledge a hierarchical nature of decision-making [56], where we focus on the higher level of decision-making:
users choose a strategy among Menu, Shortcut and Learning.

One promising direction for future work is to investigate alternative hierarchies of high-level decisions. For instance,
some users might decide �rst whether they use shortcut or not. If not, they then decide whether they use the Menu or
Learning strategy. However, it is not clear whether this would produce signi�cantly di�erent results than the present
model. It would also be interesting to re�ne the action “Learning" to capture the degree of explicit learning, e.g. the
time spent to learn the shortcut. Another direction is to adopt a mechanistic approach and to re�ne low-level decisions,
i.e. how users select items in a menu or execute shortcuts. This will be important when focusing on execution time and
error rate. Indeed, one limitation of our approach is that it does not cover intramodal performance improvement [26].
Our model currently assumes that execution time does not evolves over time and only depends on the used strategy.
We plan to introduce some mechanisms such as visual search and pointing (Fitts’ law) from existing models of menu
performance [9, 21], and include speed of recall from memory [2, 96] to re�ect how users behave within a menu as
well as the e�ect of practice on execution time. We also plan to understand the nature of errors when using shortcuts.
Currently our model over-estimates the number of errors. One direction would be to introduce a component for risk
aversion as users might value more the certainty of correctly executing a command with menus than the uncertainty of
the bene�ts of shortcuts [82].

Second, we designed the T��������� model so that it combines �ve mechanisms: implicit and explicit learning,
decay, planning and preservation. These �ve mechanisms are grounded in the cognitive science and neuroscience
literatures. The comparison of T��������� with some variants enabling/disabling each mechanism suggests that these
�ve mechanisms play a role in the transition observed in participants.

Among these mechanisms, perseveration should require further investigation as its role is less clear. It has been
demonstrated that perseveration is frequent in human choice behavior [101], but we have observed here di�erences
between model �tting and simulation data. One possible reason is that our degree of perserveration is currently static.
An alternative would be to introduces the choice kernel of the CK and RWCK models. This might provide more realistic
simulations. Another direction is to add a model-free component. Indeed, several approaches in neuroscience and
cognitive sciences combine model-free and model-based RL models. While this approach is more complex, it might help
Manuscript submitted to ACM
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better describe users’ behaviors [96]. Finally, it would also be interesting to study whether the use of shortcuts acquires
the properties of behavioral habits after hours of practice, because computational neuroscience studies have pointed to
a role of model-free RL mechanisms in the progressive acquisition of behavioral habits [29, 54, 96].

Several additional mechanisms could also be considered as future work. Among them, a promising direction is the
transfer of learning between commands. Our model assumes that the evolution of the knowledge for a given command
is independent of the other commands. We would like to investigate whether the successful adoption of a shortcut (for
a given command) has an impact on the transition for the other commands. Future work should also investigate the
ability of users to estimate command frequency and to include this estimate within the planning process.

12.3.2 Descriptive adequacy. Our model provides a good description of the observed data in comparison with the tested
benchmark RL models both in terms of model �tting and model simulation. In absolute terms, our �tting scores might
appear low. However, this is often the case when modeling decision-making problems due to the complexity of the task
[101]. Moreover, we used state-of-the art model �tting methods that do not favor high �tting score but better re�ect the
adequacy with human behavior [101]. Indeed, we predicted trial-by-trial actions for each participant, i.e. we predicted
more than 700 decisions per participant with a high variability within and between participants.

12.3.3 Interpretability and Complexity. Our predictive HCI model does not rely on “black box" machine learning such
as deep learning [67]. Each parameter is associated to psychological mechanisms. Moreover, our approach shares some
similarities with cognitive models (e.g. ACT-R), but is less complex as it relies on a well-established RL framework
and has a limited number of parameters per participant. Finally, the model is easy to implement and test, i.e it does
not require running millions of simulations such as regular RL models in HCI (e.g. [13, 21, 22, 38]). Considering the
complexity of the task to predict in comparison with common HCI motor control tasks (e.g. Fitts law), we argue that
our model has a low complexity.

12.3.4 Generalizability. Further work should investigate whether the model can characterize and predict the users’
behavior with di�erent interaction methods, modalities, populations or tasks. An analytical examination of our model
already provides some hints. For instance, some interaction methods penalize menu selection time (e.g. HotKeyCoach
[58]) or reduce the temporal cost of the Learning strategy (e.g. ExposeHK [71], KeyCue [92]). The equations 8, 9 and 10
inform that these strategies (i.e. increasing )" or reducing )!) reduce the Q-Value of Menu in comparison with the two
other strategies and thus favor shortcut adoption (Equation 2). However, several interaction methods are more complex
to model such as those considered in this article. Indeed, their di�erences can not easily be represented with quantitative
values and were represented as a nominal scale. Our long-term goal is thus to demonstrate our model can rely on a
unique set of parameters independent of the interaction methods, i.e. the interaction methods are represented as a small
set of variables, in order to test if the model gives plausible predictions when the techniques changed. We also plan to
test whether the model can characterize the transition from menus to gesture shortcuts. This would probably require
to consider additional types of decision (e.g. decision about the mapping between the command and the shortcut) to
re�ect the fact that gestures are generally easier to learn and recall than keyboard shortcuts [4].

12.4 Command selection and computational models

Beyond this work, this manuscript is also a call for computational models of command selection and in particular the
transition from novice to expert interaction techniques. We argue that command selection is an important proxy to
study HCI [7]. One whole interface can be too di�cult to model because it involves so many di�erent users’ behaviors.
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In contrast, a simple pointing task (which is already quite complex) hides fundamental aspects such as those related to
learning or decision-making. Command selection appears to have the right level of complexity and thus especially
appropriate for computational modeling. The main interactive components of command selection (menus, gestures,
keyboard shortcuts, etc.) are quite well de�ned but involve many fascinating and challenging phenomena related to
pointing, visual search, skill acquisition and decision-making, in particular, when considering the transition from novice
(e.g. menus) to expert interaction techniques (e.g. shortcuts). However, we were not aware of a computational model to
explain or predict how users switch from menus to shortcuts. This is surprising given the number of models of menu
performance, e.g. [9, 21]. We believe that one of the reasons is that this transition involves a subtle interaction between
learning and decision-making which is di�cult to disentangle. This work contributes the �rst step in this direction and
should encourage other researchers to investigate this challenging and fundamental HCI problem.

12.5 Neuroscience and Human-Computer Interaction

Neuroscience in�uences many �elds such as economics, psychology, social sciences, marketing or information systems
[86]. Recently, several authors also mentioned the potential of Neuroscience for HCI [75, 86]. In particular, in terms of
empirical methods and tools to study interaction design [98]. For instance, by using fMRI, PET, EEG or GSR techniques
to measure the e�ect of artifacts on the cognitive state (e.g. cognitive e�ects) of individual users or to identify cognitive
con�icts in speci�c brain regions. In this article, we demonstrate the potential of importing approaches, models and
evaluation methods from Neuroscience to HCI from a theoretical perspective.

First, neuroscience is strongly anchored in computational rationality [39], an emerging approach in HCI [21, 66].
Both �elds address problems related to learning, decision-making or emotions with concepts of utility and reward
through the Reinforcement Learning (RL) framework. However, neuroscience approaches can be bene�cial to HCI. For
instance, previous RL-based HCI models generally adopt a "machine learning" perspective of RL where the evolution of
the Q-values does not have meanings (see section 2.2.4). In contrast, the dynamic of the Q-values is of importance in
Neuroscience and re�ects how the human or animal learns [101].

Second, several models have been proposed to study human behavior in Neuroscience (relying on the computational
Rationality approach). We considered three of them: Rescorla-Wagner, Choice Kernel and their combination. However,
more advanced models should be considered and transposed to HCI problems. In particular, an emergent class of
models combining model-free and model-based RL approaches have been proved e�cient to explain complex human
behaviors. We plan to investigate such models, e.g. [96] in the context of the transition from novice to expert interaction
techniques.

Third, Neuroscience has well-established methods to evaluate models of human behavior which are not common
practice in HCI. For instance, it is common in HCI to consider population models (the same parameters for each
participant), while we considered individual models (each participant has a di�erent set of parameters) which is more
appropriate when studying decision making [101] (see section 6.1.2). Moreover, our �tness function considers trial-by-
trial actions rather than aggregatedmeasures.While computationallymore expensive, this better re�ects users’ behaviors.
We also combined goodness-of-�t and simulation and performed post-analysis enabling/disabling mechanisms in order
to increase the transparency of our results, which constitute gold standard nowadays in computational neuroscience
[101]. We believe that these methods and others such as Model recovering can increase the validity, robustness and
transparency of HCI computational models.
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