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Despite the benets of expert interaction techniques, many users do not learn them and continue to use novice ones. This article aims at better understanding if, when and how users decide to learn and ultimately adopt expert interaction techniques. This dynamic learning process is a complex skill-acquisition and decision-making problem. We rst present and compare three generic benchmark models, inspired by the neuroscience literature, to explain and predict the learning process for shortcut adoption. Results show that they do not account for the complexity of users' behavior. We then introduce a dedicated model, Transition, combining ve cognitive mechanisms: implicit and explicit learning, decay, planning and perseveration. Results show that our model outperforms the three benchmark models both in terms of model tting and model simulation. Finally, a post-analysis shows that each of the ve mechanisms contribute to goodness-of-t, but the role of perseveration is unclear regarding model simulation.

INTRODUCTION

Expert interaction techniques such as keyboard shortcuts, gesture shortcuts or command languages allow users to reach a high level of performance in comparison with novice interaction techniques such as menus, palettes or ribbons. Expert interaction techniques are generally faster and let users focus on their main task because they do not rely on visual search [START_REF] Bailly | Visual Menu Techniques[END_REF]. However, they require an initial eort to learn how to use them and memorize the mapping between the commands and the corresponding shortcuts. This learning eort might be too high and many users, even experienced users do not adopt expert interaction techniques and continue to use what might appear as 'suboptimal' interactions [START_REF] Cockburn | Supporting Novice to Expert Transitions in User Interfaces[END_REF][START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF]. It results that several commercial (e.g. ShortcutFoo, KeyRocket, CheatSheet, Application Shortcut Mapper) and academic methods (e.g. [START_REF] Giannisakis | IconHK: Using Toolbar Button Icons to Communicate Keyboard Shortcuts[END_REF][START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Krisler | Training Towards Mastery: Overcoming the Active User Paradox[END_REF][START_REF] Lewis | KeyMap: Improving Keyboard Shortcut Vocabulary Using Norman's Mapping[END_REF][START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF][START_REF] Malacria | Skillometers: Reective Widgets That Motivate and Help Users to Improve Performance[END_REF][START_REF] Walker | Designing keybindings to be easy to learn and resistant to forgetting even when the set of commands is large[END_REF][START_REF] Walker | Designing keybindings to be easy to learn and resistant to forgetting even when the set of commands is large[END_REF]103]) are regularly developed to address this problem.

While several methods have been proposed, it remains unclear what are the human factors and cognitive mechanisms facilitating expert interaction technique adoption. Several theoretical constructs and frameworks have been proposed to explain why many users do not adopt expert interaction techniques [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF][START_REF] Fu | Resolving the paradox of the active user: stable suboptimal performance in interactive tasks[END_REF][START_REF] Wayne | Milliseconds matter: An introduction to microstrategies and to their use in describing and predicting interactive behavior[END_REF][START_REF] Wayne D Gray | The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior[END_REF][START_REF] Abraham | Mechanization in problem solving: The eect of Einstellung[END_REF]. This includes the Einstellung

The key idea is that humans (or animals) are rational agents with bounds: they choose actions maximising long-term expected rewards (or utility) given their limited cognitive resources (e.g. their own neural architecture), the constraints of the environment (e.g. task, technique, device) and their own experience. In practice, it consists of computing the values of actions, reecting the long-term outcomes associated with these actions under uncertainty. In our context, we assume that users make a choice among three high-level actions before executing a command (as opposed to low-level actions, such as clicking): deciding to execute a command as fast as possible (1) within the novice technique or (2) with a known expert technique or (3) deciding to learn the expert technique now to be able to successfully use it later on.

The problem the users face is which action to choose now to minimize time on a nite horizon given limited cognitive resources, e.g. memorization, and the constraints of the environments, i.e. the available set of commands and their relative frequencies.

Reinforcement Learning (RL) is an appropriate formal framework for computational rationality and to study subtle interactions between learning and decision-making [START_REF] Daw | Trial-by-trial data analysis using computational models[END_REF][START_REF] Samuel J Gershman | Origin of perseveration in the trade-o between reward and complexity[END_REF][START_REF] Kolling | Value, search, persistence and model updating in anterior cingulate cortex[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF]. For instance, it is extensively used in neuroscience [START_REF] Kolling | Value, search, persistence and model updating in anterior cingulate cortex[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF], cognitive sciences [START_REF] Daw | Trial-by-trial data analysis using computational models[END_REF] and more recently in HCI [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Chen | A Cognitive Model of How People Make Decisions Through Interaction with Visual Displays[END_REF] to determine the policies that maximise long-term expected utility.

We rst introduce three benchmark RL models in neuroscience, which are widely used in decision-making tasks involving a learning process [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]: Rescorla-Wagner, Choice Kernel and the combination of both. They have in common to rely on an exploration -exploitation mechanism. While the Rescorla-Wagner model learns the expected value of each action based on the history of previous rewards, the Choice Kernel model captures the tendency of users to repeat previous actions regardless of their outcome. Rescorla-Wagner+Choice Kernel mixes the two models. These model-free RL models, i.e. RL models without a representation of the environment, have several advantages to model how users adopt expert interaction techniques. They are task-independent, have few free parameters, are easy to implement, are fast and have been shown to well capture learning and decision-making dynamics in dierent contexts [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF].
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We compare these models on the data collection of Grossman et al. [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] investigating the impact of three interaction methods on keyboard shortcut adoption. One key aspect is to apply cutting-edge methods from the decision-making eld [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF] to HCI: We rst compare their goodness of t to reect the capacity of these models to replicate each participant's trial-by-trial action choice, i.e. whole learning process for each participant. We then estimate the best parameters for each model and each participant. We nally simulate these models with the best parameters to test whether they do reproduce the main behavioral properties of the participants. The results suggest that these benchmark models are not sucient to capture the complexity of shortcut adoption.

We then present a novel computational model, called T, dedicated to explain and predict shortcut adoption.

It relies on the computational rationality principles and is inspired by neuroscience. The core of this model is the combination of ve mechanisms to update the cognitive state of the users:

(1) a planning mechanism reects the ability of users to consider several actions ahead. This mechanism is necessary to explain why users invest some time now foreseeing the benets of using shortcuts later.

(2) a mixture of implicit and explicit learning mechanisms serves to consolidate at dierent learning rates the command-to-shortcut mapping in memory.

(3) a decay mechanism reecting that the command-to-shortcut mappings encoded in memory fades due to the passage of time.

(4) a perseveration mechanism, based on evidence in neuroscience [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF], reects the fact that users are likely to repeat the previous strategy, regardless of the strategy.

We tested our model on the Grossman et al. data collection [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. Results show our T model outperforms the three benchmark models both in term of likelihood and BIC score. The T model also synthesises more realistic data when simulating.

We then conducted a post-analysis to better understand the impact of the dierent mechanisms involved in our model. To achieve this, we compared ve variants of the model by enabling/disabling the dierent mechanisms. Results

show that [START_REF] Alós-Ferrer | Inertia and decision making[END_REF] all the proposed mechanisms play a role in shortcut adoption as they improve the goodness-of-t; but [START_REF] John R Anderson | Acquisition of cognitive skill[END_REF] the variant of the T model without the perseveration mechanism better synthesizes human behavioral data.

From a methodological point of view, these results highlight the importance of combining the two evaluation methods [START_REF] Palminteri | The importance of falsication in computational cognitive modeling[END_REF] -goodness of t and model simulation -to validate models of shortcut adoption as they provide dierent perspectives on the model and its variants.

In summary, our primary contribution is the development, analysis and evaluation of a new computational model of expert interaction technique adoption and more precisely shortcuts adoption. This model is a rst step towards a better understanding of the complex learning dynamics involved in expert interaction technique adoption; Our long term objective is to facilitate designers workow to choose interaction techniques. Indeed, computational models can serve to analyze dierent designs and scenarios by running model simulations, reducing the cost (time, money) of experimental studies. Once these models can evaluate a design, they can be integrated in optimisation algorithms to propose high-value solutions [START_REF] Bailly | MenuOptimizer: Interactive Optimization of Menu Systems[END_REF] for a population of users. Finally, these models can be embedded in intelligent systems to dynamically predict the eect of an intervention at the level of an individual (instead of the population). They allow for an AI to assist individual users and promote the adoption of interaction methods best suited at their task [START_REF] Todi | Adapting user interfaces with model-based reinforcement learning[END_REF].

Finally, our contribution is also to promote valuable cross-disciplinary exchanges on questions, models and methods between neuroscience and HCI about user behavior with interactive systems involving subtle interactions between learning and decision making such as the challenging transition from novice to expert interaction techniques. Manuscript submitted to ACM Bailly et al.

RELATED WORK

We rst contextualize our research in the eld of command selection with a focus on the transition from novice to expert interaction techniques. We then provide background in Reinforcement Learning on which our computational models are built.

Command Selection

2.1.1 Novice and expert Interaction Techniques. Common interfaces make several interaction techniques available to select a command. Novice interaction techniques such as menus, toolbar, ribbons, palette etc. require little training as they rely on visual guidance (recognition). They are easy to discover, to learn and to use [START_REF] Bailly | Visual Menu Techniques[END_REF]. However, they require visual attention, and several operations to execute a command. For instance, selecting the command "Edit > Find > Replace" in Microsoft Word menubar requires three pointing and click operations which are time consuming.

Expert interaction techniques such as keyboard shortcuts, gesture shortcuts and command lines generally rely on "recall" forcing users to make some eorts to learn how to execute commands [START_REF] Bailly | Visual Menu Techniques[END_REF]. Expert interaction techniques are intented for more experienced users. They have been shown to be faster as they require less operations [START_REF] Appert | Using Strokes As Command Shortcuts: Cognitive Benets and Toolkit Support[END_REF][START_REF] Stuart | The Psychology of Human-Computer Interaction[END_REF][START_REF] Paul | The design and evaluation of marking menus[END_REF][START_REF] Daniel L Odell | Toolglasses, marking menus, and hotkeys: a comparison of one and two-handed command selection techniques[END_REF][START_REF] Richard C Omanson | Comparison of Mouse and Keyboard Eciency Eects of Practice[END_REF][START_REF] Roger W Remington | With practice, keyboard shortcuts become faster than menu selection: A crossover interaction[END_REF]. For instance, users can execute a command and choose the parameters with a simple gesture. Moreover, expert interaction techniques can be performed partially or totally eyes-free, i.e. without visual feedback, letting users focus on their main task [START_REF] Bailly | Visual Menu Techniques[END_REF].

Several studies show that many people do not use these expert interaction techniques despite their benets [START_REF] David M Lane | Hidden Costs of Graphical User Interfaces: Failure to Make the Transition from Menus and Icon Toolbars to Keyboard Shortcuts[END_REF][START_REF] Peres | Keyboard Shortcut Usage: The Roles of Social Factors and Computer Experience[END_REF][START_REF] Tak | Satiscing and the Use of Keyboard Shortcuts: Being Good Enough Is Enough[END_REF].

These studies motivated the design of several methods to favor the transition from novice to expert interaction techniques. For instance, in the context of keyboard shortcuts, previous methods include the use of advanced feedback mechanisms, e.g. visual or audio feedback [START_REF] Bailly | Métamorphe: Augmenting Hotkey Usage with Actuated Keys[END_REF][START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Malacria | Skillometers: Reective Widgets That Motivate and Help Users to Improve Performance[END_REF]102], feedforward mechanisms [START_REF] Giannisakis | IconHK: Using Toolbar Button Icons to Communicate Keyboard Shortcuts[END_REF][START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF], the use of easy-to-learn mappings [START_REF] Bailly | Métamorphe: Augmenting Hotkey Usage with Actuated Keys[END_REF][START_REF] Lewis | KeyMap: Improving Keyboard Shortcut Vocabulary Using Norman's Mapping[END_REF][START_REF] Walker | Designing keybindings to be easy to learn and resistant to forgetting even when the set of commands is large[END_REF]103] or temporal penalties [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Krisler | Training Towards Mastery: Overcoming the Active User Paradox[END_REF]. For instance, Grossman et al. [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] present and compare dierent methods:

A is a method playing the keyboard shortcut orally by a voice synthesizer when a command is executed in the menu to expose the users to the shortcut; D is a method letting the user navigate through the menu, but does not allow clicking on the items to execute it. It forces users to execute keyboard shortcuts. Both methods favor keyboard shortcut use. Similar methods (feedback, feedforward, penalty, etc.) have been proposed to favor the use of gesture shortcuts, e.g. [START_REF] Appert | Using Strokes As Command Shortcuts: Cognitive Benets and Toolkit Support[END_REF][START_REF] Bailly | Design and evaluation of nger-count interaction: Combining multitouch gestures and menus[END_REF][START_REF] Gutwin | Faster Command Selection on Tablets with FastTap[END_REF][START_REF] Paul | The design and evaluation of marking menus[END_REF] as well as command lines [START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF][START_REF] Verma | Gracoli: A Graphical Command Line User Interface[END_REF].

These methods aim at promoting awareness of the expert techniques, motivate their use, facilitate the learning and/or improving their performance to favor adoption. We build on this literature to elaborate our model as it identies and highlights key factors (e.g. temporal cost of the method, the nature of the feedback, etc. ). However, it remains a long term challenge to predict and explain how these factors precisely interact together and their magnitude. It also remains unclear why users do not adopt expert interaction techniques.

2.1.2 Theories and framework. Several theoretical constructs have been proposed to explain why users do not use expert interaction techniques [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF][START_REF] Fu | Resolving the paradox of the active user: stable suboptimal performance in interactive tasks[END_REF][START_REF] Wayne | Milliseconds matter: An introduction to microstrategies and to their use in describing and predicting interactive behavior[END_REF][START_REF] Wayne D Gray | The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior[END_REF][START_REF] Abraham | Mechanization in problem solving: The eect of Einstellung[END_REF][START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF]. This includes the Einstellung eect [START_REF] Abraham | Mechanization in problem solving: The eect of Einstellung[END_REF], the "soft constraint hypothesis" [START_REF] Wayne D Gray | The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior[END_REF] or the paradox of the active user [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF]. For instance, users tend to "exploit" prior experiences (or previous methods such as menus) to achieve the task (short term productivity) rather than "exploring" more ecient methods such as shortcuts for long-term eciency [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF]. Users tend to favor well-practiced methods with fast and incremental feedback rather than methods based on recall [START_REF] Fu | Resolving the paradox of the active user: stable suboptimal performance in interactive tasks[END_REF].

Some frameworks [START_REF] Gray | Plateaus, Dips, and Leaps: Where to Look for Inventions and Discoveries During Skilled Performance[END_REF][START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF] characterize phenomena related to intramodal and intermodal expertise development. For instance, Scarr et al. [START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF] highlight three main reasons why users would not adopt an expert interaction technique: Manuscript submitted to ACM users are not aware that a (more ecient) expert interaction technique is available; they can under-estimate the benets of the these techniques; the temporal performance dip when switching is perceived as too high. Gray and Lindstedt [START_REF] Gray | Plateaus, Dips, and Leaps: Where to Look for Inventions and Discoveries During Skilled Performance[END_REF] extend this framework and study how individuals discover and invent new methods to develop their expertise. In particular they highlight three main phenomena: plateaus, dips and leaps. Users rst reach a performance "plateau" (or performance ceiling [START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF]) with a given method (i.e. novice interaction technique) after practice. Authors distinguish performance plateaus and performance asymptote, the latter being reached only with the optimal method (typically the expert interaction technique). "Dips", refer to the performance dip, when users explore, experiment, learn and switch modalities, typically when they make the transition from the novice to the expert interaction technique. This performance dip is essential because it can prevent users to adopt the expert interaction technique and maintain users in a local optimum. They would then not be able to experience performance "leaps" oered by the use of expert interaction techniques. In neuroscience, several studies show similar human (and animal) behaviors where the decision process is not necessarily based on long-term rewards, but also on short-term rewards [START_REF] Doya | Modulators of decision making[END_REF], in particular when a learning eort is required [START_REF] Mark E Walton | Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning[END_REF] or even without rewards [START_REF] Matusch | Evaluating Agents without Rewards[END_REF], e.g. habits, intrinsic motivations, etc. These studies suggest that Reinforcement Learning (model-free, model-based, or both) can play a key role to explain these behaviors [START_REF] Dayan | Decision theory, reinforcement learning, and the brain[END_REF].

These works present high-level explanations. However, they do not allow for ne-grained predictions. They do not permit to predict which users, when and how they make the transition from novice to expert interaction techniques. In this article, we build on this theoretical grounding and present a computational model of this transition allowing to simulate various cognitive, individual and environmental factors to test hypothetical designs and scenarios.

2.1.3 Computational Models. Several computational models have been proposed in the eld of command selection.

They generally predict selection time in linear menus depending on several factors such as menu organisation, menu length, item position or item frequency [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF][START_REF] Michael | ACT-R/PM and menu selection: Applying a cognitive architecture to HCI[END_REF][START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Cockburn | A predictive model of human performance with scrolling and hierarchical lists[END_REF][START_REF] Cockburn | A Predictive Model of Menu Performance[END_REF][START_REF] Hornof | Cognitive Modeling Reveals Menu Search in Both Random and Systematic[END_REF][START_REF] Lee | Minimizing user search time in menu retrieval systems[END_REF][START_REF] Li | Predicting Human Performance in Vertical Menu Selection Using Deep Learning[END_REF]. They rely on empirical laws of pointing (Fitts' law [START_REF] Morris | Human performance[END_REF]) and visual search (e.g. [START_REF] Robert W Baloh | Quantitative measurement of saccade amplitude, duration, and velocity[END_REF]). However, only few of them focus on the learning process by considering practice as a factor [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF][START_REF] Cockburn | A Predictive Model of Menu Performance[END_REF][START_REF] Li | Predicting Human Performance in Vertical Menu Selection Using Deep Learning[END_REF][START_REF] Todi | Adapting user interfaces with model-based reinforcement learning[END_REF]. Among them, Bailly et al. [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF] combine two visual search strategies (serial and directed search) and a pointing component which are modulated by practice. The learning component relies on the Power Law of Practice (PLP) [START_REF] Newell | Mechanisms of Skill Acquisition and the Law of Practice[END_REF]. This law is appropriate at the population level, but does not capture individual learning dynamics.

Very few computational models have been proposed to estimate the production time of expert interaction techniques and focus on gesture shortcuts [START_REF] Cao | Modeling Human Performance of Pen Stroke Gestures[END_REF][START_REF] Isokoski | Model for Unistroke Writing Time[END_REF][START_REF] Leiva | KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times[END_REF][START_REF] Quinn | Modeling Gesture-Typing Movements[END_REF]. For instance, the CLC model [START_REF] Cao | Modeling Human Performance of Pen Stroke Gestures[END_REF] predicts the amount of time it takes for users to make a gesture shortcut based on its geometry. The model partitions the gesture into segments, where each segment is a Curve, a straight Line, or a Corner. The total time to execute this gesture shortcut is the sum of the time to produce each segment. However, the model includes neither a learning component to reect how users performance evolves with practice nor a decision making component to predict if and when users adopt gesture shortcuts. We are not aware of a computational model to explain or predict how users switch from a novice to an expert interaction technique.

Our work is also related to computational models of habits and/or behavioral change [START_REF] Banovic | Modeling and Understanding Human Routine Behavior[END_REF][START_REF] Michel | A Computational Model of Habit Learning to Enable Ambient Support for Lifestyle Change[END_REF][START_REF] Miller | Habits without values[END_REF][START_REF] Tobias | Changing behavior by memory aids: A social psychological model of prospective memory and habit development tested with dynamic eld data[END_REF], where "habits" refers to the cognitive associations between users' behaviors and the triggering of contexts. These models aim to predict the habit strength as a function of behavior repetition. While these models can be sucient to explain the behavior of users who only use menus, they can not explain the behavior of users who switch to shortcuts without external interventions. Our models include a perseveration mechanism (as a Choice Kernel, see below) to reect habits, but also learning and planning mechanisms necessary to explain shortcuts adoption.
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2.1.4 Summary. In summary, the transition from novice to expert interaction techniques is a well identied and long-time challenge in HCI with several technical, theoretical, and empirical contributions. However, no computational model has been proposed to predict how users adopt expert interaction techniques probably because it involves both learning and decision making phenomena. Existing computational models mainly focus on human performance with menus or well learned gesture shortcuts. In contrast, this article presents a computational model to predict and explain how users adopt shortcuts. It relies on the Reinforcement Learning framework.

Reinforcement Learning

Markov Decision Process. Markov Decision Process (or MDP

) is a mathematical framework for decision making under uncertainty [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF]. The MDP is a four-tuple ((, , %, ') where ( is a set of states (also called state space), a set of actions (action space), % the state transition probability for going from a state B to state B 0 after performing action 0 (% (B 0 |B, 0)) and ' a function (' : ( ⇥ ! IR ) returning the immediate reward as a function of the state B and the performed action 0. The goal for an agent in a Markov Decision Process is to perform the serie of actions that maximize the expected cumulative random reward:

⇢ [ C =1 ' C =0 W'(B C , 0 C )]
where W 2 [0, 1] is the discount factor determining the importance of future rewards.

In several applications, the agent is a user, an animal, a robot; the actions are the behaviors of the agent (e.g., clicking a button, pressing a lever) and the state characterizes the environment (e.g. current state of the interface, a position within a maze) and the rewards are obtained from the environment (e.g. task achieved, food). Sometimes, the agent can not fully observe the environment. The problem can then be formulated as a POMDP, a partially observable MDP. This specic formulation have been used several times in HCI [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Chen | A Cognitive Model of How People Make Decisions Through Interaction with Visual Displays[END_REF], cognitive science [START_REF] Daw | Advanced Reinforcement Learning[END_REF] and neuroscience [START_REF] Dayan | Decision theory, reinforcement learning, and the brain[END_REF] to model human behaviour. the RW and CK algorithms as well as their combination (RWCK) to predict human behavior and shortcut adoption.

In contrast, Model-based algorithms exploit the state transition probability function and the reward function from the MDP. They have the advantage to be much more ecient to nd the optimal solutions [START_REF] Pack | Reinforcement learning: A survey[END_REF], but at the expense of a high computational cost [START_REF] Cazé | Hippocampal replays under the scrutiny of reinforcement learning models[END_REF][START_REF] Dromnelle | How to Reduce Computation Time While Sparing Performance During Robot Navigation? A Neuro-Inspired Architecture for Autonomous Shifting Between Model-Based and Model-Free Learning[END_REF]. In the second part of this article, we present model-based algorithms to predict and explain shortcut adoption.

Reinforcement Learning and HCI. Reinforcement Learning is receiving an increasing interest in many elds

(cognitive science, neuroscience) and recently in HCI [13, 20-22, 37, 38, 52, 62, 64, 70, 89, 94]. In HCI, several perspectives are used to represent the user and the system in the MDP framework. In the "machine perspective", the agent represents the system and the user is part of the environment providing some reward, i.e. teaching to the system how to react to users actions [START_REF] Dromnelle | Coping with the variability in humans reward during simulated human-robot interactions through the coordination of multiple learning strategies[END_REF]. In the "user" perspective, the agent represents the user, the environment includes the system/interface. The primary goal is then to understand users' behavior, for instance, understanding how visual search strategies Manuscript submitted to ACM spontaneously emerge based on previous experiences with the interface [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF]. However, these models can also be embedded in the system. For instance, Todi et al. [START_REF] Todi | Adapting user interfaces with model-based reinforcement learning[END_REF] present a system simulating dierent machine and user behaviors and choose the best adaptions.

Our approach relies on the latter (user perspective). Our models aim at predicting and explaining users' behavior when facing both novice and expert interaction techniques. It is a rst step towards the elaboration of intelligent systems that dynamically predict and trigger interventions to foster the adoption of expert interaction techniques.

"

Learning" as a cognitive process? "Learning" in Reinforcement Learning (RL) refers to how the algorithm incrementally updates the State-action values (Q-values) to determine the optimal policy. However, the dynamic of the Q-values does not necessarily reect the cognitive process of skill/knowledge acquisition of the agent. It depends on the objective and thus the eld of research: Machine Learning or Neuroscience.

In Machine Learning, the dynamic of the Q-values only reects the quality of the solver. The faster the Q-values converge during the training phase, the better is the solver to nd the optimal policy. Previous RL-based HCI models generally adopt this perspective. During the training phase, the dynamics of the Q-values do not reect how the user/agent learns. Once the optimal policy is determined, the model can be simulated using static Q-values. The model then predicts how users behave once they reach a plateau of performance, i.e. once they have already learned the task [START_REF] Banovic | Modeling and Understanding Human Routine Behavior[END_REF][START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Chen | A Cognitive Model of How People Make Decisions Through Interaction with Visual Displays[END_REF][START_REF] Gebhardt | Hierarchical Reinforcement Learning Explains Task Interleaving Behavior[END_REF]. For instance, Chen et al. [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF] study visual search in previously unseen menus and acknowledge that their RL model does not aim to explain "how people learn specic menus and the location of specic items". Todi et al. [START_REF] Todi | Adapting user interfaces with model-based reinforcement learning[END_REF] recently proposed a model-based RL algorithm to predict how users nd and select items in a linear menu. While they introduce a learning component, the Q-values are only used to train the model. The learning dynamic is encoded in the model, i.e. it is estimated from the history of actions by using the base-level equation (ACT-R [START_REF] John R Anderson | An integrated theory of the mind[END_REF]) at the end of each session.

In Neuroscience, the approach is generally dierent. The dynamic of the Q-values in RL models is of importance as it reects how the agent (human, animal) learns [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]: the Q-values varies during the simulation of the model and illustrates the fact that the choice of actions for a same state can evolve with practice. The dynamics of Q-values' evolution is also of paramount importance in Neuroscience since it can be used to analyze whether neural representations of action values, as recorded with brain imaging, reect the same dynamics as reinforcement learning models or not.

Finally, precisely analyzing the dynamic of the Q-values as obtained with model simulations is also important in this eld so as to compare whether the learned Q-values of dierent models can account for behavioral properties observed in humans at dierent moments across task learning. Such simulations are critical to not only compare dierent parameter values of the same model and whether they are consistent with the dynamic of Q-values, but also to compare dierent models and eliminate those that cannot account for the properties of human behavior [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF].

Our approach builds on this Neuroscience perspective as we aim at predicting and explaining how the users learn the task, i.e. eciently executing commands, when repeatedly facing the same set of commands. This is a more challenging objective as our models should predict all trial-by-trial actions (instead of the last trials once participants reached a plateau of performance).

Summary.

Our main contribution is the elaboration and validation of the rst computational model of the transition from menus to shortcuts. Because we address complex phenomena related to not only decision making and learning dynamics, we build on the eld of neursocience, approaching the RL framework dierently.
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APPROACH

Command selection relates to the execution of commands (e.g. "Open") using several interaction techniques. In this article, we consider the Menu (M) as novice interaction technique and Shortcuts (S) as expert interaction techniques, although the following models could be extended to other methods (e.g. palettes, ribbons). We now describe the type of decisions the models focus on, the formulation of the problem and the general approach.

Type of decisions

When the users have to execute a command, they make several decisions:

• Decision about the strategy. Users rst choose which strategy to use: executing the command as fast as possible (1) using the menu, (2) using a known shortcut or (3) learning the shortcut now to be able to successfully use it later.

• Decision about the mapping. The second level of decision is choosing which item to click on, the gesture to perform or which keys to press given the chosen strategy. For instance, given the functionality "Quit" and the choice of using keyboard shortcuts, users have to decide which combination of keys to press (e.g. Ctrl+Q or Shift+Q). This can also happen when interacting with the menu as the user does not necessarily know how the desired functionality is entitled in the menu [START_REF] Bailly | Visual Menu Techniques[END_REF].

• Decision about execution. Finally, the last level of decision is a plan for movement. For instance, for executing "Ctrl+Q" without looking at the keyboard, users might decide which nger to use, which might depend on the keyboard layout.

So, choosing between behavioral strategies is hierarchically organized [START_REF] Haruno | Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning[END_REF][START_REF] Koechlin | An information theoretical approach to prefrontal executive function[END_REF]. Our main goal is to better understand when users decide to learn, then learn and then adopt shortcuts. We therefore focus on understanding how users choose strategies (the highest level of this hierarchy). We thus leave as future work several phenomena related to the interaction within a menu (e.g. the position of items) and the specicities of the shortcuts (e.g. the position of keys on the keyboard, the shape of the gesture). In particular, we do not aim at explaining the nature of errors, e.g. explaining why users press "Shift+Q" or "Ctrl+A" when executing the command "Quit". Instead, we focus on behavioral changes at the strategy level.

Problem formulation

The problem of shortcut adoption can be described as a discrete-time stochastic control of Markov Decision process.

State space S:

. A state B 2 ( represents the target command to execute (e.g. "Open"). A specicity of our denition is that the next state only depends on the frequency of the commands. In the next sections, we indierently use state or command when referring to B.

Action space A:

. Given a command, the user chooses an action 0 2 . In our context the set of actions are the Menu strategy (0 " ), the (keyboard or gesture shortcut) Shortcut strategy (0 ( ) and the Learning strategy (0 ! ). 0 " and 0 ( are characterized by the fact that users execute the command as fast as possible with the corresponding method (menu or shortcut). In contrast, the learning strategy (0 ! ) consists in opening the menu, dedicating some time to explicitly learn the shortcut mapping and then executing the command (either with the menu or a shortcut). Indeed, opening a menu does not only serve to select a command but also to gather information about the shortcut by gazing at the visual cue on the right side of the menu item [START_REF] Bailly | Visual Menu Techniques[END_REF].
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During the simulation of an interaction task, the Q-values of each strategy are not static, they evolve, trial after trial, based on the history of interactions and the environment and thus constitute predictions of each participant's upcoming behavior.

The way the Q-values are updated, or used to choose actions is model-dependent and described in the following sections.

3.2.4

Model's Input/output. The input of the model is a command B C and its output is the chosen strategy (or action) for this command. We remind that our model describes a whole learning process (the policy is not xed). The strategies evolve over time depending on the evolution of the Q-values.

Computational rationality

Our problem formulation is inline with the computational rationality view of human behavior [START_REF] Samuel J Gershman | Origin of perseveration in the trade-o between reward and complexity[END_REF][START_REF] Richard L Lewis | Computational rationality: Linking mechanism and behavior through bounded utility maximization[END_REF] where the users' strategies (policy) emerge from the user's goal (utility), their cognitive mechanisms and the task environment: 3.3.1 Utility. The user aims at minimizing total execution time for executing commands.

Cognitive mechanisms.

Plethora of cognitive mechanisms are likely to be involved in the learning and decision making process of adopting shortcuts. In this article, we consider ve main mechanisms: decay, perseveration, planning, implicit learning and explicit learning and their dierent combinations. We detail these mechanisms in the following sections.

Task environment.

We consider two main aspects for dening the task environment. First, the sequence of commands. Liu et al. [START_REF] Liu | Eects of frequency distribution on linear menu performance[END_REF] show that the user's behavior is sensitive to dierent frequency distributions and the execution time of a given command depends on, not only its frequency, but also the frequency of the other commands. It is thus important to rene the denition of sequence of commands because three components might inuence shortcut adoption: 1) the size of the set of unique commands (e.g. "Open", "Save"), 2) the total number of command execution and 3) the relative frequency distribution (e.g. uniform distribution, Zipan distribution, etc. [START_REF] Liu | Eects of frequency distribution on linear menu performance[END_REF]).

The second aspect is related to the teaching methods available to favor shortcut usage. While several methods have been proposed, it still remains unclear how they modify users' behavior (see Section Related Work). In this article, we focus on the three teaching methods tested in [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]: Traditional, Audio and Disabled.

Outline

We rst introduce three benchmark RL models in neuroscience, which are widely used in decision-making tasks involving a learning process [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF] (section 4). We then present the data collection of Grossman et al. [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] (section 5) and state-of-the art methods from the decision-making eld (section 6) to evaluate and compare the models. Results (section 7) show that these benchmark models are not sucient to capture the complexity of shortcut adoption. We then present our model in sections 8 and 9 and evaluate it in the sections 10 and 11.
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BENCHMARK RL MODELS

We are not aware of existing models of shortcut adoption. We thus chose three benchmark models in Cognitive

Neuroscience which are widely used in decision-making tasks involving a learning process [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. These models are especially appropriate for multiarmed bandit problem [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF] where the agent receives a reward after each action. Indeed, in our context, users choose a strategy and immediately receive a reward (e.g. the inverse of the execution time) at each trial. The dierent notations and parameters are summarized in the Table 1 and Table 2.

Rescorla-Wagner (RW)

In this model, the agent learns the expected value & of each action based on the history of previous rewards:

& (B C +1 , 0) = & (B C , 0) + U ( A (B C , 0) & (B C , 0) ) (1) 
where U is the learning rate and A (0, C) is the reward of using the action 0 at the date C. Here, the reward, is the inverse of the execution time. To simplify the problem, we assume that the time only depends on the strategy with: ) ( < ) " < ) ! Where ) ( , ) " , ) ! are respectively the execution times of the strategies Shortcut, Menu and Learning, which are empirically estimated. The RW model is a myopic version of standard temporal-dierence learning algorithms [START_REF] Richard | Reinforcement learning: An introduction[END_REF], such as Q-learning, where the discount factor W = 0.

To compare and choose the action given the Q-values, the model relies on a Boltzmann soft-max function. This function converts the Q-values into action probabilities % (0|B C ):

% (0|B C ) = 4 V & (B C ,0) Õ 0 4 V & (B C ,0) (2) 
where the parameter V is the inverse temperature which controls the trade-o between exploitation and exploration, i.e.

a small value of V reects almost random choice (exploration) while a high value of V indicates that the user always chooses the action with the highest Q-value (exploitation).

This model has only two parameters U (eq. 1) and V (eq. 2)

Choice Kernel (CK)

This model captures the tendency of users to repeat previous actions regardless of execution time. It computes ⇠ values:

⇠ (B C +1 , 0) = ⇠ (B C , 0) + U ( (0 == 0 ? ) ⇠ (C, 0) ) (3) 
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The CK model is thus insensitive to the rewards. While this model can appear too simple, several models without rewards have been shown to well capture human behavior in dierent contexts [START_REF] Matusch | Evaluating Agents without Rewards[END_REF]. The CK model is part of these models and focuses on the perseveration eect: It is based on evidence in neuroscience [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF] that human beings are likely to repeat the previous strategy: not only repeating the Menu strategy, but potentially also the Shortcut strategy once the shortcuts have been learned.

Rescorla-Wagner + Choice Kernel (RWCK)

This model mixes the two previous models, following the principle that subjects both try to maximize reward and tend to show some degree of perseveration at the same time. The model estimates the action probabilities according to the equation 4:

% (0|B C ) = 4 V ', & (B C ,0)+V ⇠ ⇠ (B C ,0) Õ 0 4 V ', & (C,0)+V ⇠ ⇠ (C,0) (4) 
The behavior of the agent is thus sensitive to the reward (inverse of the execution time) and to the strategies previously used. This model has four parameters (U ', ,V ', , U ⇠ ,V ⇠ ).

Discussion

These three models have in common to rely on an exploration -exploitation mechanism. While the Rescorla-Wagner model learns the expected value of each action based on the history of previous rewards, the Choice Kernel model captures the tendency of users to repeat previous actions regardless of the reward. Rescorla-Wagner+Choice Kernel mixes the two models. These model-free RL models have several advantages to model how users adopt expert interaction techniques. They are task-independent, have few free parameters, are easy to implement, are fast and have been shown

to well capture learning and decision-making dynamics in dierent contexts [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF].

DATA COLLECTION

We compare the three models (RW, CK, RWCK) on Grossman et al. data [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. We summarize the experimental design and the collected data.

Experimental Design

The interface consists of a menu bar opening 6 drop-down menus and a button at the bottom of the screen (Figure 1).

The participants move the cursor within the button and press the space bar to start the trial. The button then displays an image representing the command to be executed as a stimulus [START_REF] Alós-Ferrer | Inertia and decision making[END_REF]. The participants execute the command by selecting the corresponding item in the menu (2-3) or by executing the corresponding keyboard shortcut. When an error occurs, the participants have to wait for 3s before the command can be executed again. The trial ends when the participants hit again the space bar with the cursor within the button (4).

This study compares three interaction techniques: (1) the Traditional menu visually highlights the keyboard shortcut of the selected item; (2) the Audio menu oers audio feedback: The keyboard shortcut was played orally by a voice synthesizer once the command was executed from the menu. Finally, (3) the Disabled menu lets the user navigate through the menu, but does not allow clicking on the item to execute it. This forces users to use keyboard shortcuts. position the cursor inside of it, and then hit the space bar

Collected Data and derived strategies

At each trial, the participant's id, technique, block, trial, target command with frequency, name and keyboard shortcut are recorded. The dependent variables are time (ms), success (0/1) and the method: Menu or Keyboard shortcuts. Because they are not directly recorded in the logs, we derive the three strategies as:

• Menu strategy when the user only uses the menu method.

• Shortcut strategy when the user only uses the keyboard shortcut method.

• Learning strategy when the menu is visited, but the keyboard shortcut is executed1 

Task-related parameters

This study includes a 3s penalty (2 ? = 3) when an error occurs. We also analyzed the empirical data and estimated the correct execution time for each strategy: ) " = 2.0, ) ( = 0.9, ) ! = 3.8. We used the mode (rather than the mean or the median) because the distributions were highly skewed.

EVALUATION METHODS

The objective of this section is to present the methods to estimate the parameters of the three models as well as the methods to compare them.

Parameter estimation

A main challenge in elaborating and using computational cognitive models is the number of parameters as well as their variability across individuals. In some contexts, the value (or the distribution of values) of the parameters are known and can be directly adopted from the literature [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Kangasrääsiö | Inferring Cognitive Models from Data Using Approximate Bayesian Computation[END_REF]. However, in our context of shortcut adoption, we do not have specic priors on the values of these parameters (see table 2). We thus aim to estimate values of the parameters that best explain behavioral data, i.e. the parameters that minimize the tness function. 

where < is the tested model, ?, a given participant, \ ? < the set of parameters of the model < for the participant ? and ( ? 1:C the sequence of actions performed by the participant until the date C. We use the dierential evolution algorithm as optimization method (from the Scipy.opimize python library [START_REF] Virtanen | SciPy 1.0: fundamental algorithms for scientic computing in Python[END_REF]) to nd the set of parameters \ ? < which maximizes !!(<, ?) for each model < and each participant ?.

6.1.2 Fitness function properties. Our tness function has two key properties. First, it considers individual models (i.e. a dierent set of parameters for each participant) rather than a population model (the same set of parameters for all participants), which is important to address inter-individual variability in decision-making problems [START_REF] Kangasrääsiö | Inferring Cognitive Models from Data Using Approximate Bayesian Computation[END_REF]. Indeed, dierent users can have radically dierent policies leading to dierent behaviors. Consider an extreme case with two users, one using only Menu and one using only Keyboard shortcuts. The notion of "average" user does not mean that she will use 50/50 Menu and Keyboard shortcuts. Moreover, our tness function considers trial-by-trial action choices rather than aggregate tting as it ts each action individually. While it is not common practice in HCI, this approach is now well adopted in cognitive sciences and neuroscience [START_REF] Daw | Trial-by-trial data analysis using computational models[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF]. This permits to model the temporal evolution of participant's behavioral strategy, e.g. initially using menus and then progressively switching to shortcuts, rather than modeling again an average 50/50 Menu and Keyboard shortcuts for a single participant.
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Model fiing

6.2.1 Log-Likelihood comparison. We aim to determine which of the three models best describes the behavioral data, as a way to understand which mechanisms underlie behavior. Given the best identied parameters \ ? < , we compare their likelihood !!(<, ?) (equation 5). The model with the largest likelihood is likely to better explain the observed data.

6.2.2 BIC score comparison. In the process of model comparison, it is common to include a penalty term for model complexity, i.e. for the number of parameters [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. The Bayesian Information Criterion (BIC) is commonly used [START_REF] Cinotti | Dopamine blockade impairs the exploration-exploitation trade-o in rats[END_REF] and estimated as ⌫ ⇠ = 2!! + : ⇥ ;>6(# ) where !! is the likelihood (equation 5), :, the number of parameters and # , the number of points to predict. As each participant executes 720 commands in the experiment, # = 720. It is common practice to consider that there is a "strong evidence" in favor of the winning model when the BIC dierence is > 6 [START_REF] Raftery | Bayesian model selection in social research[END_REF].

Table 3 and 6 report both likelihood and BIC score.

Model Simulations

We can use the best set of parameters \ ? < to simulate the dierent models. In some cases, model simulation can lead to very dierent results from model tting if the path of actions sampled by the participant is widely dierent from the paths likely to be selected by the model [START_REF] Palminteri | The importance of falsication in computational cognitive modeling[END_REF][START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. It is thus important to also simulate the models and verify that they do reproduce the main behavioral properties of the participants [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF], in our context, the evolution of the percentage of correct shortcut execution, which is commonly used to compare interaction techniques favoring shortcuts [START_REF] Bailly | Visual Menu Techniques[END_REF]. For each model, we ran 50 simulations2 per participant using individual parameters, (i.e. 50 ⇥ 42 = 2100 B8<D;0C8>=B per model).

We then aggregated per technique (14 participants).

Table 3. Comparisons of three benchmark model-free RL models and our T model in term of free parameters, total number of free parameters (N), Likelihood and BIC. Our T model minimizes both the inverse of the likelihood and the Bic score.

Model

Free 

RESULTS

We now present our tting and simulation results at dierent levels of granularity. provide a complementary picture illustrating the variety of users' behavior, i.e. there is not a single model that best ts all participants. "Simple" behaviors such as rarely using shortcut can be explained with a simple ⇠ model (e.g. only implementing the perservation mechanism). However, this model fails as soon as the users really make a transition.

Fiing Results for Action Choices

7.1.4 Parameters. Figure 3 illustrates the distribution of the values of parameters for the three models.

Model simulations

7.2.1 Block-by-block: Evolution of shortcuts. Figure 4 shows the evolution of shortcut use (%) per block and per method for the three benchmark models. We also report the Mean Square Error (MSE) as a measure of discrepancy. Surprisingly, we observe here that RWCK is not the best model to synthesize users' behavioral data. RW (MSE=274.9) outperforms RWCK (MSE=329.9) and CK (MSE=855.1) is by far the last model. However, a closer inspection reveals that none of them is fully satisfactory. First the initial percentage of shortcut use is too high regardless of the model and the method.

Second, the performance of Audio is always under-estimated, regardless of the model.

Trial-by-trial: individual participant actions.

We visually inspected the 588 (42 users ⇥ 14 commands) sequences of strategies for each model. Figure 9 is one example illustrating the limit of the RWCK simulations to reproduce users' behavior. Indeed, we observe several instances where the models switch back to menus (or learning) for a long period (> 7CA80;B). This can be explained by the fact that "optimal" V ', and/or V ⇠ are small enough to favor exploration even after having switched to shortcuts. In comparison, we did not observe this pattern in participants' data.
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Discussion

In summary, these model tting results indicate that the Rescorla-Wagner+Choice Kernel (RWCK) model better accounts for the empirical data, suggesting that both the adaptation to reward (from RW) and the perseveration (from CK) mechanisms play a role in explaining and predicting the transition from menus to shortcuts. Moreover, the Choice Kernel (CK) is the second best model while it is myopic to the rewards, suggesting that perseveration is an important mechanism to explain users' behavior. However, simulation results suggest that Resocla-Wagner (RW) better synthetizes users' behavioral data. So, the role of perseveration is at this point not clear: while it signicantly contributes to the Manuscript submitted to ACM goodness-of-t (model tting), the data produced by the models without perseveration better reect participants' behavior (model simulation).

From a methodological point of view, our results highlight the importance of combining model tting and model simulation [START_REF] Palminteri | The importance of falsication in computational cognitive modeling[END_REF] to validate models of shortcut adoption as they show a dierent picture. Finally, a close inspection of our results suggests that this rst set of classical models are not satisfactory as they tend to overestimate initial shortcut adoption and underestimate the performance of the Audio technique. This motivates us to elaborate a dedicated model of shortcut adoption, called T.

TRANSITION: MODEL OVERVIEW AND THEORETICAL ASSUMPTIONS

In the previous sections, we showed that the benchmark model-free RL models in neurosciences are not sucient to explain users' behaviors. In this section, we present a model-based RL model dedicated to explain and predict shortcut adoption. It also relies on the computational rationality principles but combines ve mechanisms, grounded in neuroscience and cognitive science, likely to participate in the transition from menus to shortcuts:

The rst mechanism, planning [START_REF] Nathaniel D Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Dollé | Path planning versus cue responding: a bio-inspired model of switching between navigation strategies[END_REF][START_REF] Keramati | Speed/accuracy trade-o between the habitual and the goal-directed processes[END_REF][START_REF] John | Learning, reward, and decision making[END_REF][START_REF] Noah A Shamosh | Individual dierences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex[END_REF], means that the users are able to consider ⌘ actions ahead for a given command, i.e. they mentally simulate their future strategy choices in response to the ⌘ next times. A higher ⌘ means that the users are more likely to transition as they can foresee the future benets of learning shortcuts now.

Moreover, humans do not necessarily value all future actions/strategies with the same weight [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF][START_REF] Noah A Shamosh | Individual dierences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex[END_REF]. A discount factor is generally introduced to determine the importance of future rewards [START_REF] Richard | Reinforcement learning: An introduction[END_REF]. However, this planning mechanism is not sucient alone as it can only explain behavior when users never transition (short horizon) or transition immediately (larger horizon).

Then, implicit and explicit learning mechanisms consolidate at dierent learning rates the command-to-shortcut mapping in memory. When repeatedly selecting an item in the menu, users unconsciously and slowly gather information about the shortcut thanks to their peripheral vision (implicit learning). When reaching a certain level of knowledge, users can then perceive the benets of intentionally learning shortcuts (explicit learning). Some evidence in neuroscience indicate that learning for action selection relies on a balance between planning and implicit/explicit learning [START_REF] John | Learning, reward, and decision making[END_REF].

A decay mechanism [START_REF] John R Anderson | An integrated theory of the mind[END_REF][START_REF] Marc G Berman | In search of decay in verbal short-term memory[END_REF] reects that the command-to-shortcut mappings encoded in memory fades away due to the passage of time.

The fth mechanism, perseveration, reects the fact that users are likely to repeat the previous strategy. This general behavioral tendency, at the heart of the Choice Kernel Model, has been documented for a long time in decision-making, from psychological, neuroscience and modeling points of view [START_REF] Alós-Ferrer | Inertia and decision making[END_REF][START_REF] Samuel J Gershman | Origin of perseveration in the trade-o between reward and complexity[END_REF][START_REF] Kolling | Value, search, persistence and model updating in anterior cingulate cortex[END_REF][START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF].

In the next section, we describe our model using the RL formalism (e.g. states, actions, Q-Values, etc.). We then evaluate it and further demonstrate that these mechanisms are necessary altogether to explain and predict the transition from menus to shortcuts. Finally, we discuss the limitations of the model and provide several directions to rene it.

TRANSITION: MODEL DEFINITION

The dierent notations and parameters are summarized in Table 4 and Table 5.

State and Action

We reused the same denitions for the states (the target to execute) and the actions: the Menu strategy (0 " ), the Shortcut strategy (0 ( ) and the Learning strategy (0 ! ).
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& (B, 0) Q-Value ⇠ (B, 0) (Temporal) Cost ⇢ ⇠ (B, 0) Expected Cost ⇢ ⇠⇠ (B, 0) Expected Cumulative Cost ⇠ ) (B, 0) Successful execution cost ⇠ ' (B, 0) Repair cost (B, 0)
User knowledge 0 ?

Previous action 

& (B C , 0) = (1 F) ⇥ ( ⇢ ⇠⇠ (B C , 0)) + (0 = 0 ? ) ⇥ F (6) 
where Before dening the expected cumulative cost ⇢ ⇠⇠ , i.e. the cost associated to a sequence of actions, we rst need to dene the cost function ⇠ (B C , 0) and the expected cost ⇢ ⇠ .

⇢ ⇠⇠ (B C ,

Cost function ⇠ (B C , 0)

The temporal cost ⇠ to execute a command is the sum of the execution time ⇠ ) and the repair time ⇠ ' in case of error:

⇠ (B C , 0) = ⇠ ) (B C , 0) + 1 ⇥ ⇠ ' (B C , 0) (7) 
where B C is the target command at time C, 0 the chosen strategy and 1 a Boolean indicating whether users perform an error or not. To simplify the problem, we assume that the correct execution time ⇠ ) only depends on the strategy with:

) ( < ) " < ) ! (8) 
where ) ( , ) " , ) ! are respectively the correct execution times of the strategies Shortcut, Menu and Learning. The repair Time ⇠ ' is the sum of the time to analyse the error (or penalty) 2 ? and the time to correctly re-execute the command.
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To simplify, we consider the users reuse the Menu strategy to repair their errors: (B C , 0 ( ) is a key variable to explain the transition from menus to shortcuts. Indeed, it is likely that users will not try to execute shortcuts if they do not have enough prior knowledge, i.e. if the probability of success is not high enough. In contrast the knowledge of item locations (B C , 0 " ) == (B C , 0 ! ) is likely to have an impact on menu selection time (amount of visual search), but less on accuracy (pointing task in a menu has a high accuracy) and the transition to shortcuts. For this reason, one simplication is to assume that the users have a "perfect" knowledge of the location of menu items for a given command, i.e. the probability of successfully selecting the target item in the menu is equal to 1:

⇠ ' (B C , 0) = ⇠ ) (B C , 0) + 2 ? (9 
⇢ ⇠ (B C , 0) = (B C , 0) ⇥ ⇠ ) (B C , 0) + (1 (B C , 0)) ⇥ (⇠ ) (B C , 0) + ⇠ ' (B C , 0 C )) (10 
(B C , 0 " ) = (B C , 0 ! ) = 1 (11) 
We can then rewrite Equation 10 for the strategies Menu and Learning, assuming that users do not make errors: 

⇢ ⇠ (B C , 0) = (B C , 0) ⇥ ⇠ ) (B C , 0), 0 2 {0 " , 0 ! } ( 
(B C , 0 ( ) = (B C , 0 ( ) + U ⇢ ⇥ ( 1 (B C , 0 ( ) ) (B C , 0 ( ) = (B C , 0 ( ) + U ⇥ ( 1 (B C , 0 ( ) ) (13) 
Where U ⇢ and U 2 [0, 1] are the explicit and implicit learning rates. While explicit learning is more ecient than implicit learning to memorize the shortcut mapping ( U ⇢ >> U ), we will demonstrate (section Results) that implicit learning is essential for explaining the transition from menus to shortcuts.
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The third mechanism is decay. At each time step, the shortcut knowledge of each command B C is updated to account for memory decay:

8B 2 (, (B C , 0 ( ) = (B C , 0 ( ) + 3 ⇥ ( 0 (B C , 0 ( ) ) = (B C , 0 ( )( 1 3 ) (14) 
Where 3 2 [0, 1] is the decay factor. The mechanisms to update memory (U ⇢ , U , 3) are related to the ones in ACT-R [START_REF] John R Anderson | An integrated theory of the mind[END_REF] but this denition is more appropriate to an RL framework and does not require to store the whole user history.

Expected Cumulative Cost ⇢ ⇠⇠

We can now dene the expected cumulative cost ⇢ ⇠⇠ used in Equation 6. We formulate the problem of command selection as a planning problem with an horizon ⌘, i.e. users plan a sequence of ⌘ actions for a given command to minimize the expected cumulative cost for this command:

⇢ ⇠⇠ (B, 0, ⌘) = ⇢ ⇠ (B, 0) + W ⇥ ⇢ ⇠⇠ (B, 0A6<8= 0 ( ⇢ ⇠ (B, 0) ), ⌘ 1) (15) 
where ⇢ ⇠ (B C , 0) is the expected temporal cost (Equation 10), ⌘ is the horizon, and W 2 [0, 1] is a discount factor determining the importance of future rewards. Typically, W close to 0 indicates that users only consider the temporal cost of the current strategy, while W close to 1 indicates that the weight of each strategy in a given horizon is very similar. In the RL literature [START_REF] Richard | Reinforcement learning: An introduction[END_REF], it is common to choose W = 0.9. The two parameters ⌘ and W allow to control for the cognitive bias consisting in valuing more the present than the future (in line with theoretical constructs such as the paradox of active users [START_REF]Interfacing Thought: Cognitive Aspects of Human-Computer Interaction[END_REF]). Our hypothesis is that users with a large horizon are more likely to perceive the benets of learning shortcuts now so as to use them in the future. In practice, the users estimate the cumulative cost ⇢ ⇠⇠ (B C , 0)

of each of the 3 ⌘ decision branches and choose the one with the minimal cost as if the commands were performed in a row. To achieve this, they simulate each decision and their eect on the internal values, i.e. the shortcut knowledge necessary to estimate the utility of each strategy.

VALIDATION 10.1 Methods

We test our model, T, on the Grossman et al. data collection [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] and compare its likelihood and simulation performance to the three benchmark models RW, CK and RWCK. benchmark models where RWCK was the best model for 21 participants. These results indicate that T better captures the variability of users' behavior, regardless of the interaction method. Regarding Traditional and Audio, results conrm that the distribution of values for parameters related to users' prole -ability to plan ⌘, decay 3 and tendency to repeat previous actions F -seem independent from the interaction method. Results also conrm that participants tend to learn explicitly U ⇢ and to try V shortcuts more often with Audio than with Traditional. More surprisingly, Audio feedback seems to also inuence implicit learning U while we were expecting this to be method-independent.

Regarding the user proles' parameters of Disabled (⌘, 3, F), the results are similar except that F appears higher probably due to the fact that this method relies on two actions instead of 3. Similarly, users tend to learn and try shortcuts more easily than Traditional. Finally, Disabled does not have an implicit learning parameter U (as the Menu Strategy is not available) explaining probably the longer tail for U ⇢ . than the three benchmark RL models (RW: 274.9; RWCK:329.9; CK: 855.1). Indeed, we observed that the simulation of T better captures the learning dynamics and thus does not suer from the two limitations of the simulation of the benchmark RL models: The initial performances predicted by the model are now close to the one observed for our participants and the prediction of the relative performance between the methods (in particular Audio) well reects the one of the actual techniques. However, a closer inspection reveals that the predicted performances of the three methods are slightly over-estimated during the rst blocks (0-6) and slightly under-estimated during the last blocks [START_REF] Bailly | Visual Menu Techniques[END_REF][START_REF] Bailly | Design and evaluation of nger-count interaction: Combining multitouch gestures and menus[END_REF][START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF][START_REF] Bailly | MenuOptimizer: Interactive Optimization of Menu Systems[END_REF][START_REF] Bailly | Métamorphe: Augmenting Hotkey Usage with Actuated Keys[END_REF] in comparison with observed participants' data.

Discussion

Our results indicate that our T model outperforms the three benchmark models both in terms of model tting (likelihood and BIC score) and simulation. The results are especially impressive regarding the quality of the Table 6. Comparison of the T model with five variants where one mechanism has been disabled in term of free/fixed parameters, total number of free parameters (N), Likelihood and BIC. Removing one mechanism from the T model decreases not only the likelihood but also the BIC score suggesting that the five mechanisms contribute to explain and predict the transition from novice to expert interaction techniques.

Model

Free parameters Fixed parameters N -Likelihood BIC T U ⇢ , U , 3, ⌘, F + V W = 0.9 6 148.5 336.5 T -U ⇢ -, U , 3, ⌘, F + V W = 0.9 + U ⇢ = 0 5 199. synthetized data for our model in comparison with the ones synthetized by the benchmark RL models. Indeed, our T model well reects for each method the absolute and relative evolution of shortcut use over time.

MODEL VARIANTS

Our model combines ve key mechanisms, but it remains unclear whether all of them are useful to replicate the trial-by-trial evolution of strategy choices. We thus decided to compare ve variants of our models (Table 6). Each of these variants corresponds to the T model where one of the mechanism (e.g. implicit learning) has been disabled. The objective is to study the inuence of disabling each mechanism on likelihood and BIC score. We observe that the model implementing all ve mechanisms, T, outperforms (Likelihood and BIC) all variants for Traditional and Audio.

Regarding Disabled, T and the variant without U has the same likelihood (138.4) and outperform the other variants. The fact that, that these two models have the same likelihood is not surprising as the implicit learning mechanism is not used in this interaction method: Disabled does not let users use the Menu strategy and thus can not implicitly learn shortcuts. However, T is penalized with the BIC score as U is not used. In term of BIC score, the variant without planning ) ⌘ (312.9) is similar to ) U (312.6) and outperform T (316.3). These results rene our understanding of interacting with the Disabled technique: Not only users do not implicitly learn keyboard shortcuts as the menu is disabled but they also do not need to plan as the choice of strategies is limited.

User level.

Results indicate that the best model (likelihood) is T for 24 participants, the one without planning for 7, the one without implicit learning for 4, the one without decay for 4, the one without explicit learning for 2 and nally the one without perseveration for 1. However, when considering the BIC score, no model really emerges: none of the models is the best model for more than 12 participants out of 41. Altogether, these results indicate that the 5 mechanisms are necessary but not with the same weight for each participant / interaction method.

Model simulations

We analyze the simulated data at dierent levels of granularity:

11.2.1 Block-by-block: Evolution of keyboard shortcuts. Figure 8 illustrates the percentage of shortcuts per block and per interaction method for each model variant. The simulation of model variants provides a slightly dierent picture than model tting. Indeed, two model variants, the one without decay 3 (MSE=26.3) and the one without perseveration F (MSE=26.3) outperform T (MSE=39.9).

These results echo the ones obtained when comparing the three benchmark RL models. Indeed, both RWCK and T were the best models in term of goodness of t, but their variants without perseveration (i.e. RW and T -F ) better synthesize data. The good performance of the variant without decay 3 is surprising. One possible explanation is that the absence of decay articially compensates for the presence of perseveration when simulating data. For this reason, we also analysed the performance of the variant T 3 F corresponding to the 11.2.2 Trial-by-trial: individual participant actions. Figure 9 shows one of the sequences of command executions for one participant using the audio method: The rst row shows the participant data. For the denition of the transition (yellow box), we used the data of [START_REF] Bailly | Characterize the Transition from Menus to Hotkeys[END_REF] where two experts annotated all the sequences of strategies from the Grossman et al. experiment [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. The second and third rows illustrate the synthesized data from the T model and its variant (T F) without the perseveration mechanism. From our observations, we found that the T F model better reects the participant's transition than the T model both in terms of beginning and duration as well as in terms of variability of the strategies before, during and after the transition. The example of Figure 9 is representative of many sequences.

T

Discussion

In summary, (1) the results indicate that I , , D and P mechanisms play a role both in explaining and predicting the transition from menus to keyboard shortcuts; (2) the role of is less clear: while it signicantly contributes to the goodness-of-t (model tting), the data produced by the models without better reect participants' behavior (model simulation). Altogether, the models T and ) , appear the most promising models for the transition from menus to shortcuts. Finally, (3) our results highlight the importance of studying model variants as well as combining model tting and model simulation [START_REF] Palminteri | The importance of falsication in computational cognitive modeling[END_REF] to validate models of shortcut adoption. 12 DISCUSSION AND FUTURE WORK

In this section, we summarize our main contributions regarding the design and the empirical evaluation of the T model. We then analytically evaluate this model in light of the criteria of Jacobs and Grainger [START_REF] Arthur | Models of visual word recognition: sampling the state of the art[END_REF] providing directions for future work. Finally, we discuss the opportunities of neuroscience research to model complex HCI tasks such as the transition from novice to expert interaction techniques.

Model of the transition from novice to expert interaction techniques

In this paper, we presented a new model, T, to predict the transition from novice to expert interaction techniques. One key aspect of our approach was to model the whole learning process of expert technique adoption, i.e to explain whether, when and how users make the transition. Another key aspect was to rely on the Reinforcement Learning framework appropriate to address learning and decision-making problems, where we considered three high-level strategies (Menu; Shortcut and Learning) as actions.

Empirical evaluation of the model

The T model has been empirically evaluated on the Grossman et al. database [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. A key contribution of our work is the variety of approaches used to evaluate our model, increase transparency and avoid potential evaluation biases. First, despite the lack of dedicated models of shortcut adoption in HCI, we compared our model to three benchmark models in neuroscience (RW, CK and RWCK), which are widely used in decision-making tasks involving a Manuscript submitted to ACM Bailly et al.

learning process [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. Second, we analyzed our model both in terms of goodness-of-t and simulation. These two methods have been shown to be complementary as they can lead to dierent conclusions [START_REF] Palminteri | The importance of falsication in computational cognitive modeling[END_REF][START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. Third, we analyzed our model at four levels of granularity [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF]: Overall, interaction method, participant and sequence of actions. This is important to avoid the risk to over-interpret aggregated data. Fourth, we compared our model to variant models where each of the ve involved mechanisms have been alternatively disabled to ensure all mechanisms are useful.

Altogether our results show that the T model outperforms the three benchmark RL models and the ve mechanisms contribute to shortcut adoption.

Analytical evaluation of the model

We now critically discuss our model in light of the criteria of Jacobs and Grainger [START_REF] Arthur | Models of visual word recognition: sampling the state of the art[END_REF]:

12.3.1 P E. T is well grounded in the cognitive science and neuroscience literatures, both in terms of problem formulation and model design.

First, our problem formulation is in line with the computational view of human behavior [START_REF] Samuel J Gershman | Origin of perseveration in the trade-o between reward and complexity[END_REF][START_REF] Richard L Lewis | Computational rationality: Linking mechanism and behavior through bounded utility maximization[END_REF] where the users' strategies (policy) emerge from the user's goal (utility), their cognitive mechanisms and the task environment. Moreover, we acknowledge a hierarchical nature of decision-making [START_REF] Koechlin | An information theoretical approach to prefrontal executive function[END_REF], where we focus on the higher level of decision-making: users choose a strategy among Menu, Shortcut and Learning.

One promising direction for future work is to investigate alternative hierarchies of high-level decisions. For instance, some users might decide rst whether they use shortcut or not. If not, they then decide whether they use the Menu or Learning strategy. However, it is not clear whether this would produce signicantly dierent results than the present model. It would also be interesting to rene the action "Learning" to capture the degree of explicit learning, e.g. the time spent to learn the shortcut. Another direction is to adopt a mechanistic approach and to rene low-level decisions, i.e. how users select items in a menu or execute shortcuts. This will be important when focusing on execution time and error rate. Indeed, one limitation of our approach is that it does not cover intramodal performance improvement [START_REF] Cockburn | Supporting Novice to Expert Transitions in User Interfaces[END_REF].

Our model currently assumes that execution time does not evolves over time and only depends on the used strategy.

We plan to introduce some mechanisms such as visual search and pointing (Fitts' law) from existing models of menu performance [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF][START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF], and include speed of recall from memory [START_REF] John R Anderson | Acquisition of cognitive skill[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF] to reect how users behave within a menu as well as the eect of practice on execution time. We also plan to understand the nature of errors when using shortcuts.

Currently our model over-estimates the number of errors. One direction would be to introduce a component for risk aversion as users might value more the certainty of correctly executing a command with menus than the uncertainty of the benets of shortcuts [START_REF] Quinn | Loss Aversion and Preferences in Interaction[END_REF].

Second, we designed the T model so that it combines ve mechanisms: implicit and explicit learning, decay, planning and preservation. These ve mechanisms are grounded in the cognitive science and neuroscience literatures. The comparison of T with some variants enabling/disabling each mechanism suggests that these ve mechanisms play a role in the transition observed in participants.

Among these mechanisms, perseveration should require further investigation as its role is less clear. It has been demonstrated that perseveration is frequent in human choice behavior [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF], but we have observed here dierences between model tting and simulation data. One possible reason is that our degree of perserveration is currently static.

An alternative would be to introduces the choice kernel of the CK and RWCK models. This might provide more realistic simulations. Another direction is to add a model-free component. Indeed, several approaches in neuroscience and cognitive sciences combine model-free and model-based RL models. While this approach is more complex, it might help Manuscript submitted to ACM better describe users' behaviors [START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF]. Finally, it would also be interesting to study whether the use of shortcuts acquires the properties of behavioral habits after hours of practice, because computational neuroscience studies have pointed to a role of model-free RL mechanisms in the progressive acquisition of behavioral habits [START_REF] Nathaniel D Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Khamassi | Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF].

Several additional mechanisms could also be considered as future work. Among them, a promising direction is the transfer of learning between commands. Our model assumes that the evolution of the knowledge for a given command is independent of the other commands. We would like to investigate whether the successful adoption of a shortcut (for a given command) has an impact on the transition for the other commands. Future work should also investigate the ability of users to estimate command frequency and to include this estimate within the planning process.

12.3.2 Descriptive adequacy. Our model provides a good description of the observed data in comparison with the tested benchmark RL models both in terms of model tting and model simulation. In absolute terms, our tting scores might appear low. However, this is often the case when modeling decision-making problems due to the complexity of the task [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. Moreover, we used state-of-the art model tting methods that do not favor high tting score but better reect the adequacy with human behavior [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. Indeed, we predicted trial-by-trial actions for each participant, i.e. we predicted more than 700 decisions per participant with a high variability within and between participants.

12.3.3 Interpretability and Complexity. Our predictive HCI model does not rely on "black box" machine learning such as deep learning [START_REF] Li | Predicting Human Performance in Vertical Menu Selection Using Deep Learning[END_REF]. Each parameter is associated to psychological mechanisms. Moreover, our approach shares some similarities with cognitive models (e.g. ACT-R), but is less complex as it relies on a well-established RL framework and has a limited number of parameters per participant. Finally, the model is easy to implement and test, i.e it does not require running millions of simulations such as regular RL models in HCI (e.g. [START_REF] Banovic | Modeling and Understanding Human Routine Behavior[END_REF][START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Chen | A Cognitive Model of How People Make Decisions Through Interaction with Visual Displays[END_REF][START_REF] Gebhardt | Hierarchical Reinforcement Learning Explains Task Interleaving Behavior[END_REF]). Considering the complexity of the task to predict in comparison with common HCI motor control tasks (e.g. Fitts law), we argue that our model has a low complexity.

12.3.4 Generalizability. Further work should investigate whether the model can characterize and predict the users' behavior with dierent interaction methods, modalities, populations or tasks. An analytical examination of our model already provides some hints. For instance, some interaction methods penalize menu selection time (e.g. HotKeyCoach [START_REF] Krisler | Training Towards Mastery: Overcoming the Active User Paradox[END_REF]) or reduce the temporal cost of the Learning strategy (e.g. ExposeHK [START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF], KeyCue [START_REF] Tak | Satiscing and the Use of Keyboard Shortcuts: Being Good Enough Is Enough[END_REF]). The equations 8, 9 and 10 inform that these strategies (i.e. increasing ) " or reducing ) ! ) reduce the Q-Value of Menu in comparison with the two other strategies and thus favor shortcut adoption (Equation 2). However, several interaction methods are more complex to model such as those considered in this article. Indeed, their dierences can not easily be represented with quantitative values and were represented as a nominal scale. Our long-term goal is thus to demonstrate our model can rely on a unique set of parameters independent of the interaction methods, i.e. the interaction methods are represented as a small set of variables, in order to test if the model gives plausible predictions when the techniques changed. We also plan to test whether the model can characterize the transition from menus to gesture shortcuts. This would probably require to consider additional types of decision (e.g. decision about the mapping between the command and the shortcut) to reect the fact that gestures are generally easier to learn and recall than keyboard shortcuts [START_REF] Appert | Using Strokes As Command Shortcuts: Cognitive Benets and Toolkit Support[END_REF].

Command selection and computational models

Beyond this work, this manuscript is also a call for computational models of command selection and in particular the transition from novice to expert interaction techniques. We argue that command selection is an important proxy to study HCI [START_REF] Bailly | Visual Menu Techniques[END_REF]. One whole interface can be too dicult to model because it involves so many dierent users' behaviors.
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In contrast, a simple pointing task (which is already quite complex) hides fundamental aspects such as those related to learning or decision-making. Command selection appears to have the right level of complexity and thus especially appropriate for computational modeling. The main interactive components of command selection (menus, gestures, keyboard shortcuts, etc.) are quite well dened but involve many fascinating and challenging phenomena related to pointing, visual search, skill acquisition and decision-making, in particular, when considering the transition from novice (e.g. menus) to expert interaction techniques (e.g. shortcuts). However, we were not aware of a computational model to explain or predict how users switch from menus to shortcuts. This is surprising given the number of models of menu performance, e.g. [START_REF] Bailly | Model of Visual Search and Selection Time in Linear Menus[END_REF][START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF]. We believe that one of the reasons is that this transition involves a subtle interaction between learning and decision-making which is dicult to disentangle. This work contributes the rst step in this direction and should encourage other researchers to investigate this challenging and fundamental HCI problem.

Neuroscience and Human-Computer Interaction

Neuroscience inuences many elds such as economics, psychology, social sciences, marketing or information systems [START_REF] Riedl | The potential of neuroscience for human-computer interaction research[END_REF]. Recently, several authors also mentioned the potential of Neuroscience for HCI [START_REF] Minnery | FEATURE Neuroscience and the Future of Human-Computer Interaction[END_REF][START_REF] Riedl | The potential of neuroscience for human-computer interaction research[END_REF]. In particular, in terms of empirical methods and tools to study interaction design [START_REF] Vom Brocke | Neuroscience in Design-Oriented Research: Exploring New Potentials[END_REF]. For instance, by using fMRI, PET, EEG or GSR techniques to measure the eect of artifacts on the cognitive state (e.g. cognitive eects) of individual users or to identify cognitive conicts in specic brain regions. In this article, we demonstrate the potential of importing approaches, models and evaluation methods from Neuroscience to HCI from a theoretical perspective.

First, neuroscience is strongly anchored in computational rationality [START_REF] Samuel J Gershman | Origin of perseveration in the trade-o between reward and complexity[END_REF], an emerging approach in HCI [START_REF] Chen | The Emergence of Interactive Behavior: A Model of Rational Menu Search[END_REF][START_REF] Richard L Lewis | Computational rationality: Linking mechanism and behavior through bounded utility maximization[END_REF].

Both elds address problems related to learning, decision-making or emotions with concepts of utility and reward through the Reinforcement Learning (RL) framework. However, neuroscience approaches can be benecial to HCI. For instance, previous RL-based HCI models generally adopt a "machine learning" perspective of RL where the evolution of the Q-values does not have meanings (see section 2.2.4). In contrast, the dynamic of the Q-values is of importance in Neuroscience and reects how the human or animal learns [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF].

Second, several models have been proposed to study human behavior in Neuroscience (relying on the computational Rationality approach). We considered three of them: Rescorla-Wagner, Choice Kernel and their combination. However, more advanced models should be considered and transposed to HCI problems. In particular, an emergent class of models combining model-free and model-based RL approaches have been proved ecient to explain complex human behaviors. We plan to investigate such models, e.g. [START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF] in the context of the transition from novice to expert interaction techniques.

Third, Neuroscience has well-established methods to evaluate models of human behavior which are not common practice in HCI. For instance, it is common in HCI to consider population models (the same parameters for each participant), while we considered individual models (each participant has a dierent set of parameters) which is more appropriate when studying decision making [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF] (see section 6.1.2). Moreover, our tness function considers trial-bytrial actions rather than aggregated measures. While computationally more expensive, this better reects users' behaviors.

We also combined goodness-of-t and simulation and performed post-analysis enabling/disabling mechanisms in order to increase the transparency of our results, which constitute gold standard nowadays in computational neuroscience [START_REF] Robert | Ten simple rules for the computational modeling of behavioral data[END_REF]. We believe that these methods and others such as Model recovering can increase the validity, robustness and transparency of HCI computational models.
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2. 2 . 2

 22 Reinforcement Learning. Reinforcement Learning (RL) solves MDP (or variants such as POMDP) by learning state action value function & (B, 0). & (B, 0) is a real scalar value which represents the estimated expected value of executing action 0 in the state B as a common currency for potentially any type of long-term reward, i.e. time, food, money, etc. There are two main classes of algorithms: model-free and model-based. Model-free algorithms use neither the state transition probability function nor the reward function from the MDP to estimate the Q-values. Examples of model-free algorithms include Q-Learning, Rescolar-Wagner (RW), Choice Kernel (CK). In the following sections, we use (and detail)

Fig. 1 .

 1 Fig.1. Experimental task. Participants move the cursor within the buon at the boom of the screen and hit the space bar to display the stimulus, an image representing the command to select (1). The participants then execute this command by selecting the corresponding item ("Pencil") in the menu (2-3) or by executing the corresponding keyboard shortcut (Ctrl+R). The trial finishes when the participants press again the space bar with the cursor within the buon. Reprinted from[START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] with the permission of the authors.

6. 1 . 1

 11 Maximum-Likelihood Approach. The tness function reects the capacity of a model to replicate a participant's trial-by-trial action choice. In Bayesian terms, it is the likelihood of the data given the model, that is the maximum probability that the model chooses the same series of actions as the participant[START_REF] Daw | Trial-by-trial data analysis using computational models[END_REF][START_REF] Viejo | Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning[END_REF]. It consists of analyzing the posterior prediction of the model conditioned on the past history, i.e. evaluating the likelihood of the participant's action 0 C given the past data 3 1:C 1 , where the past data includes the actions made by the participant, not the actions made by the model. Formally, we estimate :

7. 1 . 1

 11 Model. Table 3 indicates the likelihood and BIC score for the three benchmark RL models. As expected, there are strong evidence (BIC dierence > 6) that the combination of the Rescorla-Wagner model and Choice Kernel model, RWCK (!! = 159.5; ⌫ ⇠ = 345.4) outperforms each model individually, ie, Choice Kernel, CK (!! = 174.0; ⌫ ⇠ = 361.2) and Rescolar-Wagner, RW (!! = 193.7;⌫ ⇠ = 400.7) even when considering the penalty associated to the BIC score for additional parameters. Interestingly, the CK is the second best model while it is myopic to rewards and tends to repeat the previous strategies.

Fig. 2 .

 2 Fig. 2. Model comparisons in term of likelihood (LL) and BIC Score for each technique. The lower the beer. Error bars show 95% bootstrap confidence intervals. T outperforms the three benchmark RL models (Rw, CK and RWCK) both in term of Likelihood and BIC score.

Fig. 3 .

 3 Fig. 3. Summary of the parameters per technique and per model.

Fig. 4 .

 4 Fig. 4. Shortcut use (%) per block and method. Observed participants' data are represented with dots. Synthetised data (solid line) are produced by aggregating 50 simulations per participant with individual parameters.

  0) is the expected cumulative temporal cost of using the strategy 0 to execute the command B C ; 0 ? is the previous action used for the command B C and F 2 [0, 1] is a weight reecting the tendency of people to repeat the previous action, i.e. the degree of perseveration. In other words, Equation 6 reects the fact that the agent faces a multi-objective optimization problem by trying to minimize the expected cumulative temporal cost of current command execution while maximizing stability in the choice of the strategy. The formulation of the action values is thus quite similar to the one of RWCK 4, which corresponds to weighting into a common currency the RW values (reward) and CK values (perseveration).
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 94 Expected cost ⇢ ⇠ (B C , 0) ⇢ ⇠ (B C , 0) is the expected temporal cost of using the strategy 0 to execute the command B C . It derives from Equation 7 and is the weighted sum of the correct execution time ⇠ ) (B C , 0) and incorrect execution time ⇠ ' (B C , 0), where the weight depends on the user knowledge (B C , 0):

) 9. 5 Knowledge 9 . 5 . 1

 5951 Definition. (B C , 0) 2 [0, 1] is a latent variable representing the knowlegde of the user. It is the probability to successfully execute the command B C with the strategy 0. More precisely, (B C , 0 " ) = (B C , 0 ! ) and represents how well the mapping between a command and its location in the menu is encoded in the user's memory (the user only interacts with the menu with these two strategies). Reciprocally, (B C , 0 ( ) represents how well the mapping Command-to-Shortcut is encoded in the user's memory.
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 12952 Updating Knowledge. We propose 2+1 mechanisms to update (B C , 0 ( ). The two rst mechanisms are explicit and implicit learning. Explicit learning occurs when users successfully use the Learning strategy or the Shortcut strategy: The users intentionally read/learn the shortcut cue or execute the shortcut correctly. Implicit learning occurs when users repeatedly execute a command in the menu: the users unconsciously gather information in the surroundings thanks to their peripheral vision. Explicit and implicit learning depend on the strategy and are used to increase the knowledge of shortcuts:

10. 2

 2 Fiing results for Action Choices 10.2.1 Overall.

Fig. 5 .

 5 Fig. 5. Summary of the T model parameters per methods: Traditional (blue), Audio (orange), Disabled (green).

10. 2 . 4

 24 Parameters analysis. Figure5illustrates the distribution of values for each parameter and each method. To analyze these parameters we distinguish Traditional and Audio which have three actions and Disabled which has only two (The menu strategy is not available).

10. 3

 3 Model simulations 10.3.1 Block-by-block: Evolution of shortcuts. Figure 6 illustrates the percentage of correct shortcuts per block and per method. The results indicate that T synthesizes data which better reect users' behavior (MSE=40.7)

Fig. 6 .

 6 Fig. 6. Shortcut use (%) per block and method for the T model. Observed participants' data are represented with dots. Synthetised data (solid line) are produced by aggregating 50 simulations per participant with individual parameters.
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 1 Results for Action Choices 11.1.1 Overall.
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 3 model without the decay and perseveration mechanisms. Regarding goodness-of-t, as expected T 3 F does not outperform the previous variants in terms of likelihood (206.4) and BIC score (439.2). Regarding model simulation, the results are similar, where T 3 F (MSE = 41.4) does not outperform the variant without decay T MSE=26.3) and T F (MSE=26.3), conrming our hypothesis that the absence of decay articially compensates for the presence of perseveration when simulating data. Further investigations are necessary to precisely understand the role of perseveration.

Fig. 8 .

 8 Fig. 8. Keyboard shortcut use (%) per block and interaction method for each model variant: observed participants' data are represented with dots. Synthetised data (solid line) where produced by aggregating 50 simulations per participant with individual parameters. MSE is calculated for each model variant.

Fig. 9 .

 9 Fig.9. Simulation comparisons ( T (T), T F, ', ⇠ ) for a single command and a single user using the AUDIO interactive method. Each dot represents one command execution (144 executions for this command). The color encodes the strategy (Menu: Blue; Keyboard shortcut: Green; Learning: Pink); The height encodes the execution time; Finally, large dots indicate errors. For this participant (top row), the model T F (third row) beer reflects the observed transition (indicated as a yellow box on the participant data). The green line indicates the probability of the agent to execute shortcuts. We observe that this one is much more stable for T F than the two other models because of the lack of the perseveration mechanism.

Table 1 .

 1 Key notations

	Notation Description
	B	State: Target command
	0	Action: User strategy
	& (B, 0) 0 ?	Q-Value Previous action

Table 2 .

 2 Free (top) and task-related (boom) parameters of the model. The range of the free parameters is the one used to fit the models

	Symbol	Range Description
	Learning rate V (V ', , V ⇠ ) [1, 20] Softmax inverse temperature U (U ', , U ⇠ ) [0, 1] ) ( 0.9 Keyboard shortcut strategy time
	) "	2	Menu strategy time
	) !	3.8	Learning strategy time
	2 ?		

Table 4 .

 4 Key notations

	Notation Description
	B	State: Target command
	0	Action: User strategy

Table 5 .

 5 Free (top), fixed (center) and task-related (boom) parameters of the model. The range of the free parameters is the one used to fit the model

	Symbol Range	Description
	V F U ⇢ U 3 ⌘ W	Softmax temperature tendency to repeat the previous action Explicit learning rate [0, 0.33] Implicit learning rate [1, 20] [0, 1] [0, 1] [0, 0.02] Decay Horizon [0, 7] 0.9 Discount factor [91]
	) (	0.9	Keyboard shortcut strategy time
	) "	2	Menu strategy time
	) !	3.8	Learning strategy time
	2 ?	3	temporal penalty associated to an error

C , 0) remains the expected value of an action 0 in a state B at the time C. To compare those Q-values and nally choose an action, the model relies on the Boltzmann soft-max function of Equation 2. The expected value & (B C , 0) is now calculated as:

Table 3

 3 Method level.Figure 2 compares T to the three benchmark RL models for each method. Results indicate a strong evidence (BIC score >6) that T outperforms the best benchmark models for Traditional (

	More surprisingly, despite the larger number of parameters, the results indicate strong evidence (BIC dierence >6) in
	favor our model (T: 336.5; RWCK: 345.4).
	10.2.2 T: 230.6; CK: 247.9) and for Disabled ( T: 316.3; RWCK: 323.6). Results do not show signicant
	dierences between T (462.7) and RWCK (463.4) regarding the Audio method.
	10.2.3 User level. Results indicate that the best model (BIC score) is T for 31 participants, RWCK for 8
	participants, RW for 2 participants and CK for 1 participant. It is a strong dierence with the comparison of the three
	Manuscript submitted to ACM

indicates the likelihood and BIC score of the T model. The results indicate that our model outperforms the best benchmark RL model, RWCK in terms of likelihood ( T: -148.5; RWCK: -159.4).

  Table 6 summarizes the ve variants of our model depending on the dierent combinations of free and xed parameters. We observe that the best model both in terms of likelihood and BIC score is the one implementing the ve mechanisms, thus the full T model (Table6): implicit learning U , explicit learning U ⇢ , decay 3, planning ⌘, and perseveration (F). The second best model is the one without planning which has a dierence of BIC score larger Fig.7. Comparison of the T with its variants where a mechanism has been disabled in term of Likelihood (Le) and BIC Score (Right) per technique. The lower, the beer. Error bars show 95% bootstrap confidence intervals than 6 (336.5 vs. 345.1). These results suggest that all ve mechanisms contribute to explain the transition from menus to shortcuts in these participants.11.1.2 Method level. Figure7summarizes the goodness-of-t (likelihood and BIC) of each model variant per method.

Manuscript submitted to ACM

When the participant learned the keyboard shortcut, but executed the command in the menu, the Learning strategy cannot be detected. This behavior is interpreted as the Menu strategy. The number of Learning is thus under-estimated and the number of Menu is over-estimated.Manuscript submitted to ACM

a compromise between testing models and a reasonable expenditure of experimenter eort Manuscript submitted to ACM

OPEN SCIENCEWe support adoption and further research eorts by providing an open code repository, with examples and instructions, on our project page: https://hci.isir.upmc.fr/project/model-of-transition/.
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