
HAL Id: hal-03539388
https://hal.sorbonne-universite.fr/hal-03539388

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic segmentation of white matter
hyperintensities: validation and comparison with

state-of-the-art methods on both Multiple Sclerosis and
elderly subjects

Philippe Tran, Urielle Thoprakarn, Emmanuelle Gourieux, Clarisse Longo dos
Santos, Enrica Cavedo, Nicolas Guizard, François Cotton, Pierre
Krolak-Salmon, Christine Delmaire, Damien Heidelberg, et al.

To cite this version:
Philippe Tran, Urielle Thoprakarn, Emmanuelle Gourieux, Clarisse Longo dos Santos, Enrica Cavedo,
et al.. Automatic segmentation of white matter hyperintensities: validation and comparison with
state-of-the-art methods on both Multiple Sclerosis and elderly subjects. Neuroimage-Clinical, 2022,
33, pp.102940. �10.1016/j.nicl.2022.102940�. �hal-03539388�

https://hal.sorbonne-universite.fr/hal-03539388
https://hal.archives-ouvertes.fr


NeuroImage: Clinical 33 (2022) 102940

Available online 10 January 2022
2213-1582/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Automatic segmentation of white matter hyperintensities: validation and 
comparison with state-of-the-art methods on both Multiple Sclerosis and 
elderly subjects 

Philippe Tran a,b,*, Urielle Thoprakarn a, Emmanuelle Gourieux i,j, Clarisse Longo dos Santos a, 
Enrica Cavedo a, Nicolas Guizard a, François Cotton d,e, Pierre Krolak-Salmon e,f,g, 
Christine Delmaire c, Damien Heidelberg d, Nadya Pyatigorskaya h, Sébastian Ströer h, 
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A B S T R A C T   

Different types of white matter hyperintensities (WMH) can be observed through MRI in the brain and spinal 
cord, especially Multiple Sclerosis (MS) lesions for patients suffering from MS and age-related WMH for subjects 
with cognitive disorders and/or elderly people. To better diagnose and monitor the disease progression, the 
quantitative evaluation of WMH load has proven to be useful for clinical routine and trials. Since manual 
delineation for WMH segmentation is highly time-consuming and suffers from intra and inter observer vari
ability, several methods have been proposed to automatically segment either MS lesions or age-related WMH, but 
none is validated on both WMH types. Here, we aim at proposing the White matter Hyperintensities Automatic 
Segmentation Algorithm adapted to 3D T2-FLAIR datasets (WHASA-3D), a fast and robust automatic segmen
tation tool designed to be implemented in clinical practice for the detection of both MS lesions and age-related 
WMH in the brain, using both 3D T1-weighted and T2-FLAIR images. In order to increase its robustness for MS 
lesions, WHASA-3D expands the original WHASA method, which relies on the coupling of non-linear diffusion 
framework and watershed parcellation, where regions considered as WMH are selected based on intensity and 
location characteristics, and finally refined with geodesic dilation. The previous validation was performed on 2D 
T2-FLAIR and subjects with cognitive disorders and elderly subjects. 60 subjects from a heterogeneous database 
of dementia patients, multiple sclerosis patients and elderly subjects with multiple MRI scanners and a wide 
range of lesion loads were used to evaluate WHASA and WHASA-3D through volume and spatial agreement in 
comparison with consensus reference segmentations. In addition, a direct comparison on the MS database with 
six available supervised and unsupervised state-of-the-art WMH segmentation methods (LST-LGA and LPA, 
Lesion-TOADS, lesionBrain, BIANCA and nicMSlesions) with default and optimised settings (when feasible) was 
conducted. WHASA-3D confirmed an improved performance with respect to WHASA, achieving a better spatial 
overlap (Dice) (0.67 vs 0.63), a reduced absolute volume error (AVE) (3.11 vs 6.2 mL) and an increased volume 

* Corresponding author at: Qynapse SAS, 130 rue de Lourmel, Paris 75015, France. Institut du Cerveau – Paris Brain Institute, Hôpital Pitié, 47 Boulevard de 
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agreement (intraclass correlation coefficient, ICC) (0.96 vs 0.78). Compared to available state-of-the-art algo
rithms on the MS database, WHASA-3D outperformed both unsupervised and supervised methods when used 
with their default settings, showing the highest volume agreement (ICC = 0.95) as well as the highest average 
Dice (0.58). Optimising and/or retraining LST-LGA, BIANCA and nicMSlesions, using a subset of the MS database 
as training set, resulted in improved performances on the remaining testing set (average Dice: LST-LGA default/ 
optimized = 0.41/0.51, BIANCA default/optimized = 0.22/0.39, nicMSlesions default/optimized = 0.17/0.63, 
WHASA-3D = 0.58). Evaluation and comparison results suggest that WHASA-3D is a reliable and easy-to-use 
method for the automated segmentation of white matter hyperintensities, for both MS lesions and age-related 
WMH. Further validation on larger datasets would be useful to confirm these first findings.   

1. Introduction 

White matter hyperintensities (WMH) in the brain and spinal cord 
are areas with high signal intensities visible on T2-weighted fluid 
attenuated inversion recovery (T2-FLAIR) MRI sequences, and are 
common findings in multiple sclerosis patients and elderly people. In 
MS, those focal areas are designated as “MS lesions” (Filippi et al., 2016; 
Rovira and León, 2008; Wattjes et al., 2015; Fazekas et al., 1999; Filippi 
et al., 2019) and for elderly people, WMHs are considered to be a 
vascular contributor to various disorders such as cognitive decline or 
dementia (Frey et al., 2019; Kim et al., 2008). Those WMH will then be 
referred as “age-related WMH” in this study. Consensus guidelines for 
MRI in MS, such as provided by the French Observatory of MS (OFSEP) 
(Brisset et al., 2020; Cotton et al., 2015), provide recommendations for 
imaging techniques to further improve the visualization of lesions 
(Brisset et al., 2020; Rocca et al., 2013; Simon et al., 2006). An 
improvement has been reported regarding whole brain lesion detection 
using 3D T2-FLAIR sequences rather than 2D sequences (Naganawa, 
2015), particularly in cortical and infratentorial regions, which are 
typical locations for MS lesions (Gramsch et al., 2015; Polman et al., 
2011). 

In MS clinical trials, the assessment of MS lesions volume change is 
considered a clinically relevant marker of disease progression (Meier 
et al., 2007) and has been used as an outcome measure, thus considered 
as a surrogate marker of potential disease-modifying treatments (Mikol 

et al., 2008; Radue et al., 2012). In the clinical practice, the detection of 
MS lesions has been included in the MS diagnostic criteria (Polman et al., 
2011; Thompson et al., 2018) as they provide useful information for the 
diagnosis and treatment of MS (Giorgio and De Stefano, 2018). Simi
larly, the accurate segmentation of age-related WMH could be intro
duced in clinical practice to support diagnosis, prognosis and treatment 
monitoring of dementia, as shown in longitudinal studies for Alz
heimer’s Disease (AD) dementia, cerebral small-vessel disease, fronto
temporal dementia and other cognitive disorders (Alber et al., 2019; 
Frey et al., 2019; Meier et al., 2007; Schmidt et al., 2004; Debette and 
Markus, 2010). Due to the heterogeneity in WMH appearance, location, 
size and shape, in addition to anatomical differences between subjects 
(García-Lorenzo et al., 2013), the identification of WMH on brain MRI in 
clinical routine is mostly performed with the help of semi-automatic 
tools, or with visual scales such as Fazekas (Fazekas et al., 1987) by 
neuroradiologists. Manual outlining of WMH is time-consuming and still 
suffers significant intra- and inter-rater variability (Commowick et al., 
2018; Grimaud et al., 1996; Zijdenbos et al., 2002; Styner et al., 2008), 
especially since the recent advances in acquisition techniques have 
enabled a more generalized use of 3D T2-FLAIR imaging with thinner 
slices. An automatic WMH segmentation method would thus be highly 
useful in clinical routine and clinical trials. However, such method needs 
to be reliable, reproducible and efficient to allow processing hundreds or 
thousands of datasets. 

Several automated methods have been described for the delineation 
of age-related WMH (Caligiuri et al., 2015) and MS lesions (Danelakis 
et al., 2018; García-Lorenzo et al., 2013) with varying amounts of 

Nomenclature 

AD Alzheimer’s Disease 
ADNI Alzheimer’s Disease Neuroimaging Initiative 
AVE Absolute Volume Error 
BIANCA Brain Intensity AbNormality Classification Algorithm 
CIS Clinically Isolated Syndrome 
CNN Convolutional Neural Network 
CSF Cerebrospinal Fluid 
FOV Field Of View 
FPR False Positive Ratio 
FSL FMRIB Software Library 
FTD Frontotemporal Dementia 
FTLDNI Frontotemporal Lobar Degeneration Neuroimaging 

Initiative 
GM Grey Matter 
HC Healthy Control 
ICC Intraclass Correlation Coefficient 
k-NN k-nearest neighbors 
Lesion-TOADS Lesion-TOpology preserved Anatomical 

Segmentation 
LOP-STAPLE Logarithmic Optinion Pool – Simultaneous Truth and 

Performance Level Estimation 
LST-LGA Lesion Segmentation Tool – Lesion Growth Algorithm 

LST-LPA Lesion Segmentation Tool – Lesion Prediction Algorithm 
MCI Mild Cognitive Impairment 
MICCAI Medical Image Computing and Computer-Assisted 

Intervention 
MIPAV Medical Image Processing, Analysis and Visualization 

software 
MRI Magnetic Resonance Imaging 
MS Multiple Sclerosis 
MSSEG Multiple Sclerosis lesion Segmentation challenge 
PPMS Primary Progressive Multiple Sclerosis 
RRMS Relapsing Remitting Multiple Sclerosis 
SPM12 Statistical Parametric Mapping software v12 
SPMS Secondary Progressive Multiple Sclerosis 
T2-FLAIR T2 Fluid Attenuated Inversion Recovery 
TPR True Positive Ratio 
TE Echo Time 
TI Inversion Time 
TR Repetition Time 
WHASA White matter Hyperintensities Automated Segmentation 

Algorithm 
WHASA-3D White matter Hyperintensities Automated 

Segmentation Algorithm for 3D datasets 
WM White Matter 
WMH White Matter Hyperintensities  
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manual input and/or output postprocessing. They vary greatly in terms 
of complexity, computational time, required imaging modalities and are 
generally divided into two groups: supervised and unsupervised 
methods (García-Lorenzo et al., 2013). Most unsupervised methods rely 
on clustering techniques to allocate the voxels to different classes (for 
example tissue – white matter (WM), grey matter (GM), cerebrospinal 
fluid (CSF) and lesion classes) based on specific features (for example 
voxel intensity). Those methods are based either on probabilistic models 
(Jack et al., 2001; Schmidt et al., 2012), thresholding techniques with 
post-processing (Roura et al., 2015; Schmidt et al., 2012) or both 
(Samaille et al., 2012). On the other hand, supervised methods rely on a 
learning step to learn the definition of WMH, thus requiring previously 
labelled datasets, usually MRI images with manual segmentation. Un
derlying reported classification methods include k-nearest neighbors 
(k-NN) (Griffanti et al., 2016; Steenwijk et al., 2013; Fartaria et al., 
2016), decision random forests (Geremia et al., 2011), support vector 
machine (SVM) (Yamamoto et al., 2010), and, more recently, convolu
tional neural networks (CNNs) (LeCun et al., 2010; Valverde et al., 
2019). In order to be used in clinical practice and clinical trials, the 
performances of WMH segmentation methods, designed either for MS or 
for dementia/elderly patients, must be validated with respect to a gold 
standard, such as manual segmentations performed by expert neurora
diologists. The available methods present in the literature are currently 
validated either on healthy controls and MS patients or vascular and 
neurodegenerative disease patients (Griffanti et al., 2016; Jain et al., 
2015; Samaille et al., 2012; Schmidt et al., 2012; Shiee et al., 2010; 
Valverde et al., 2019; Weeda et al., 2019; Coupé et al., 2018; Schmidt, 
2017). To the best of our knowledge, there is no WMH automated seg
mentation method that has been validated on both demyelinating and 
neurodegenerative diseases so far. 

In this paper, we aim at proposing the White matter Hyperintensities 
Automatic Segmentation Algorithm adapted to 3D T2-FLAIR datasets 
(WHASA-3D), which is a major improvement of the unsupervised 
method WHASA (Samaille et al., 2012), a fully automatic unsupervised 
method that relies on non-linear diffusion and watershed-based seg
mentation followed by intensity and anatomy-based selection, and was 
up to now only validated on elderly subjects or dementia patients with 
2D T2-FLAIR datasets. This study will address the automatic segmen
tation of WMH in MS patients, healthy controls and patients suffering 
from neurodegenerative diseases (AD, fronto-temporal dementia (FTD), 
cognitive impairments) in order to yield a method that is reliable on 
both age-related WMH and MS lesions. To do so, we will use a database 
with 60 subjects (healthy controls, MS patients and patients with 
cognitive disorders) with 3D T2-FLAIR scans from seven centres and 
with a large lesion load variability, provided with manual segmentations 
of WMH. We will compare the performance of WHASA-3D with its 
original version on all 60 subjects, and with other available state-of-the 
art methods (four unsupervised and two supervised methods) on a 
subset of 30 MS patients extracted from the full database of 60 subjects. 

WHASA-3D is currently included in the medical device QyScore®, a CE- 
marked and FDA-cleared software, developed by Qynapse (https 
://www.qynapse.com/), that provides segmentation and volumetric 
measurements of brain imaging markers. 

2. Material and methods 

WHASA-3D has been evaluated on a composite database built from 
several databases. As described below, the database includes various 
populations, acquired on different scanners and using different imaging 
protocols, and has been divided into several datasets for the different 
stages of this work. 

2.1. MRI data description 

2.1.1. Multiple Sclerosis database 
Datasets from a cohort of 30 MS patients were acquired using a 3T 

Siemens Magnetom Trio MR system at the University Medical Center 
Ljubljana (Lesjak et al., 2017). Each MR dataset consisted of 2D T1-w, 
3D T2-weighted and 3D T2-FLAIR images. T1-w and T2-FLAIR images 
are used here. They had been interpolated during acquisition, resulting 
in 0.43×0.43×0.82 mm and 0.80×0.47×0.47 mm apparent resolutions. 
In order to make these datasets more comparable with those described 
below, they have been resampled to, respectively, 1×1×0.82 mm and 
0.80×1×1mm. 

2.1.2. Various dementia database 
Three different cohorts (including two from publicly available da

tabases), embedding 3D T1-w and 3D T2-FLAIR images, were used and 
combined to cover a wide range of WMH lesion loads and to have an 
insight on robustness with respect to MRI scanners and acquisition 
settings. 

ADNI 

MRI data from ten subjects (three with Alzheimer’s Disease and 
seven elderly normal controls) were randomly selected from the Alz
heimer’s Disease Neuroimaging Initiative database (ADNI) (Petersen 
et al., 2010), a longitudinal multicenter study designed to develop 
clinical, imaging, genetic, and biochemical biomarkers for the early 
detection and tracking of Alzheimer’s disease. MR images were acquired 
on 3T GE Discovery MR750W and 3T Philips Ingenia scanners. The ADNI 
was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro
gression of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). For up-to-date information, see www.adni-info.org. 

NIFD 

Table 1 
MR acquisition parameters as given in the DICOM headers.  

Database Cohort n Machine (Field strength) Sequence TR/TE/TI (ms) Flip angle Field of view (FOV, mm) Voxel size (mm) 

MS LITMS 30 Siemens Magnetom Trio (3T) 2D T1 2000/20/800 120 408×512×152 0.43×0.43×0.82 
3D T2-FLAIR 5000/392/1800 120 192×512×512 0.80×0.47×0.47 

Various dementia ADNI 9 GE Discovery MR750W (3T) 3D T1 7.4/3.1/400 11 196×256×256 1.0×1.0×1.0 
3D T2-FLAIR 4800/116.2/1454 90 218.4×256×256 1.0×1.0×1.02 

1 Philips Ingenia (3T) 3D T1 6.5/2.9/900 9 256×256×211 1.0×1.0×1.0 
3D T2-FLAIR 4800/271/1650 90 192×256×256 1.0××1.0×1.02 

NIFD 15 Siemens TrioTim (3T) 3D T1 2300/3/900 90 160×256×240 1.0×1.0×1.02 
3D T2-FLAIR 6000/388/2100 120 160×250×250 0.98×0.98×1.0 

MEMORA 3 Philips Ingenia (3T) 3D T1 7.2/3.3/None 9 176×256×256 1.0×1.0×1.0 
3D T2-FLAIR 8000/355.5/2400 90 183×240×240 0.83×0.83×1.06 

1 Philips Ingenia (3T) 3D T1 9.4/4.3/None 8 170×250×250 0.74×0.74×0.85 
3D T2-FLAIR 5400/360/1800 90 183×250×250 0.75×0.74×1.04 

1 GE Optima M5450 W (3T) 3D T1 8.8/4.2/None 15 512×512×312 0.5×0.5×0.5 
3D T2-FLAIR 8000/132/2117 90 512×240×512 0.49×0.8×0.49  
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MRI data from 15 subjects (six with FTD, two elderly normal controls 
and seven unspecified diagnostic) were randomly selected from the 
FrontoTemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI, 
nicknamed NIFD). MR images were acquired on a 3T Siemens TrioTim. 
FTLDNI was funded through the National Institute of Aging, and started 
in 2010. The primary goals of FTLDNI were to identify neuroimaging 
modalities and methods of analysis for tracking frontotemporal lobar 
degeneration (FTLD) and to assess the value of imaging versus other 
biomarkers in diagnostic roles. The Principal Investigator of NIFD was 
Dr. Howard Rosen, MD at the University of California, San Francisco. 
The data are the result of collaborative efforts at three sites in North 
America. For up-to-date information on participation and protocol, 
please visit http://memory.ucsf.edu/research/studies/nifd. 

MEMORA 

MRI data from five subjects (four with major cognitive impairment, 

two with AD, two without diagnosis, and one unspecified diagnosis) 
were randomly selected from MEMORA, a clinical routine study created 
to follow patients with cognitive disorders. MRI images were acquired at 
the Hospices Civils de Lyon centre on a 3T Philips Ingenia and a 3T GE 
Optima MR450W scanners. 

MR parameters are summarized for all three datasets in Table 1 and 
demographic information in Table 2. 

2.1.3. Manual segmentation 
The performance of WHASA-3D will be evaluated through system

atic comparison with a reference. This ground truth has been defined for 
all 60 3D T2-FLAIR images as the consensus of three manual segmen
tations performed by three neuroradiologists, as described below. 

Multiple Sclerosis database 

Manual lesion segmentations created by three raters were available 

Table 2 
Demographic information.  

Database Cohort n Clinical status Age range (mean (SD)) Sex proportion (F:M) 

MS LITMS 30 24 RRMS, 2 SPMS, 1 PPMS, 2 CIS, 1 unspecified 25–64 (39.3 (10.1)) 23:7 
Various dementia ADNI 10 3 AD, 7 HC 68.3–90.9 (81.7 (6.7)) 5:5 

NIFD 15 6 FTD, 2 HC, 7 unspecified 54–83 (67.3 (7.3)) 7:8 
MEMORA 5 2 AD, 2 major cognitive disorders, 1 unspecified 76–88 (83 (5)) 2:3 

*RRMS = Relapsing remitting multiple sclerosis, SPMS = secondary progressive multiple sclerosis, PPMS = primary progressive multiple sclerosis, CIS = Clinically 
Isolated Syndrome, AD = Alzheimer’s Disease, HC = Healthy Control (elderly subjects), FTD = FrontoTemporal Dementia. 

Fig. 1. General overview of WHASA and WHASA-3D for 2D and 3D T2-FLAIR.  
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within the freely available database, as described in (Lesjak et al., 2017): 
one rater was a second-year radiology intern, while the other two raters 
were senior radiologists with more than 10 years of experience in 
assessing MR scans of MS patients. The separate segmentations were 
carefully revised with the ITK-SNAP software (Yushkevich et al., 2006) 
by all raters in terms of lesion locations and borders to create the final 
consensus segmentation. 

Various dementia database 

Three trained neuroradiologists (with three, six and 18 years of 
experience in neuroradiology) performed manual segmentation of WMH 
on 3D T2-FLAIR images. Lesion maps were first generated from T1-w 
and 3D T2-FLAIR images using LST-LGA v2.0.15 (Lesion Segmentation 
Tool – Lesion Growth Algorithm), implemented in SPM (Schmidt et al., 
2012). The neuroradiologists then corrected each lesion map when 
necessary, using the manual editing tool ITK-SNAP. The ground truth 
was then defined as the consensus among those three corrected seg
mentations, obtained through the LOP-STAPLE algorithm (Akhondi-Asl 
et al., 2014). 

Reference WMH volume 

Reference volumes ranged from 0.3 to 68 mL, with a mean of 21 mL 
and a standard deviation of 15 mL for the whole database (17 ± 16 mL 
[0.3–52] for the MS database and 24 ± 14 mL [0.3–68 mL] for the 
various dementia database). 

2.1.4. Building databases for evaluation and comparison 
This section provides more details about the data used for the 

development and evaluation of WHASA-3D and the comparison to other 
methods, in order to ensure a fair and unbiased evaluation. 

WHASA-3D evaluation 

We split our evaluation database (MS and various dementia data
bases) into a training set and a validation set. Eight subjects (two from 
each cohort, with a wide range of lesion load and age, MRI systems and 
pathology) were used to optimize the development of WHASA-3D, while 
the remaining 52 subjects were used as an independent validation base. 

Comparison with state-of-the art methods 

The comparison to state-of-the-art methods was focused on the MS 
database as we wanted to guarantee that our method works properly for 
MS patients, since most methods had been designed and evaluated for 
MS patients. The comparison to the methods with their default param
eters was conducted on the whole MS database. Since some state-of-the- 
art methods could be optimized/re-retrained, we then randomly split 
the MS database into an optimization subset of 10 subjects with a wide 
range of lesion load for optimization and re-training purposes, while the 
remaining 20 subjects were used as an independent validation subset. 
Thus, our MS database was split into three folds of ten subjects, one fold 
being used for optimization/training and the remaining two folds for 
validation. 

2.2. Methods 

This section first gives a brief description of the original automated 
WMH segmentation method WHASA (Samaille et al., 2012) and details 
the specific steps of WHASA-3D developed to address the segmentation 
of 3D T2-FLAIR images. It then introduces the freely available algo
rithms that will be compared to WHASA and describes the strategy 
underlying the performance evaluation of the algorithms. 

2.2.1. WHASA method 
WHASA relies on the coupling of non-linear diffusion and watershed 

parcellation; regions considered as corresponding to WMH are then 
selected based on intensity and location characteristics then finally 
refined with geodesic dilation. Fig. 1 shows the general overview of 
WHASA and WHASA-3D. 

Standard pre-processing steps using SPM12 (Ashburner and Friston, 
2005) extract tissue probability maps from the T1-w image, register 
them to the T2-FLAIR image and correct the T2-FLAIR image for in
tensity inhomogeneities. Non-linear diffusion then enables to enhance 
the contrast between hyper-intense areas and surrounding healthy tissue 
and to reduce the contrast between GM and WM on the inhomogeneity 
corrected T2-FLAIR image; its combination with the watershed-resulting 
parcellation yields a piecewise constant image (step “parcellation of T2- 
FLAIR” on Fig. 2). Candidate lesions are extracted from this piecewise 
constant image with an automatically computed threshold. Tissue 
probability maps drive the selection of the relevant candidate lesions 
according to their location. Finally, a geodesic dilation is then applied in 
order to refine borders of lesions, with the help of a second lighter non- 
linear diffusion (diffusion parameter twice smaller) to better take into 
account large or diffuse WMH (Samaille, 2013). 

The original algorithm was designed for 2D T2-FLAIR images with 
thick slices and several steps were implemented using a 2D slice-by-slice 
approach to ensure robustness but are not optimal for 3D T2-FLAIR 
images. In the following subsections we will describe how these steps 
were redesigned and implemented for 3D T2-FLAIR datasets. 

Parcellation of 3D T2-FLAIR 

This step aims at parcellating the T2-FLAIR image in homogeneous 
regions, with alternating iterations of non-linear diffusion (Perona and 
Malik, 1990) and watershed, followed by a final region merging step, as 
described for 2D and 3D pipelines in Fig. 2. 

For 2D T2-FLAIR images, 2D non-linear diffusion was run, and the 
diffusion parameter was automatically set as the mean of the intensity 
gradient on the GM/WM interface obtained from the preprocessing step. 
A series of 100 iterations with a time-step of 0.1 alternated with a 2D 
watershed parcellation step until convergence of the whole process, 
which was reached when two consecutive watershed results were 
strictly identical. Each region of the final watershed was then labelled 
with its mean intensity as computed on the T2-FLAIR image. Adjacent 
regions with close intensity values (mean intensity difference lower than 
the diffusion parameter) were merged together to reduce the number of 
regions considered in the candidate region selection step. 

Fig. 2. Parcellation of the T2-FLAIR for 2D and 3D cases to obtain candidate regions.  

P. Tran et al.                                                                                                                                                                                                                                     
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For 3D T2-FLAIR images, ten iterations of 3D non-linear diffusion 
have now been added to minimise the between-slice discrepancies 
yielded by the 2D diffusion process, while still benefiting from its speed 
and robustness. A 3D watershed ensures to obtain a 3D-consistent 
piecewise constant image. Adjacent regions of the watershed parcella
tion are then labelled using their mean intensity on the T2-FLAIR image, 
then merged with a dedicated iterative 3D process: starting from the 
region with maximum intensity, neighbouring regions are iteratively 
merged according to their intensity contrast with the initial region, the 
merging criterion being the diffusion parameter. This step is crucial to 
ensure time efficiency for the following steps, as the number of regions 
generated by the 3D watershed is much larger than for 2D T2-FLAIR 
images (about 75,000 and 9000 regions generated for 3D and 2D T2- 
FLAIR respectively). 

Selection of candidate regions 

Candidate regions still have to be identified as WMH (MS lesions or 
age-related WMH) through intensity and anatomical rules. 

In this step, we select hyperintense regions using an intensity 
threshold followed by spatial information about regions location, in 
order to refine the set of candidate lesions. Hyperintense areas corre
sponding to WMH could be defined as outliers for the WM intensity 

distribution, as they are mostly found in white matter. 
Considering Gaussian distribution, the threshold to detect WMH 

could thus be defined as follows: 

ThrWM = μWM + 2.698*σWM (1)  

where μWM and σWM are the mean and standard deviation of the WM 
intensity distribution, computed from the inhomogeneity corrected T2- 
FLAIR image. 

However, depending on acquisition parameters and patients age 
range, two types of images can be observed among 3D T2-FLAIR images, 
based on GM/WM contrast characteristics, as shown in Fig. 3b: high 
GM/WM contrast (first row), with a clear distinction between WM and 
GM intensity modes, and low GM/WM contrast (second row), with 
nearly merged WM and GM intensity modes. 

For high contrast images, the threshold may result in embedding 
voxels with intensity belonging to the GM intensity distribution. A 
threshold using the GM intensity distribution, as introduced in the LST 
method (Schmidt et al., 2012), may thus be more robust: 

ThrGM = μGM + σGM (2)  

where μGM and σGM are the mean and standard deviation of the GM in

Fig. 3. 3D T2-FLAIR images with two types of GM/WM contrasts, with respective histograms and WMH segmentations. The first row shows high GM/WM contrast, 
the second row shows low GM/WL contrast. (a) FLAIR (b) Histogram (c) Segmentation with ThrWM (d) Segmentation with ThrGM. 

Fig. 4. False positive detection and removal.  
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tensity distribution, computed from the inhomogeneity corrected T2- 
FLAIR image. However, for low contrast images, this threshold may 
result in embedding normal tissue, that would remain below the 
threshold if the standard deviation of GM is lower than that of WM. 

These two intensity behaviours have been confirmed on the training 
set: ThrWM yields better results on low GM/WM contrast T2-FLAIR im
ages (Fig. 3c), while ThrGM yields better results on high GM/WM 
contrast T2-FLAIR (Fig. 3d). A contrast-based barycentre was thus 
introduced between the two thresholds (1) (2) to obtain a generalized 
threshold robust to GM/WM contrast: 

Thrgeneralized = ρ*(ThrGM)+ (1 − ρ)*(ThrWM)

with ρ the contrast-based weighting factor, derived from contrast and 
standard deviation values computed on the tissue probability maps and 
validated on the training set. 

False positive detection and removal 

Some false positives, namely voxels mistakenly considered as WMH, 
remain after the candidate selection and border refinement step; they 
are often located in the cortical grey matter, even more frequently for 3D 
T2-FLAIR with high GM/WM contrast, for which cortical folding may 
result in focal high intensity areas. Although some WMH may truly be 
located in the cortical grey matter, these are very difficult to distinguish 
from false positives with only 3D T2-FLAIR image. An automatic post- 
processing step is thus applied to remove all hyperintense voxels 
within the cortex from the segmentation mask as illustrated in Fig. 4. 

We identify the voxels most likely to belong to GM by creating an 
exclusion map from the tissue probability maps for WM, GM, CSF pre
viously extracted from the T1-w image at the preprocessing step. A 
morphological erosion is then applied on this resulting exclusion mask, 
and the largest connected component is kept as the final exclusion mask 
to embed only the cortical regions. Candidate lesions are then discarded 
if they overlap the exclusion mask for more than half of their voxels. 

2.2.2. Other methods 
In order to evaluate the performance of WHASA-3D, its results were 

compared with those obtained with state-of-the-art freely available 
methods on a dedicated dataset. An optimization of the parameters or a 
model retraining was performed on a optimization dataset for methods 
that allow it. The state-of-the-art methods, and their re-optimisation step 
when needed, are described below. 

Unsupervised algorithms 
LST-LGA 

Lesions were segmented by the lesion growth algorithm (Schmidt 
et al., 2012) as implemented in the LST toolbox version 2.0.15 (www.st 
atistical-modelling.de/lst.html) for SPM. The algorithm first segments 
the T1-w images into the three main tissue classes (CSF, GM and WM). 
This information is then combined with the intensities from the cor
egistered T2-FLAIR in order to compute lesion belief maps. By thresh
olding these maps with a pre-chosen initial threshold (κ), an initial 
binary lesion map is obtained which is subsequently grown along voxels 
that appear hyperintense in the T2-FLAIR image. The result is a lesion 
probability map. Performance evaluation of LST-LGA was performed in 
MS patients and healthy subjects (Schmidt et al., 2012). 

lesionBrain 

lesionBrain 1.0 is an online tool for white matter lesion segmentation 
(Coupé et al., 2018) and has been integrated into the volBrain platform 
(https://volbrain.upv.es/). The method first uses the T1-w images to 
segment several anatomical structures (intracranial cavity, brainstem, 
cerebellum,lateral ventricles and the brain tissue maps). Lesions are 
segmented based on a three-stage strategy: multimodal patch-based 
segmentation, patch-based regularization of the created probability 
map of lesions and patch-based error correction using an ensemble of 
shallow neural networks to limit false positives. Its robustness and Ta
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accuracy have been evaluated on the MSSEG MICCAI Challenge 2016 
(Commowick et al., 2018) with 3D T1-w and 3D T2-FLAIR MRI acquired 
for 15 MS patients (Coupé et al., 2018). 

Lesion-TOADS 

Lesion-TOpology preserved Anatomical Segmentation (Lesion- 
TOADS) (Shiee et al., 2010) is a fully automatic method for the seg
mentation of MS white matter lesions from T1-w and T2-FLAIR images 
and is available as a plug-in for the MIPAV software (http://mipav.cit. 
nih.gov/). Lesion-TOADS embeds an iterative algorithm for fuzzy 

Fig. 5. Illustrations of WHASA and WHASA-3D results on two typical MS subjects with (a) low lesion load (reference volume: 2.51 mL; WHASA volume: 1.30 mL, 
WHASA-3D volume: 3.71 mL) and (b) high lesion load (reference volume: 50.04 mL, WHASA volume: 7.27 mL, WHASA-3D volume: 37.24 mL). 
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classification of the image intensities, through a combination of topo
logical and statistical atlases. An additional lesion class is added to the 
brain segmentation, using the same spatial prior as WM; lesions and WM 
are then separated by selecting the region with the higher membership 
value. Prior knowledge about areas where false positives commonly 
appear is used to determine penalty weights based on the distance to 
these areas. Performance evaluation of Lesion-TOADS was performed in 
MS patients and simulated images from the Brainweb MS (Shiee et al., 
2010). 

Supervised algorithms 
LST-LPA 

Lesions were segmented by the lesion prediction algorithm (Schmidt, 
2017) as implemented in the LST toolbox version 2.0.15 (www.statist 
ical-modelling.de/lst.html) for SPM. This algorithm consists of a bi
nary classifier in the form of a logistic regression model trained on the 
data of 53 MS patients with severe lesion patterns. Data were obtained at 
the Department of Neurology, Technische Universität München, 

Munich, Germany. As covariates for this model, a similar lesion belief 
map was used, as for the lesion growth algorithm (Schmidt et al., 2012), 
as well as a spatial covariate that takes into account voxel specific 
changes in lesion probability. Parameters of this model fit are used to 
segment lesions in new images by providing an estimate for the lesion 
probability for each voxel. A pre-trained model is provided, however to 
date, no solution to re-train this model is yet available. Performance 
evaluation of LST-LPA was undertaken in MS patients (Schmidt et al., 
2017). 

nicMSlesions 

nicMSlesions is a deep learning based method (Valverde et al., 2019), 
designed to automatically segment MS lesions from several brain MRI 
sequences, and validated in MS patients. Only T1-w and T2-FLAIR im
ages are mandatory. The method is based on a cascade of two con
volutional neural networks (CNN), the first being trained to be more 
sensitive to candidate lesion voxels, and the second being trained to 
reduce the number of false positives. A pre-trained model called 

Table 4 
Median (Average ± std [min–max]) for measures of overlap and volumetric agreement with the reference segmentation for WHASA and WHASA-3D.  

Database Metrics median 
(mean ± std 
[min–max]) 

WMH volume AVE Dice F1-score TPR FPR ICC 

MS and 
Various 
Dementia 

Reference 19.9 (21.1 ±
15.7 [0.3–68.0]) 

N/A N/A N/A N/A N/A N/A 

WHASA 16.6 (16.5 ±
13.6 [0.2–58.3]) 

2.8 (6.2 ± 8.8 
[0–42.8]) 

0.74 (0.63 ± 0.22 
[0.13–0.92]) 

0.39 (0.37 ± 0.14 
[0.08–0.70]) 

0.68 (0.60 ± 0.26 
[0.11–0.90]) 

0.21 (0.23 ± 0.19 
[0.01–0.83]) 

0.78 

WHASA-3D 20.4 (19.7 ±
14.6 [0.5–67.5) 

2.0 (3.1 ± 3.2 
[0–13.8]) 

0.76 (0.67 ± 0.20 
[0.21–0.91]) 

0.43 (0.42 ± 0.11 
[0.15–0.63]) 

0.72 (0.67 ± 0.19 
[0.26–0.95]) 

0.22 (0.31 ± 0.23 
[0.02–0.83]) 

0.96  

MS Reference 14.1 (17.4 ±
16.1 [0.3–52.5]) 

N/A N/A N/A N/A N/A N/A 

WHASA 5.7 (8.13 ± 8.55 
[0.2–31.4]) 

3.7 (9.3 ± 11.3 
[0.1–42.8]) 

0.46 (0.50 ± 0.23 
[0.13–0.82]) 

0.29 (0.31 ± 0.13 
[0.08–0.53]) 

0.41 (0.40 ± 0.22 
[0.11–0.74]) 

0.13 (0.22 ± 0.22 
[0.01–0.83]) 

0.61 

WHASA-3D 11.7 (13.9 ±
12.6 [0.5–45.7]) 

1.9 (3.9 ± 4.1 
[0–13.8]) 

0.66 (0.58 ± 0.22 
[0.21–0.86]) 

0.42 (0.39 ± 0.10 
[0.20–0.56]) 

0.60 (0.55 ± 0.17 
[0.26–0.79]) 

0.23 (0.36 ± 0.27 
[0–0.82]) 

0.95  

Various 
Dementia 

Reference 21.0 (24.8 ±
14.5 [0.3–68.0]) 

N/A N/A N/A N/A N/A N/A 

WHASA 23.2 (24.9 ±
12.6 [0.7–58.3]) 

2.4 (3.2 ± 2.8 
[0–11.1]) 

0.79 (0.77 ± 0.11 
[0.41–0.92]) 

0.45 (0.44 ± 0.12 
[0.22–0.70]) 

0.83 (0.80 ± 0.10 
[0.43–0.90]) 

0.24 (0.25 ± 0.14 
[0.06–0.76]) 

0.95 

WHASA-3D 23.3 (25.4 ±
14.4 [1.0–67.5]) 

2.2 (2.3 ± 1.8 
[0–5.8]) 

0.79 (0.76 ± 0.14 
[0.26–0.91]) 

0.46 (0.45 ± 0.12 
[0.15–0.63]) 

0.82 (0.80 ± 0.12 
[0.32 –0.95]) 

0.22 (0.26 ± 0.16 
[0.12 – 0.83]) 

0.98  

Fig. 6. Scatter plots of manual vs automated lesions volume quantification and linear regression for WHASA (on the left, green crosses) and WHASA-3D (on the right, 
blue dots) on both MS and Various Dementia database. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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“baseline_2ch” is therefore provided and the output is a lesion proba
bility map. It was fully trained on two public MS lesion datasets (MSSEG 
MICCAI challenges 2008 and 2016) and evaluated with a private MS 
dataset and the ISBI2015 challenge dataset, using spatial and volumetric 
agreement (Valverde et al., 2019). 

BIANCA 

Brain Intensity AbNormality Classification Algorithm (BIANCA) 
(Griffanti et al., 2016) is a fully automated supervised method for WMH 
segmentation embedded in the FSL toolbox. The algorithm is based on 
the k-nearest neighbor framework (k-NN) and classifies the voxels based 
on their intensity and spatial features. BIANCA is flexible in terms of MRI 
modalities to use (either T1-w and T2-FLAIR or T2-FLAIR only) and 
offers several options (spatial weighting, local spatial intensity aver
aging, choice of the number and location of the training points). The 
output image is a probability map. The method has been validated on a 
cohort of neurodegenerative and vascular patients with manual seg
mentations. The training dataset consisted of a combination of those two 
datasets to train and optimize the model parameters, with a leave-one- 
out cross validation. Once optimized, BIANCA was used to segment 
WMH on the remaining subjects of the two cohorts, to be further eval
uated with spatial and volumetric agreement. 

2.2.3. Settings 
Default settings 
Default settings for the above methods are summarized in Table 3. 

There was no parameter to tune for WHASA-3D, lesionBrain and Lesion- 
TOADS. The remaining methods allow the user to tune some parameters 
to possibly improve the resulting segmentation. Because the output is a 
probability map for LST-LGA, LST-LPA and nicMSlesions, a default 
threshold has been set to 0.5, in order to obtain binary segmentations as 
recommended in the official LST website1. LST-LGA has an additional 
initial threshold, set to 0.3 by default. Please note that no pre-trained 
model has been provided with BIANCA, we thus trained BIANCA with 
the optimal configuration described in Griffanti et al. 2016 on the same 
8 subjects training database as used for WHASA-3D development. For 
nicMSlesions, we used the pretrained model provided by the method 
called “baseline_2ch”. 

Optimized settings 
Optimization was performed on LST-LGA, BIANCA and nicMSle

sions, based on the highest average Dice score in comparison to expert 
manual segmentation on the optimization subset of 10 subjects from the 

MS database. 
For LST-LPA and LST-LGA, the default probability threshold was kept 

at 0.5. The optimization of the initial threshold κ is detailed in Supple
mentary Table 1 showing an optimal threshold κ of 0.05. BIANCA has 
many possible configurations since the method offers the possibility to 
tune many parameters: number of lesion points, non-lesion points, 
location of non-lesion points, probability threshold… Every combina
tion of these options is reported in Supplementary Table 2 and the 
optimal configuration reached was as follows: 2000 lesion points, 2000 
non-lesion points and “any” location of the non-lesion training points, no 
spatial weighting and no 3D patch used. Finally, in order to obtain bi
nary masks from probability maps, optimal thresholds have also been 
determined for nicMSlesions and BIANCA, with values of 0.6 and 0.75 
respectively (Supplementary Table 3). 

2.2.4. Evaluation 
The performances of WHASA-3D and the other methods were eval

uated by comparing segmentation results with reference segmentations 
at the voxel level, through volume and spatial agreement. In addition, 
evaluation was also considered at the WMH level, to assess the perfor
mance at the lesion level, as the counting task, which is a crucial 
component of MS diagnosis (Commowick et al., 2018). 

Volume agreement 

Total WMH volume gives an overall indication of the performance of 
the method and was evaluated using intra-class correlation coefficient 
(ICC) and absolute volume error (AVE, mL) between the automatic and 
reference segmentations. The ICC was derived from a two-way mixed 
model with absolute agreement definition. The relative volume differ
ence is classically used for this type of evaluation, but would emphasize 
too much small differences for small lesion loads, and thus make it 
difficult to compare differences between small and large lesion loads. 
The absolute volume error was used instead, and computed as follows: 
AVE=|VR-VA| with VR the reference volume and VA the automatic seg
mentation volume. The result is thus given in mL, the optimal value 
being 0 mL. 

Spatial agreement 

Total WMH volume gives no indication about spatial agreement. The 
automatic segmentation could have the same volume as the reference 
segmentation without any common voxel. The spatial agreement be
tween reference and automatic segmentations is evaluated based on the 

Fig. 7. Scatter plots of manual vs automated lesions volume quantification and linear regression for WHASA (green cross and dotted lines) and WHASA-3D (blue dots 
and straight lines) on the MS database (on the left) and the Various Dementia database (on the right). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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volume of true positives (VTP = VAR), false positives (VFP = VA- VAR) and 
false negative (VFN = VR- VAR), computed at the voxel level. Three 
indices ranging between 0 and 1 are then used at the voxel level: the 
Dice similarity index (Dice) (Dice, 1945) (perfect agreement: 1), the 
false positive ratio (FPR) (perfect agreement: 0) and true positive ratio 
(TPR) (perfect agreement: 1) defined as follows: 

Dice =
2*VTP

VFP + VFN + 2*VTP  

FPR =
VFP

VA  

TPR =
VTP

VR 

WMH agreement 

Evaluation of WMH detection relies on determining how many WMH 
have been correctly or incorrectly detected. The WMH agreement relies 
on identifying individual WMH in the reference and automatic seg
mentation, based on the number of WMH in the reference (LR), the 
number of WMH in the automatic segmentation (LA), the number of 
WMH in the reference correctly detected by the segmentation (LTP(R)) 
and the number of WMH in the segmentation for which there is a WMH 
in the reference (LTP(A)). From the number of WMH in each segmentation 

Fig. 8. S database 3D T2-FLAIR images and superposed segmentations from the consensus reference segmentation and all methods with their default settings on 
subjects with the (a) highest and (b) lowest Dice (0.86 and 0.21 resp.) for WHASA-3D in comparison to the reference segmentation. Yellow arrows shows WMH that 
are correctly detected by WHASA-3D but either missed or underestimated by other methods, and blue arrows shows WMH missed by all methods. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(reference and automatic) and the numbers computed above (LTP(R) and 
LTP(A)), the F1-score is computed, which accounts for the sensitivity (i.e 
the proportion of detected WMH in the reference) and the positive 
predictive value (i.e the proportion of true positive WMH inside the 
automatic segmentation) (Commowick et al., 2018). F1-score ranges 
from 0 to 1 and gives a global idea of the detection performance (perfect 
detection: 1). 

F1 − score =

2*
(

LTP(R)
LR

)

*
(

LTP(A)
LA

)

(
LTP(R)

LR

)

+

(
LTP(A)

LA

)

Statistics 
Statistical analysis was performed using the Scipy version 1.2.1 Py

thon library. For the comparison of WHASA-3D with WHASA, a non- 

parametric Wilcoxon test was used for the volumetric (absolute vol
ume error) and spatial agreement (dice score) with respect to the manual 
segmentation, and results were considered statistically significant upon 
p-value < 0.05. Regarding the comparison of WHASA-3D with multiple 
methods, a non-parametric Friedman test of differences among repeated 
measures and post-hoc analyses with Wilcoxon signed-rank tests was 
conducted with a Bonferroni correction applied, resulting in a signifi
cance level set at p < 0.05/n with n the number of comparisons made for 
the volumetric and spatial agreement. 

3. Results 

WHASA-3D was first qualitatively and quantitatively evaluated and 
compared with WHASA on the MS and Various dementia databases. Its 
performance was then compared with the other methods mentioned 

Fig. 9. Box-and-whisker plots (median, interquartile range and extrema) showing Dice, F1-score, Absolute Volume Error, True Positive Rate and False Positive Rate 
in comparison to the manual lesion segmentation on the MS database for WHASA-3D (a), LST-LGA default (b), LST-LPA (c), lesionBrain (d), Lesion-TOADS (e), 
BIANCA default (f) and nicMSlesions default (g). 
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above only on the MS database. 

3.1. Comparison of WHASA-3D with WHASA 

WHASA-3D showed consistent behaviour on the MS database, while 
WHASA exhibited insufficient WMH segmentation as illustrated in 
Fig. 5. Comparison results of quantitative metrics for WHASA and 
WHASA-3D with reference segmentation in MS and Various dementia 
databases are presented in Table 4. Most metrics showed an improve
ment for WHASA-3D compared to WHASA: the average Dice score has 
increased from 0.63 to 0.67, the F1-score from 0.37 to 0.42 and the 
absolute volume error has decreased from 6.2 to 3.1 mL; the ICC value 
has increased from 0.78 to 0.96, and TPR has also increased from 0.60 to 
0.67 demonstrating a better correlation of WHASA-3D with the experts’ 
reference volumes compared to WHASA. TPR, resp. FPR, has increased 
from 0.60 to 0.67, resp. from 0.23 to 0.31, with WHASA-3D, which 
meant a better detection of WMH but also a higher risk of detecting false 
positives. Regression analysis between manual and automated lesion 
volume, as illustrated in Fig. 6, showed increased correlation (R2 from 
0.62 to 0.93) and a better regression slope (from 0.68 to 0.90) using 

WHASA-3D on the combination of MS and Various dementia databases. 
The improvement was highly prominent on the MS database 

(R2
WHASA = 0.55 and R2

WHASA-3D = 0.96) and less visible on the database 
including various dementia types, but WHASA-3D also performs better 
(R2

WHASA = 0.92 and R2
WHASA-3D = 0.96) as shown in Fig. 7. 

Statisical analysis showed no significant difference on Dice score 
between WHASA and WHASA-3D, either in MS or the Various Dementia 
database despite a global reduction in average dice scores between 
methods. However, we report a significant difference for the absolute 
volume error for the whole database and the MS database (MS and 
Various dementia, p = 3.93E-5; MS database, p = 1.97E-5), but not for 
the Various dementia database. 

3.2. Comparison of WHASA-3D with other lesion segmentation methods 

In this section, we will present a comparison of WHASA-3D with 
other methods freely available in the literature and described in the 
methods section, based on results obtained on the MS database as it 
appeared to be the most challenging for WHASA-3D. To ensure fair 
comparison, methods will be run with their default settings and with 

Fig. 10. Scatter plots of manual vs automated lesion volume and linear regression for methods with default parameters on the MS database. Identity is represented as 
a dotted line. 
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parameter optimization and/or model re-training whenever possible. 

3.2.1. Default settings 
Results of WMH segmentations with all methods at default settings 

are displayed on Fig. 8 on two subjects with the highest and lowest Dice 
obtained by WHASA-3D. WHASA-3D, LST-LGA, LST-LPA, Lesion- 
TOADS and lesionBrain showed consistent segmentation results in 
comparison to the consensus reference segmentation, whereas BIANCA 
default and nicMSlesions default revealed large under or over- 
segmentation. The box-and-whisker plots for each volume and spatial 
agreement metric are displayed in Fig. 9. WHASA-3D showed the 
highest volume agreement (ICCWHASA-3D = 0.95) as well as the highest 
average Dice, F1-score and TPR on this database. All methods except 
nicMSlesions default and Lesion-TOADS showed a lower average FPR 
than WHASA-3D, but all had a lower average TPR. Regarding LST al
gorithms, LST-LPA performed better on this dataset than LST-LGA with 
default parameters, except for volume agreement (ICCLST-LPA = 0.61 and 
ICCLST-LGA default = 0.81). The two supervised methods, BIANCA and 
nicMSlesions, when used with their default settings, showed poor per
formances in terms of Dice, F1-score and AVE. All measures are reported 

in the Supplementary Table S4. 
Volume consistency with manual segmentation for each automated 

method (Fig. 10) showed that volumes obtained with WHASA-3D are the 
most consistent with manual segmentation. Bland-and-Altman plots 
(Fig. 11), show an underestimation of lesion volume for all methods 
except nicMSlesions, and a narrower interval between limits of agree
ment for WHASA-3D compared to the other methods on this dataset. 

There was a statistically significant difference in spatial (Friedman 
test, p-value = 3E-22) and volumetric agreement (Friedman test, p- 
value = 1E-11) between WHASA-3D and the other methods in their 
default settings. Post hoc analysis with Wilcoxon signed-rank tests was 
conducted with a Bonferroni correction applied, resulting in a signifi
cance level set at p < 0.0071. After Bonferroni correction, WHASA-3D 
outperfom all the method considered, with a significant difference be
tween WHASA-3D and the other methods for the spatial and volumetric 
agreement. All p-values for volumetric and spatial agreement are re
ported in the Supplementary Table S5. 

3.2.2. Optimized settings 
With the optimized settings, we observed largely improved 

Fig. 11. Bland-Altman plots for methods with default parameters on the MS database. Mean bias (straight line) and 95% limits of agreements (dotted lines) are also 
displayed for each method. 
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segmentation performances for LST-LGA, BIANCA and nicMSlesions 
compared to the large under or over-segmentation with their default 
settings, as displayed in Fig. 12. Results of the comparisons between 
WHASA-3D and the three methods for which optimisation could be 
undertaken are reported in Fig. 13 for the validation subset of the MS 
database. Performance in terms of overlap and volume agreement after 
optimization are both revealed by the Average Dice (LST-LGA default/ 
optimized = 0.41/0.51; BIANCA default/optimized = 0.22/0.39; 
nicMSlesions default/optimized = 0.17/0.63) and the ICC (LST-LGA 
default/optimized = 0.86/0.95; BIANCA default/optimized = 0.23/ 
0.71; nicMSlesions default/optimized = 0.61/0.88). The volume con
sistency between automated and manual volumes is also displayed with 
scatter plots and Bland-Altman plots (Figs. 14 and 15). The highest 
volume agreement is obtained by WHASA 3D and LST-LGA (ICC 0.97 
and 0.95), and the best spatial agreement by WHASA 3D and nicMSle
sions optimized (Average Dice 0.58 and 0.63, TPR 0.56 and 0.59). All 
measures are reported in the Supplementary Table S6. 

There was a statistically significant difference in spatial (Friedman 
test, p-value = 3E-07) and volumetric agreement (Friedman test, p- 
value = 8E-05) between WHASA-3D and the other methods in their 
optimized settings. Post hoc analysis with Wilcoxon signed-rank tests 
was conducted with a Bonferroni correction applied, resulting in a sig
nificance level set at p < 0.0125. For spatial agreement, all comparison 
between WHASA-3D and the other methods were significantly different 
at the exception of nicMSlesions. p-values for volumetric and spatial 
agreement are reported in the Supplementary Table S7. 

3.3. Processing time 

In order to consider using methods in clinical routine, results have to 
be delivered in a short time. All methods were run on a computer with an 
Intel CPU 3.50 GHz (8 cores) processor and 16go RAM. Table 5 shows 
the computational time for each method. It greatly varies depending on 
the underlying framework. Unlike unsupervised methods, supervised 
methods that needs to be trained before-hand (BIANCA, nicMSlesions) 
require training time, that ranges from few minutes for BIANCA to up to 
15 h for the deep-learning-based method nicMSlesions. Note that 

training has to be performed only once for a given type of sequence. 
Among the unsupervised methods, LST-LGA remains the fastest. 

4. Discussion 

We have presented here WHASA-3D, an extension of WHASA 
(Samaille et al., 2012) dedicated to the automatic segmentation of age- 
related WMH and MS lesions from 3D T2-FLAIR images in a multicenter 
and multi-disease framework. Validation of WHASA-3D was undertaken 
on a database with 60 subjects, built from four different cohorts, with 
subjects acquired on seven MRI scanners, displaying a wide range of 
lesion load and including 30 patients with age-related WMH (elderly 
subjects and various dementia) and 30 patients with MS lesions. 
WHASA-3D outperformed WHASA when evaluated in comparison with 
consensus manual segmentation masks in terms of overlap and volume 
agreement. We also compared WHASA-3D with three unsupervised 
methods and three supervised methods with default and optimized 
settings when recommended. When default “pre-trained” parameters 
were used, WHASA-3D showed the best volume and spatial agreement 
with the highest ICC and Dice, followed by LST-LGA, lesionBrain and 
Lesion-TOADS. After retraining the methods that could be retrained on a 
separate subset, nicMSlesions performances improved dramatically 
(average Dice and F1-score raised from 0.17 to 0.63 and from 0.06 to 
0.56) showing the best performance. However, nicMSlesions out
performed WHASA 3D exclusively in the Dice and F1-score, while 
WHASA 3D still showed better performances for ICC. 

The GM/WM contrast greatly varies between subjects and between 
MRI protocols (Gabr et al., 2017), and this variability has to be taken 
into account when developing segmentation tools, in order to be able to 
detect lesions with all types of contrasts. In addition, a large variability 
of WMH lesion characteristics can also be observed: the most common 
WMHs are age-related WMH and MS lesions; MS lesions show different 
shape, contrast and distribution compared to age-related WMH (Cal
igiuri et al., 2015; Schmidt et al., 2012). We therefore developed the 
algorithm using a training database embedding eight subjects selected to 
be as representative as possible of the variations of WMHs visibility, by 
ensuring variability in the following criteria: scanners, MRI protocols, 

Fig. 12. 3D T2-FLAIR image and superposed segmentations from LST-LGA, BIANCA and nicMSlesions methods with default (first row) and optimized settings 
(second row). 
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diagnosis (AD, FTD, HC, MS, or patients with cognitive disorders), and 
lesion load. This allowed settings that can perform consistently on a 
wide range of acquisition types, as was confirmed with the evaluation 
results. An important validation of WHASA-3D was indeed conducted on 
a database built from four different cohorts, displaying a wide range of 
WMH and including the same different diagnosis as in the training 
database. Besides, to highlight the adaptation of WHASA to MS lesions 
specificities, we divided this validation dataset equally into “Various 
dementia” and “MS” databases with 30 subjects each. 

WHASA-3D was thus designed not only to ensure proper 3D seg
mentation but also to be able to segment datasets with various contrast 
and lesion characteristics. On the “Various dementia” database, 
WHASA-3D showed an average Dice score of 0.76, compared to 0.77 for 
WHASA-original, which indicates good performance, compared to the 
originally proposed version validated on patients with this type of lesion 

(Samaille et al., 2012). Regarding the “MS” database, intraclass corre
lation (ICC) increased greatly between WHASA and WHASA-3D, point
ing towards a greater correlation with the consensus reference, 
confirmed with the decreased volume error and the better linear 
regression (Fig. 7) between automated and manual segmentation vol
ume. On this database, the compromise between sensitivity and speci
ficity measures, indicated through TPR and FPR, is shifted towards 
higher TPR rather than lower FPR, from WHASA to WHASA-3D. It 
shows, in fact, a better ability to detect every lesion, in line with the fact 
that it is a crucial component of MS diagnosis according to McDonald 
criteria (Thompson et al., 2018). Part of the increased false positive 
regions is due to partial volume effect around MS lesions; lesion edges 
are usually not clearly defined and even experts are often unsure of how 
to delineate border, most of all when dirty WM is involved (Lesjak et al., 
2017; Seewann et al., 2009). This dirty aspect can also influence the 

Fig. 13. Box-and-whiskers plot (median, interquartile range and extrema) showing Dice, F1-score, Absolute Volume Error, True Positive Rate and False Positive Rate 
in comparison to the manual lesion segmentation on the validation subset of the MS database for WHASA-3D (a), LST-LGA default (b), LST-LGA optimized (c), 
BIANCA default (d), BIANCA optimized (e), nicMSlesions default (f) and nicMSlesions optimized (g). 
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estimation of the generalized threshold implemented in WHASA-3D: the 
method tends to segment the hyperintense dirty WM around lesions as 
well, even though they appear less intense than focal lesions, thus 
resulting in a disagreement with the consensus segmentation, though 
these areas are in fact uncertain. It may thus be of interest to distinguish 
both lesion types, in order to better characterise lesions (Dadar et al., 
2021; Seewann et al., 2009). False positives regions can also be found in 
tight cortical folding patterns where GM can appear hyperintense in 3D 
T2-FLAIR images. Most false positives areas of this type are excluded 
with the exclusion mask, but a few still remain due to the high contrast 
between GM and WM. Such an exclusion mask may result in erroneously 
removing cortical WMH that can be found in those areas. However, 
removing cortical false positives is a complex task, as it requires dis
tinguishing them from cortical WMH, which are very relevant in the 
diagnosis of MS (Thompson et al., 2018). This is also the case for 
infratentorial lesions, as tissue segmentations are less precise in infra
tentorial area, and infratentorial lesions can also be falsely removed by 
the exclusion mask. Additional work is planned to improve the seg
mentation of cortical WMH, with the help of specific sequences like 

double inversion recovery sequences (DIR), which better reveal cortical 
WMH compared to the use of FLAIR sequences. 

In order to have an estimate of a consistent aim for the best perfor
mance results were assessed by comparing them to available state-of- 
the-art methods. As stated in previous work (Caligiuri et al., 2015), 
several automated segmentation methods have been developed for MS 
lesions detection, similarly to methods focused on WMH segmentation, 
but the techniques trained in MS patients perform only moderately well 
when applied to elderly patients. On the other hand, automated seg
mentation methods developed for WMH segmentation might perform 
poorly when applied to MS patients. This is partly due to the aspect of 
white matter hyperintensities. In MS, lesions are usually focal with clear 
edges while WMH in the elderly or dementia population have a more 
diffuse pattern. Automatic methods have to take into account the type of 
WMH to process, because they may share the same characteristics (high 
intensities compared to the normal appearing white matter in FLAIR 
sequences) but have very distinct features (edges, localization). We 
therefore focused the comparison study on the MS database, since such 
data had not been used previously for the WHASA validation (Samaille 

Fig. 14. Scatter plots of the manual vs automated lesions volume quantification on the validation subset of the MS database obtained from WHASA-3D, LST-LGA, 
lesionBrain, Lesion-TOADS, BIANCA and nicMSlesions optimized and linear regression for each method. Identity is represented as a dotted line. 
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et al., 2012), and to guarantee that our method worked properly for MS 
patients. The three unsupervised methods (LST-LGA, lesionBrain, 
Lesion-TOADS) and the three supervised methods (LST-LPA, BIANCA, 

and the deep-learning based method nicMSlesions) were compared with 
default settings in order to give an insight of the feasibility of using the 
same set of parameters for all datasets (new or returning patient), for a 
convenient use in clinical routine (Commowick et al., 2018). While 
unsupervised methods are designed to adapt well to new datasets, most 
supervised methods are made available with a pre-trained model ob
tained on a specific dataset, in addition to default parameters settings. 
We therefore used pretrained models provided with nicMSlesions and 
LST-LPA methods (Schmidt et al., 2012; Valverde et al., 2019); and as for 
BIANCA, no pretrained model was available, and it was thus trained on 
the same 8 subjects training database as used for WHASA-3D develop
ment, but the optimal set of parameters reported in (Griffanti et al., 
2016) was used. As could be expected, unsupervised methods mostly 
outperformed supervised methods used with their default configuration 
regarding segmentation accuracy. Among all methods, WHASA-3D 
shows the best volume and spatial agreement with the highest ICC 
and Dice, followed by LST-LGA, lesionBrain and Lesion-TOADS. These 
methods had been specifically designed and validated for MS subjects 
(Schmidt et al., 2012; Shiee et al., 2010; Coupé et al., 2018). Regarding 
supervised methods, although better results were reported in recent 

Fig. 15. Bland-Altman plots on the validation subset of the MS database for each optimized method and their default parameters. Mean bias (straight line) and 95% 
limits of agreements (dotted lines) are also displayed for each method. 

Table 5 
Computational time of the different methods per subject.  

Type Methods Training 
time 
(approx.) 

Preprocessing 
time (approx.) 

Segmentation 
time (approx.) 

Unsupervised WHASA-3D None 10 min 10 min 
LST-LGA None 3 min 2 min 
LesionBrain None N/A Results 

available after 
30 min 

Lesion- 
TOADS 

None N/A 45 min 

Supervised LST-LPA No 
retraining 
possible 

3 min 2 min 

BIANCA 5 min 1–2 h (FSL) 2 min 
nicMSlesions 15 h 15 min 5 min  
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WMH or MS lesion segmentation challenges after retraining on specific 
training datasets (Commowick et al., 2018; Kuijf et al., 2019), these 
methods may show generalisation issues when faced with subjects from 
new centers or with unseen pathological characteristics. This is true for 
both LST algorithms, where LST-LGA (unsupervised) performed better 
than LST-LPA (supervised), with an ICC of 0.83 compared to 0.61. It is 
worth mentioning that the retraining of nicMSlesions using only one 
manual delineated subject as input data is possible, but only if input 
lesion volumes in the given training data are sufficient enough to retrain 
the last layers of the network (Weeda et al., 2019). 

We also compared the performance of three methods (LST-LGA, 
BIANCA and nicMSlesions) after dedicated retraining or parameter 
optimisation, in order to ensure fair comparison and assess the impact of 
optimization and re-training on the segmentation performance. In fact, 
even though it allows to optimise the final segmentation on a given type 
of data, it may be difficult to apply on larger multicentre studies. Please 
note that no optimization step was done for WHASA-3D for the specific 
dataset, as variability was already taken into account in the automatic 
contrast-adapted intensity parameters.After optimisation and retraining 
for the three methods, results were improved both in terms of overlap 
and volume agreement, nicMSlesions showing the larger improvement 
(average Dice and F1-score raised from 0.17 to 0.63 and from 0.06 to 
0.56), thus outperforming all other methods. Results were also improved 
for LST-LGA even though the optimized threshold k for LST-LGA, re
ported in the Supplementary Table S1, corresponded to the lower limit 
of the search range, suggesting a sub-optimal behaviour for this dataset. 
Deep-learning based methods have been proven very efficient in seg
mentation tasks (García-Lorenzo et al., 2013) but may require retraining 
to adapt to new datasets, that is likely to involve high computational 
power to run the training step on a specific hardware GPU, while most 
algorithms can run on regular computer CPU (Kuijf et al., 2019). Here, 
the retraining of nicMSlesions took 15 h to re-train the full 11-layer 
cascaded CNN on the optimization subset. 

While the comparison study presented in this paper allows to eval
uate of the performance on subjects with wide range of lesion load and 
different clinical stages, the MS database used contained data from one 
center only, acquired on a single MRI system (Siemens Magnetom Trio) 
(Lesjak et al., 2017). Ensuring a consistent performance on all data type 
would require a multi-centered dataset, representative of the acquisition 
variability with different MRI acquisition protocols and MRI systems. To 
overcome this issue, an initiative has been proposed to standardize MRI 
sequences for MS (Arevalo et al., 2019; Brisset et al., 2020), but no 
open-access database of MRI images is yet available (Marek et al., 2011; 
Wyman et al., 2013). In addition, although accuracy and robustness 
across different scanners and acquisitions is the most widely performed 
type of validation, clinicians are also very concerned with reproduc
ibility of measures over time and between MRI systems (García-Lorenzo 
et al., 2013). An automated method is considered reproducible and 
consistent if it shows low volume difference and high spatial agreement 
between the scan and the rescan in dedicated experiments (Fartaria 
et al., 2019; Jain et al., 2015; Weeda et al., 2019). This was not yet 
evaluated for WHASA-3D as no such dataset was available but will be 
undertaken in the future to ensure that differences in segmentation 
result from pathological changes rather than from changes related to 
acquisition and segmentation. 

Currently, T1-weighted and T2-FLAIR images are mandatory as in
puts, in order to automatically segment WMH for the WHASA methods. 
In fact, it needs a reliable estimate of the grey matter/white matter 
interface, that is obtained from the tissue segmentation from SPM12. An 
additional T1 is therefore necessary to generate those segmentations, 
even though good quality 3D FLAIR images may be sufficient to derive 
this segmentation. Future work is planned to create a new version of 
WHASA, without the need of T1-weighted images. 

5. Conclusion 

The proposed automated white matter lesion segmentation algo
rithm WHASA-3D has proven to be a reliable extension for MS patients 
of the original method WHASA. WHASA-3D automatically segments 
age-related WMH and MS lesions from 3D T2-FLAIR and T1 images in 
multi-centered datasets with a processing time of twenty minutes per 
subject. Evaluation was performed on 60 patients, acquired on different 
MRI scanners displaying various diagnose and a wide range of lesion 
load, by computing volume and spatial agreement measures as 
compared to expert manual segmentations. For MS lesions, perfor
mances have been further compared with six other methods (three un
supervised and three supervised), with their default settings to recreate 
the use in clinical routine, and after optimization when available, to 
illustrate the maximum potential of methods. Better results have been 
observed in the default settings for WHASA-3D over all methods, and the 
method still shows among the best volumetric and spatial agreement 
after optimization and retraining of methods that could be optimized. 
This suggests that WHASA-3D is a fast, reliable and easy-to-use method 
with no optimisation or retraining needed for the automated segmen
tation of MS lesions and age-related WMH. Nevertheless, further vali
dation on larger datasets and reproducibility studies are needed to fully 
validate our method. 
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Pierrick Coupé, Thomas Tourdias, Pierre Linck, Jose Romero, Jose Manjon. LesionBrain: 
An Online Tool for White Matter Lesion Segmentation. Lecture Notes in Computer 
Science, Springer, 2018,pp.95 – 103. 10.1007/978-3-030-00500-9_11. hal- 
01918438. 

Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., 
Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F.D., Montalban, X., 
O’Connor, P., Sandberg-Wollheim, M., Thompson, A.J., Waubant, E., 
Weinshenker, B., Wolinsky, J.S., 2011. Diagnostic criteria for multiple sclerosis: 
2010 Revisions to the McDonald criteria. Ann. Neurol. 69, 292–302. 

Radue, E.W., O’Connor, P., Polman, C.H., et al., 2012. Impact of fingolimod therapy on 
magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch 
Neurol 69, 1259–1269. 

Rocca, M.A., Anzalone, N., Falini, A., Filippi, M., 2013. Contribution of magnetic 
resonance imaging to the diagnosis and monitoring of multiple sclerosisDiagnosi 
precoce e monitoraggio nella sclerosi multipla: il contributo della risonanza 
magnetica. Radiol Med 118 (2), 251–264. 

Roura, E., Oliver, A., Cabezas, M., Valverde, S., Pareto, D., Vilanova, J.C., Ramió- 
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