An Overview of Current Alternative Models in the Context of Ocular Surface Toxicity

Noémie Bonneau, Christophe Baudouin, Annabelle Réaux-le Goazigo, Françoise Brignole-baudouin

To cite this version:

HAL Id: hal-03540868
https://hal.sorbonne-universite.fr/hal-03540868
Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An Overview of Current Alternative Models in the Context of Ocular Surface Toxicity

Noémie Bonneau a,b,*, Christophe Baudouin a,c,d, Annabelle Reaux-Le Goazigo a, Françoise Brignole-Baudouina,c,e

a Sorbonne Université, INSERM, CNRS, IHU FOReSight, Institut de la Vision, 75012 Paris, France
b Horus Pharma, 06700 Saint-Laurent-du-Var, France
c Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSight, 75012, France
d Université Versailles-Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, APHP, F-92100 Boulogne-Billancourt, France
e Université de Paris, Faculté de Pharmacie de Paris, 75006 Paris, France

* Correspondence: noemie.bonneau@inserm.fr (N. Bonneau)

Abstract

The 21st century has seen a steadily increasing social awareness of animal suffering, with increased attention to ethical considerations. Developing new integrated approaches to testing and assessment (IATA) strategies is an Organisation for Economic Co-operation and Development (OECD) goal to reduce animal testing. Currently, there is a lack of alternative models to test for ocular surface toxicity (aside from irritation) in lieu of the Draize eye irritation test (OECD guideline No. 405) performed in rabbits. Five alternative in vitro or ex vivo methods have been validated to replace this reference test, but only in combination. However, pathologies like Toxicity-Induced Dry Eye (TIDE), cataract, glaucoma and neuropathic pain can occur after exposure to a pharmaceutical product or chemical and therefore need to be anticipated. To do so, new models of lacrimal glands, lens, neurons innervating epithelia are required. These models must take into account real life exposure (dose, time, and tear film clearance). The scientific community is working hard to develop new, robust, alternative, in silico and in vitro models, while attempting to balance ethics and availability of biological materials. This review provides a broad overview of the validated methods for analysing ocular irritation and those still used by some industries, as well as promising models that need to be optimized according to the OECD. Finally, we give an
overview of recently developed innovative models which could become new tools in the
evaluation of ocular surface toxicity within the scope of IATAs.

Short abstract
Until now, the Draize test in rabbits has been the only test performed to anticipate ocular
toxicity of pharmaceutical compounds, mainly irritation. However, in the field of alternative
approaches, new models must be developed and validated. This review aims to give an
overview of the OECD validated methods and of innovative models, which could become
new tools in the evaluation of ocular surface toxicity.

Key words: Draize Eye Test; OECD guidelines; Ocular Surface; In Silico; 3D Multicellular;
Cornea-on-a-chip; Organoids

Introduction
Since the beginning of the 21st century, modern toxicology has been focusing on the 3R
principle, “Reduce, Refine, Replace”, established in 1959 by Russell and Burch, stipulating
that the use of laboratory animals should be only a last resort. Since 2013, in Europe, the
cosmetic industry has been confronted with strict prohibition of evaluating its products on
animals. Integrated approaches of testing and assessment (IATA), promoted by the OECD
(Organisation for Economic Cooperation and Development) might enable validation of new
compounds in this sector (Canavez et al. 2021).
To date, validated alternative models have been available only for the evaluation of potential
ocular surface irritation. Models to predict Toxicity-Induced Dry Eye (TIDE), anterior
segment neuropathies or other ocular surface changes are still in the stage of basic science
research. Furthermore, classification of ocular irritants is based on the United Nations
Organization (UNO) system, i.e. the GHS “Globally Harmonized System of Classification
and Labelling of Chemicals” (Luechtefeld et al. 2016). This international system distinguishes
severe irritants (Category 1), moderate irritants (Category 2A), mild irritants (Category 2B)
and non-irritants (No Category). However, unlike the Draize test, the in vivo reference model
in rabbits, current alternative models for ocular irritation cannot distinguish Category 2A from
2B irritants. These irritants are usually differentiated based on the kinetics of the reversibility
of damage. Of note, the lack of reproducibility of the in vivo test of reference, the Draize test, complicates the validation of alternative models by the ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods) (OECD Webinar 2019a).

In its first section, this review presents updates in the latest methodology for evaluation of ocular irritation, first presenting the five in vitro or ex vivo models validated by the OECD, in combination, to replace the Draize test (Guideline (GL) 405) (OECD, 2020a): Reconstructed human Cornea-like Epithelium (RhCE) viability tests (GL 492) (OECD, 2019a), Bovine Corneal Opacity and Permeability (BCOP) test (GL 437) (OECD, 2020b), Isolated Chicken Eye (ICE) test (GL 438) (OECD, 2018a), Fluorescein Leakage (GL 460) (OECD, 2017), and Short Time Exposure assay (STE, GL 491) (OECD, 2020c). The ocular irritation IATA indicates the combination of tests that should be considered depending on whether the product is suspected to be an irritant (‘top-down’ approach) or is thought to be in the non-irritant category (‘bottom-up’ approach). This review also presents models used by some cosmetic companies that either were or still are under evaluation by the OECD, such as the Isolated Rabbit Eye (IRE) test, Hen’s Egg Test on the Chorio-Allantoic Membrane (HET-CAM). Characteristics and protocol details of the models for ocular irritation are summarized in Table I.

Next, promising models mentioned in the OECD Guidance Document No. 263 (OECD, 2019b) are presented. These models, if optimized and validated, might represent a major asset in classifying new compounds into Categories 2A and 2B: PorCORA (Porcine Ocular Cornea Opacity/Reversibility Assay), EVEIT (Ex Vivo Eye Irritation Test), 3D Hemi-Cornea and SMI (Slug Mucosal Irritation assay).

Finally, in order to prevent complex toxicities as TIDE, glaucoma, cataract, some of which are rare topical side effects, new models presented in the literature could be validated and incorporated into new IATAs, taking into account real-life exposure, pharmacokinetics and knowledge already reported in the literature. Therefore, this final section provides an overview of in silico and in vitro models which could, in combination, enable complete evaluation of ocular surface toxicities within the framework of IATAs.

Alternative models to the Draize test according to OECD GL 405

Reconstructed human Cornea-like Epithelium (RhCE)
Since the last update of GL 492 in 2019 (OECD, 2019a), four models of RhCE are now available to evaluate ocular surface irritation, two of which are considered Validated Reference Methods (VRM): EpiOcular™ (VRM1), SkinEthic™ HCE (VRM2), LabCyte CORNEA-MODEL24 and MCTT HCE™. These RhCE models mimic human corneal epithelium morphologically, histologically, biochemically and physiologically and can be used first in a ‘bottom-up’ approach to identify non-irritant substances. Even though cellular damage can occur through several mechanisms, only cytotoxicity measurements are carried out. Indeed, cell viability is considered to be proportional to the severity of damage and representative of the global response of the ocular surface: mild irritants with low transcorneal penetration alter only the superficial corneal epithelium, whereas moderate or severe irritants can penetrate more deeply, reaching the corneal stroma and sometimes endothelium. This global response would be a correct representation of the damage that could occur in humans after toxic exposure, no matter the cellular mechanisms involved, ranging from slight conjunctival erythema or edema to severe changes such as corneal opacification.

While there may be differences between RhCE models (Table II), mainly concerning the cell types used and duration of epithelium culture, the testing method is similar: direct application of the tested compounds on the 3D epithelium and viability cytotoxicity assays reflecting the mitochondrial metabolic ability of viable cells. If corneal viability diminishes to below the fixed threshold (specific to each RhCE, see Table II), this will suggest classification of the compound as an ocular irritant. Above the threshold, the compound will not be classified and must be combined with another validated GL (437, 438, 460, 491 or in last option, if the test compound is not a cosmetic, GL 405 i.e. Draize test). Nevertheless, the OECD Guidance Document No. 263 (OECD, 2019b) reports the ongoing OECD evaluation of the EpiOcular™ time-to-toxicity (ET₅₀) assay, a test that could enable the differentiation of category 2A from 2B irritants (Kandarova et al. 2018). This new protocol is based on multiple time and concentration exposures. It could represent a major asset in the scope of IATA decision trees, since as of yet, no validated alternative model alone can distinguish between all the categories of irritants.

Another limitation is that GL 492 can only be used for solids, semi-solids, liquids and waxes, since gases and aerosols have not undergone validation procedures. Nonetheless, this aspect should be investigated, since many accidental ocular exposures are caused by volatile compounds (OECD 2019a).
Bovine Corneal Opacity and Permeability assay (BCOP)

Recommended as the first step of a ‘top-down’ strategy, the organotypic BCOP model described in GL 437 (OECD, 2020b) enables differentiation between severe irritants applied to isolated bovine cornea from slaughterhouses. It can also identify non-irritants in a ‘bottom-up’ approach. The eyeballs are kept *ex vivo* for a brief period, during which physiological and biochemical functions remain unaltered. After excision, corneas are anchored on a corneal holder composed of two chambers, both filled with preservation medium. Briefly, the endothelial surface of the cornea is placed on the *o-ring* in the posterior chamber, while the epithelial surface is positioned in the anterior chamber.

Two application methods, adapted to the type of compound being tested, are described in the GL, but an important parameter is verification that the product covers the entire epithelial surface and that the washing step is sufficient to retrieve all of the compound. Irritancy potential is then measured through the *In Vitro* Irritancy Score (IVIS), which combines the diminution of light transmission capacity (corneal opacity, measured with an opacimeter) and the increase in fluorescein sodium passage (permeability, *i.e.* the amount of dye dropped in the anterior chamber and that crosses the corneal thickness). Of note, fluorescein sodium is an anionic compound, not retained by a healthy, negatively charged epithelium. A substance will be categorized as a severe irritant if the IVIS is greater than 55 and as a non-irritant if the IVIS is less than 3. However, if the IVIS is between 3 and 55, additional tests will be required to distinguish category 2 irritants. It is also possible to complement these results with a histologic analysis of the cornea, which procedure is described in the Guidance Document No. 160 (OECD, 2018b).

Of note, since the last guideline update in June 2020, a second opacimeter can be used (LLBO), requiring adaptation of the IVIS equation and decision criteria, but the performance is comparable to OP-KIT, the first opacimeter validated.

Isolated Chicken Eye (ICE)

Like the BCOP model, the ICE aims to discriminate Category 1 GHS substances in a ‘top-down’ strategy but can also be included in a ‘bottom-up’ approach to identify non-irritants. The ICE is regulated by OECD GL 438, last updated in 2018 (OECD, 2018a). This test uses enucleated eyes of chickens for human consumption. In this assay, corneas are not excised. The whole eye is placed in a stainless-steel clamp with the cornea positioned vertically. The clamp is placed in a superfusion chamber to nourish the cornea. At the start of the test, the
clamp is retrieved from the chamber and the cornea positioned horizontally in order to apply
the tested compounds. A qualitative and quantitative evaluation of the cornea is conducted to
establish potential opacities, epithelial morphological alterations (detected by fluorescein
sodium retention) and edema. As for BCOP, corneal opacity and fluorescein retention are
scored, and are associated to a morphological evaluation which is “subjective according to the
interpretation of the investigator” (GL 438). The combination of these scores enables the GHS
classification of test compounds. For instance, with three scores of I, the substance is
considered a non-irritant.

Furthermore, since the last GL update, histological features after paraffin embedding can be
analyzed notably for detergents and surfactant irritants (OECD, 2019b). Indeed, there should
be a correlation between erosion, vacuole formation in the inferior area of the epithelium,
presence of pycnotic nuclei and irreversibility of the damage. GL 438 proposes another table
to score those parameters.

Fluorescein Leakage (FL)

The FL test follows GL 460 (OECD, 2017). The FL method is performed *in vitro* on a semi-
permeable membrane (insert) leading to a single-layer culture of renal tubular cells of Madin-
Darby Canin (MDCK CB997). This is a well described cell line, known to form tight
junctions and desmosomes. Its organization is similar to the non-proliferative apical corneal
epithelium. Furthermore, permeabilization of corneal epithelium is known to be one of the
first phenomena occurring in toxicity-induced ocular irritation.

Changes in tight junctions and desmosomes are proportional to the quantity of fluorescein
sodium that diffuses into the basal chamber, evaluated though FL20%, that is to say the
concentration of the tested compound that leads to an FL of 20% compared to negative
controls (single layer of cells not exposed and insert without cells). The substance tested is
categorized as a severe irritant on the GHS ocular irritation classification if the FL20% ≤ 100
mg/mL.

Integrated into a ‘top-down’ strategy, this simple method enables distinguishing Category 1
chemicals without additional data. However, unlike the previous methods presented, this
method can only be used with water-soluble compounds or mixtures. Indeed, solids in
suspension will precipitate. In addition, it is not applicable to strong bases or acids, volatile
compounds or cellular fixatives, because the toxic mechanisms for these types of compounds
(such as protein coagulation or saponification) cannot be evaluated by FL. Finally, colored or
viscous compounds should be tested with other methods, since their complete washout required before the fluorescent measurement is complicated. Of note, a compound with a strong affinity for the insert membrane can lead to the same problem. Therefore, this affinity must be tested, as described in the GL, before beginning the assay. While reversibility of the epithelial changes cannot yet be evaluated, this will be considered in the next update of the GL, with the possibility of using FL to separate Categories 2A and 2B of the GHS classification.

Short Time Exposure Assay (STE)

The STE, GL 491 (OECD, 2020c), can be considered in ‘bottom-up’ and ‘top-down’ strategies. STE enables the evaluation of all types of chemicals except volatile compounds with a vapor pressure above 6 kPa \(^1\) and solid non-surfactants (not water-soluble after at least 5 min in NaCl). This *in vitro* model consists of a confluent monolayer culture of rabbit corneal fibroblasts (several cell lines are possible, such as CCL60 or SIRC). If cell viability (MTT assay, see Table 2) is less than 70% with both concentrations, the substance is placed in Category 1 without any additional assay. If cell viability is above 70% with at least one concentration, additional tests are required.

Other ocular irritation models evaluated by the OECD

Vitrigel-Eye Irritancy Test (EIT) method

While not mentioned in GL 405 as an alternative method, the OECD introduces this method in its Guidance Document n°263 (OECD, 2019b) and in the 2019 GL 494 (OECD, 2019c), establishing the protocol for the Vitrigel EIT method. This method can be used only in a ‘bottom-up’ approach to identify non-irritants. It evaluates the barrier function of a human corneal epithelium reconstructed on a Vitrigel matrix (ECh-T immortalized cell line; collagen gel obtained by rehydration of a hydrogel that has undergone a vitrification process)(Takezawa *et al.* 2004; Yamaguchi *et al.* 2016) with a Transepithelial Electrical Resistance (TEER) measurement. Of note, this ohmmeter analysis is sensitive to the number of cell passages and to room temperature (Srinivasan *et al.* 2015). This measurement is characterized by three parameters: time lag, intensity and plateau level. A non-irritant product is identified by a time lag > 180 seconds, an intensity < 0.05% and a plateau level ≤ 5.0%. If one of these criteria differs, additional studies are required to classify the product. A
limitation of this method is its small range of application, being limited to liquids or semi-
liquids with a pH > 5. However, unlike previous methods described, it can be used for volatile
compounds and products that interfere with the detection of formazan in the MTT assay.

Ocular irritection®
Ocular Irritection® is an *in vitro* macromolecular test which is the subject of a GL drafted in
2019 (OECD, 2019d). It is suitable either in a ‘bottom-up’ or ‘top-down’ strategy for solids
and liquids with a pH between 4 and 9. It is an acellular system composed of proteins,
glycoproteins, carbohydrates, lipids and low molecular weight compounds. Ocular
Irritvection® test aims to mimic the organized and transparent structure of the cornea after
rehydration (Eskes *et al.* 2014). This enables specific detection of protein coagulation or lipid
saponification mechanisms. Nevertheless, since the system is devoid of cells, cytotoxicity
cannot be evaluated. The matrix and the testing principle are presented in figure 1. Any
change in the matrix organization leads to a modification of the turbidity and reflects the
irritative capacity of the test compound. However, like many alternative models, this testing
method alone is unable to distinguish mild irritants.

Cytosensor Microphysiometer (CM)
Because of the lack of commercial availability of the Cytosensor Microphysiometer
technology, the preliminary GL version released in 2012 (OECD, 2012) for the evaluation of
water-soluble compounds, solids, viscous substances or homogenous suspensions has seen its
development discontinued in 2016 (European Commission 2020a). Nevertheless, it could be
integrated into a ‘bottom-up’ or ‘top-down’ approach if similar instruments were to come to
market. It consists of an adherent, confluent, single layer of mice fibroblasts (cell line L929)
cultured on a polycarbonate insert. These cells are designed to represent conjunctival and
corneal epithelia. The test endpoint is the Metabolic Rate Decrement of 50% (MRD$_{50}$), that is
to say the concentration that reduces the acidification rate by 50%. This measurement reveals
irritation potential, since damaged cells will produce less acidic metabolites in the culture
medium. On the one hand, if the MRD$_{50}$ ≤ 2 mg/mL, the product is considered to be a severe
irritant in a ‘top-down’ approach. On the other hand, if the MRD$_{50}$ > 10 mg/mL, the test
compound is classified as a non-irritant in a ‘bottom-up’ strategy. Of note, the GL mentions
that this testing method could evaluate reversibility if optimized.

Neutral Red Release (NRR)
The NRR test evaluates cytotoxicity on a single layer fibroblast or keratinocyte culture loaded with neutral red 3 hours before the exposure to test compounds (OECD, 2019b). This vital dye incorporates itself into lysosomes of viable cells. Several protocols have been proposed in the literature (Zuang 2001), such as the FRAME protocol based on mice embryonic fibroblasts (3T3-L1 cell line) or the Clonetics Corporation protocol using human keratinocytes. In both cases, the endpoint is the NRR\textsubscript{50}, that is to say the test compound concentration that releases, in the culture medium, 50% of the neutral red incorporated by lysosomes. The more toxic a substance is, the more cellular membranes, including lysosomal membranes, are altered, leading to leakage of intracellular compounds such as neutral red.

Validated by internal procedures in many industries, the ICCVAM is requesting supplementary data on inter-laboratory reproducibility before publishing a GL on the Neutral Red Release assay (OECD, 2019b). It is also being considered for use in combination with the EpiOcular time-to-toxicity assay on RhCE.

Red Blood Cell test (RBC)

The RBC test evaluates the ability of test compounds to disrupt red cell membranes (relation between hemolysis and oxyhemoglobin denaturation) and in this way, to classify products into GHS Categories 1 or non-classified (OECD, 2019b). RBC test can be conducted on red blood cells from various species (pig, sheep, rabbit) (Lewis et al. 1993; Mehling et al. 2007; Pape et al. 1987; Pape 1990). The irritant potential score corresponds to the ratio between the leakage of red blood cell hemoglobin in the supernatant (H\textsubscript{50} concentration inducing a red cell hemolysis of 50%) and oxyhemoglobin (denaturation index, DI). If H\textsubscript{50}/DI > 100, the substance is considered a non-irritant, between 10 and 100 the substance is categorized as a mild irritant (Category 2), between 1-10 as a moderate irritant, and if the H\textsubscript{50}/DI < 1, the compound is classified in Category 1 (severe irritant).

An application of this method on 12 shampoos and 7 conditioners was proposed by Alves et al. (2008), attesting to a 91.6% sensitivity and 100% specificity of the method. However, in the Guidance Document n°263 (OECD, 2019b), the OECD underscores the necessity for more data on the types of compound that can be tested, in other words, the method’s range of application. Indeed, while the literature reports other studies on surfactants, mixtures (Mehling et al. 2007) and eyedrops (Martins et al. 2012), the chemical and physical properties of test compounds must be further investigated.
Isolated Rabbit Eye (IRE)

Although the IRE test is similar to the ICE (compound exposure time, endpoints; see Table 1), this organotypic model on the enucleated rabbit eye has not been validated by the ICCVAM since its 2010 evaluation, due to the lack of a standardized protocol, the lack of data on decision criteria, and the fact that rabbit eyes come from experimental animals and not from slaughterhouses as with BCOP or ICE (Lee et al. 2017; Prinsen and Koëter 1993). Nevertheless, the IRE is accepted in the European Union for distinguishing severe irritants (except alcohols, solids and surfactants, for which there are too many false negatives) (ICCVAM 2010).

Hen’s Egg Test on Chorioallantoic Membrane (HET-CAM)

The HET-CAM is an alternative model developed by Luepke in 1985 and modified to classify irritant compounds. Indeed, the chorioallantoic membrane of the egg is considered to be a reasonable facsimile of the conjunctiva and its vasculature. Of note, from this model was derived another model, the Chorioallantoic Membrane Vascular Assay (CAMVA). The main nuance between the two (see figure 2) could enable differentiation of non-irritants from mild or moderate irritants.

The main advantages of using embryonated eggs are their accessibility, low cost and rapid growth. These eggs can be kept in an incubator for up to 13 days of maturation. After 14 days of growth, the development of the embryo is advanced, and the model is then considered an in vivo model (Kue et al. 2015).

While the ICCVAM did not validate this testing method for distinguishing severe irritants (ICCVAM 2010), this method is still used by some industrials in their internal weight of evidence WoE, these methods being recognized in the European Union. The procedure for opening the eggs without breaking the vascular membrane is described in figure 2. However, one should bear in mind that this testing method has been increasingly criticized, being considered an in vivo model even in the first days of embryonic development.

Models requiring optimization according to the OECD

The models introduced in the following section are models mentioned in the OECD Guidance Document n°263 as interesting models, if optimized, for evaluation of reversibility of ocular
irritation/corrosion, which may thus be able to distinguish between all GHS categories, including category 2 compounds.

Porcine Ocular Cornea Opacity/Reversibility Assay (PorCORA)

PorCORA is an organotypic model similar to BCOP, since it is based on the maintenance *ex vivo* of porcine cornea obtained from slaughterhouses. Its added value lies in the air interface preservation allowing maintenance for 21 days (same as in the Draize reference test, the amount of time needed to evaluate reversibility of damage). Several steps are required to prepare the excised corneas (Vij *et al.* 2017). First, the corneas are placed in a 24-well plate, with the epithelium facing the bottom of the well. A mixture of agar/gelatin/medium is poured onto the corneas, which are then placed in Petri dishes after gelification. The test compounds are applied directly to the corneal surface (10 µL for liquids, 20 mg for solids) for 5 minutes. The corneas are then washed with PBS (Piehl *et al.* 2011). Corneal alterations and their reversibility are then estimated and scored based on the area of staining with fluorescein sodium over the course of 1, 2, 3, 7, 10, 14 and 21 days after compound exposure (European Commission 2020b).

In this way, Piehl *et al.* demonstrated in 2011 that this method gave similar results to the Draize reference test (correlation coefficient of 0.98) with reproducible results for the five control test substances: phosphate buffered saline (PBS), absolute ethanol (EtOH), 3% sodium dodecyl sulfate (SDS), 1% benzalkonium chloride (BAK), and 10% sodium hydroxide (NaOH). Furthermore, in this study, PorCORA identified reversible and irreversible effects. By establishing a PorCORA score, it could be possible to distinguish GHS category 1 products (irreversible alterations before 21 days) from category 2 products (reversible damages before 21 days, with a score returning to 0).

Nevertheless, additional data is needed. Indeed, in this study, Piehl *et al.* found that the method was too sensitive for surfactants. Similarly, in another study conducted on shampoos and hair dyes, PorCORA overestimated the irritant potential (Donahue *et al.* 2011). Finally, a drawback of this model is the progressive opacification of the cornea due to the gel that prevents the endothelium from correctly regulating corneal stromal fluids (Spöler *et al.* 2015).

Ex Vivo Eye Irritation Test (EVEIT)

The EVEIT is an air-liquid interface culture system, enabling maintenance of excised rabbit corneas (from slaughterhouses) for 72 hours following compound application. Briefly, corneas with a scleral ring are removed and anchored in a chamber filled with a minimal
volume of medium to maintain hydrostatic pressure. This *ex vivo* model reflects the biochemical activity of corneal epithelium and endothelium. Its advantage compared to the PorCORA system presented above is that the EVEIT does not lead to corneal opacification during culture (Spöler *et al.* 2015). Decision criteria are evaluated four times over 72 hours enabling differentiation of non-irritants from category 2A irritants (OECD, 2019b; Spöler *et al.* 2015): macroscopic observation of corneal opacity, fluorescein sodium diffusion, corneal thickness and structural changes measured by optical coherence tomography. Each measurement results in a score, similar to those used in the ICE or Draize tests, which were described by Spöler *et al.* in 2015. If preservation time of the corneas *ex vivo* could be improved, this testing method could enable differentiation of all category 2 products. Of note, this method was used by Schrage *et al.* in 2012 to evaluate the effect of artificial tears on corneal epithelial repair after mechanical damage. This study highlights the fact that the models presented in this section could serve equally well for toxicity studies as for pharmacological studies for the development of ophthalmic treatments.

3D Hemi-Cornea

The first *in vitro* system that may potentially discriminate GHS categories 1 and 2 alone, the 3D Hemi-Cornea combines, in an insert, a corneal human epithelium reconstituted from an immortalized cell line with human corneal immortalized keratinocytes which represent stromal cells (Bartok *et al.* 2015; Engelke *et al.* 2013; Zorn-Kruppa *et al.* 2014). The two cell types are separated by a collagen membrane allowing evaluation of the two cell lines independently after a 60 min-exposure of the chemical (Zorn-Kruppa *et al.* 2014). This model is adapted for liquids as well as solids but is constraining since it has to be cultured during 7 days with a daily change of medium. The endpoint measured is metabolic activity and the cytotoxicity MTT test. The distinction between GHS categories non-irritant, 1 and 2 could be observed though the extension and/or localisation of corneal changes (Tandon *et al.* 2015). Moderate irritants lead to a loss of viability of the corneal epithelium and can affect the stroma, whereas severe irritants lead to severe corneal epithelial and stromal alterations. As a result, this system properly classifies category 1 compounds and 80% of category 2 compounds, but only 50% of non-irritant substances, with an overestimation of their irritant potential. A hypothesis to explain these last, disappointing results is that the compounds in this category were frequently viscous and difficult to remove during the washing steps, leading to the deterioration of some epithelial layers (Bartok *et al.* 2015). Furthermore, in
another study, the irritation potential of compounds with extreme pH were again
overestimated, as in other *in vitro* tests, possibly because of the absence of the mucinous layer
of the tear film, which has a buffer effect *in vivo* (Zorn-Kruppa *et al.* 2014).

Nonetheless, this test quoted in the Guidance Document n°263 of OECD seems to be an
option for the evaluation of surfactants, alcohols, ketones, and volatile compounds, in other
words, compounds that, in many other alternative models, lead to false positives results. This
3D hemi-cornea could at the same time allow the evaluation of compound diffusion, since the
test substances need to cross an aqueous collagen membrane.

Slug Mucosal Irritation (SMI) assay

Described in the literature for the evaluation of reversible or irreversible ocular (Lenoir *et al.*
2011a) and nasal (Lenoir *et al.* 2013) stinging, itching and/or burning (SIB), the SMI test
measures the liberation of mucus proteins from *Arion lusitanicus* slugs. This method can
code for ocular discomfort generated by isolated ingredients or final products. As presented
in the schematic protocol Figure 3, the slug’s weight is compared before and after every

Developed by Lenoir *et al.*, this test was used to evaluate shampoos and artificial tears. The
results were correlated with a clinical study (Spearman’s Rank correlation of 0.986, p <
0.001)(Lenoir *et al.* 2011b). Similarly, Petit *et al.* 2017 was able to reproduce this alternative
model in 2017 to evaluate veterinary products. Recently, a new SMI alternative model, using
a “Yellow slug”, was reported to evaluate surface disinfectants used against SARS-CoV-2
(Cutuli *et al.* 2021).

Since it can distinguish category 2 irritant products, optimization and validation of this test is
mentioned to be of interest in the OECD Guidance Document n°263. However, depending on
national regulations, this test might be considered animal experimentation (OECD, 2019b).

New innovative models for ocular surface toxicity evaluation

Mimicking ocular structures *in vitro* is challenging (lacrimal glands, conjunctiva, innervation,
 lens, …). New models are being developed in basic science research, notably using fluidic
and three-dimensional approaches. These technologies of organ-on-a-chip originate from the
area of pharmaceutical research and development (Wilson *et al.* 2015). In addition, this
review will focus on *in silico* approaches, which are required to understand real-life exposure
and thus aid in design of the *in vitro* strategy, reducing time and costs of development. Organoid models will be described in the final part of this section, even though these new cellular structures are mainly studied for the purpose of replacing deficient patient structures. Table III proposes an overview of the selected models.

In silico models

In silico approaches, using computer and mathematical tools, aim to simulate *in vivo* biological processes, mimicking a multicellular organ crossed by biological flows and connected to other structures of the organism. Inspired by the “PB-PK”, *Physiologically Based Pharmacokinetics*, approach (predicting absorption, distribution, metabolism and elimination), these *in silico* methods try to improve toxicological evaluation, taking into account local metabolism, barriers, ... , and to estimate a toxic dose (Knudsen *et al.* 2015). Once the organ is modelled, multiple scenarios can be tested by changing dose, time, method of exposure and other parameters that could influence the risk of toxicity (for instance, enzyme polymorphisms, pregnant women or pediatric differences in metabolism) (Jones *et al.* 2015).

For each product tested, an exhaustive knowledge of its physicochemical properties must come through computerized channels (Brochot *et al.* 2014). To this end, other *in silico* tools can contribute to the information in the literature: *Qualitative and Quantitative Structure Activity Relationship* (QSAR) models that can predict biological properties such as affinity, protein binding, based on chemical structure. These models are available as free access or commercial software (ECHA 2019). To encourage regulatory acceptance of these QSAR models, the OECD released Guidance Document n°69 and created a free access toolbox with some QSAR models (OECD 2020d). First developed for conception of possible pharmaceuticals, some QSAR models aim to predict ocular irritation and damage based on the compound’s toxicodynamic properties: acidity, electrophilicity, chemical reactivity, surfactant effect (OECD, 2019b). For instance, Kulkarni *et al.* (2001) examined membrane interactions of compounds with the stratified lipophilic corneal epithelium to determine the irritant potential of substances already classified by the Draize test *in vivo*.

For local ocular toxicity, it is essential to mimic three main factors that influence ocular surface penetration and distribution: static barriers with different transport systems (claudins, zonula occludens), dynamic clearance (lacrimal fluids, Schlemm’s canal drainage) and metabolic factors (enzymes, efflux pumps, receptors). In 2018, Pak *et al.* applied these
principles to develop an *in silico* rabbit cornea model (epithelium, stroma, endothelium), the
Quasi-3D CoBi (Computational Biology) model which includes passive transport
(paracellular, transcellular) through the corneal epithelium (barrier to the passage of
hydrophilic compounds), transport through the stroma (barrier to the passage of lipophilic
compounds) and protein binding (such as glycosaminoglycans which can retain hydrophilic
compounds). To do so, the research team created a precise geometric representation of the
multilamellar corneal structure, applying complex mathematic equations to reflect the various
flows. Nevertheless, this *in silico* model should be elaborated by adding all of the ocular
structures (such as conjunctiva, tear film, neurons, retina) and should be based on human data
to improve the predictions made through these models. The lack of human data on barriers,
thickness and porosity of layers, local metabolism, physical constants, ..., remains to this day
a barrier to the development of *in silico* models and use as a high throughput tool.
Implementation of this work would be extremely time-consuming and would require a great
deal of computing power but would improve extrapolations.
By enabling the identification of target structures, these models could guide the first steps of
the AOP (adverse outcome pathway), which are currently the subject of toxicological
development as supports for implantation of IATA, limiting unnecessary *in vitro* studies.
However, one should bear in mind that if an important metabolic pathway used by the
compound tested is missed in the model, the predictions will not be accurate.

3D multicellular models
Numerous 3D models are described in the literature, improving the phenotype of the
epithelium formed. Nevertheless, many of them neglect the tear film, which covers the
epithelia of the ocular surface, as well as the innervation of the ocular surface, which are,
however, two central structures in understanding and anticipating TIDE and anterior segment
neuropathies. Thus, this section describes three models that could become assets in the
development of IATAs for ocular surface toxicity: the first model presented would allow
evaluation of tear film thickness and composition, while the following ones would permit
analysis of the toxic impact on neurons interacting with corneal cells.

- **Conjunctiva and lacrimal gland coculture**
The literature is rich in alternative corneal models but delves less into conjunctival and
lacrimal gland toxicity, although these structures which are essential for production of the tear
film, a fundamental structure to be evaluated for the anticipation of TIDE. Nevertheless, in 2017, Lu et al. proposed a coculture between rabbit primary epithelial conjunctival cells and spheroids of rabbit primary lacrimal acinar cells. To our knowledge, this is the first in vitro 3D model capable of producing aqueous and mucinous layers of the tear film.

After testing several configurations, direct contact between the two cell types, as presented in figure 4, was found to present the best configuration, with optimal epithelial morphology, permeability, phenotype and lacrimal fluid production, even though direct contact is not the most physiological configuration (no direct contact in humans between these types of cells).

To highlight the usefulness of their model, they demonstrated the protective effect of dexamethasone, a corticosteroid known to reduce inflammation of the ocular surface in TIDE, after exposure to pro-inflammatory IL-1β. This effect could not be seen on a simple monoculture of conjunctival cells. While this model does not allow the formation of a complete tear film with a lipid layer, it remains an interesting advance for the in vitro anticipation of TIDE. Further studies could be conducted by adding meibocytes in the culture, to obtain a complete tear film.

- 3D model of nerve-stroma interactions

To date, only a few models consider corneal innervation in a toxic response. Sharif et al. (2018) explored the corneal stroma-neuron interaction in depth by proposing a 3D coculture on an insert between HCF (human primary corneal fibroblasts) and SH-SY5Y neurons, a well-characterized human neuroblastoma cell line derived from bone marrow. This model is based on the de novo production of extracellular matrix by fibroblast cells and tries to mimic the in vivo nerve-stroma interaction in the cornea, improving the comprehension and anticipation of corneal cell damage as well as pathways of neuronal regeneration.

However, further studies are needed to characterize the neuronal phenotype of this model and therefore the ability of this model to mimic toxicity affecting the ocular surface. Indeed, SH-SY5Y neurons do not have the same phenotype as primary sensory neurons from trigeminal nerves, the main innervation of the ocular surface (Mélik-Parsadiantz et al. 2018), since they can develop two distinct phenotypes (neuroblastic or epithelial-like). SH-SY5Y includes adherent cells but also floating viable cells whose biological significance is not yet understood. Also, neuroblastic SH-SY5Y cells express tyrosine hydroxylase and dopamine-β-hydroxylase, two catecholaminergic markers, which are not characteristic of trigeminal neurons, which are primarily sensory neurons (Kovalevich and Langford 2013).
Nevertheless, transfected SH-SY5Y could be considered to study certain ocular surface symptoms such as stinging or itching. This was the objective of the NociOcular test based on a 2D model of SH-SY5Y expressing the transient receptor potential cation channel subfamily V member TRPV1, known to be implicated in these ocular surface phenomena (Dua et al. 2018). Using this test, Forsby et al. (2012) completed an ocular tolerability study of 19 shampoos, resulting in only one false negative and two false positives compared to a clinical evaluation. NociOcular measures, by fluorescence, the intracellular calcium flux mediated by the activation of TRPV1 and correlated to ocular discomfort. A similar study was conducted by Narda et al. in 2019 on the ocular tolerance of sunscreens, confirming the need to evaluate disturbances in neuronal transmission and not just damage to the ocular surface epithelial cell in a comprehensive study.

- Triculture of neuronal, epithelial and stromal cells

Wang et al. 2017 proposed an air liquid interface (ALI) triculture between human primary corneal cells, human corneal stromal stem cells and Chicken Dorsal Root Ganglion (DRG) neurons, supported by silk proteins. The use of silk proteins aims to mimic the mechanical properties of the cornea, so as to favour neuronal development. Figure 5 explains the cellular organization of the model. Through this set up, Wang et al. obtained optimized axonal development as well as a better epithelium / stromal phenotype and viability. At the moment, corneal tissue models are limited to one or two weeks of culture and do not include the nervous component. This ALI culture, integrating corneal interactions with neurons while conserving its integrity for 28 days, enables to evaluate toxic induced alterations of phenotype and viability. This model represents a progress in tissue engineering, promoting the importance of cell types interactions for better differentiation and maturation.

Cornea-On-a-Chip models

The focus of much attention in recent decades, organs-on-a-chip seek to miniaturize an organ, facilitate the assembly of cell types and recreate the dynamics of an organ (Mandenius 2018). These chips are mainly based on microfluidic technics, using biocompatible polymers such as polydimethylsiloxane (PDMS), a transparent, flexible and gas impermeable organomineral material. The advantage of these systems lies in the small amount of biological material needed, while improving the representation of dynamic in vivo parameters compared to a classic 2D cell culture. Nevertheless, protocols have not yet been standardized, scale-up
remains unfeasible for routine experimentation, and the analytical challenge (because of the small quantity of cells) remains to be solved (Sosa-Hernández et al. 2018).

Because of the complexity of multicompartmental and multi-layered ocular structures, establishing an eye-on-a-chip is a hard task. If we focus on the anterior segment, some corneas-on-a-chip are described in the literature and attempt to include ocular surface flow (blinking of the eyelids, tear secretion, shear stress). Furthermore, microfluidics and compartmentalization on a chip are also being considered to improve the mimicry of ocular surface innervation, taking into account the fact that only nerve endings can be directly exposed to a topically applied toxicant.

Cornea-on-a-chip, ocular flows and shear stress

A current limitation of corneal barrier models is the lack of flow to mimic the shear stress caused on the epithelium by eyelid blinking, which is responsible for tear film movement, and as a result of drug or toxicant distribution and its effects on the ocular surface. Of note, this is also a limitation of the Draize test when attempting to most closely approximate human physiology, since rabbits blink less frequently than humans, resulting in a longer exposure time (Maurice 1995).

In 2018, to study passage through the corneal barrier, Bennet et al. 2018 proposed a cornea-on-a-chip with a pulsatile flow to represent blinking or a continuous flow for tear secretion. A confluent epithelium of 5 to 7 layers with a stable phenotype and permeability was obtained on a PDMS chip with a fibronectin coated membrane (mimicking Bowman’s layer) and immortalized human corneal epithelial cells. In this system, eyedrop pharmacokinetics and toxicity can be evaluated by applying either the continuous or pulsatile flow for 5 hours. After this experimentation time, 98% of the compounds were found to be eliminated; compared to a static model, it improves the evaluation of absorption, bioavailability and toxicity. Nevertheless, additional studies are required to understand the impact of the two types of flow, since compound penetration appeared more significant with the pulsatile flow.

Similarly in 2020, Abdalkader and Kamei published a four chamber microfluidic model with uni- and bi-directional flow to study the impact of shear stress on corneal epithelium barrier phenotype. This PDMS system, composed of human corneal epithelial cells on a porous membrane, aims to simulate human cornea, with an apical side in contact with lacrimal fluid (bidirectional flow for eye blinking) and a proximal side with the aqueous humor (unidirectional flow mimicking drainage through Schlemm’s canal). After having obtained a
stratified (2-3 layers), permeable (evaluation by fluorescein diffusion), phenotyped (expression of tight junction proteins such as the zonula occludens proteins), they applied both flows for 24 hours and observed that shear stress did not alter cellular adhesion and improved the expression of cytokeratins, which are important proteins for flexibility, cellular elasticity and maintaining corneal barrier integrity. In addition, this model could take into account the compound real time of remanence in the tissue. Nevertheless, these two models are limited in their representation of the cornea, since they lack formation of the stromal and endothelial layers, corneal elements that are notably essential for aqueous humor flow. This limitation is addressed by Bai et al. (2020) with their cornea-on-a-chip, a PDMS compartmentalized chip using primary murine corneas; they simultaneously isolate both epithelial and endothelial corneal cells and plant them into two separate compartments with a collagen membrane to mimic Bowman’s layer.

- Cornea and conjunctiva-on-a-chip

Another approach to the 3D ocular model on-a-chip was designed in 2019 by Seo et al., combining human primary corneal epithelial cells and immortalized conjunctival cells (epithelial and glandular cells), cultured in an ALI system. The primary corneal cells are incorporated into a collagen matrix which mimics the stromal layer. A perfusion system mimics tear flow, while a biomimetic system recreates blinking of the eyelids. Their complementary data gives a better representation of this complex model. Seo et al. obtained a pluristratified epithelium with 7 to 8 layers like human cornea, expressing specific markers (ex. cytokeratins 3, 19) and producing a “tear film” of 6 µm comparable to the in vivo thickness. Like the previous models, they proved that shear stress induced cellular differentiation and limited pro-inflammatory cytokine production. To attest to the utility of their model, they demonstrated the anti-inflammatory action of lubricin, a protein-like mucin. While this model does not include the vasculature or immune cells normally present in the conjunctiva nor the nerve endings of the ocular surface which participate in tear secretion, this chip represents a major improvement for pharmacological and toxicological compound evaluation, especially for a TIDE IATA.

- Corneal innervation compartmentalization

Currently, most ocular surface models, like the flow systems just discussed, neglect toxic effects on ocular surface innervation, whereas during a toxic exposure, trigeminal nerve
endings can be altered, with an indirect impact on neuronal cell bodies. Therefore, stimulating primary cell cultures of neurons directly does not mimic real life exposure, and, as a result, mechanisms of toxicity are impossible to analyze properly. In order to improve anatomical representation of the ocular surface innervation, Sarkar et al. (2012) used a Campenot device to evaluate morphological alterations (neurite fragmentation, axon breaks, lack of regeneration) of mice primary trigeminal neurons after exposition to BAK, preservative contained in many eyedrops. With this model, they highlighted a dose-dependent toxicity of BAK on neurites. Campenot devices were the first systems to allow neuronal compartmentalization but new microfluidic organ-on-a-chip devices could be considered. Indeed, these microchips can be precisely designed to optimized axonal guidance of trigeminal neurons (Courte et al. 2018). This innovative system also allows to analyze separately nerve ending and cell body responses. Finally, this model could be improved by adding corneal epithelial cells in the distal compartment to allow interaction between these cells and the nerve endings, coming even closer to corneal physiology. It could provide a better understanding of toxic mechanisms and facilitate establishment of TIDE AOPs and screening of new therapeutic agents (anti-inflammatory, axonal regeneration, neuroprotection). Nevertheless, a limitation of this model is the use of primary murine cells, which does not entirely respect the 3R rule to “Reduce, Replace, Refine,” central in IATA development. Even if primary cells are a better representation of a peripheral neuronal phenotype, in the framework of alternative methods, induced Pluripotent Stem Cells should be considered, as in the organoid models described below.

Organoid models of the anterior segment of the eye

While the definition can vary between authors, organoids are 3D structures, derived from embryonic stems cells or induced Pluripotent Stem Cells (iPs), capable of self-organization on their framework (such as porous membrane and hydrogel) (Duboule 2019). A Pubmed search with “eye organoid” as keywords reports mostly retinal organoids or organoids destined to be transplanted in humans to replace deficient structures. Few articles address anterior segment organoids for in vitro evaluation of pathologic or toxic pathways. However, some of the organoids described could be adapted for toxicological studies.

- Corneal organoids
In 2017, Foster et al. presented a corneal organoid derived from an IMR90.4 iPs cell line (Foster et al. 2017) and published their precise methodology in 2020 (Foster et al. 2020). Mature transparent organoids are obtained after 120 days of cellular sequential selection, forced aggregation and differentiation. Their lamellar structure is composed of epithelial, stromal and endothelial layers and expresses specific corneal markers (cytokeratins 3, 14, collagen of type I, V, VII). Even if any toxicological study has already been conducted, this model could be further optimized to evaluate the impact of toxic compounds on the interactions between the three main corneal layers (epithelium, stroma, and endothelium). Nevertheless, cell differentiation sometimes appears incomplete, leading to the presence of some retinal cells within the corneal organoid. Other protocols presented to obtain corneal organoids for transplantation seem to result in pure corneal organoids, such as that of Susaimanickam et al. (2017), but additional studies are needed to evaluate the reproducibility of these models.

- Lens organoids

In 2018, Murphy et al. addressed the unsolved problem of obtaining pure lens cells from human embryonic pluripotent stem cells (CA-1 cell line). Their objective was to elaborate a simple, reproducible method to study lens pathologies and anticipate toxicity-induced cataracts. To this end, they put in place a complex, semi-automated selection protocol based on knowledge of embryonic development, with successive inhibition and activation of the FGF, TGF-β and Wnt pathways (Yang et al. 2010) and magnetic selection of ROR1+ expressing cells (orphan receptor expressed on epithelial lens cells). These organoids remain viable for 42 days, expressing, among others, α and β crystallins, present in vivo in lens fibers and necessary for focusing of light. In this study, they proved the ability of these microlenses to evaluate the toxic potential of a drug candidate, Vx-770, tested in 2016 for cystic fibrosis. This compound, which has induced toxic cataracts in rats, also altered the lens organoids’ ability to focus light. To summarize, after reproducibility and intra-laboratory transferability is addressed, this innovative model could be used routinely for the evaluation of mechanisms of toxicity-induced cataract, which still remain poorly understood, as well as the efficacy of new treatments.

Conclusion
The 21st century has seen an increase in the movement toward alternative methods to animal testing, especially since the complete ban of animal experimentation in cosmetics. Ocular toxicity studies are no exception, and studies still need to be conducted for new compounds. Indeed, the alternative models to the Draize reference test present similar disadvantages, among which figure the absence of detection of conjunctival or iris damage, the absence of evaluation of systemic toxicity that can occur after ocular exposure and the possibility of false negatives or false positives. Furthermore, none of them alone is able to identify all of the GHS ocular irritant categories, and reversibility of damage is still difficult to evaluate, explaining the impetus of the OECD to optimize some other models. In recent decades, toxicology procedures have aimed to develop IATAs to circumvent these limitations of the alternative methods. Putting aside Draize reference test, known for its lack of reproducibility which complexifies the validation of alternative models by the ICCVAM (OECD Webinar 2019a), and constructing new models, from scratch, based on established AOPs, might be necessary to improve the robustness of the toxicology approaches and results for human use. Indeed, we need to break free from Draize eye irritation test and its poor quality of result to improve inter-laboratory validation of new models (Spielmann 2014) that could enable the identification of a new category of compounds, very low irritants, which requires finer sensitivity methods. This validation step is essential to develop robust alternative approaches to animal testing in the ocular surface field, as it has been done for skin sensitization. Indeed, in June 2021, OECD released GL 497 on “Defined Approaches for Skin Sensitisation”, describing the integrated testing strategy and combination of tests that can be used in toxicology studies in replacement of the reference test on rabbits, the Local Lymph Node Assay (OECD 2021).

In the field of ophthalmology, IATAs should extend the assessment of toxicity to pathologies other than irritation, especially Toxicity-Induced Dry Eye (TIDE), that can occur after chronic exposure to very low concentrations (Bonneau et al. in press). While much less frequent, a toxic compound can also lead to, cataract, glaucoma or ocular surface neuropathies after local exposure. These effects should be considered, taking into account real-life exposure to the compound, determined through literature searches and in silico models. As a result, new drugs, cosmetic compounds, or other chemicals, should be investigated for acute irritation and/or for chronic adverse events, depending on real-life use, requiring the development and validation of models and tests with short and/or repeated exposures.
Establishing integrated decision trees for these newly considered adverse events will require a precise understanding of toxic mechanisms, with the development of Adverse Outcome Pathways (AOP), a concept also promoted by the OECD with the establishment of new collaborative tools such as AOP wiki, Effectopedia and the e.AOP.Portal (OECD Webinar 2019b). The innovative models presented in the last section of this review could, after assessment of robustness and regulatory validation, be included in IATAs. They could be a key asset to understanding molecular mechanisms and establishing AOPs. Validation of new models will be a lengthy process, since they should be developed in such a way as to be as cost-effective and least constraining as possible (ethics and supply logistics).

Disclosures of Conflicts of Interests

CB is consultant for Aerie, Alcon, Allergan, Horus Pharma, Santen and Théa.

CB and FBB has received research grants from Horus Pharma, Santen and Théa.

NB has received funding from Horus Pharma and l’Agence Nationale de la Recherche et de la Technologie (ANRT) through a Convention Industrielle de Formation par la Recherche (CIFRE).

Acknowledgment

The authors thank Dr Kevin CLARK, MD, for checking and editing the manuscript.

References

Table I. Summary of models validated or under evaluation by the OECD. *Values given in OECD GL to identify Category 1 or not-classified substances (depending on assay applicability) in comparison to the Draize eye irritation test.

Table II. Summary of validated RhCE models for ocular irritation according to OECD GL 492.

Table III – Summary of innovative models with potential for evaluation of ocular surface toxicity.

Figures

Figure 1. Schematic presentation of the matrix created in the Red Blood Cell test and the principle of denaturation (modified from OECD Webinar 2019a).

Figure 2. Procedure to prepare the embryonated egg in the HET-CAM testing method (personal images, not published).

Figure 3. Schematic evaluation protocol for ocular discomfort in the slug irritation model (modified from Lenoir et al. 2011). CP: Contact Period; SIB: Stinging, Itching and Burning.

Figure 4. Schematic representation of the coculture established between conjunctival epithelial cells and lacrimal spheroids (modified from Lu et al. 2017).

Figure 5. Schematic comparison of human corneal structure with 3D triculture model structure (modified from Wang et al. 2017).
Mechanism of Ocular Irritation assay

- **Before irritant exposure**
 - Well
 - Partition membrane
 - Stabilizers
 - Macromolecular Matrix (proteins, glycoproteins, carbohydrates, lipids, low molecular weight compounds)

- **After irritant exposure**
 - 24h exposure
 - H₂O (rehydration)
 - Denatured Matrix

- **Test Sample (Irritant chemical)**
 - 25, 50, 75, 100 and 125 μL for liquids and mg for solids

- **Irritant Chemical**
 - Induces Protein Denaturation (Turbidity, Spectrophotometry at 405nm)
 - Organized Macromolecular Matrix
 - Clear solution

- **Protein denaturation**
 - Protein coagulation
 - Lipid saponification
 - → Disordered matrix
 - → Cloudy solution

- **Maximal Qualified Score (MQS)**
 - MQS 0-12.5: non-irritant
 - MQS 12.5-30: other tests required
 - MQS > 30: severe irritant
Egg opening procedure

Exposure to test compound
- HET-CAM: 30 sec, 2, 5 min
- CAMVA: 30 min

Irritation Score, IS
- hemorrhage appearance time,
- vessel lysis appearance time,
- protein coagulation apparition time
Conducted over a 24-hour period

CP1
- Exposure time: 15 min
- Compound volume: 100 μL

CP2
- Exposure time: 15 min
- Compound dose: 100 μL

CP3
- Exposure time: 15 min
- Compound dose: 100 μL

Rest period (1 hour)
- Petri dish change

Measure n°1 of mucus production

Percentage n°1 of the weight change

Measure n°2 of mucus production

Percentage n°2 of the weight change

Measure n°3 of mucus production

Percentage n°3 of the weight change

Total mucus production

Legend:
- Petri dish
- Slug

Light SIB = 3 to 8%
Moderate SIB = 8 to 15%
Severe SIB > 15%

SIB: stinging, itching and/or burning
Lacrimal gland cell spheroids

Matrigel

Conjunctival goblet cells

Conjunctival stratified epithelial cells

Transwell bottom

Direct interactions between conjunctival epithelial cells and lacrimal spheroids

Air Liquid Interface
<table>
<thead>
<tr>
<th>Ocular irritation tests</th>
<th>Draize test</th>
<th>RhCE</th>
<th>BCOP</th>
<th>ICE</th>
<th>Fluorescein Leakage</th>
<th>STE</th>
<th>Vitrigel EIT</th>
<th>Ocular Irritation<sup>®</sup></th>
<th>IRE</th>
<th>HET-CAM / CAMVA</th>
<th>CM</th>
<th>NRR</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>In vivo, albino rabbit</td>
<td>In vitro, 3D human reconstructed epithelium</td>
<td>Ex Vivo, isolated bovine cornea</td>
<td>Ex Vivo, enucleated chicken eye</td>
<td>In vitro, tubular kidney MDCK CB997 cell line, monolayer, semi-permeable membrane</td>
<td>In vitro, monolayer confluent rabbit corneal fibroblasts (ex. CCL60 cell line)</td>
<td>In vitro, human reconstructed epithelium (Vitrigel matrix)</td>
<td>In vitro, acellular system, macro-molecular matrix (proteins, lipids, carbohydrates,...)</td>
<td>Ex vivo, enucleated rabbit eye</td>
<td>Chorioallantoic Membrane of chicken embryo egg</td>
<td>In vitro, monolayer mice fibroblasts from L929 cell line cultivated on a polycarbonate insert</td>
<td>In vitro, monolayer of 373-11 fibroblasts or NHEK human keratinocytes (FBAM/C) protocol</td>
<td>Isolated red blood cells</td>
</tr>
<tr>
<td>Recommended strategy</td>
<td>Last resort, (forbidden for cosmetics)</td>
<td>Bottom-Up</td>
<td>Bottom-Up, Top-Down</td>
<td>Bottom-Up, Top-Down</td>
<td>Top-Down</td>
<td>Bottom-Up, Top-Down</td>
<td>Bottom-Up, Top-Down</td>
<td>Bottom-Up, Top-Down</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>(If validated: GL - Bottom-Up, Top-Down)</td>
<td>Not recommended (supplementary data required)</td>
<td>Not recommended (supplementary data required)</td>
</tr>
<tr>
<td>Field of applicability</td>
<td>Liquids, solids, aerosols</td>
<td>Liquids, semi-solids, solids, waxes</td>
<td>Liquids, semi-solids, creams, waxes (including surfactants)</td>
<td>Substances and mixtures</td>
<td>Water-soluble substances and mixtures</td>
<td>All types of products (except volatile substances, non surfactant products)</td>
<td>Chemical products with pH > 5, including volatile or coloured compounds (excluding solids)</td>
<td>Solids and liquids with 4 ≤ pH ≤ 9</td>
<td>Substances and mixtures</td>
<td>Substances and mixtures</td>
<td>Water-soluble compounds (including mixtures), solids, viscous substances/ uniform suspensions</td>
<td>Substances and mixtures</td>
<td></td>
</tr>
<tr>
<td>GSH categories</td>
<td>1, 2A, 2B, not-classified</td>
<td>Not-classified</td>
<td>1, not-classified</td>
<td>1, not-classified</td>
<td>not-classified</td>
<td>1, not-classified</td>
<td>1, not-classified</td>
<td>(accepted in European Union for category 1)</td>
<td>HET-CAM accepted in European Union for category 1</td>
<td>1, not-classified</td>
<td>not-classified</td>
<td>1, not-classified</td>
<td></td>
</tr>
<tr>
<td>Compound exposure time</td>
<td>21 days</td>
<td>See Table 2</td>
<td>10 min (other exposure times if scientific rationale)</td>
<td>10 sec (rinsing removal)</td>
<td>1 min (followed by a 30min incubation of fluorescein)</td>
<td>5 min (two concentrations, 0.5% and 0.05%)</td>
<td>3 min</td>
<td>24h (5 concentrations, 25, 50, 75, 100, 125 μL or μg)</td>
<td>10 sec (rinsing removal)</td>
<td>30 sec, 2, 5 min (HET-CAM) / 30 min (CAMVA)</td>
<td>810 sec (13, 55 min, followed by a 6 min wash out cycle)</td>
<td>1 or 5 min (FRAME or Cletonic protocol)</td>
<td>10 min to 1 hour at room temperature (under continuous stirring)</td>
</tr>
<tr>
<td>Endpoints</td>
<td>Conjunctiva (chemosis, redness, tearing), Corneal opacification, Iris (swelling, light reactivity)</td>
<td>Mitochondrial metabolic capacity</td>
<td>Corneal opacity; Fluorescein retention; Morphological alteration (evaluated after 30 min, 2, 2, 3, and 4 hours of product retrieval)</td>
<td>Fluorescein diffusion (spectrophotometry at 530 nm)</td>
<td>Mitochondrial metabolic capacity</td>
<td>TEER (measured every 10 s during 3 min)</td>
<td>Turbidity variations (spectrophotometry at 405 nm)</td>
<td>Corneal opacity, edema; Fluorescein penetration; Epithelial changes (evaluated after 30 min, 1, 2, 3, and 4 hours of product retrieval)</td>
<td>Hemorrhage / vessel lysis / protein coagulation appearance times</td>
<td>Dose-response study, Release of preloaded neutral red, 3 hours before exposure (spectrophotometry at 546-550 nm)</td>
<td>Dose-response study, Release of predosed neutral red, 3 hours before exposure (spectrophotometry at 546-550 nm)</td>
<td>Hemoglobin leakage (photometry at 540 nm); Oxyhemoglobin denaturation (spectrophotometry at 575 nm)</td>
<td></td>
</tr>
<tr>
<td>Threshold or Score</td>
<td>Maximal ocular irritation (Max.O.I)</td>
<td>MTT or WST threshold (see table 2)</td>
<td>In Vitro Irritancy Score (IVIS)</td>
<td>Addition of score for each endpoint graded from I to IV</td>
<td>Fluorescein Leakage of 20% (FE<sub>20%</sub>)</td>
<td>MTT threshold</td>
<td>Score that combines time lag, intensity and plateau level</td>
<td>Maximal Qualified Score (MQS)</td>
<td>Addition of scores for each endpoint</td>
<td>Irritation Score (IS)</td>
<td>Metabolic Rate Decrement of 50% (MRD<sub>50</sub>)</td>
<td>Neutral Red Release of 50% (NRR<sub>50</sub>)</td>
<td>ratio concentration inducing a red cell hemolysis of 50% / Denaturation index (H<sub>0</sub>/ΔI)</td>
</tr>
<tr>
<td>Ocular irritation tests</td>
<td>Draize test</td>
<td>RhCE</td>
<td>BCOP</td>
<td>ICE</td>
<td>fluorescein leakage</td>
<td>STE</td>
<td>Vitrigel EIT</td>
<td>Ocular Irritation</td>
<td>IRE</td>
<td>HET-CAM / CAMVA</td>
<td>CM</td>
<td>NRR</td>
<td>RBC</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----</td>
<td>----------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Reference</td>
<td>EpiOcular™, 80% (96/121) SkinEthic™ HCE, 84% (168/200)</td>
<td>79% (150/191)</td>
<td>83% (142/172)</td>
<td>77% (117/151)</td>
<td>83% (120/140)</td>
<td>78% (73/93)</td>
<td>74% (65/88)</td>
<td>78% (110/141)</td>
<td>69% (41/59)</td>
<td>Data not found</td>
<td>Variable, protocol dependent</td>
<td>96.7% (Alves et al. 2008)</td>
</tr>
<tr>
<td>Specificity</td>
<td>Reference</td>
<td>EpiOcular™, 37% (21/55) SkinEthic™ HCE, 28% (29/103)</td>
<td>25% (32/126)</td>
<td>7% (9/127)</td>
<td>7% (7/103)</td>
<td>1% (1/86)</td>
<td>70% (23/33)</td>
<td>81% (55/68)</td>
<td>6% (4/62)</td>
<td>64% (18/28)</td>
<td>2% (1/48)</td>
<td>Variable, protocol dependent</td>
<td>100% (Alves et al. 2008)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Reference</td>
<td>EpiOcular™, 4% (3/57) SkinEthic™ HCE, 5% (5/97)</td>
<td>14% (9/65)</td>
<td>47% (21/45)</td>
<td>56% (27/48)</td>
<td>51% (20/39)</td>
<td>83% (50/60)</td>
<td>50% (10/20)</td>
<td>34% (27/79)</td>
<td>0% (0/31)</td>
<td>20.5% (7/34)</td>
<td>Variable, protocol dependent</td>
<td>91.6% (Alves et al. 2008)</td>
</tr>
</tbody>
</table>

Main limits
- 3R rule ethical problem
- Forbidden for cosmetics
- Inter/Intra laboratory variability
- Over-estimation of toxicities occurring in humans

- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- Over-estimation for pour alcohols, ketones
- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- No toxicity evaluation of eyelid, iris, and other ocular structures
- No evaluation of gas and aerosols
- Reduced field of applicability
- No standardized protocol
- No sufficient data on decision criteria and inter-laboratory reproducibility
- No standardized protocol
- Embryo egg can be considered as animal experimentation depending on countries
- No evaluation of gas and aerosols
- No sufficient data on inter-laboratory reproducibility
- Reduced field of applicability (supplementary data needed)
- No sufficient data on field of applicability
<table>
<thead>
<tr>
<th></th>
<th>OECD GL 492</th>
<th>EpiOcular™</th>
<th>SkinEthic™ HCE</th>
<th>LabCyte CORNEA-MODEL24</th>
<th>MCTT HCE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type</td>
<td></td>
<td>Primary human keratinocytes from human epiderma</td>
<td>Immortalized human corneal epithelial cells</td>
<td>Primary human corneal epithelial cells</td>
<td>Primary human corneal epithelial cells</td>
</tr>
<tr>
<td>Field of applicability</td>
<td></td>
<td></td>
<td>Solids, liquids, semi-solids and waxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validated Reference Methods (VRM)</td>
<td></td>
<td>MRV1</td>
<td>MRV2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3D development</td>
<td></td>
<td>At least three viable cell layers and of a non keratinized surface</td>
<td>At least four viable cell layers that include basal columnar cells, transitory amplifier cells and squamous superficial cells</td>
<td>At least three viable cell layers and of a non keratinized surface</td>
<td>At least three viable cell layers and of a non keratinized surface</td>
</tr>
<tr>
<td>Compound exposure time</td>
<td></td>
<td>Liquids: 30 min</td>
<td>30 min</td>
<td>1 min</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solids (or liquids non applicable with a pipette)</td>
<td>6 hours</td>
<td>4 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>24 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>Cytotoxicity test (Non irritant threshold)**</td>
<td></td>
<td>MTT (> 60 %)</td>
<td>MTT (>50%)</td>
<td>WST-8 (>40%)</td>
<td>WST-8 (>35% for liquids; > 60% for solids)</td>
</tr>
</tbody>
</table>

* The barrier function of the 3D reconstructed cornea epithelia must be validated based on their ability to resist penetration by cytotoxic compounds such as Triton X-100 and sodium dodecylsulfate.

** The two colorimetric tests, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and WST (water-soluble tetrazolium salts)-8 tests are similar. In the first one, formazan is formed intracellularly, requiring the step of cell lysis with isopropanol before the absorbance measurement, while in the second one, formazan is present directly in the cell culture medium. This colorimetric measure is proportional to the number of live cells (Pauly et al. 2009).
<table>
<thead>
<tr>
<th>Multicellular 3D models</th>
<th>Models on-a-chip</th>
<th>Organoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell types</td>
<td>Corneal-on-a-chip</td>
<td>Cornea</td>
</tr>
<tr>
<td>Primary epithelial conjunctival rabbit cells</td>
<td>HCE human corneal epithelial cell line</td>
<td>IMR90.4 IPS cell line</td>
</tr>
<tr>
<td>Primary rabbit acinous lacrimal glands spheroids</td>
<td>Stroma human stem cells (hNSCs)</td>
<td>human pluripotent embryonic stem cells (hESC line CA1)</td>
</tr>
<tr>
<td>Primary human corneal fibroblasts</td>
<td>HCE human corneal epithelial cell line</td>
<td>Or</td>
</tr>
<tr>
<td>Human neuroblastoma SH-SYSY cell line</td>
<td>Stromal human stem cells (hNSCs)</td>
<td>Primary human corneal epithelial cells</td>
</tr>
<tr>
<td>Neuronal cells (DRG)</td>
<td>Cornea-on-a-chip and shear stress</td>
<td>Compartmentalized corneal neurons</td>
</tr>
<tr>
<td>Air liquid interface culture on silk protein to better mimic mechanical corneal properties and improve neuronal development</td>
<td>Mimic lacrimal flow generated by eye blinking (bidirectional flow)</td>
<td>Cornea-on-a-chip</td>
</tr>
<tr>
<td>Advantages</td>
<td>Mimic continuous flow generated by lacrimal secretion</td>
<td>Cornea</td>
</tr>
<tr>
<td>Production of aqueous and mucin lacrimal layers</td>
<td>Mimic aqueous humour evacuation through Schlemm’s canal (unidirectional flow)</td>
<td>Lens</td>
</tr>
<tr>
<td>Production de novo of extracellular matrix by fibroblasts</td>
<td>Mimic eyelid blinking through biomimetic system</td>
<td>Separate nerve endings (distal compartment) from neuronal cell bodies (proximal compartment) to better mimic physiology and independently evaluate the impact of a toxic on nerve endings</td>
</tr>
<tr>
<td>Mimic the interactions of nerves with the stroma</td>
<td>Evaluated parameters</td>
<td>Lamellar structure of the cornea (epithelium, stroma, endothelium) identifiable at 30 days of culture</td>
</tr>
<tr>
<td>Permeability of tight junctions (conjunctival epithelium) to dextran</td>
<td>References</td>
<td>Formation of a fibrillar structure characteristic of the lens</td>
</tr>
<tr>
<td>Lacrimal fluid thickness</td>
<td>Collagen and fibrosis gene markers (alpha-SMA)</td>
<td></td>
</tr>
<tr>
<td>Epithelial gene marker (KRT4)</td>
<td>Structural changes (transmission electron microscopy)</td>
<td></td>
</tr>
<tr>
<td>Mucin gene marker / production (MUC5AC)</td>
<td>Neuronal activation markers (cFOS, TRPV1, TRPML8, etc)</td>
<td></td>
</tr>
<tr>
<td>Inflammatory gene marker (IL-1β, MMPs)</td>
<td>Cell viability (LIVE/DEAD Viability/ Cytotoxicity Kit)</td>
<td></td>
</tr>
<tr>
<td>Evaluated parameters</td>
<td>Epithelium thickness</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Permeability of tight junctions (conjunctival epithelium) to dextran</td>
<td>References</td>
<td>Collagen and fibrosis gene markers (alpha-SMA)</td>
</tr>
<tr>
<td>Cell viability (LIVE/DEAD Viability/ Cytotoxicity Kit)</td>
<td>Permeability of tight junctions (conjunctival epithelium to dextran)</td>
<td></td>
</tr>
<tr>
<td>Structural changes (transmission electron microscopy)</td>
<td>Epithelium thickness</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Neuronal activation markers (cFOS, TRPV1, TRPML8, etc)</td>
<td>Permeability of tight junctions (conjunctival epithelium to dextran)</td>
<td></td>
</tr>
<tr>
<td>Inflammatory gene marker (IL-1β, MMPs)</td>
<td>Epithelium thickness</td>
<td>References</td>
</tr>
<tr>
<td>References</td>
<td>Permeability of tight junctions (conjunctival epithelium to dextran)</td>
<td>Foster et al. 2017</td>
</tr>
<tr>
<td>Sharif et al. 2018</td>
<td>Permeability of tight junctions (conjunctival epithelium to dextran)</td>
<td>Susam-Anticak et al. 2017</td>
</tr>
<tr>
<td>Wang et al. 2015, Wang et al. 2017</td>
<td>Permeability of tight junctions (conjunctival epithelium to dextran)</td>
<td>Foster et al. 2020</td>
</tr>
<tr>
<td>Bennet et al. 2018</td>
<td></td>
<td>Murphy et al. 2018</td>
</tr>
<tr>
<td>Abdalkader and Kamei 2018, Bai et al. 2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>