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Background: Patient-ventilator synchronization during non-invasive ventilation (NIV) can

be assessed by visual inspection of flow and pressure waveforms but it remains time

consuming and there is a large inter-rater variability, even among expert physicians.

SYNCSMART
TM

software developed by Breas Medical (Mölnycke, Sweden) provides an

automatic detection and scoring of patient-ventilator asynchrony to help physicians

in their daily clinical practice. This study was designed to assess performance of the

automatic scoring by the SYNCSMART software using expert clinicians as a reference in

patient with chronic respiratory failure receiving NIV.

Methods: From nine patients, 20 min data sets were analyzed automatically by

SYNCSMART software and reviewed by nine expert physicians who were asked to

score auto-triggering (AT), double-triggering (DT), and ineffective efforts (IE). The study

procedure was similar to the one commonly used for validating the automatic sleep

scoring technique. For each patient, the asynchrony index was computed by automatic

scoring and each expert, respectively. Considering successively each expert scoring

as a reference, sensitivity, specificity, positive predictive value (PPV), κ-coefficients, and

agreement were calculated.

Results: The asynchrony index assessed by SYNSMART was not significantly different

from the one assessed by the experts (18.9 ± 17.7 vs. 12.8 ± 9.4, p = 0.19). When

compared to an expert, the sensitivity and specificity provided by SYNCSMART for DT, AT,

and IE were significantly greater than those provided by an expert when compared to

another expert.
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Conclusions: SYNCSMART software is able to score asynchrony events within

the inter-rater variability. When the breathing frequency is not too high (< 24), it

therefore provides a reliable assessment of patient-ventilator asynchrony; AT is over

detected otherwise.

Keywords: non-invasive ventilation, patient ventilator asynchrony, chronic obstructive pulmonary disease,

ineffective triggering, monitoring, automatic scoring

1. INTRODUCTION

Nocturnal non-invasive ventilation (NIV) is recognized as an
effective treatment for chronic hypercapnic respiratory failure.
Monitoring NIV during sleep is a necessary adjunct to daytime
assessment of the treatment, which may affect prognosis, quality
of sleep, or morning dyspnea (1–4). A systematic approach
for determining undesired events such as leaks, upper airway
obstruction (UAO) with or without a decrease in respiratory
drive, and patient-ventilator asynchrony (PVA) from polygraphy
performed under NIV was provided by the SomnoNIV group
(5–7). An asynchrony index (AI) greater than 10% is quite often
observed (8–12) and may be sleep-dependent (13). PVA is often
the source of discomfort (11, 14). During long-term home NIV,
a high prevalence of ineffective efforts (IEs) in patients with
obstructive and restrictive diseases using polygraphic assessment
was reported by Fanfulla et al. (13) and Guo et al. (10) and was
later confirmed by Ramsay et al. with a parasternal EMG (12).

In general, waveforms of pressure and flow contain all
the necessary information required for identifying the type of
asynchrony events (AEs) (6, 7, 9, 11, 15–19). Pressure waveforms
provide a direct access to ventilator cycles. The flow results from
a combination between ventilator cycles and patient breathing
cycles. Interpreting these waveforms is not always simple,
primarily because the interplay between these two cycles is not
trivial. Indeed, the ability of intensive care unit (ICU) physicians
to score AEs is quite low (20, 21) and scarcely implemented due
to a lack of skills (22). Nevertheless, IEs can be reliably detected by
visual inspection (19). Specific training in mechanical ventilation
increases the ability to identify AEs from waveforms, but the
years of experience are not necessarily associated with a better
ability to recognize the three main AEs [IE, double-triggering
(DT), and auto-triggering (AT), the latter one being less often
well-recognized] (21).

An automatic analysis of the pressure and flow waveforms
is required to substantially shorten the long duration spent
performing visual scoring (23). It was shown that detection of IEs
by the means of an algorithm applied to the flow and pressure
in the ventilation circuit was possible (24–29). All studies, but
two, were performed in invasive ventilation where the leak is
not relevant. Moreover, either only IEs were often considered
(24, 25, 27) or only AEs without any further specifications (26,
28, 30). DT has only been considered in two studies (29, 31).
ATs were never investigated with an automatic detection. It is
therefore important to develop an algorithm to automatically
detect the three main AEs (IE, DT, and AT) for NIV. The

SyncSmart
TM

software was developed for such purpose, which

works from the pressure and airflow waveforms sampled at the
device rate (here 64 Hz). This study aimed to is to assess the
ability of this algorithm to detect the three main PVA events
during pressure support ventilation (PSV) by only processing
flow and pressure waveforms.

2. MATERIALS AND METHODS

Nine stable patients monitored under NIV (PSV mode with
a backup frequency) in the Pneumology Unit Care of the
Corporació Parc Tauli (Sabadell, Spain) were included in
this study. The data were randomly selected from a study
focused on the prevalence of AEs. This study was approved
by the local ethics committee of Corporació Parc Tauli
(CIR2010/015). Written informed consent was obtained from
patients. Nine expert physicians from France, Germany, Italy,
The Netherlands, Spain, Turkey, and the United Kingdom
reviewed the automatic scorings.

Two restrictive patients, one obstructive patient, three patients
with chronic obstructive pulmonary disease (COPD), and three
patients with amyotrophic lateral sclerosis (ALS) were selected.
They were ventilated with different devices: three with a Vivo
40 (Beas Medical, Mölnlycke, Sweden), four with a Lumis 150,
one with an Astral 150 (ResMed, North Ryde, Australia), and
one with a Trilogy (Philips Respironics, Murrysville, USA). Each
patient used a full-face mask. The waveforms were recorded
in napping patients in their most comfortable position during
the initiation of mechanical ventilation or during routine
controls in a quiet room. Flow Q, airway pressure Paw, and
belt waveforms Bthorax and Babdom were measured. The data
were acquired using an external polygraph (Powerlab 16Sp,
ADInstruments, Sydney, Australia), equipped with a pressure
transducer (model 1050, ADInstruments, Sydney, Australia) and
a pneumotachograph (model S300, instrumental dead space
70 ml, resistance rp = 0.0018 cmH2O/l/s, ADInstruments,
Sydney, Australia), both inserted in the ventilation circuit close
to the mask and with respiratory inductance plethysmography
belts (Pro-Tech, Canada). The polygraph was connected to a
computer equipped with data acquisition software (Chart 7.0,
ADInstruments, Sydney, Australia). The sampling frequency of
measurements was fs = 1, 000 Hz, but the data were then
resampled at the frequency fV = 64 Hz, as used by SyncSmart
software. The acquired data were read by the SyncSmart software
in a text format.

For each patient, we recorded a long session of NIV. One 20-
min window of data was extracted from each of the recordings:
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FIGURE 1 | Excerpt from the 20-min times series recorded in patient 1. The leakage 8 is averaged over each ventilatory cycle. The belt signals Bthorax and Babdom

were provided to the physicians for reviewing the automatic scoring. The ventilatory cycles at t = 713 s and t = 728 s (marked with red cross) were automatically

discarded by SyncSmart due to its excessively turbulent aspect and because the leakage 8 exceeds the threshold 8t, here equal to 18 l min−1.

The selected data window starts at least 5 min after the beginning
of the session to avoid transient patient-ventilator interactions as
commonly observed. No other criterion was used to select these
windows. The belt signals, only used by the expert physicians
to review the automatic scoring produced by the SyncSmart
software, were filtered to remove the long-term drift and to
improve their readability. A typical excerpt of the four measured
waveforms with the total (intentional and non-intentional)
leakage computed by SyncSmart is shown in Figure 1.

The SyncSmart software is analyzes the pressure Paw and the
flow Q, either measured by the ventilator or by the external
sensors as in the present protocol. The SyncSmart software
considers three ventilator settings: expiratory positive airway
pressure (EPAP), inspiratory positive airway pressure (IPAP), and
the backup frequency (fbck) at which the ventilator delivers the
pressure cycles. The software computes a leakage

8 =
1

tend − tinit

∫ tend

tinit
Q(t) dt (1)

where tinit is the time at which the inspiratory, effort is initiated
and tend is the time at the end of expiration (tend is also the time

at which the next inspiratory effort is initiated). According to this
equation, the leakage 8 has a constant value over each cycle.
This leakage is used to discard the excessively turbulent parts
of the waveforms. As exemplified in Figure 1, it is impossible to
reliably score these cycles, neither by visual inspection by expert
physicians nor by an automatic algorithm. The corresponding
ventilatory cycles are thus marked with a red cross and are
discarded from the statistical analysis. The events scored by
SyncSmart software are shown in Figure 2 and are defined
as follows.

DT Double-triggered ventilatory cycles for which there are two
pressure rises during one inspiratory effort;

AT Auto-triggered ventilatory cycles when the pressure rise is
not triggered by an inspiratory effort and thus occurs during
the expiratory phase;

IE Ineffective efforts when there is a patient inspiratory effort,
which is not followed by a pressure cycle delivered by the
ventilator;

Bck Backup cycles when the pressure rise is triggered by the
ventilator according to the backup frequency fbck;
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FIGURE 2 | (A) Double-triggering. (B) Auto-triggering. (C) Ineffective effort. Examples of double-triggering (DT), auto-triggering (AT), and ineffective efforts (IEs) in a

patient ventilated with a pressure support ventilation (PSV) mode. Waveforms of pressure P, flow Q, thoracic belt Bthorax, and total leakage 8.
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TABLE 1 | Patient characteristics.

# G BMI Disorders TT IPAP EPAP fbck Device

1 F 26 Restrictive: > 48 16 4 12 Breas Vivo 40

Kyphoscoliosis + hiatal hernia

2 F 34 OHS < 2 13 3 14 ResMed Lumis 150

3 F 30 Restrictive: < 2 20 5 18 Breas Vivo 40

kyphoscoliosis + Obesity

4 F 37 COPD > 120 21 10 12 ResMed Lumis 150

5 M 28 COPD 24 21 5 10 ResMed Lumis 150

6 M 23 COPD 12 22 6 14 ResMed Lumis 150

7 F 22 ALS 1 13 4 16 Respironics Trilogy

8 F 78 ALS 3 20 6 12 ResMed Astral 150

9 F 22 ALS 9 17 4 14 Breas Vivo 40

Experience of a patient in mechanical ventilation is reported in months. The ventilator type is also reported.

G, Gender; BMI, body mass index (kg.m−2 ); TT , training period in months; IPAP, inspiratory positive airway pressure (cmH2O); EPAP, expiratory positive airway pressure (cmH2O); fbck ,

backup frequency (cycle per min).

N Ventilatory cycles are considered normal when there is
absence of one of the events described above.

The asynchrony index (AI) is defined as

AI = 100
NDT + NAT + NIE

Ntot
; (2)

where Ntot is the number of ventilatory cycles (N, Bck, DT, AT,
IE, and discarded cycles). AI is expressed as a percentage.

All the physicians have been working with NIV for 21.5 ± 7
years and, consequently, are considered as experts with NIV.
All of them were asked to independently review the automatic
scoring of PVA produced by SyncSmart according to their
skills and knowledge. Expert physicians were reviewing the
scoring by visual inspection of the pressure and flow as used
by the SyncSmart software in addition to the belt signals as
recommended by Gonzales-Bermejo et al. (6) and Longhini et al.
(32), providing a reliable gold standard scoring. Since there
is a long experience in sleep scoring for reviewing automatic
scoring, we chose to reproduce the corresponding methodology:
starting from the automatic scoring, we asked each expert
physicians to individually correct it, and then, we compared
the corrected scoring among each other and with the automatic
scoring (33–35). The software contains a functionality that allows
the physician to review the automatic scoring and to correct
the type of ventilatory cycle. The physician may also add or
remove a ventilatory cycle. Since the expert physicians have the
belt signals, they can identify UAO which may be defined by
the decrease in patient flow during a pressure cycle delivered
by the ventilator (6). By definition, there is no effective IE
and the pressure rises are triggered by the backup frequency
fbck: The SyncSmart software thus scored these ventilatory
cycles as Bck cycles. Consequently, backup cycles scored as
obstruction by physicians are retained as Bck cycles for the
statistical analysis.

Physicians were thus asked to focus on the main PVA events,
that is, on IE, AT, and DT. Physicians were moderately under
“time pressure” since they had approximately 2 min to review

1 min of tracing. Each physician reviewed at least 110 min of
tracing; consequently, each patient recording was reviewed by
at least five expert physicians. The automatic scoring was then
compared to the reviewed scoring of each expert, which was
considered as a reference. Inter-rater comparisons were also
computed by selecting successively each scorer as a reference
and then by computing the mean values. The number of each
type of AE and the was computed. We computed the sensitivity
(Se), specificity (Sp) PPV, κ-coefficients, and agreement when
SyncSmart scorings were compared with the scorings of the
experts. These quantities were also computed to compare experts
with each other as commonly carried out for assessing inter-rater
agreement in sleep scoring (33–35). Student’s t-test is used with a
significance level at 0.05.

3. RESULTS

Characteristics of the patient at enrollment and ventilator settings
are reported in Table 1. Five patients were well-established on
mechanical ventilation, and four were recently initiated. A total
of 4,201 ventilatory cycles were analyzed.

The nine physicians performed the analysis of the flow,
pressure, and belt waveforms using the SyncSmart graphical
interface. The number of AEs as scored by SyncSmart and as
scored by the experts is reported for each patient in Table 2.
On average, the SyncSmart software reported the same smaller
numbers of DT (4.1 ± 3.6 vs. 6.6 ± 13.0, p = 0.31) and IE
(24.1±21.7 vs. 22.0±21.5, p = 0.39) as the by experts. Conversely,
the automatic scoring reported significantly more AT than the
experts (71.7± 88.0 vs. 25.5± 35.3, p = 0.0036). The Se, Sp, PPV,
κ-coefficient, and agreement are reported in Table 3 in which
the results provided by SyncSmart software are successively
compared with each expert, and where each expert is compared
to one another. The AI assessed by SyncSmart is not significantly
different from the at assessed by the experts (18.9 ± 17.7% vs.
12.8± 9.4%, p = 0.19) as shown in Figure 3. Se and Sp provided
by SyncSmart for N, Bck, DT, and IE are significantly greater than
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TABLE 2 | Distribution of asynchrony events (AEs) according to the automatic scoring by SyncSmart.

Ntot NIE NAT NDT AI NBck NX Nmod fbreath

1 S 324 5 7 3 4.6% 237 36 – 13

E 307 9.4 14.1 1.6 8.4% 186 54

(4.0) (7.0) (1.2) (2.2) (27.8) (12.6)

2 S 375 16 6 4 6.9% 105 1 – 15

E 360 22.0 3.5 2.7 7.8% 84.7 41.0

(4.9) (2.2) (1.5) (1.5) (9.3) (15.8)

3 S 565 41 0 5 8.2% 39 14 – 22

E 541 46.5 5.2 4.0 10.0% 37.7 26.2

(4.5) (6.7) (2.2) (1.3) (5.0) (15.8)

4 S 459 18 15 3 8.1% 65 30 – 15

E 449 16.8 18.2 3.6 8.7% 53.2 – 39

(14.3) (3.1) (2.7) (3.9) (11.5) (34.0)

5 S 498 69 147 6 44.6% 0 72 – 32

E 498 71.8 44.5 1.3 23.1% 1.8 – 96

(7.4) (68.4) (1.0) (13.2) (0.6) (69.6)

6 S 430 4 63 3 16.3% 254 12 – 17

E 430 1.6 64.4 1.6 16.5% 253 12.2

(0.5) (2.2) (1.4) (0.4) (2.0) (0.5)

7 S 743 29 221 3 34.1% 0 9 – 36

E 743 12.8 24.8 1.3 7.3% 1.8 151

(12.3) (17.0) (0.5) (2.2) (1.7) (95)

8 S 497 33 183 13 46.1% 251 17 – 24

E 492 24.6 88.4 1.6 31.8% 24.4 206

(25.0) (47.7) (7.2) (12.2) (25.3) (54)

9 S 310 3 0 0 1.6% 2 0 – 12

E 312 1.6 1.8 1.6 1.7% 9.4 12.2

(1.1) (1.3) (3.9) (1.3) (11.1) (13.2)

The mean numbers of AE according to the expert physicians are also reported with the SD between parenthesis. The breathing frequency fbreath (in breath per min) as evaluated by the

SyncSmart software is also reported.

S, SyncSmart; E, experts; Ntot, total number of detected ventilatory cycles in the automatic scoring (s) and the mean number of ventilatory cycles once the scoring is reviewed by

the experts (E); IE, ineffective effort; AT, auto-triggering; DT, double-triggering; AI, asynchrony index; Bck, backup cycles; X, discarded from the analysis due to too high leakage; mod,

modified by the expert; fbreath, breathing frequency.

those provided by experts when compared to one another. The
PPV for IE is significantly greater for the automatic scoring than
for experts. The inter-scorer variability for DT and AT is nearly
twice that of IE. AT is clearly the event that leads to the most
important discrepancies between the automatic scoring and the
experts (Table 2), particularly for patients 5, 7, and 8 (Table 4).

4. DISCUSSION

4.1. Comparison With Other Studies
This study confirms that the inter-rater variability between
physicians to detect PVA events during NIV by visual inspection
is pretty large for the three main AEs (DT, AT, and IE).
This was already shown by Longhini et al. (32). Most often
physicians recognize correctly the presence of an AE but they
had difficulties to discriminate them; for instance, it is rather
difficult to distinguish DT from a combination of AT-N. Our

results show that the events detected by automatic scoring
were well recognized by expert physicians but scored as a
different AE. This explains why the inter-rater variability is
greater than the disagreement with the automatic scoring. This
partly explains the large inter-rater variability for determining
the type of PVA although the inter-rater variability in the AI
is rather low (the variance is equal to 9.9%). For six of the
nine patients, there is a slight trend in SyncSmart to miss some
AEs (about 10% as detailed in Table 2) as exemplified with
the AT shown in Figure 1 (t = 738 s) that is considered
as a normal cycle. It is also known that IE may be missed
from a simple waveform analysis (36). Conversely, in three
patients (5, 7, and 8), there was an over detection of AT. Over-
detection of AT occurred in two patients with ALS and one
patient with COPD whose breathing frequencies were greater
than 24 breath per min (see Table 2). Indeed, the other six
patients had a breathing frequency that is lower and AT as
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TABLE 3 | Sensitivity (Se), specificity (Sp), positive predictive value (PPV), κ-coefficient, and agreement for the automatic scoring by SyncSmart successively compared to

each expert and for each expert successively compared to one another.

AE Sensitivity Specificity PPV κ-coeff. Agreement

Sync. Inter Sync. Inter Sync. Inter Sync. Inter Sync. Inter

N 0.92 0.90 0.84 0.78 0.91 0.90 0.37 0.33 0.87 0.83

(0.10) (0.10) (0.21) (0.25) (0.10) (0.10) (0.13) (0.13) (0.14) (0.13)

p = 0.084 p = 0.23 p = 0.23 p = 0.13 p = 0.17

Bck 0.63 0.60 0.98 0.96 0.64 0.62 0.30 0.28 0.74 0.72

(0.45) (0.40) (0.03) (0.05) (0.45) (0.41) (0.22) (0.19) (0.34) (0.26)

p = 0.20 p = 0.0013 p = 0.15 p = 0.36 p = 0.10

DT 0.65 0.55 0.99 0.99 0.62 0.56 0.29 0.26 0.75 0.72

(0.40) (0.41) (0.02) (0.03) (0.37) (0.41) (0.18) (0.19) (0.27) (0.26)

p = 0.082 p = 0.0029 p = 0.26 p = 0.18 p = 0.47

AT 0.71 0.60 0.95 0.97 0.62 0.60 0.29 0.26 0.77 0.75

(0.38) (0.36) (0.10) (0.08) (0.40) (0.36) (0.19) (0.16) (0.24) (0.18)

p = 0.031 p < 10−5 p = 0.42 p = 0.0044 p = 0.35

IE 0.90 0.81 1.00 1.00 0.92 0.81 0.45 0.40 0.94 0.88

(0.21) (0.16) (0.01) (0.01) (0.20) (0.17) (0.10) (0.18) (0.15) (0.21)

p = 0.031 p = 0.046 p = 0.058 p = 0.0056 p = 0.030

SDs are reported in parenthesis.

PPV, positive predicitive value; Sync., SyncSmart vs. experts; Inter, an expert vs. another one; AE, asynchrony event; N, normal; Bck, backup cycle; DT, double-triggering; AT,

auto-triggering; IE, ineffective effort.

Values in bold fonts are those for which SyncSmart has better results than the inter-rater variability.

FIGURE 3 | Asynchrony index (AI) computed from the SyncSmart scoring and the mean AI (with the standard deviation) computed from the expert scorings for each

patient and for all patients, respectively.

correctly detected. Even with this overdetection, the main result
of this study is that automatic scoring is within the inter-
rater variability and provides, in general, a lower bound for
the AI.

To our knowledge, this pilot study is the first attempt to the
assess performance of software to automatically detect DT, AT,
and IE from the pressure and flow waveforms. In most of the
previous studies, only IEs were investigated (24, 25, 27, 31). These
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TABLE 4 | Sensitivity (Se), specitify (Sp), PPV, κ-coefficient, and agreement between (i) the experts and the automatic scoring by SyncSmart and (ii) between experts,

successively computed for each patient.

Sensitivity Specificity PPV κ-coeff. Agreement

Sync. Inter Sync. Inter Sync. Inter Sync. Inter Sync. Inter

P1 0.81 0.72 0.98 0.97 0.84 0.72 0.38 0.33 0.88 0.82

(0.28) (0.31) (0.03) (0.05) (0.25) (0.32) (0.12) (0.14) (0.12) (0.14)

P2 0.91 0.78 0.98 0.97 0.85 0.79 0.42 0.36 0.91 0.84

(0.17) (0.28) (0.04) (0.05) (0.25) (0.28) (0.10) (0.13) (0.17) (0.19)

P3 0.73 0.74 0.98 0.97 0.74 0.74 0.36 0.35 0.83 0.84

(0.41) (0.38) (0.05) (0.32) (0.41) (0.38) (0.20) (0.18) (0.27) (0.20)

P4 0.82 0.79 0.96 0.95 0.90 0.82 0.40 0.36 0.90 0.86

(0.17) (0.18) (0.07) (0.09) (0.12) (0.17) (0.07) (0.07) (0.07) (0.07)

P5 0.66 0.55 0.94 0.93 0.55 0.53 0.25 0.23 0.69 0.70

(0.42) (0.40) (0.10) (0.14) (0.42) (0.39) (0.19) (0.18) (0.30) (0.22)

P6 0.94 0.71 0.99 0.92 0.97 0.70 0.47 0.30 0.97 0.77

(0.10) (0.38) (0.02) (0.18) (0.05) (0.38) (0.04) (0.19) (0.04) (0.25)

P7 0.69 0.57 0.90 0.88 0.53 0.57 0.23 0.21 0.67 0.67

(0.43) (0.42) (0.17) (0.22) (0.43) (0.41) (0.20) (0.31) (0.30) (0.25)

P8 0.59 0.55 0.90 0.91 0.56 0.55 0.22 0.23 0.67 0.69

(0.43) (0.35) (0.12) (0.09) (0.35) (0.35) (0.18) (0.16) (0.27) (0.24)

P9 0.60 0.46 0.90 0.85 0.62 0.46 0.25 0.15 0.67 0.56

(0.49) (0.48) (0.28) (0.31) (0.48) (0.48) (0.24) (0.21) (0.37) (0.10)

P 0.76 0.69 0.95 0.94 0.74 0.69 0.34 0.30 0.81 0.78

(0.35) (0.36) (0.12) (0.14) (0.36) 0.36) (0.18) (0.17) (0.25) (0.22)

SDs are reported in parenthesis.

Sync., SyncSmart; Inter, inter-scorer; PPV, positive predictive value.

different algorithms were detecting IEs with Se and Sp greater
than 0.90 as observed with SyncSmart. One study investigated
DT in 67 patients but there is no information on the validation
of the algorithm (29). Two studies investigated AE without
distinguishing them. One reported the AI with a Se and a Sp
at about 0.90 (28). The second one investigated the asynchrony
between patient and ventilator (30). The latter study was, in fact,
devoted to neurally adjusted non-invasive ventilator (NAVA),
and the algorithm uses the diaphragm electrical activity, pressure,
and flow waveforms. So, its purpose was different from our pilot
study. None of these studies, whose main characteristics are
reported in Table 5, investigated AT, which is, as revealed in this
study, the most difficult AE to determine, even when the belt
signal is provided.

In the study of Mulqueeny et al. (31), DTs were defined as
two pressure cycles separated by less than 500 ms. This definition
does not allow to distinguish a DT from a combination of AT-
N. Distinguishing these two types of AEs is indeed sometimes
very difficult, thus explaining the low Se found for these two
types of AE, from the SyncSmart software as well as from the
experts. In DT, the first oscillation of the flow has an amplitude
that is larger than the second one (7, 37). During AT, the patient
is still expiring: the inspired volume should be therefore smaller
than for that normal cycle, thus inducing lower amplitude flow
waveforms (7, 37). This is a possible way to discriminate DT from

AT-N (37). It seems that when the breathing frequency is too
high, such feature is no longer reliable: this could explain the over
detection of AT observed in our study.

Some studies show that more than 30% of patients in NIV
have more than 10% of AEs (11, 38, 39). In our cohort, 44% of
patients had AI > 30%. Omitting the over detected AT, 349 AEs
were actually detected. This is not sufficient for robust results and
investigating a larger cohort is required. Nevertheless, previous
study showed that the detection of AEs is inversely related to their
prevalence, indicating that the ability to recognize PVA is reduced
when their occurrence increases (20, 32). For these reasons,
asynchrony events were not too numerous during our ventilation
sessions for optimizing the ability of physicians to correctly
recognize the asynchrony events. The Se, PPV, κ-coefficients, and
agreement are the lowest for the three patients, for which AT was

over detected and, consequently, with AI> 34%. Clearly, this
drawback of SyncSmart should be corrected. As physicians are

commonly doing for sleep scoring (40), in our study, experts start

also from the automatic scoring.

4.2. Limitations of the Study
There are possible limitations in this study. The first being that
the experts were not blind to automatic scores and had, in fact, to
reviewed them. This may create a bias by reducing the inter-rater
variability compared to scoring from raw tracings. Nevertheless,
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TABLE 5 | Brief overview of the studies devoted to automatic scoring of AE in mechanical ventilation.

Reference Events Sensitivity Specificity Npatient Nbreath

Mulqueenyl et al. (31) IE 0.59 0.99 ICU-NIV 23 5,624

Chen et al. (24) IE 0.93 0.93 ICU 14 5,899

Cuvelier et al. (25) IE 0.95 1.00 NIV 9 2,127

Blanch et al. (27) IE 0.92 0.80 ICU 8 1,024

Chiew et al. (28) AI 0.90 0.88 ICU 11 5,701

de Haro et al. (29) DT — — ICU 67 9,694,573

Dorduin et al. (30) AE — — NIV 11 —

The type of AE, sensitivity (Se), and specificity (Sp), when provided, the ventilation mode [intensive care unit (ICU) or non-invasive ventilation (NIV)], the number of patients analyzed, and

the number of breaths are reported for each of them.

IE, ineffective effort; AI, asynchrony index; DT, double-triggering; AE, asynchrony event.

even with this bias, the statistics (κ-coefficients and agreement as
reported in Table 3) are still in favor of automatic scoring since
the expert scoring better matches with the automatic scoring than
with each other. Indeed, the modified scores very often differ
from one expert to the other. With blind scoring, the results
becomes intractable as we observed in a preliminary study (non-
published), leading us to adopt the procedure commonly used to
assess the performance of automatic sleep scoring. As the aim of
the present pilot study is to evaluate the SyncSmart software as
a proof of concept, further study is warranted to evaluate it for
longer NIV sessions and for a larger cohort of patients.

There is not yet a standardization for coding AEs for patients
using NIV. There are few contributions in that direction which
are based on visual inspection (6, 7, 41) and, consequently, which
use qualitative arguments that may sometimes lead to subjective
interpretation. Another problem is related to obstructions that
are not considered in the present study. Two of the patients
have a noticeable number of obstructions. These events were
merged with backup cycles. In this study, as it is considered by the
SyncSmart software, the ventilatory cycles are discarded (< 5% of
the number of breaths) from the analysis when leaks are too large:
This avoids inappropriate tracings that could prevent physicians
from correctly detecting PVA. The presence of high leakage is to
be considered as a primary event during NIV, which needs to be
corrected before any other action, adjustment of treatment, or
settings that can be considered or recommended.

It should be noted that, in the daily clinical practice, physicians
use “visual” signs as chest movement or signs of discomfort
and possibly feedback provided by the patient. In addition to
the waveforms (pressure, flow, and belt signal), the SyncSmart
software provides the patient and ventilator frequencies, which
are useful to identify PVA. These last two limitations are assumed
to be a source for increasing the inter-rater variability (32). Since
“minor” AEs as advanced and delayed cycling (pressure release)
(42, 43) are not detected by the SyncSmart software, they were not
considered in this study. As they are suspected to be important
for inducing major AEs, detecting them would lead to a better
understanding of the causes of the main events.

When the AI is typically greater than 10%, an adjustment
of the ventilator settings is required (9, 11, 20). Since
these adjustments are event type dependent, it is relevant to
discriminate DT, AT, and IE. DT occurs to restrictive patient
with a low breathing frequency (37). AT may contribute for 40%

of all AEs (32). As pointed out by Longhini et al., “because of
the poor performance of visual inspection of ventilator waveforms,
algorithms able to recognize patient-ventilator asynchrony might
indeed represent an important advance for the management of
patient underlying NIV” (32). SyncSmart overcomes the lack of
a tool for helping physicians to identify the source for poor
mechanical coupling between patient and ventilator.

5. CONCLUSION

To our knowledge, this is the first study to show that it is
possible to automatically detect AEs from solely pressure and
flow waveforms and that the results are within the inter-rater
variability. This pilot study shows that such a procedure can be
used to validate automatic scoring of AEs. Most of the events
frommore than 4,200 ventilatory cycles were well-detected by the
SyncSmart software. When the breathing frequency is lower than
24 breath per min, SyncSmart returns an AI slightly less than the
at assessed by expert physicians. A validation with a larger cohort
is required to evaluate whether the AI provided by automatic
scoring could be considered as a lower bound.
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