
HAL Id: hal-03541893
https://hal.sorbonne-universite.fr/hal-03541893

Submitted on 10 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Study of Transformers for Query Suggestion
Agnès Mustar, Sylvain Lamprier, Benjamin Piwowarski

To cite this version:
Agnès Mustar, Sylvain Lamprier, Benjamin Piwowarski. On the Study of Transformers for Query
Suggestion. ACM Transactions on Information Systems, 2022, 40 (1), pp.18. �10.1145/3470562�.
�hal-03541893�

https://hal.sorbonne-universite.fr/hal-03541893
https://hal.archives-ouvertes.fr

On the Study of Transformers for Query

Suggestion

Agnès Mustar, Sylvain Lamprier, Benjamin Piwowarski

Sorbonne Université, CNRS, ISIR

firstname.lastname@isir.upmc.fr

Abstract

When conducting a search task, users may find it difficult to articu-
late their need, even more so when the task is complex. To help them
complete their search, search engine usually provide query suggestions. A
good query suggestion system requires to model user behavior during the
search session. In this paper, we study multiple Transformer architectures
applied to the query suggestion task and compare them with RNN-based
models. We experiment Transformer models with different tokenizers,
with different Encoders (large pretrained models or fully trained ones),
and with two kinds of architectures (flat or hierarchic). We study the
performance and the behaviors of these various models, and observe that
Transformer-based models outperform RNN-based ones. We show that
while the hierarchical architectures exhibit very good performances for
query suggestion, the flat models are more suitable for complex and long
search tasks. Finally, we investigate the flat models behavior and demon-
strate that they indeed learn to recover the hierarchy of a search session.

1 Introduction

To explore the space of potentially relevant documents, users interact with
search engines through queries. This process can be improved, since when look-
ing for information, users may have difficulties to express their needs at first
sight, and hence may have to reformulate the queries multiple times to find the
documents that satisfy their needs. This process is particularly exacerbated
when the user is accomplishing a complex search task.

Among the different ways to help users in exploring the information space,
modern search engines provide a list of query suggestions, which help users by
either following their current search direction – e.g. by refining the current
query – or by switching to a different aspect of a search task [Ozertem, 2012a].
Another use of query suggestions is to help the search engines by providing ways
to diversify the presented information [Song, 2011].

1

There are two ways to approach the task of query suggestions. Either in
a direct way, seeking directly to improve the user experience. This involves
searching for the most suitable queries so that the user accesses the most relevant
information as quickly as possible [Bhatia, 2011]. Such an approach requires a
mean to assess what constitutes a relevant suggestion, or data on whether or not
suggestions are relevant. The second approach consists in modeling the average
user [Broccolo, 2012; Sordoni, 2015; Dehghani, 2017; Ahmad, 2018; Ahmad,
2019; Wu, 2018]. The goal is to predict the next query based on the current
search session – where the data is nowadays abundant. The hypothesis is that
suggesting such queries from sessions usually helps users in their search. In the
absence of a public dataset allowing to train and evaluate models on the first
type of approach, this latter type of approach is usually pursued. This is the
scope of this paper.

To suggest useful queries, most models build upon web search logs, where the
actions of a user (queries, clicks, and timestamps) are recorded. User sessions are
then extracted by segmenting the web search log. The first query suggestion
models exploited the query co-occurrence graph extracted from user sessions
[Huang, 2003; Jain, 2011a]: if a query is often followed by another one, then the
latter is a good potential reformulation. However, co-occurrence based models
suffer from data sparsity, for instance when named entities are mentioned, and
lack of coverage for rare or unseen queries. Moreover, these models are difficult
to adapt when using a wider context than the last submitted query [Dehghani,
2017].

More recently, recurrent neural network-based (RNNs) methods have been
proposed to exploit longer dependencies between queries [Sordoni, 2015; De-
hghani, 2017; Ahmad, 2018; Ahmad, 2019; Wu, 2018]. RNNs do so by keeping
track of the user in a representation/vector space which depends on all the pre-
vious actions performed by the user. Such models have improved the quality
of suggestions by capturing a broader context, but are limited by the relatively
short span of interaction that RNNs are able to capture.

Beyond query suggestion, working with representation-based models such as
neural networks is particularly interesting, since the learned representations can
be useful for models exploiting user sessions, such as in interactive IR models. If
a model is able to correctly generate a query, then it means that it has captured
(at least partially) the user intent. Developing neural models able to predict
with high accuracy the next queries of a user is thus important for building
interactive and discussion-based retrieval systems.

Among all the models exploited in NLP and IR, most [Vaswani, 2017; Tan,
2018; Liu, 2018; Scialom, 2019; Qiao, 2019; Yang, 2019a] have benefited from
the recently proposed Transformers architecture [Vaswani, 2017]. Transformer
networks, such as Bert [Devlin, 2019], capture long-range dependencies be-
tween terms by refining each token representation based on its context before
handling the task at hand. They are thus a particularly interesting architecture
for query suggestion since query terms are often repeated throughout a session,
and their interaction needs to be captured, to build a faithful representation of
the current user state. Recently, Garg et al. [Garg, 2019] presented a Hierarchi-

2

cal Transformer for Query Suggestion, with a two-level encoder. Their model
outperforms the hierarchical recurrent based models [Dehghani, 2017; Sordoni,
2015], and shows that recurrence is not essential for the query suggestion task.
In opposition to this type of hierarchical transformers, we refer in this paper to
the classical transformer networks as flat transformers.

However, the authors of [Garg, 2019] do not provide a full analysis of whether
the hierarchical architecture is important, especially for complex user sessions
that are particularly interesting in the context of interactive IR. In this work,
we contribute to the study of transformers for the query suggestion task – and
more generally, for models able to analyze user sessions:

• We reproduce RNN-based models experiments [Dehghani, 2017; Sordoni,
2015] and extend them by segmenting queries using subword units, which
allow transformers to avoid the problem of out-of-vocabulary tokens.

• We also reproduce the Hierarchical Transformer architecture [Garg, 2019],
with word and sub-word units, and compare it with flat Transformers.

• We compare the flat Transformers with two pretrained transformers: Bert,
Bart and T5, finetuned for our task. We also integrate these pretrained
models to the Hierarchical Transformer.

The analysis is structured into three research questions that we detail below.
First, we are interested in the performance of transformers from a global point
of view.

Q1. How well the various presented transformers generate queries suggestions
compared to the usual baselines?

When a user performs a complex search, it is more difficult to capture the
intent of the user. However, such sessions are of particular interest for nowa-
days IR research, and in particular for interactive IR. We thus pay a particular
attention to the robustness of the different models on sessions corresponding
to so-called ”complex” search tasks. This raises the question of whether all
transformers have the same ability to handle long, complex or noisy sessions, or
whether, on the contrary, the results are impacted differently depending on the
pre-training or the architecture of the transformer.

Q2. Which model is the most robust?

(a) to complex sessions

(b) to noisy sessions

(c) to long sessions

Following the analyses conducted to answer Q2., we conclude that flatten pre-
trained transformers are more resilient to noise, length and complexity of ses-
sions. We are investigating why these models are more robust, which leads us
to our final research question:

3

Q3. How does the flat transformer generate queries?

(a) On which context’s queries does it focus its attention?

(b) On which context’s tokens does it focus its attention?

(c) How does it choose the next token to generate?

The analyses and answers to these questions aim to better understand the
behavior of various Transformer architectures for user modeling.

2 Related Work

A large number of works have focused on the task of query suggestion [Ozertem,
2012b], and related tasks such as query auto-completion [Mitra, 2015], based on
search logs to extract query co-occurrences [Huang, 2003; Jain, 2011a]. From a
given single query formulated by a user, the goal is to identify related queries
from logs, and to suggest reformulations based on what follows in the retrieved
sessions, assuming subsequent queries as refinements of former ones [Sadikov,
2010]. These works rely on several methods, such as using term co-occurrence
[Huang, 2003], using users click information [Mei, 2008], using word-level repre-
sentation [Bonchi, 2012], capturing higher order collocation in query-document
sub-graphs [Boldi, 2009], clustering queries from logs [Sadikov, 2010], or defin-
ing hierarchies of related search tasks and sub-tasks [Hassan Awadallah, 2014;
Mehrotra, 2017]. Some methods finally prevent query sparsity via reformula-
tions using NLP techniques [Ozertem, 2012b]. For instance, Jain et al. [Jain,
2011b] propose an end-to-end system to generate synthetic suggestions, based on
query-level operations and information collected from available text resources.
Broccolo et al. [Broccolo, 2012] propose to alleviate the sparsity issue by cre-
ating a knowledge base from query logs. The database is filled with train log
queries to make synthetic documents. The idea is then to define a function
which measures the similarity of a virtual document with this base and a new
session. Each token of the session is taken into account independently to cal-
culate this similarity, which allows unseen queries to be treated. The title from
the closest virtual documents are the suggestions.

However, such log-based methods suffer from data sparsity and are not effec-
tive for rare or unseen queries [Sordoni, 2015]. In addition, these approaches are
usually context-agnostic, focusing on matching candidates with a single query.
When the query comes in a session with some previous attempts for finding
relevant information, it is crucial to leverage such context for capturing the
user intent and understanding its reformulation behavior. Note the approach in
[Cao, 2008], which alleviates the problem by relating the user sessions to paths
in a concept tree, but also suffers from data sparsity issues.

Instead of trying to predict directly a query, it is possible to learn how to
transform it. Most approaches operate at a high level, with term retention,
addition and removal as the possible reformulation actions [Levine, 2017; Sloan,
2015]. [Levine, 2017] consider these actions as feedback from the user – e.g. a

4

term that is retained during the whole session should be considered as central
for the user intent. Depending on the previous sequence of users’ actions, these
methods seek to predict the next action. These methods are interesting because
they model the user behavior in a session. However, they fail at capturing the
semantic of words, which is essential.

To cope with limitations of log-based and action-based methods, some works
propose to define probabilistic models for next query prediction [He, 2009].
Due to their ability for processing sequences of variable size, Recurrent Neural
Networks (RNNs) have been widely used for text modeling and generation tasks,
with an encoder that processes an input sequence by updating a representation
in Rn, and a decoder that generates the target sequence from the last computed
representation. Some works have adapted these ideas to a sequence of queries
[Dehghani, 2017; Jiang, 2018; Sordoni, 2015]. HRED [Sordoni, 2015] proposes
to use two encoders: a query-level encoder, which encodes each query of the user
session independently, and a session-level encoder, which deals with the sequence
of query representations. Instead of using a hierarchical representation, ACG
[Dehghani, 2017] relies on attention mechanism giving a different importance
to words and queries in the computed representation. Another improvement of
ACG is to deal with Out-Of-Vocabulary (OOV) words through the use of a copy
mechanism, which allows the model to pick tokens from the past user queries
rather than generating them using a fixed-size vocabulary.

Other RNN-based approaches have also been recently proposed, such as
[Wu, 2018], which leverages user clicks and document representations to specify
the user intent [Ahmad, 2018; Ahmad, 2019], or [Jiang, 2018] which integrates
click-through data into homomorphic term embeddings to capture semantic re-
formulations. Some works have explored the use of long-term search history of
users [Chen, 2018], using a RNN-based hierarchical architecture, to score query
suggestions. In this work, as a starting point, we restrict to queries in sessions
as input data, but other sources of information can be added to such models.

In parallel, the Transformers architecture, a recent and effective alterna-
tive to RNNs models introduced in [Vaswani, 2017], was successfully applied
to a large set of NLP applications, such as Constituency Parsing and Auto-
matic Translation [Vaswani, 2017], Semantic Role Labeling [Tan, 2018], Ma-
chine Reading Comprehension [Liu, 2018], and Abstractive Text Summarization
[Scialom, 2019].

The Transformer architecture has also has been used several times in the
field of Information Retrieval. Nogueira et al. [Nogueira, 2019] and Han et al.
[Han, 2019] applied transformers to infer the queries relevant to a document.
Nogueira et al. [Nogueira, 2019] used the pretrained transformer BERT, and
showed that expending the document with the predicted query improves the ad
hoc retrieval results, while Han et al. [Han, 2019] presented a more complex
seq2seq architecture: the encoder included a Graph Convolutional Network and
a RNN; and the decoder is a transformer. Several works focused on transformers
applied to conversational search [Yu, 2020; Aliannejadi, 2020; Dalton, 2020],
in particular Yu et al. [Yu, 2020] used a pretrained model for conversational
query rewriting, and showed that even with very limited training data it could

5

achieve very good performances. Finally, transformers have been used for ad
hoc retrieval [Yang, 2019a; Dai, 2019a; MacAvaney, 2019; Qiao, 2019], the latest
works showing that the transformer-based architectures are outperforming state-
of-the-art adhoc models. Dai et al. [Dai, 2019a] analyzed the attention weights
of BERT to explain its performance in retrieval, but restricted their study to
some selected examples.

For the query suggestion task, Garg et al. [Garg, 2019] presented a Hi-
erarchical Transformer that outperforms RNN-based model, and thus showed
that recurrence was not crucial for this task. Their model is composed of two
encoders, namely a token-level and a query-level one. The first one gives a
contextualized representation of each token that depends on the other tokens
of the query, while the second one outputs a contextualized representation of
each query depending on the other queries of the session. Our work extends this
paper by providing a thorough analysis of the behavior of (hierarchical) trans-
former models, as well as experimenting with various pre-trained transformer
models.

3 Transformers for Queries Suggestion

lIn this section, we first present the transformer network architecture before
describing how we use it for query suggestion.

3.1 The Transformer architecture

The transformer architecture was introduced in [Vaswani, 2017]. It is composed
of parametric functions that successively refine the representation of sequences,
both for the encoder and the decoder. In our case, the encoder is used to
represent the session, and the decoder to generate the next query.

Each layer of the encoder or the decoder transforms a sequence x composed
of n vectors x1, . . . , xn into a sequence y1, . . . , yn of the same length, through
an attention over a context sequence c composed of n vectors c1, . . . , cn. Each
time, the central mechanism is to use an attention mechanism – other operations
are conducted to ensure a stable and efficient learning process, and are detailed
in [Vaswani, 2017], but here we focus on the attention mechanism since it is
important for our analysis (section 5).

Attention heads and transformations. At each layer of the encoder or the
decoder, the transformation function T is based on the output of a series of H
attention-based functions Ah (called heads). For each head Ah, the attention
mechanism relies on:

• keys kh(cj) ∈ Rdk computed for each element of the context cj

• values vh(cj) ∈ Rdk computed for each cj

• queries qh(xi) ∈ Rdk computed for each input xi ∈ Rd, with d = H × dk.

6

Each input is decomposed in H parts of the same dimension dk, i.e. xi =
(x1i ⊕ . . . ⊕ xHi) where ⊕ is a vector concatenation operation. Each xhi is
modified by a linear combination of the values vh(cj) based on weights derived
from the match between the query qh(xi) with the different keys kh(cj). More
formally, we define a head Ah as:

Ahi(x, c) = xhi +

m∑
j=1

αhijvh(cj)︸ ︷︷ ︸
βhij(cj)

with αhij ∝ exp

(
1√
dk

qh(xi) · kh(cj)
)

(1)

where we can see that the attention mechanism only modifies the input if both
the attention αhij and the value vh(cj) are not null. Each key, query, and value
function is unique to a given layer and head, but is the same for each input
vector. The output of the layer is given by T (x, c) = (T1(x, c), . . . , Tn(x, c))
with

yi = Ti(x, c) = f (A1i(x, c)⊕ . . .⊕AHi(x, c))

where f is a normalization followed optionally by a feed-forward layer.
The full transformation performed at layer l for a part • of the model is

denoted as T •
l in the following. The parameters of the corresponding heads

(queries, keys, and values) are specific to each T •
l , where • is either the encoder

self-attention e → e, the decoder self-attention d → d or the decoder to encoder
attention e → d (see below).

Encoding. When encoding, i.e. processing the input sequence s(0) of token

embeddings s
(0)
1 , . . . , s

(0)
n , each layer transforms a sequence s(l−1) into s(l) using

the transformation T e→e
l (s(l−1), s(l−1)) based on the heads Ae→e

hi (e → e for
“attention from the encoder on the encoder”). Since the context is simply the
input here, this is called a self -attention mechanism – i.e. each input item
representation is transformed by looking at the whole input sequence. This
is repeated Le times until obtaining the final representation of the encoded
sequence s(Le) which has the same length as the original input, but where each
representation is contextualized depending on the other tokens of the input.

Decoding. The generating process (called decoding) is based on the same
principle – with a small twist since we take into account not only the already
generated sequence, but also the input. To compute the probability of gener-
ating a new token w given the sequence w0, w1, . . . , wn′ , whose embeddings are

t
(0)
0 , . . . , t

(0)
n′ , the decoder uses two attentions: one self-attention Ad→d (decoder

to decoder attention) followed by an attention on the encoded sequence Ad→e

(decoder to encoder attention). The representation at layer l is based on the
representation at layer l − 1 and on the final encoded sequence:

d(l) = T d→e
l

[
T d→d
l

(
t(l−1), t(l−1)

)
, s(Le)

]
The process is repeated Ld times, giving rise to the representations t

(Ld)
1 , . . . , t

(Ld)
n′ .

The distribution over the next token w (whose embedding is t) is then given by

7

a parametric function applied to the representation of the last previously gener-
ated output tn′ (which is why there is a token w0 corresponding to “[START]”
– in order to compute the first generated token):

p(w|w1, . . . , wn′) = g(t; t
(Ld)
n′) (2)

3.2 Pre Trained Transformers

Transformers models have a large number of parameters which make them costly
to train. In addition to that, the attention mechanism is computationally expen-
sive, particularly for long sequence: it has a complexity of O(n2) with respect
with the sequence length [Wang, 2020]. Thus they are complex to train. Fortu-
nately, multiple pre-trained models trained on large datasets have been released
recently [Devlin, 2019; Lewis, 2020; Radford, 2019; Yang, 2019b]. We compare
the results of transformers trained from scratch, to three pre-trained models
that we finetune, namely BERT [Devlin, 2019], BART [Lewis, 2020] and T5
[Raffel, 2020].

Bert The Bidirectional Encoder Representations from Transformers [Devlin,
2019] has been trained on a large dataset, the BooksCorpus [Zhu, 2015] on two
tasks, namely predicting some masked tokens of the input, and on predicting
whether one sentence follows another. It is a state-of-the-art model, which is
used for different tasks. BERT corresponds to the encoder part only – we have
to train a decoder for our specific task.

Bart Bidirectional and Auto-Regressive Transformer is made of an encoder
and a decoder. It is trained on the same data than BERT, but on multiple
tasks: token masking, token detection, text infilling, sentence permutation, and
document rotation. Because it has a decoder and it is trained on these tasks,
the authors claim that BART is better than BERT for text generation. They
also released fine-tuned versions of BART for other tasks. We use the weights
of the model fine-tuned on CNN/DM, a news summarization dataset, because
as a text generation task it was the closest task to the query suggestion task.

T5 T5 [Raffel, 2020] is also a transformer with an encoder and a decoder as
described in [Chen, 2018] with minor architecture modifications in the attention.
T5 is trained simultaneously on multiple tasks, that’s why the author called it a
“unified” framework. The task is specified by adding the task name as a prefix
in the original input. The network is the same for all inputs, while usually the
mutli-task learning model have a specific network for each task [Liu, 2020].

Note that many pretrained transformers have been released in recent years
(BERT [Devlin, 2019], BART[Lewis, 2020], GPT-2 [Radford, 2019], T5 [Raf-
fel, 2020], XML [Conneau, 2019], RoBERTa [Liu, 2019], and the famous GPT-3
[Brown, 2020] - whose parameters have not been made public), so it is neces-
sary to choose those we want to experiment with. We choose (1) BERT because

8

it is the most used transformer, (2) BART because it has an encoder-decoder
architecture with very good performance in generation, and especially in sum-
marization, and finally (3) T5 because it is one of the last transformers that
have been published.

3.3 Using Transformer networks for Query Suggestion

3.3.1 Problem Setting

Let us consider a session S = (Q1, ..., Q|S|) as a sequence of |S| queries, where
every Qi = (wi,1, ..., wi,|Qi|) is a sequence of |Qi| words. The goal of query
suggestion is to suggest the most relevant query for the user intent represented
by the session. However, no perfect ground truth can be easily established for
such problems: defining the perfect query for a given specific under defined
need, given a sequence of past queries, is an intractable problem, which requires
to consider very diverse (in nature and complexity) search tasks, depends on
the user state, the IR system and the available information in the targeted
collection. Following other works on model-based query suggestion, we thus
focus on predicting the next question within an observed session.

We suppose that our dataset is composed of pairs (S, Q̌) where Q̌ is the
query following a sequence of queries S. Our aim is thus to find the parameters
θ that maximize the log probability of observing the dataset:

L(S; θ) =
∑
(S,Q̌)

log pθ(Q̌|S) =
∑
(S,Q̌)

|Q̌|∑
t=1

log pθ(wt|Q1, . . . , Q|S|) (3)

where (w1, ..., w|Q̌|) are the token of the query Q̌. We describe below how we
use the transformer – we tried to build different architectures based on the
transformer, but the simplest one worked the best throughout all our pilot
experiments. The model is illustrated by Figure 1.

Input For a session, the input of the transformer is simply the concatenation
of all the words of all the queries separated by a token [SEP], i.e. the [SEP] is
used to mark the beginning of a new query in the session:

S = [[SEP] w1,1 . . . w1,|Q1|︸ ︷︷ ︸
Q1

[SEP] . . . [SEP]w|S|,1 . . . w|S|,|Q|S||︸ ︷︷ ︸
Q|S|

[SEP]]

This sequence is then transformed by using the token embeddings added to
positional embeddings (one per distinct position) – this is how Transformers
recover the sequence order [Vaswani, 2017].

We obtain a contextualized representation for each token of the session with
the Encoder E:

E(S) = (h0, ..., hn) (4)

9

Paris hotel </q> Paris cheap </q>hotel

Paris hostel </q>

Embeddings

Encoder	

EN
CO
D
ER

D
EC
O
D
ER

Figure 1: Flat Transformer for Query Suggestion

where n is the number of tokens in the whole session: n =
∑

i |Qi|.
We train models with various encoders E described in the next sections (from

3.3.2 to 3.3.5). The decoding part is the same for all, as described in Section
3.1.

3.3.2 Fully trained Transformer (TS)

The encoder and a decoder and the decoder are fully trained, they have the
architecture described in 3.1, with Ld = 6 layers, with H = 12 heads each and a
dropout p = 0.1. On the top of the decoder, we use a feedforward network with
a hidden size of 2048. For the input tokens, we use the same embeddings for the
encoder and the decoder to reduce the number of parameters and to regularize
the network [Vaswani, 2017].

3.3.3 BERT

We use the pre-trained modelBert [Devlin, 2019], and extract each hidden layer
of the model. We sum the last layer, with the average and the max of these layers
1. For each token of the input, we have a contextualized embedding of size 768
given by Bert. For the decoding part, we use the same transformer decoder
and feedforward network as the ones described in 3.3.2. At the beginning of
the training the encoder is frozen and the decoder is trained. We then use a
“gradual unfreezing” of the encoder layers as recommended by [Howard, 2018]:
when the loss stabilizes, we unfreeze the last frozen layer of the encoder, until
all the layers are fine-tuned.

1Based on https://github.com/hanxiao/bert-as-service, and our own preliminary ex-
periments

10

https://github.com/hanxiao/bert-as-service

3.3.4 BART

The architecture is complete for text generation, it has an encoder and a decoder.
We also use gradual unfreezing to finetune the model, but starting from the last
layer of the pre-trained decoder. We compare the results of the complete Bart
model finetuned for our task, with the ones of the Bart Encoder followed by a
fully trained Transformer Decoder.

3.3.5 T5

T5 is a transformer with a pretrained encoder and a pretrained decoder. As we
did for BART, we compare two versions of the model: the encoder-only version
Enc T5, with a finetuned encoder and a fully trained decoder, and a version for
which we finetuned the entire T5 model. We use the training protocol described
for BART and BERT.

3.4 Hierarchical Transformer for Query Suggestion

We now describe the hierarchical transformer proposed by [Garg, 2019] (an il-
lustration is given in Figure 2). It is composed of two levels of encoding: a
token-level ET and a query-level one EQ, each following the same contextual-
ization process as a standard encoder in a transformer model.

First, the token-level Encoder ET produces a contextualized representation
ET (Qi) = (w̃i,1, . . . , w̃i,K) of each token of a given query Qi. Since queries
might have a different length, padding is used (e.g. a special [blank] token) so
that each query is of length K. This representation is then summarized into a
query representation Q̃i using a linear transformation:

Q̃i = ET (Qi)WP (5)

The transformation matrix is WP ∈ RKd×d where d is the output dimension of
each token of the encoder. In our experiments we use K = 12, which is enough
to cater for most of the queries – the remaining tokens are truncated.

The session-level encoder takes these vectors Q̃i as input to transform them
into final query representations S̃ = (S̃1, ..., S̃|S|) that embed context from neigh-
bor queries, using positional encoding.

S̃ = EQ

(
Q̃1, ..., Q̃|S|

)
(6)

where |S| is the number of queries in the session.
We then obtain the final representation of a query token by summing its

query-wise representation w̃i,j with the contextualized representation of its cor-

responding query S̃i:

h̃i,j = w̃i,j + S̃i (7)

Finally, the decoding part is exactly the same as for other transformer models
(Section 3.1).

11

Paris hotel </q> Paris cheap </q>hotel

Paris hostel </q>

Embeddings

Linear	Projection

Sum

Token	Encoder	

EN
CO
D
ER

D
EC
O
D
ER

Query	Encoder	

Figure 2: Hierarchical Transformer for Query Suggestion

4 Experiments

In this section, we report experimental results comparing the various flat and
hierarchical transformer-based models, as well as other neural network baselines.

We first describe the datasets, the compared models and the metrics (sections
4.1 to 4.3), before presenting our main results in section 4.4. In section 4.5, we
pursue our analysis by studying how the models perform when exposed to noise,
by altering the sessions (filtering or concatenating). In both cases, we show that
hierarchy does not help as much as a good pre-training. Finally, in section 4.6,
we present some queries generated by a selection of models.

4.1 Datasets.

Some datasets allow a fine evaluation of query suggestions, they consist of
queries grouped by user sessions and associated with relevant documents. These
datasets are: the TREC Session dataset [Carterette, 2016] which contains the
names of the tasks and relevant documents associated with the user sessions,
the conversational dataset SCSdata [Trippas, 2020] segmented by task and con-
taining the documents read by the user, and the Webis-SMC-12 dataset [Hagen,

12

2013] which is a subset of AOL for which the sessions have been manually split
and annotated into missions. However, these three datasets contain few ses-
sions, respectively 1300, 1000 and 2200 sessions, which is insufficient to train
the models we want to compare. To the best of our knowledge, there is no
dataset of sufficient size better suited to the task of suggesting queries than
the two query logs datasets: the real dataset AOL web search log and the ar-
tificial dataset, MS MARCO Conversational Search [Nguyen, 2016]. In both
cases, the queries are processed by removing all non-alphanumeric characters
and lowercasing following [Sordoni, 2015].

MS Marco is an artificial dataset, built from real queries. The authors
filtered these queries: they removed navigation, bot, junk, and adult sessions and
merged users queries with a nearest neighbor search based on their embeddings
to create artificial sessions. The MS MARCO dataset is provided in two parts.
We use 80% of the first part as the training set, the remaining 20% as the
validation set, and the second part of the dataset as the test set. Each set
contains respectively 540 267, 135 066 and 75 193 sessions.

The AOL dataset consists of 16 million real search log entries from the AOL
Web Search Engine for 657,426 users. Following [Sordoni, 2015], we delimit
sessions with a 30-minutes timeout for both datasets. The queries submitted
before May 1, 2006, are used as the training set, the remaining four weeks are
split into validation and test sets, as in [Sordoni, 2015]. After filtering, there are
1 708 224 sessions in the training set, 416 450 in the test set and 416 450 in the
validation set. As the real-word AOL dataset is not filtered, it contains typos,
and noisy sessions. It is made of 860 155 unique words, whereas the artificial
dataset MS MARCO has 28 968. When building a vocabulary same manner
as in [Sordoni, 2015] (i.e., using the most frequent 90k words of the training
set), 8.9% of the words from the dataset are not in the vocabulary while all MS
MARCO words are included in the selected vocabulary.

4.2 Compared Models.

In our experiments we compare a co-occurence based approach, two RNN-
based approaches and fully trained and fine-tuned transformer models. The
co-occurence based approach is the Inverted Index [Broccolo, 2012], RNN mod-
els are HRED [Sordoni, 2015] and ACG [Dehghani, 2017], which we described in
section 2. The fully trained transformer, hereafter referred as TS, is composed of
an encoder and a decoder presented in Section 3. The hierarchical transformer
H TS with the two-level encoder is described in section 3.4. The pre-trained
models that we finetune are Bert [Devlin, 2019], Bart [Lewis, 2020] and T5
[Raffel, 2020].

The two RNN-based models and the fully trained transformers TS and H TS
use a fixed vocabulary composed of words, but Bert, Bart and T5 employ sub-
word tokenizers (WPT) that segment the text into n-grams of varying lengths
[Sennrich, 2016]. For instance, the query “Robert Mitchum” is segmented as
robert [UNK] with a Word Tokenizer while the WPT returns robert mitch

##um. Hence, there is no out-of-vocabulary problem (handled with special OOV

13

token) with the WPT and the vocabulary size is kept below a predefined thresh-
old (31K tokens for Bert, 32K for T5 and 50K for BART), which in turns speeds
up learning. To analyse the importance of the tokenizer, we consider variants of
HRED, ACG, TS and H TS based on the Bert tokenizer in our experiments,
named HRED-WP, ACG-WP, TS-WP and H TS WP.

To leverage pre-trained models, which is especially important since the num-
ber of parameters in transformer models is high, we use the parameters of Bert
[Devlin, 2019], Bart [Lewis, 2020] and T5 [Raffel, 2020] to initialize the param-
eters of our models. More precisely, for the flat architecture (TS), the encoder
parameters are either initialized to those of the Bert model, the Bart or t5
encoder. The models are named respectively BERT, Enc BART and Enc T5.
Since Bart and T5 are not only an encoder as Bert, we also consider a version
with both encoder and decoder parameters initialized with pre-trained Bart
and T5 parameters, that we refer respectively to BART and T5.

For the hierarchical architecture (H TS), the Query Encoder ET parameters
can also be initialized with those from the Bert, Bart and T5 encoders, the
rest of the architecture remaining trained from scratch. We refer to such models
as H BERT, H BART and H T5.

For all models involving pre-trained transformers, the training procedure
is the same: we use the “gradual unfreezing” method, as recommended by
[Howard, 2018] and described in 3.3.3.

Models optimization is performed on the training sets of sessions with the
ADAM optimizer [Kingma, 2015]. All hyper-parameters are tuned via grid-
search on a validation dataset.

4.3 Metrics

As many other tasks in IR, evaluating the quality of the models is problematic
since they can generate many queries in response to a session – and there is
no principled way to evaluate their quality. In the following, we describe the
metrics that were reported in previous works to compare models, and which try
to capture the quality of the system responses.

Perplexity. All compared models generate probability distributions over the
sequences. This enables to check how surprised the model is by the target
query. However, perplexities of some pairs of methods cannot be compared
because the vocabulary size is different (90K tokens for models without WPT,
31K tokens with WPT, 50K for BART’s tokenizer, and 32K for T5). Moreover,
former versions of HRED, ACG, TS and H TS can generate OOV words, which
strongly biases the results. Perplexity is not reported for these last methods.

Query suggestion metrics. As a metric to evaluate generated queries com-
pared to the target ones, we first use the classical metric BLEU [Papineni, 2002],
which corresponds to the rate of generated n-grams that are present in the tar-
get query. We refer to BLEU-1, BLEU-2, BLEU-3 and BLEU-4 for 1-gram,

14

2-grams, 3-grams and 4-grams respectively. We also calculate the exact match
EM (equals to 1 if the predicted query is exactly the observed one, 0 otherwise).

As EM can be too harsh, we also use a metric, Simextrema [Forgues, 2014],
which computes the cosine similarity between the representation of the candi-
date query with the target one. The representation of a query q (either target
or generated) is a component-wise maximum of the representations of the words
making up the query (we use the GoogleNews embeddings, following [Sordoni,
2015]). The extrema vector method has the advantage of taking into account
words carrying information, instead of other common words of the queries

However, this component-wise maximum method might excessively degrade
the representation of a query. As an alternative, we propose to compute Simpairwise

as the mean value of the maximum cosine similarity between each term of the
target query and all the terms of the generated one.

Finally, as discussed in section 3.3, there is no ground truth on what the best
queries to suggest are. For each generation metric, we consider the maximum
performance of the top-10 queries generated by the models. More precisely,
for each model, we first generate (through a beam search with K = 20) 10
queries to suggest to the user given the context2. The reported value for each
metric (BLEU, EM, Simextrema and Simpairwise) is the maximum score over
the 10 different generated queries. This is usually employed for assessing the
performance of a probabilistic model w.r.t. a single target (see e.g., [Kumar,
2020]) and corresponds to a fair evaluation of models that try to find a good
balance between quality and diversity.

4.4 Results

In this section we aim to answer our first question: Q1. How well the various
presented transformers generate queries suggestions compared to the
usual baselines?

Tables 1 (generation scores), and 2 (perplexity) report results obtained by
all the models. We also added two further indicators. First, the ratio of new
words (New Words), calculated by counting the number of unique words that
appear in the suggested query but were not in the past queries of the session,
divided by the count of unique words in this query. Second, the rank of the
prediction in the beam search (Repetition Rank) if the predicted query appears
in the context (or 10 if it doesn’t).

We first note the difference between the two datasets. As expected, being
synthetic, MS Marco is a much easier dataset – more restricted vocabulary and
more regular sessions, as acknowledged by the fact that all the metrics are higher
for MS Marco.

From a high level point of view, we see that transformers are better perform-
ing than the baseline II and that the RNN-based models, HRED and ACG.

2As we want to encourage the models trained with a word tokenizer to generate tokens
present in the vocabulary, we follow [Kai, 1998] and apply a penalty on the “OOV” token in
the beam search. To compute the metrics, we ignored the OOV token that can be generated
by HRED or ACG – queries composed only of OOV words are skipped.

15

Table 1: Results on the MS MARCO (a) and the AOL dataset (b). We report
different metrics, along with two quality indicators. Best results for a metric
are reported with a bold font.

(a) MS MARCO dataset

II ACG ACG WP HRED HRED WP TS TS WP H TS H TS WP BERT H BERT Enc BART BART H BART Enc T5 T5 H T5

EM 0.173 0.044 0.041 0.139 0.129 0.174 0.197 0.164 0.170 0.223 0.182 0.184 0.226 0.183 0.175 0.203 0.121
BLEU 1 0.584 0.435 0.416 0.572 0.555 0.579 0.596 0.574 0.589 0.617 0.597 0.591 0.618 0.592 0.598 0.576 0.565
BLEU 2 0.369 0.200 0.182 0.341 0.320 0.372 0.377 0.363 0.371 0.402 0.378 0.385 0.419 0.383 0.379 0.375 0.335
BLEU 3 0.218 0.092 0.087 0.193 0.176 0.223 0.248 0.218 0.224 0.274 0.234 0.238 0.275 0.236 0.230 0.238 0.174
BLEU 4 0.202 0.073 0.068 0.175 0.161 0.213 0.239 0.201 0.206 0.268 0.217 0.222 0.266 0.221 0.212 0.231 0.149
simextrema 0.835 0.798 0.780 0.828 0.817 0.833 0.840 0.834 0.837 0.846 0.839 0.837 0.848 0.839 0.837 0.837 0.830
simpairwise 0.677 0.579 0.543 0.635 0.616 0.671 0.682 0.665 0.670 0.697 0.677 0.672 0.697 0.678 0.675 0.659 0.661
New Words 0.950 0.138 0.354 0.594 0.604 0.886 0.880 0.902 0.899 0.870 0.902 0.902 0.858 0.911 0.879 0.910 0.895
Repetion Rank 8.618 8.767 9.429 8.974 9.141 6.926 6.689 7.055 7.022 6.424 6.755 6.985 5.586 7.098 7.116 6.913 7.318

(b) AOL dataset

II ACG ACG WP HRED HRED WP TS TS WP H TS H TS WP BERT H BERT Enc BART BART H BART Enc T5 T5 H T5

EM 0.018 0.017 0.010 0.029 0.036 0.037 0.048 0.046 0.081 0.061 0.085 0.055 0.119 0.087 0.052 0.082 0.053
BLEU 1 0.438 0.417 0.388 0.409 0.422 0.439 0.454 0.447 0.493 0.460 0.495 0.455 0.552 0.494 0.452 0.519 0.435
BLEU 2 0.148 0.128 0.098 0.122 0.135 0.162 0.178 0.178 0.238 0.194 0.241 0.186 0.316 0.240 0.183 0.275 0.166
BLEU 3 0.067 0.037 0.026 0.052 0.059 0.071 0.089 0.102 0.146 0.110 0.150 0.104 0.231 0.144 0.098 0.192 0.090
BLEU 4 0.033 0.006 0.004 0.018 0.023 0.027 0.040 0.055 0.086 0.063 0.093 0.058 0.174 0.084 0.051 0.148 0.043
simextrema 0.751 0.668 0.687 0.710 0.713 0.729 0.723 0.742 0.762 0.741 0.763 0.739 0.792 0.762 0.731 0.776 0.723
simpairwise 0.484 0.408 0.390 0.404 0.415 0.447 0.457 0.462 0.501 0.466 0.504 0.459 0.558 0.499 0.454 0.537 0.435
New Words 0.996 0.119 0.588 0.679 0.740 0.916 0.941 0.849 0.881 0.927 0.880 0.919 0.682 0.934 0.902 0.593 0.940
Repetion Rank 9.711 7.138 9.128 7.841 7.157 8.683 8.300 6.830 4.970 6.668 4.203 6.132 2.204 3.665 6.203 1.468 6.324

Table 2: Perplexities for Word-Piece Tokenizer-based models

AOL MS MARCO
ACG WP 1 175 242
HRED WP 1 101 111
TS WP 721 56
H TS WP 486 56
BERT 492 47
H BERT 473 64
Enc BART 557 52
H BART 209 40
BART 173 39
Enc T5 92 22
H T5 215 58
T5 37 21

16

Among transformers, more complex and pre-trained models perform better,
with the flat architecture with a pre-trained encoder and decoder Bart per-
forming the best. Contrarily to [Garg, 2019], we do not observe a real difference
between hierarchical and non hierarchical transformer architectures: The main
factor of variation is on what task and dataset the model was pre-trained.

We note that models have different tendencies to copy one of the queries in
the session. This is a standard behavior: 3% of queries for MS Marco and 6%
for AOL are among the previous queries of the session. So it is not surprising
that more powerful models learn to copy – transformer models have a tendency
to repeat a seen query compared to ACG or HRED (lower Repetition Rank).
We explain this tendency by their ability to retrieve information at arbitrary
positions in the input.

Perplexity We only compare perplexity for models based on the same tok-
enizer, since otherwise the problem of evaluating prediction with OOV tokens,
or of vocabulary with different sizes makes comparisons impossible. We observe
that the transformers obtain a much better perplexity than ACG and HRED
with WPT. The likelihood of target queries with these last two methods are
both about half the one of the transformer model TS WP. This shows that
transformers better explain users’ behavior in search sessions. Among trans-
formers, we observe that while the hierarchy is beneficial on the AOL dataset,
it is not the case on the MS MARCO dataset. We will discuss this behavior in
more details later.

Word Piece Tokenizer Among RNNs, using WPT is sometimes beneficial
for HRED but not for ACG. We explain this because the copy mechanism al-
ready allows ACG to produce rare tokens. This ability appears lowered when
using word pieces, as assembling unknown words from smaller tokens is much
more difficult than copying a whole word for such architectures. For HRED,
the Word Piece Tokenizer improves the scores on the AOL Dataset, while it
degrades them on the MS MARCO one. This is explained by the fact that for
the MS MARCO Dataset there is no OOV and hence using a WPT is not useful
anymore.

For Transformers trained from scratch (TS, TS WP, H TS and H TS WP),
the Word Piece tokenizer is always beneficial. It could be due to the use of posi-
tional embeddings, that makes the copy of consecutive tokens easier. Moreover
the use of this tokenizer reduces the vocabulary size.

The pre-trained Models First, BART (flat transformers with a pre-trained
encoder and decoder) outperforms all the models on all metrics. This shows
the value of pre-trained models on large dataset and on generative tasks (sum-
marization). When observing the flat pre-trained models scores, we note that
they outperform the fully trained version: BERT, Enc BART, BART, Enc T5
and T5 are better than TS WP on the AOL dataset. For the MSMARCO
dataset, while BERT and BART have better scores than TS WP, Enc BART

17

and Enc T5 are similar to TS WP. We think that because the vocabulary used
in the MSMARCO dataset is more restricted, and the dataset more regular, the
use of large pre-trained models is less beneficial. While T5 largely outperforms
BERT on the AOL dataset, BERT is much better than T5 on the MSMARCO
dataset. The unified framework - consisting on training simultaneously the
model for various tasks - used to pretrain T5 is useful on a complex dataset,
as it probably allows the model to acquire more language knowledge, but it is
less efficient on simpler data. Finally, for both datasets, BART performs the
best for all metrics. On the AOL dataset, BART improvement is particularly
important on BLEU 3 and BLEU 4 - which are calculated by considering 3-gram
and 4-gram sequences. It indicates that when comparing longer word sequences
between target and predictions, BART is the best model, thus it is better at
generating longer queries, i.e. longer queries. We think this is because BART
has been trained on a summarization task, and is therefore better than the other
models at generating comprehensive sequences.

Its scores are also significantly better on the similarity scores simextrema

and simpairwise on the AOL dataset, which means that this is the best model
to capture the word semantic.

The Hierarchy On the AOL dataset, the hierarchical models perform better
than their flat version: TS vs H TS, TS WP vs H TS WP, BERT vs H BERT,
Enc BART vs H BART except for T5 for which Enc T5 outperforms H T5.
This could be due to the fact that T5 uses relative positional embeddings,
while other models use absolute positional embeddings. H T5 would have more
difficulties to find the exact position of words within queries. Note that for
fair comparison H BART and H T5 are compared to Enc BART and Enc T5
rather than BART and T5 because BART and T5 decoders are pre-trained
while H BART and H T5 decoders are trained from scratch. This shows that
with a suitable encoder the hierarchy is beneficial for the query suggestion task,
the two-levels encoder allowing to have a more complex representation of the
session.

The conclusions are different for the MSMARCO dataset. For the fully
trained model TS and TS WP, and for BART, the hierarchy does not help
significantly, while with BERT and T5, the hierarchy decreases the results. We
explain this because the queries and the sessions of the MSMARCO dataset
are longer, and the model has difficulty to focus its attention on the important
queries. We discuss the behavior of the hierarchical models on longer and more
complex sessions more in detail below.

4.5 Robustness of (transformer) models

We now look more in details in how the models behave regarding different
types of sessions to answer the second question Q2: Which model is the
most robust to complex sessions (a), to noisy sessions (b) and to long
sessions (c)? For each type of session, a section is dedicated to the answer.

18

EM BLEU 1 BLEU 2 BLEU 3 BLEU 4 Sim Extr Sim Pair

0.04

0.02

0.00

0.02

0.04

0.06 II
ACG
ACG_WP
HRED
HRED_WP
TS
TS_WP
H_TS
H_TS_WP

BERT
H_BERT
Enc_BART
BART
H_BART
Enc_T5
T5
H_T5

Significance of hatching
Word tokenizer

Pre-trained decoder
Hierarchical model

Significance of hatching
Word tokenizer

Pre-trained decoder
Hierarchical model

(a) Complex sessions

EM BLEU 1 BLEU 2 BLEU 3 BLEU 4 Sim Extr Sim Pair

0.08

0.06

0.04

0.02

0.00

(b) Concatenated sessions

Figure 3: Difference between the performance on all the AOL sessions and on the
noisy version (filtered/concatenated). Negative values indicate a degradation.

19

(a) Transformers results on complex sessions Focusing on the real-word
dataset AOL, which contains many very short and simple search sessions typi-
cal of web search, we were interested in how transformer models could handle
complex sessions. To identify those, we used a simple heuristic: a complex ses-
sion (1) consists of at least three queries; (2) contains queries with more than
one word; and (3) should not contain spelling corrections. For (3), we used the
following heuristic: each of its queries must be sufficiently different from the
previous one, i.e. its editing distance (in characters) should be greater than 3.

Figure 3a reports the relative results obtained on this subset of 193 336 com-
plex sessions. In particular, we want to compare the results of the flat and of
the hierarchical models. We note the good behavior of pre-trained flat trans-
formers for query suggestion for the complex search task, while it emphasizes
the weakness of the pre-trained hierarchical models on these sessions. The flat
models improve the results on these sessions over the corresponding hierarchical
model on all metrics: BERT is less deteriorated than H BERT, and likewise
BART and Enc BART are less impacted than H BART by the complexity of
the sessions, and the same is true for T5 models. For the fully trained models,
TS WP is also less impacted that H TS WP on this subset of sessions on all
metrics. This shows again the robustness of flat models.

(b) Results on noisy sessions To assess the robustness of the approaches,
we add one random session at the start of each session of the test set. Since the
intent of these added sessions (in average) is not the same as the intent driving
the user’s behavior when formulating test queries, models must have learned
to identify thematic breaks, and to ignore this noisy information. Figure 3b
shows percentages of performance loss for every metric. We can see that for all
models, the flat architectures are much less impacted than their corresponding
hierarchical counterpart. This is an important result, since the test sessions were
arbitrarily split according to a 30-minute timeout, which might not correspond
to users’ intent changes. It shows that with the hierarchy, the transformers lose
their ability to focus on relevant part, and so to adapt themselves to longer
sessions.

(c) Sessions Lengths We study the impact of the sessions lengths on the
two pre-trained models BERT and BART (flat and hierarchical versions) on
the AOL dataset. Results are reported in Figure 4. Whatever the metric,
the hierarchical models (in green) perform better than the flat ones (in red)
for short sessions. However, for longer sessions (above 7 queries), it is the
other way around. The flat models scores remain stable while the scores of the
hierarchical models decrease. The hierarchical architecture of [Garg, 2019] is
adapted to short and more simple sessions search, but for longer and complex
tasks the flat transformers are more suitable. We believe that this is due to the
fact that hierarchical transformers cannot focus reliably on the relevant parts
of the session.

20

1 2 3 4 5 6 7 8 9 10 11 120.00

0.02

0.04

0.06

0.08

0.10

(a) EM

1 2 3 4 5 6 7 8 9 10 11 120.0

0.1

0.2

0.3

0.4

0.5

(b) BLEU 1

1 2 3 4 5 6 7 8 9 10 11 120.00

0.05

0.10

0.15

0.20

0.25

(c) BLEU 2

1 2 3 4 5 6 7 8 9 10 11 120.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(d) BLEU 3

1 2 3 4 5 6 7 8 9 10 11 120.00

0.02

0.04

0.06

0.08

0.10

(e) BLEU 4

1 2 3 4 5 6 7 8 9 10 11 120.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f) Sim Extrema

1 2 3 4 5 6 7 8 9 10 11 120.0

0.1

0.2

0.3

0.4

0.5

(g) Sim Pairwise

BERT
H_BERT
Enc_BART
H_BART
Enc_T5
H_T5

(h) Legend

Figure 4: Models scores depending on the length of the sessions

21

4.6 Generated Queries

Finally, in table 3, we give examples of query suggestions for three sessions, and
multiple models: HRED WP (which is the best among the RNN baselines),
the fully trained transformers TS WP and H TS WP, and the pre-trained ones
Enc BART, H BART, and BART.

First, we note that the RNN-based model HRED WP generates the same
word several times in a row. This behavior is very common for HRED WP. For
the session presented in the first column, it suggests ”divorce groups groups”,
for the second ”maryland hotel hotel ocean” and for the third ”disney resorts
resorts”. Note that this is something the transformer models never do. More-
over, HRED WP doesn’t introduce new words, it reformulates the queries of
the context by mixing words order. On the contrary, the transformer models
proposed more diverse suggestions.

We note that the hierarchical models have a greater tendency to copy words
from the context compared to their flat version (we study this behavior in the
next section). H TS introduces only one new word (”free”) in the suggestions of
the first session, while TS WP proposes several new themes (”listings”, ”ebay”,
”aol”). The second presented session contains a typo: ”marylandocean” instead
of ”maryland ocean” with a blank space. The hierarchical H BART didn’t
succeed to correct this typo, it proposes ”marylando ocean city” because it is
more willing to copy words from the context, and thus a part of this typo, while
the flat transformer models didn’t.

The pre-trained models BART and H BART propose more diverse sugges-
tions compared to the fully trained models. In the session of the third column,
the user performs queries on several topics of the same subject. While the
various models succeed to integrate the diverse themes in the suggestions, the
pre-trained models introduced more new topics : ”texas”, ”hotels”, ”ebay”. Fi-
nally, we notice that the suggestions of BART tends to be longer than the ones
of the other models, confirming the experimental results shown earlier.

5 Transformer for Queries Suggestion Analysis

We now investigate the behavior of this latter model BART and design exper-
iments to answer the last question Q3: How does the flat transformer
generate queries?

Several papers propose to analyze transformers to check which information
is learned or used [Clark, 2019; Jawahar, 2019; Brunner, 2020] through either
probing different parts of the layer, or by looking at the attention towards the
input [Clark, 2019]. In this section, we follow this latter line of work, focusing
on specific properties of transformers for query generation.

To do so, we focus on the attention of the decoder towards the encoder
output (see section 3.1), i.e. the attention weights computed for Ad→e. When

generating the (t+1)th token, we denote α
(t)
lhij the attention from the ith decoder

token into the jth encoded token for each layer l and attention head h. To

22

Table 3: Generated queries for three sessions. The two first queries of the
sessions are given in the top of the table (Q1 and Q2), and the first 5 suggestions
of each model reported below.

Q1. divorce chat rooms
Q2. divorce support groups

Q1. maryland ocean city
Q2. marylandocean vity hotel

Q1. carobean cruises
Q2. spa resorts
Q3. disney world

HRED WP

- divorce support groups
- divorce chat groups
- divorce divorce groups
- divorce groups groups
- divorce support

- maryland hotel hotel
- maryland hotel ocean
- maryland hotel hotel ocean
- maryland hotel
- maryland hotel ocean ocean

- disney world resorts
- disney resorts resorts
- disney world
- disney vacation resorts
- disney resorts

TS WP

- chat room listings
- ebay
- aol chat
- chat rooms
- divorce chat room

- ocean city maryland
- ocean city md
- mapquest
- ocean county maryland
- expedia

- disney world
- travelocity
- disney world hotels
- disney world cruise
- disney cruise

H TS WP

- divorce support groups
- free divorce support groups
- divorce
- divorce chat rooms
- divorce support

- maryland ocean city
- ocean city maryland
- hotels in maryland
- hotel ocean city
- mapquest

- disney world
- sea world
- disneyworld
- carnival cruise
- spa resorts

Enc BART

- divorce chat rooms
- divorce chat room
- divorce support group
- divorce support
- divorce chat

- maryland hotel
- maryland hotels
- mapquest
- maryland
- maryland beach hotel

- disney world
- disney world cruises
- disney world texas
- disney world hotels
- disney world resort

H BART

- divorce support groups
- divorce
- free divorce chat rooms
- divorce help
- free divorce help

- maryland ocean city
- marriott hotels
- marylando ocean city
- marriott
- mapquest

- disney world
- spa resorts
- disney world cruise
- disney world resorts
- ebay

BART

- divorce chat rooms
- divorce support groups
- free divorce support groups
- divorce chat room
- free divorce chat rooms

- maryland ocean city hotel
- maryland ocean city
- maryland ocean city hotels
- maryland ocean town hotel
- maryland ocean city resort

- disney world
- spa resorts
- disneyworld
- disney world cruise
- disney world hotels

23

summarize this information, we (1) average the attention over the different
heads – following [Clark, 2019]; and (2) only look at the attention of the jth

output token when generating the j + 1th output token. The rationale for the
latter is that the generated token at step j + 1 mostly depends on the final

representation t
(Ld)
j of the decoder token j, as shown in equation (2). Moreover,

we observed that the attention did not vary much during the generation process,
and hence those values are close to their average. We denote those averaged
and picked attentions of token i on token j at the layer l as α̃lij .

Finally, as shown in [Brunner, 2020], the attention weight might not be a
reliable indicator in all cases, since the actual modification of the representation

depends on the value vh(s
(L)
i) as shown in equation (1). To cater for this

problem, we define the importance (of an attention) β
(t)
lhij as α

(t)
lhij∥vlh(s

(L)
i)∥.

As for the attention, we summarize those values as β̃lij . Unless specified, we
focus on results for Bart – but most of the behavior is shared by the different
versions of the transformers we analyzed.

5.1 The growing importance of queries

In this section, we will answer the first sub-question Q3. (a) On which
context’s queries does the flat transformer focus its attention?

[Sordoni, 2015] claim that the last query - which they called the anchor query
- plays a crucial role in queries suggestions. We verify this claim by assessing
whether more attention was paid to the last queries in a session or not. For long
enough sessions (≥ 5 queries), and for each query, we first sum the importance
β̃lij over its tokens, and normalize the value by dividing it by its maximum
value, so that we can average sessions of varying length. For the same reason,
we normalize the index of each query by the length of the session, i.e. i/|S|. In
Figure 5, we plot the boxplot of the importances given the normalized index of
the query in the session. The x-axis corresponds to the position of the query in
the session (from left to right: from the beginning to the end of the session), and
the y-axis to the importance of the query. We see that there is a trend showing
that last queries are more important for the prediction of the transformers since
they have more impact on the vector used for predicting the output. It also
explains the robustness of BART on concatenated sessions 3b.

5.2 The importance of the context’s tokens

We now answer the second sub question of Q3. (b) On which context’s
tokens does BART focuses its attention?

For each decoded token (including the special token START numbered 0),
we first look at the importance assigned to encoded tokens. In figure 6, each
cell (i, j) in the grid gives the importance of the jth token (of each query in
the session, e.g. the second token of each query in the session is numbered “2”)
when decoding the ith token of the target query.

24

Figure 5: Importance of the queries depending on their (normalized, and using
quantiles) positions in a session (average over layers)

We only plot the importance for two representative layers (1 and 12), as we
can distinguish two layers groups that behave similarly (not shown here: 1 to
4, and 8 to 12). We can observe that at layer 1 to 4, the importance focuses
on tokens that match the same position (e.g. the first tokens of each query
and the first decoded token). For the decoder token START (numbered 0), the
importance is more broadly distributed – which is sensible since nothing has
been generated so far. On layers 8 to 12, the importance focuses on tokens that
match the next token position (e.g. the first tokens of each input query for
START, the second tokens of each input query for t1, etc.). This shows that
transformers first focus on the matching encoded token before selecting the next
token to generate.

The figure also underlines that BART, even without explicit hierarchy ar-
chitecture, is able to capture the basic structure of sessions, the attention being
in average more focused around the matching tokens (i.e. same position) of the
queries present in the context session (as shown by the diagonal in both graphs).

5.3 Generating a new token

Finally we answer the last sub questionQ3. (c) How does the model choose
the next token to generate?

This brings interesting questions in terms of the generative process of the
transformer-based architectures. For the START decoder token, the only ex-
planation is that they first focus on the ”[SEP]” encoded tokens, and then shift
their attention to the next ones – relying on the position embedding that is
added to the encoded token representations. For the next tokens to be gener-
ated, this is less obvious since the model could simply focus on a matching token
(e.g. the decoder token “cat” matches the encoded tokens “cat”). As queries are

25

(a) Layer l = 1

(b) Layer l = 12

Figure 6: Importance of the tokens depending on their position in the queries
(attention of the decoder on the encoder), for layer 1 (a) and layer 12 (b) of
the encoder. The X-axis corresponds to the context – i.e. the encoder tokens
(averaged over all queries), while the Y-axis corresponds to the decoder – i.e.
the decoder tokens. For the decoder, 0 corresponds to the START token. For
instance, from (a) we see that when generating the 3rd token (row of index 2),
the attention is focused mostly on the second token, and also (but less) on the
first and third ones. This is different for the same token at layer 12 (b), where
most of the attention is focused on the third token of every past query. Results
are averaged over 20000 sessions.

26

often repeated within a session with small variations, the tokens might be in the
same positions (in average) in the session queries and in the generated query.
Consequently, to generate the next token, there are two possibilities: either the
transformer shifts the attention towards a token to the right (position-based
decision), or, the (query) language model of the decoder proposes a direction in
the token space, which is then matched if an encoded token lies in this direction
in the representation space.

To look into this, we used sub-sessions of the form

. — . . . A B C . . . — . . .A B

for which the next query to be predicted (in red) contains a bi-gram of tokens
(A,B) that exists in the past queries, followed by a different token C. For ex-
ample, the target query contains “black/A cat/B” and the session contains a
query with tokens “black/A cat/B sold/C”. We calculate the probability of
generating after “black/A” in the target:

• the target token (“cat/B”) with a probability P (B|S,A)

• the token following the bi-gram in the context (“sold/C”) with a proba-
bility P (C|S,A)

We do this for two settings: 1) using the original context session as S and 2)
using a modified context session S for which we swapped tokens B and C in the
context (i.e., substituting “black/A sold/C cat/B” to “black/A cat/B sold/C”).
The goal is to assess whether the model favors a language model (LM) that
captured that B usually follows A, or rather a copy mechanism that mainly
considers positions from the context session (POS). Following this process, the
average probabilities are computed over a set of 20000 sessions and are reported
in table 4 for the different transformers.

First, when position (in the context session) and language model agree (first
and second columns), the probabilities are high for the real target and low
otherwise. Among the different models, we note that the best performing models
(section 4.4) have a very high probability of generating the token B (between
0.7 and 0.8).

When position (in the context session) and language model disagree (fourth
and fifth column), the behavior of the architectures is quite different. Apart
from the TS WP (and to a lesser extent its hierarchical version) which mostly
follows the language model (0.03 vs 0.19) and ignores the context session, we see
that all the other models assign balanced probabilities to position and language
in these swapped sessions.

Sufficiently powerful flat models such as BART appear sufficient to capture
the query organization of sessions, while keeping enough flexibility to adapt
to perturbations. We indeed observe that BART has both high probabilities
of either following the language model or the position-based prediction (total
probability of 0.63), which is nearly as high as when the context session and lan-
guage model match (0.70). This difference with the other models might explain
why BART is performing so well: it leverages both the copying mechanism and
its powerful language model.

27

Table 4: Probabilities on mixed and unmixed sessions. For each original and
swapped sessions, the preference of the model is highlighted in red (for differ-
ences above 0.01)

Session S original B/C swapped
... A B C A C B ...

probability p(B|S,A) p(C|S,A) total p(B|S,A) p(C|S,A) total
favors LM/POS LM POS LM/POS

Transformer WP 0.19 0.03 0.22 0.19 0.03 0.22
H Transformer WP 0.67 0.01 0.68 0.37 0.22 0.59

BERT 0.46 0.01 0.47 0.17 0.23 0.40
Enc BART 0.51 0.00 0.51 0.21 0.20 0.41
Enc T5 0.57 0.02 0.59 0.21 0.26 0.47
BART 0.70 0.03 0.73 0.35 0.28 0.63
T5 0.80 0.02 0.82 0.36 0.36 0.72

H BERT 0.63 0.01 0.64 0.20 0.34 0.54
H BART 0.72 0.01 0.73 0.29 0.28 0.57
H T5 0.68 0.01 0.69 0.31 0.27 0.58

5.4 Human evaluation

To further investigate the ability of the flat models, we conducted a human
evaluation by comparing 100 queries predicted for AOL and MS Marco by all
the models. The judges were presented complete sessions and corresponding
suggestions predicted by each model. They had no knowledge of the ground
truth or the user’s goal. In our user modeling framework, we seek to evaluate
whether suggestions make sense to annotators based on the user’s session, not
only whether they are syntactically correct. That’s why judges were asked to
evaluate the suggestions that were most likely to meet the user’s need in the
session by answering the question “is this query likely to follow in the session?”.
They were asked to rank the predictions from most to least suitable. Annotators
are supposed to be able to infer the user’s purpose from the session. Indeed, no
more can be expected from an optimal policy that only has the user session at
its disposal, and this is what we are trying to assess. Giving the user’s purpose
to the annotators could have biased the evaluation by leading the annotators
to evaluate too negatively many suggestions, even though they corresponded to
average user behavior. We further asked the annotator to rank exact repetitions
and generic queries (e.g. “google”) as bad predictions. We report in table 5 the
% of times a model is judged better than another one.

The evaluation confirms the results obtained with the other metrics. The
models ACG, HRED and the different transformers are increasingly better (e.g.
on AOL, 27% of predicted queries are better for Bart than for HRED, and 17%
for the other way around). Among transformers, pre-trained models perform
better (5-10% gap), with Bart doing slightly better than Bert. Regarding
WordPiece tokenization, they do perform better except for Transformer on AOL,

28

Table 5: Human evaluation on 100 queries for MS Marco and AOL. Each cell
is the % of times model in row is better than model in column vs the reverse
(and the remaining % is equality)

.

HRED HRED WPT ACG ACG WPT TS TS-WPT BERT

MS Marco

HRED WPT 19% vs 18%
ACG 26% vs 29% 22% vs 22%
ACG WPT 20% vs 22% 17% vs 21% 22% vs 24%
TS 32% vs 11% 33% vs 13% 38% vs 16% 36% vs 13%
TS WPT 37% vs 10% 35% vs 10% 42% vs 15% 39% vs 11% 15% vs 10%
BERT 41% vs 10% 38% vs 8% 42% vs 15% 43% vs 11% 25% vs 15% 22% vs 18%
BART 43% vs 9% 42% vs 11% 45% vs 11% 44% vs 9% 27% vs 15% 21% vs 16% 19% vs 16%

AOL

HRED WPT 23% vs 16%
ACG 13% vs 24% 10% vs 29%
ACG WPT 4% vs 24% 6% vs 32% 7% vs 15%
TS 34% vs 17% 31% vs 20% 35% vs 3% 43% vs 5%
TS WPT 28% vs 15% 24% vs 18% 32% vs 5% 38% vs 5% 13% vs 18%
BERT 34% vs 13% 31% vs 18% 41% vs 9% 44% vs 6% 28% vs 24% 28% vs 19%
BART 38% vs 17% 35% vs 20% 41% vs 11% 45% vs 8% 30% vs 28% 31% vs 24% 26% vs 24%

and for ACG.

6 Conclusion

In this paper, inspired by the success of transformer-based models [Vaswani,
2017] in various NLP and IR tasks, we looked at the various architectures that
could be applied to query generation. We compared tokenizers, architectures,
and different pre-training methods. We show that while hierarchical models
permit to obtain better performance than corresponding flat architectures, they
are not adapted for long and complex sessions. We conducted a deeper anal-
ysis on the flat models to understand why they are better at handling these
sessions. We analysed their generation process, and found that the flat trans-
former is, on one hand, a position model that is able to recover the structure of
a web search session (input queries are concatenated), and on the other hand,
a good (query) language model. Future work will focus on improving the hier-
archical architecture, so the model can handle more complex search tasks, and
incorporating signals of various natures (longer history, clicked documents) into
transformer-based architectures. Our study is limited to query-based search
sessions, but the hierarchical structure of data is also present in conversational
searches [Aliannejadi, 2019; Zamani, 2020]. However, while in our case the user
is modeled according to their own past actions only, the setting of conversa-
tional search requires to consider external data such as available documents in
the collection, or the IR system’s answers, to drive the user towards their target
documents. Our study could be extended in future work to the conversational
search setting by integrating actions from the search agent in the model.

It will also focus on working on architectures able to cope with long ses-
sions, potentially all the user history, using other recently introduced trans-

29

formers [Dai, 2019b; Kitaev, 2020; Beltagy, 2020] that overcome the limit of the
maximum context length.

Acknowledgement: This work was supported by the Agence National
de la Recherche (ANR), through project CoST, code ANR-18-CE23-
0016.

References

[Ahmad, 2018] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning
Wang. “Multi-Task Learning for Document Rank-
ing and Query Suggestion”. In: International Con-
ference on Learning Representations. 2018.

[Ahmad, 2019] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongn-
ing Wang. “Context Attentive Document Ranking
and Query Suggestion”. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR’19.
New York, NY, USA: ACM, 2019, pp. 385–394.

[Aliannejadi, 2019] Mohammad Aliannejadi et al. “Asking Clarifying
Questions in Open-Domain Information-Seeking Con-
versations”. In: The 42nd International ACM SI-
GIR Conference on Research & Development in In-
formation Retrieval. SIGIR’19. New York, NY, USA:
ACM, 2019, pp. 475–484.

[Aliannejadi, 2020] Mohammad Aliannejadi et al. “Harnessing Evolu-
tion of Multi-Turn Conversations for Effective An-
swer Retrieval”. In: Proceedings of the 2020 Con-
ference on Human Information Interaction and Re-
trieval. CHIIR ’20. New York, NY, USA: ACM,
2020, pp. 33–42.

[Beltagy, 2020] Iz Beltagy, Matthew E. Peters, and Arman Cohan.
“Longformer: The Long-Document Transformer”.
In: (2020). arXiv: 2004.05150.

[Bhatia, 2011] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit
Mitra. “Query Suggestions in the Absence of Query
Logs”. In: The 34th International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval. SIGIR ’11. New York, NY, USA: ACM,
2011, pp. 795–804.

30

https://openreview.net/pdf?id=SJ1nzBeA-
https://openreview.net/pdf?id=SJ1nzBeA-
https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3343413.3377968
https://doi.org/10.1145/3343413.3377968
https://doi.org/10.1145/3343413.3377968
https://arxiv.org/abs/2004.05150
https://doi.org/10.1145/2009916.2010023
https://doi.org/10.1145/2009916.2010023

[Boldi, 2009] Paolo Boldi et al. “Query Suggestions Using Query-
Flow Graphs”. In: Proceedings of the 2009 Work-
shop on Web Search Click Data. WSCD ’09. New
York, NY, USA: ACM, 2009, pp. 56–63.

[Bonchi, 2012] Francesco Bonchi et al. “Efficient Query Recom-
mendations in the Long Tail via Center-Piece Sub-
graphs”. In: The 35th International ACM SIGIR
Conference on Research & Development in Infor-
mation Retrieval. SIGIR ’12. New York, NY, USA:
ACM, 2012, pp. 345–354.

[Broccolo, 2012] Daniele Broccolo et al. “Generating Suggestions for
Queries in the Long Tail with an Inverted Index”.
In: Information Processing & Management 48.2 (Mar.
2012), pp. 326–339. issn: 0306-4573.

[Brown, 2020] Tom Brown et al. “Language Models are Few-Shot
Learners”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 33. Curran Associates, Inc.,
2020, pp. 1877–1901.

[Brunner, 2020] Gino Brunner et al. “On Identifiability in Trans-
formers”. In: International Conference on Learning
Representations. 2020.

[Cao, 2008] Huanhuan Cao et al. “Context-Aware Query Sug-
gestion by Mining Click-through and Session Data”.
In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining. KDD ’08. New York, NY, USA: ACM,
2008, pp. 875–883.

[Carterette, 2016] Ben Carterette et al. “Evaluating Retrieval over
Sessions: The TREC Session Track 2011-2014”. In:
The 39th International ACM SIGIR Conference on
Research & Development in Information Retrieval.
SIGIR ’16. New York, NY, USA: ACM, 2016, pp. 685–
688.

[Chen, 2018] Wanyu Chen et al. “Attention-Based Hierarchical
Neural Query Suggestion”. In: The 41st Interna-
tional ACM SIGIR Conference on Research & De-
velopment in Information Retrieval. SIGIR ’18. New
York, NY, USA: ACM, 2018, pp. 1093–1096.

[Clark, 2019] Kevin Clark et al. “What Does BERT Look at?
An Analysis of BERT’s Attention”. In: Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP. Flo-
rence, Italy: ACL, 2019, pp. 276–286.

31

https://doi.org/10.1145/1507509.1507518
https://doi.org/10.1145/1507509.1507518
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1016/j.ipm.2011.07.005
https://doi.org/10.1016/j.ipm.2011.07.005
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=BJg1f6EFDB
https://openreview.net/forum?id=BJg1f6EFDB
https://doi.org/10.1145/1401890.1401995
https://doi.org/10.1145/1401890.1401995
https://doi.org/10.1145/2911451.2914675
https://doi.org/10.1145/2911451.2914675
https://doi.org/10.1145/3209978.3210079
https://doi.org/10.1145/3209978.3210079
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828

[Conneau, 2019] Alexis Conneau and Guillaume Lample. “Cross-lingual
Language Model Pretraining”. In: Advances in Neu-
ral Information Processing Systems. Vol. 32. Curran
Associates, Inc., 2019.

[Dai, 2019a] Zhuyun Dai and Jamie Callan. “Deeper Text Un-
derstanding for IR with Contextual Neural Lan-
guage Modeling”. In: Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR’19.
New York, NY, USA: ACM, 2019, pp. 985–988.

[Dai, 2019b] Zihang Dai et al. “Transformer-XL: Attentive Lan-
guage Models beyond a Fixed-Length Context””.
In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence,
Italy: ACL, July 2019, pp. 2978–2988.

[Dalton, 2020] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan.
“TREC CAsT 2019: The Conversational Assistance
Track Overview”. In: (2020). arXiv: 2003.13624.

[Dehghani, 2017] Mostafa Dehghani et al. “Learning to Attend, Copy,
and Generate for Session-Based Query Suggestion”.
In: Proceedings of the 26th ACM International on
Conference on Information and Knowledge Man-
agement. CIKM ’17. New York, NY, USA: ACM,
2017, pp. 1747–1756. isbn: 9781450349185.

[Devlin, 2019] Jacob Devlin et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understand-
ing”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. Vol. 1. Minneapolis, Minnesota: ACL, June
2019, pp. 4171–4186.

[Forgues, 2014] Gabriel Forgues et al. “Bootstrapping dialog sys-
tems with word embeddings”. In: Nips, modern ma-
chine learning and natural language processing work-
shop. Vol. 2. NIPS’14. Red Hook, NY, USA: Curran
Associates Inc., 2014.

[Garg, 2019] Vikas K. Garg, Inderjit S. Dhillon, and Hsiang-Fu
Yu. “Multiresolution Transformer Networks: Recur-
rence is Not Essential for Modeling Hierarchical Struc-
ture”. In: (2019). arXiv: 1908.10408.

32

https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3331184.3331303
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://arxiv.org/abs/2003.13624
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/3132847.3133010
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://www.cs.cmu.edu/~apparikh/nips2014ml-nlp/camera-ready/forgues_etal_mlnlp2014.pdf
http://www.cs.cmu.edu/~apparikh/nips2014ml-nlp/camera-ready/forgues_etal_mlnlp2014.pdf
https://arxiv.org/abs/1908.10408

[Hagen, 2013] Matthias Hagen et al. “From Search Session Detec-
tion to Search Mission Detection”. In: Proceedings
of the 10th Conference on Open Research Areas in
Information Retrieval. OAIR ’13. Paris, FRA: Cen-
tre de hautes études internationales d’informatique
documentaire, 2013, pp. 85–92.

[Han, 2019] Fred.X Han et al. “Inferring Search Queries from
Web Documents via a Graph-Augmented Sequence
to Attention Network”. In: The World Wide Web
Conference. WWW ’19. New York, NY, USA: ACM,
2019, pp. 2792–2798.

[Hassan Awadallah, 2014] Ahmed Hassan Awadallah et al. “Supporting Com-
plex Search Tasks”. In: Proceedings of the 23rd ACM
International Conference on Conference on Infor-
mation and Knowledge Management. CIKM ’14. New
York, NY, USA: ACM, 2014, pp. 829–838.

[He, 2009] Qi He et al. “Web Query Recommendation via Se-
quential Query Prediction”. In: Proceedings of the
2009 IEEE International Conference on Data En-
gineering. ICDE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1443–1454. isbn: 978-
0-7695-3545-6.

[Howard, 2018] Jeremy Howard and Sebastian Ruder. “Universal
Language Model Fine-tuning for Text Classifica-
tion”. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics.
Vol. 1: Long Papers. Melbourne, Australia: ACL,
July 2018, pp. 328–339.

[Huang, 2003] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen
Oyang. “Relevant Term Suggestion in Interactive
Web Search Based on Contextual Information in
Query Session Logs”. In: Journal of the American
Society for Information Science and Technology 54.7
(May 2003), pp. 638–649. issn: 1532-2882.

[Jain, 2011a] Alpa Jain, Umut Ozertem, and Emre Velipasaoglu.
“Synthesizing High Utility Suggestions for Rare Web
Search Queries”. In: The 34th International ACM
SIGIR Conference on Research & Development in
Information Retrieval. SIGIR ’11. New York, NY,
USA: ACM, 2011, pp. 805–814.

[Jain, 2011b] Alpa Jain, Umut Ozertem, and Emre Velipasaoglu.
“Synthesizing High Utility Suggestions for Rare Web
Search Queries”. In: The 34th International ACM
SIGIR Conference on Research & Development in

33

https://dl.acm.org/doi/10.5555/2491748.2491769
https://dl.acm.org/doi/10.5555/2491748.2491769
https://doi.org/10.1145/3308558.3313746
https://doi.org/10.1145/3308558.3313746
https://doi.org/10.1145/3308558.3313746
https://doi.org/10.1145/2661829.2661912
https://doi.org/10.1145/2661829.2661912
http://dx.doi.org/10.1109/ICDE.2009.71
http://dx.doi.org/10.1109/ICDE.2009.71
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://doi.org/10.1002/asi.10256
https://doi.org/10.1002/asi.10256
https://doi.org/10.1002/asi.10256
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024

Information Retrieval. SIGIR ’11. New York, NY,
USA: ACM, 2011, pp. 805–814.

[Jawahar, 2019] Ganesh Jawahar, Benôıt Sagot, and Djamé Sed-
dah. “What Does BERT Learn about the Structure
of Language?” In: Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics. Florence, Italy: ACL, July 2019, pp. 3651–
3657.

[Jiang, 2018] Jyun-Yu Jiang and Wei Wang. “RIN: Reformula-
tion Inference Network for Context-Aware Query
Suggestion”. In: Proceedings of the 27th ACM In-
ternational Conference on Information and Knowl-
edge Management. CIKM ’18. New York, NY, USA:
ACM, 2018, pp. 197–206. isbn: 9781450360142.

[Kai, 1998] Atsuhiko Kai, Yoshifumi Hirose, and Seiichi Nak-
agawa. “Dealing with out-of-vocabulary words and
speech disfluencies in an n-gram based speech un-
derstanding system”. In: The 5th International Con-
ference on Spoken Language Processing. ISCA, 1998.

[Kingma, 2015] Diederik P. Kingma and Jimmy Ba. “Adam: AMethod
for Stochastic Optimization”. In: International Con-
ference on Learning Representations. 2015.

[Kitaev, 2020] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
“Reformer: The Efficient Transformer”. In: Inter-
national Conference on Learning Representations.
2020.

[Kumar, 2020] Manoj Kumar et al. “VideoFlow: A Conditional
Flow-Based Model for Stochastic Video Generation”.
In: International Conference on Learning Represen-
tations. 2020.

[Levine, 2017] Nir Levine, Haggai Roitman, and Doron Cohen.
“An Extended Relevance Model for Session Search”.
In: The 40th International ACM SIGIR Conference
on Research & Development in Information Retrieval.
SIGIR ’17. New York, NY, USA: ACM, 2017, pp. 865–
868.

[Lewis, 2020] Mike Lewis et al. “BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Gen-
eration, Translation, and Comprehension”. In: Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics. ACL, July
2020, pp. 7871–7880.

34

https://www.aclweb.org/anthology/P19-1356
https://www.aclweb.org/anthology/P19-1356
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rJgUfTEYvH
https://openreview.net/forum?id=rJgUfTEYvH
https://doi.org/10.1145/3077136.3080664
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703

[Liu, 2018] Xiaodong Liu et al. “Stochastic Answer Networks
for Machine Reading Comprehension”. In: Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics. Vol. 1: Long Papers.
Melbourne, Australia: ACL, July 2018, pp. 1694–
1704.

[Liu, 2019] Yinhan Liu et al. “RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach”. In: (2019). arXiv:
1907.11692.

[Liu, 2020] Xiaodong Liu et al. “The Microsoft Toolkit of Multi-
Task Deep Neural Networks for Natural Language
Understanding”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. ACL, July 2020,
pp. 118–126.

[MacAvaney, 2019] Sean MacAvaney et al. “CEDR: Contextualized Em-
beddings for Document Ranking”. In: The 42nd In-
ternational ACM SIGIR Conference on Research &
Development in Information Retrieval. SIGIR’19.
New York, NY, USA: ACM, 2019, pp. 1101–1104.

[Mehrotra, 2017] Rishabh Mehrotra and Emine Yilmaz. “Extract-
ing Hierarchies of Search Tasks & Subtasks via a
Bayesian Nonparametric Approach”. In: The 40th
International ACM SIGIR Conference on Research
& Development in Information Retrieval. SIGIR ’17.
New York, NY, USA: ACM, 2017, pp. 285–294.

[Mei, 2008] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church.
“Query Suggestion Using Hitting Time”. In: Pro-
ceedings of the 17th ACM Conference on Informa-
tion and Knowledge Management. CIKM ’08. New
York, NY, USA: ACM, 2008, pp. 469–478. isbn:
9781595939913.

[Mitra, 2015] Bhaskar Mitra and Nick Craswell. “Query Auto-
Completion for Rare Prefixes”. In: Proceedings of
the 24th ACM International on Conference on In-
formation and Knowledge Management. CIKM ’15.
New York, NY, USA: ACM, 2015, pp. 1755–1758.

[Nguyen, 2016] Tri Nguyen et al. “MS MARCO: A Human Gener-
ated MAchine Reading COmprehension Dataset”.
In: Proceedings of the Workshop on Cognitive Com-
putation: Integrating neural and symbolic approaches
2016 co-located with the 30th Annual Conference on
Neural Information Processing Systems. Vol. 1773.
CEUR Workshop Proceedings (NIPS’ 2016). 2016.

35

https://www.aclweb.org/anthology/P18-1157
https://www.aclweb.org/anthology/P18-1157
https://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/2020.acl-demos.16
https://www.aclweb.org/anthology/2020.acl-demos.16
https://www.aclweb.org/anthology/2020.acl-demos.16
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3077136.3080823
https://doi.org/10.1145/3077136.3080823
https://doi.org/10.1145/3077136.3080823
https://doi.org/10.1145/1458082.1458145
https://doi.org/10.1145/2806416.2806599
https://doi.org/10.1145/2806416.2806599
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf

[Nogueira, 2019] Rodrigo Nogueira et al. “Document Expansion by
Query Prediction”. In: (2019). arXiv: 1904.08375.

[Ozertem, 2012a] Umut Ozertem et al. “Learning to Suggest: A Ma-
chine Learning Framework for Ranking Query Sug-
gestions”. In: The 35st International ACM SIGIR
Conference on Research & Development in Infor-
mation Retrieval. New York, NY, USA: ACM, 2012,
pp. 25–34.

[Ozertem, 2012b] Umut Ozertem et al. “Learning to Suggest: A Ma-
chine Learning Framework for Ranking Query Sug-
gestions”. In: The 35th International ACM SIGIR
Conference on Research & Development in Infor-
mation Retrieval. SIGIR ’12. New York, NY, USA:
ACM, 2012, pp. 25–34.

[Papineni, 2002] Kishore Papineni et al. “Bleu: a Method for Auto-
matic Evaluation of Machine Translation”. In: Pro-
ceedings of the 40th Annual Meeting of the Associ-
ation for Computational Linguistics. Philadelphia,
Pennsylvania, USA: ACL, July 2002, pp. 311–318.

[Qiao, 2019] Yifan Qiao et al. “Understanding the Behaviors of
BERT in Ranking”. In: (2019). arXiv: 1904.07531.

[Radford, 2019] Alec Radford et al. “Language models are unsuper-
vised multitask learners”. In: OpenAI blog (2019).

[Raffel, 2020] Colin Raffel et al. “Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer”.
In: Journal of Machine Learning Research 21.140
(2020), pp. 1–67.

[Sadikov, 2010] Eldar Sadikov et al. “Clustering Query Refinements
by User Intent”. In: Proceedings of the 19th Inter-
national Conference on World Wide Web. WWW
’10. New York, NY, USA: ACM, 2010, pp. 841–850.

[Scialom, 2019] Thomas Scialom et al. “Answers Unite! Unsuper-
vised Metrics for Reinforced Summarization Mod-
els”. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong,
China: ACM, Nov. 2019, pp. 3246–3256.

[Sennrich, 2016] Rico Sennrich, Barry Haddow, and Alexandra Birch.
“Neural Machine Translation of Rare Words with
Subword Units”. In: Proceedings of the 54th An-
nual Meeting of the Association for Computational

36

https://arxiv.org/abs/1904.08375
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://arxiv.org/abs/1904.07531
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/1772690.1772776
https://doi.org/10.1145/1772690.1772776
https://www.aclweb.org/anthology/D19-1320
https://www.aclweb.org/anthology/D19-1320
https://www.aclweb.org/anthology/D19-1320
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162

Linguistics. Vol. 1: Long Papers. Berlin, Germany:
ACM, Aug. 2016, pp. 1715–1725.

[Sloan, 2015] Marc Sloan, Hui Yang, and Jun Wang. “A Term-
Based Methodology for Query Reformulation Un-
derstanding”. In: Information Retrieval Journal 18.2
(Apr. 2015), pp. 145–165. issn: 1386-4564.

[Song, 2011] Yang Song, Dengyong Zhou, and Li-wei He. “Post-
Ranking Query Suggestion by Diversifying Search
Results”. In: The 34th International ACM SIGIR
Conference on Research & Development in Infor-
mation Retrieval. SIGIR ’11. New York, NY, USA:
ACM, 2011, pp. 815–824.

[Sordoni, 2015] Alessandro Sordoni et al. “A Hierarchical Recurrent
Encoder-Decoder for Generative Context-Aware Query
Suggestion”. In: Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowl-
edge Management. CIKM ’15. New York, NY, USA:
ACM, 2015, pp. 553–562. isbn: 9781450337946.

[Tan, 2018] Zhixing Tan et al. “Deep semantic role labeling with
self-attention”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 32. 1. 2018.

[Trippas, 2020] Johanne R. Trippas et al. “Towards a model for
spoken conversational search”. In: Information Pro-
cessing & Management 57.2 (2020), p. 102162.

[Vaswani, 2017] Ashish Vaswani et al. “Attention is All You Need”.
In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017,
pp. 6000–6010. isbn: 9781510860964.

[Wang, 2020] Sinong Wang et al. “Linformer: Self-Attention with
Linear Complexity”. In: (2020). arXiv: 2006.04768.

[Wu, 2018] Bin Wu et al. “Query Suggestion with Feedback
Memory Network”. In: Proceedings of the 2018 World
Wide Web Conference. WWW ’18. Republic and
Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2018, pp. 1563–
1571. isbn: 9781450356398.

[Yang, 2019a] Wei Yang, Haotian Zhang, and Jimmy Lin. “Sim-
ple Applications of BERT for Ad Hoc Document
Retrieval”. In: (2019). arXiv: 1903.10972.

37

https://doi.org/10.1145/2009916.2010025
https://doi.org/10.1145/2009916.2010025
https://doi.org/10.1145/2009916.2010025
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368
https://doi.org/10.1016/j.ipm.2019.102162
https://doi.org/10.1016/j.ipm.2019.102162
https://dl.acm.org/doi/10.5555/3295222.3295349
https://arxiv.org/abs/2006.04768
https://doi.org/10.1145/3178876.3186068
https://doi.org/10.1145/3178876.3186068
https://arxiv.org/abs/1903.10972

[Yang, 2019b] Zhilin Yang et al. “XLNet: Generalized Autoregres-
sive Pretraining for Language Understanding”. In:
Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., 2019.

[Yu, 2020] Shi Yu et al. “Few-Shot Generative Conversational
Query Rewriting”. In: The 43rd International ACM
SIGIR Conference on Research & Development in
Information Retrieval. ACM, 2020, pp. 1933–1936.

[Zamani, 2020] Hamed Zamani et al. “Generating Clarifying Ques-
tions for Information Retrieval”. In: Proceedings of
The Web Conference 2020. WWW ’20. New York,
NY, USA: ACM, 2020, pp. 418–428. isbn: 9781450370233.

[Zhu, 2015] Yukun Zhu et al. “Aligning Books and Movies: To-
wards Story-Like Visual Explanations by Watching
Movies and Reading Books”. In: Proceedings of the
IEEE international conference on computer vision.
2015, pp. 19–27.

38

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1145/3397271.3401323
https://doi.org/10.1145/3397271.3401323
https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3366423.3380126
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368

	Introduction
	Related Work
	Transformers for Queries Suggestion
	The Transformer architecture
	Pre Trained Transformers
	Using Transformer networks for Query Suggestion
	Problem Setting
	Fully trained Transformer (TS)
	BERT
	BART
	T5

	Hierarchical Transformer for Query Suggestion

	Experiments
	Datasets.
	Compared Models.
	Metrics
	Results
	Robustness of (transformer) models
	Generated Queries

	Transformer for Queries Suggestion Analysis
	The growing importance of queries
	The importance of the context's tokens
	Generating a new token
	Human evaluation

	Conclusion

