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We discuss the influence of compressibility effects including time delay on the dy-1

namics of acoustically excited bubbly screens. In the linear regime, we show that the2

proposed model recovers the results from the effective medium theory up to second3

order for infinite bubbly screens when the wavelength is large compared to the inter-4

bubble distance, and bubbles are equally spaced without the need of introducing any5

fitting parameter. The effect of boundaries on finite size screens and randomization6

on the bubble position is shown to lead to the appearance of multiple local resonances7

and characteristic periodic structures. In the non-linear regime, we treat time-delay8

effects as a delay-differential equation that is directly solved numerically. We show9

the appearance the optimal distance for subharmonic emission for crystal structures10

and discuss the accuracy of effective medium theories in the strong non-linear regime.11
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I. INTRODUCTION12

The dynamics of cavities in liquids has attracted a lot of interest over the past few decades13

(Fuster, 2019; Lohse, 2018). The oscillation of an isolated bubble is well described by the14

Rayleigh-Plesset (RP) like equations that account for compressibility effects (Gilmore, 1952;15

Keller and Miksis, 1980; Lauterborn and Kurz, 2010; Prosperetti et al., 1986). However,16

bubbles often appear in ensembles, and bubble-bubble interactions need to be accounted17

for as the bubble interface acceleration influences the pressure distribution in the bubble18

surroundings. One traditional way to account for the influence of interactions is to use19

the effective medium method. Foldy (1945), Caflisch et al. (1985), and Commander and20

Prosperetti (1989) consider the influence that the dynamic bubble response have on the ef-21

fective properties of a wave propagating in a bubbly liquid. The multiple interactions among22

bubbles are described by the interaction between each bubble and the averaged pressure23

field. However these models are limited to diluted systems and frequencies for which the24

wavelength is larger than the characteristic bubble radius and the inter-bubble distance.25

26

In an attempt to generalize the range of applicability of these theories to shorter wave-27

lengths and capture more accurately the interaction mechanisms among bubbles, some28

authors propose to solve a coupled system of RP like equations (Fan et al., 2020b; Fuster29

and Colonius, 2011; Ilinskii et al., 2007; Mettin et al., 1997). These approaches can be even-30

tually coupled with an Eulerian–Lagrangian approach (Fuster and Colonius, 2011; Maeda31

and Colonius, 2019) to capture both, short and long wave range interactions and can be32
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considered as two-way coupled model, where bubbles can directly feel the acoustic field33

emitted by each other. An intrinsic difficulty in these models is how to account for the34

influence of the liquid compressibility on the multiple interactions among bubbles. Indeed35

one of the most frequently-used assumption is to resort to the incompressible limit where the36

interactions among bubbles takes place instantaneously neglecting any time-delay effect due37

to liquid compressibility. Although this assumption is certainly valid when the wavelength38

of the excitation pressure wave is much larger than the characteristic size of the bubble39

cluster, the accuracy and degree of applicability of these models in systems with many40

bubbles has not been discussed in detail.41

42

Some numerical studies applied to medical related research such as high-intensity fo-43

cused ultrasound (Okita et al., 2013), ultrasound contrast agent (Faez et al., 2012), and44

drug delivery (Coussios and Roy, 2008) point out the importance of compressibility effects,45

an in particular time-delay effects in real applications (Sujarittam and Choi, 2020). More46

fundamental studies including experimental works studying the acoustic propagation in the47

vicinity of a bubble chain (Manasseh et al., 2004) have shown that the time-delay effects48

considerably change the resonance frequencies and the damping factors of the effective49

medium (Doinikov et al., 2005; Ooi et al., 2008), so does bubble near boundaries (Dahl and50

Kapodistrias, 2003; van’t Wout and Feuillade, 2021; Ye and Feuillade, 1997). In the context51

of the development of acoustic metamaterials, two-dimensional bubble layers also known52

as bubbly screens have also became a widely investigated system since 2009 in a series of53

papers published by Leroy and coworkers (Leroy et al., 2015, 2009; Lombard et al., 2015).54
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Using the self-consistent approach based on the effective medium theory, the transmission55

and reflection coefficient measured experimentally in the linear regime can be well captured56

by accounting for the influence of time-delay effects on the interaction term among bubbles.57

In non-linear regime, the asymptotic analysis based on effective medium theory (Miksis58

and Ting, 1989; Pham et al., 2021) have shed light into the role of compressibility on the59

mechanisms of multiple interactions among bubbles. However, these models still face some60

challenges. For example it is known that, even in the dilute limit, crystal configuration61

have special acoustic properties (Devaud et al., 2010). The capability of these models to62

distinguish between the properties of specific configurations (e.g. crystals) and the ensemble63

average of randomly distributed systems has not been clarified . Also, it is not clear how64

well averaged models capture the influence of boundary effects as well as polydispersity65

effects.66

67

In this work we discuss the applicability and accuracy of models based on the resolution of68

a coupled system of RP like equations to capture the response of bubbly screens (Figure 1).69

After presenting a particularization of the system of Rayleigh-Plesset like equations proposed70

in Fuster and Colonius (2011) to solve for the dynamic response of the bubbles, we show that71

this model is able to recover the second order solution predicted by the effective medium72

theory in the linear oscillating regime without the need of introducing any fitting parameter.73

Then the influence of boundary effects and randomness on the accuracy of the predictions74

from the effective medium theory are discussed in the linear regime. In the non-linear75

regime, we present numerical results of the solution of the system of equations using a delay-76
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differential equation solver showing examples that reveal the importance of compressibility77

effects to correctly predict the bubble dynamic response.78

II. BUBBLY SCREEN MODEL79

The dynamics of an oscillating spherical bubble is described using the Keller-Miksis like80

equation (Keller and Miksis, 1980) which is a differential equation for the bubble radius of81

the ith bubble in a weakly compressible liquid characterized by its speed of sound c and82

density ρ83

ρ

(
RiR̈i

(
1− Ṙi

c

)
+

3Ṙi
2

2

(
1− Ṙi

3c

))
−

(
1 +

Ṙi

c
+
Ri

c

d

dt

)
(pi,B − p∞) = ρIi(td). (1)

In the equation above, p∞(t) = p0 + f(t) is the pressure excitation, pi,B is the liquid pres-84

sure at the interface of the ith bubble, which we describe using a simple polytropic law85

pi,B =
(
p0 + 2σ

Ri,0

)(
Ri,0

Ri

)3κ

− 2σ
Ri
− 4µṘi

Ri
, where p0 is the static pressure; Ri,0 is the ith bubble86

radius at equilibrium; σ is the surface tension; µ is the liquid viscosity.87

88

The interaction term I(td) represents the pressure fluctuation induced by the presence89

of the surrounding bubbles, which has to be evaluated at the deferred time td = t − dij/c,90

where dij = |~xi − ~xj| represents the distance from the ith bubble located at ~xi to the jth91

bubble located at ~xj. Following Fuster and Colonius (2011), it can be readily shown that92

Ii = Ii,0 + Ii,1, (2)
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where both terms have to be evaluated at the deferred time td93

Ii,0(td) = −
N∑
j 6=i

Rj

Dij

(
RjR̈j + 2Ṙ2

j

)
,

Ii,1(td) = −1

c

[
N∑
j 6=i

Rj

Dij

Ṙj

[
RjR̈j +

Ṙj
2

2
− (pj,B − p∞)

ρ

]
−

N∑
j 6=i

R2
j

Dij

d

dt

(pj,B − p∞)

ρ
+ ṘiIi,0

]
.(3)

In the equations above, we only keep first order compressibility correction terms in the94

intensity of the collapse of bubbles, which scale as a function of the Mach number Ma = Ṙ
c
,95

and time-delay effects. Neglecting time-delay effects (e.g. td = t) leads to a coupled system96

of equations that needs to be solved. In the limit of c→∞ we recover the classical form of97

the interaction term Ii ≈ Ii,0 evaluated at t (Bremond et al., 2006; Ida et al., 2007; Yasui98

et al., 2008). Otherwise, as explained in Section IV, it is required to solve a differential99

equation with time delay.100

III. COMPRESSIBILITY EFFECTS IN THE LINEAR OSCILLATION REGIME101

A. General case102

In this section, we start considering the dynamics of a finite bubbly screen with monodis-103

perse bubbles excited by a weak perturbation, where Ri,0 = Rj,0 = R0. Bubbles are arranged104

in Nl layers in the x = 0 plane (Nl = 3 in Figure 1). For a system with N bubbles of the105

same equilibrium radius, the coupled set of equations that needs to be solved is106

RiR̈i−
(

1 +
Ri

c

d

dt

)
pi,B − p∞

ρ
= −

N∑
j 6=i

R2
j (td)

dij
R̈j(td)+

N∑
j 6=i

Rj(td)

dij

Rj(td)

c

d

dt

(pj,B(td)− p∞(td))

ρ
,

(4)
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FIG. 1. A typical crystal distributed bubbly screen located at x = 0 plane.

where Ri(t) = R0(1+r′ie
ıωt), Ri(td) = R0(1+r′ie

ıω(t−dij/c)). For simplicity, we consider a pla-107

nar wave such that p∞ = p0(1 + p′eıωt), neglect viscous, thermal, and surface tension terms108

during linear analysis, and thus have pi,B − p0 = −3γp0r
′
ie
ıωt. For a given physical system109

at constant reference pressure, the dimensionless wavenumber kR0 = ω
ω0

1
c

√
3κp0

ρ
depends110

on the frequency ratio between the excitation frequency, ω, and the resonance frequency111

of single isolated oscillating bubble ω0 =
√

3γp0

R2
0ρ

. For air bubbles in water at atmospheric112

conditions 1
c

√
3κp0

ρ
≈ 10−2 and therefore kR0 < 1 is usually a reasonable assumption. This113

parameter will be held constant in what follows, where we show the solution for particu-114

lar configurations of the bubbly screen. We can also define an alternative dimensionless115

wavenumber using the averaged inter-bubble distance D as kD = D
R0

ω
ω0

1
c

√
3κp0

ρ
, which is not116

always small in diluted systems.117

118

A first remark is that, in the linear regime, the influence of the compressibility correction

term in the interaction is not null, and it is not sufficient to retain the incompressible

8



interaction term only. Neglecting terms of order (kR0)2, the set of equations above can be

written in matrix form as

(A(0) + ıkR0A
(1))~r′ = ~Bp′,

where the coefficients of the matrices A(0) and A(1) and vector ~B are defined introducing119

the local variable Ki = R0

D

∑N
j 6=i

e−ıkDd̃ij

d̃ij
, the wavenumber k = ω/c and the nondimensional120

distance d̃ij = |~xi − ~xj|/D (see appendix A for the full expressions).121

122

If we only consider the solution of a planar incident wave, this linear set of equations can

be numerically solved for an arbitrary constant value of the RHS to find all r′i. Once these

values are obtained, we can define the complex quantity

Q∗i =

∑N
j 6=i(r

′
i − r′j) e

−ıkDd̃ij

d̃ij

r′i
∑N

j 6=i
e−ıkDd̃ij

d̃ij

to express the solution of the system as123

Fi(ω/ω0)r′i = − p0

ρR2
0ω

2
0

p′, (5)

where124

Fi(ω/ω0) = 1−
(
ω

ω0

)2

−
(
ω

ω0

)2

K∗i (6)

is defined for each bubble depending on the complex function125

K∗i = Ki(1−Q∗i )− ıkR0

[
(1 + Ki)

2 − KiQ
∗
i

(
1 + Ki +

ω2
0

ω2

)]
. (7)

The real and imaginary parts of K∗i are typically used to define the resonance frequency126

ωi,res and the damping coefficient ζi for the ith bubble as127

ω2
i,res =

ω2
0

1 + <(K∗i )
; ζi = −=(K∗i ). (8)
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It is easy to verify that, when Ki → 0, we recover the limit of an isolated bubble where128

ωi,res = ω0 and ζi = ζ0 = kR0 representing the acoustical damping of a single bubble due to129

compressibility effects.130

131

For systems where Fi is not uniform for all the bubbles, multiple local resonances (cor-

responding to zeros of the real part of Fi function) appear. Writing an equation for the

bubble volume evolution, Vi = V0(1 + V ′i e
ıωt) with V0 the bubble volume at equilibrium, we

can define a global resonance and a global damping factor using the averaged change of gas

volume per bubble

V0

N

N∑
i=1

V ′i =
4πR3

0

N

N∑
i=1

r′i = −4πR0p0

ρlω2
0

<
1

Fi
> p′

which can be also written as132

1

< 1
Fi
>

1

N

N∑
i=1

r′i = − p0

ρlR2
0ω

2
0

p′, (9)

where < 1
Fi
>= 1

N

∑N
i=1

1
Fi(ω/ω0)

denotes the average over all the bubbles in the screen. By

introducing an averaged coefficient K∗ defined from

1

< 1
Fi
>

= 1−
(
ω

ω0

)2

−
(
ω

ω0

)2

K∗,

the global resonance and the global damping factor based on the definitions in Eq. 8 are133

given as:134

ω2
res =

ω2
0

1 + <(K∗)
; ζ = −=(K∗). (10)
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ℑ(f (kD))
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FIG. 2. Real and imaginary part of the function f(kD). For reference we include the predictions

of the effective medium theory. The solid line is corresponding to the f(kD) and the dashed line

is corresponding to EMT. The blue line is the real part, and the red line is the imaginary part.

Nl = 12000 is used to keep f(kD) converge.

B. Synchronous solution for an infinite bubbly screen with crystal configuration135

We start considering the synchronous solution with equal amplitude for all bubbles (Q∗i =136

0 for all bubbles). In this limit the solution of the system is given by the simplified expression137

of Fi → F138

F (ω/ω0) = 1−
(
ω

ω0

)2

−
(
ω

ω0

)2

(K− ıkR0(1 + K)2), (11)

where Ki → K = R0

D
f(kD) is a function that is proportional to the bubble inter-spacing139

parameter R0/D and the function140

f(kD) =
∞∑
j 6=i

e−ıkDd̃ij

d̃ij
, (12)
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which depends on the dimensionless wavenumber kD and the particular geometry considered141

only. In the particular case of the crystal structure represented in Figure 1, f(kD) becomes142

f(kD) =
∞∑
l=1

4

l
e−ıkDl

(
1 +

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2)

)
, (13)

which needs to be evaluated numerically except in very particular cases. For instance for143

kD = 2πn, with n being an integer, the first term is a diverging harmonic series implying zero144

resonance frequency and infinite attenuation.We identify this phenomenon with a resonance145

phenomenon in the cavities within the bubbles. The convergence properties of this series146

in a general case are discussed in Appendix B. It is interesting to note that the results147

obtained are in agreement with the expression proposed by Leroy et al. (2009) in the small148

kD limitation neglecting the correction of order (kR0 · K) without the need of introducing149

any fitting parameter. Using an homogeneization approach and introducing a cuttoff length150

b = D/
√
π, Leroy et al. (2009) obtain K using the bubble density nd = 1/D2 (number of151

bubbles per unit area in the screen) as152

KEMT =
R0

D
fEMT(kD) ≈

∫ ∞
b

R0

r
e−ıkr2πrnddr = −R0

D
fEMT(kD), (14)

fEMT(kD) =
2π

kD
(sin (kb) + ı cos (kb)) . (15)

As shown by Pham et al. (2021), this expression is similar to the extension of the asymptotic153

analyses proposed by Caflisch et al. (1985) and later extended by Miksis and Ting (1989)154

to the second order, where the correction due to the collective effects of the bubbly screen155

is (Pham et al., 2021)156

fEMT(kD) = −3.9− ı 2π

kD
. (16)
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FIG. 3. 1/|F | v.s. ω/ω0 for three different concentrations. The series are evaluated using

Nl = 12000 layers.

Using the small angle approximation, it is straightforward to see that eqs. 16 and 15 are157

equivalent and, as shown in Figure 2, reproduce well the values of the series for kD . 3. In158

what follows we denote the predictions of this model as effective medium theory (EMT).159

160

Figure 3 represents 1/|F | as a function of the frequency for three different concentrations.161

For high concentrations (D/R0 = 50) the resonance peak is damped, this effect being well162

captured by the EMT. As the bubble concentration is decreased, the curve tends to recover163

the result of an isolated bubble. Remarkably, the intensity of the peak at resonance becomes164

much more important than the one predicted by the EMT for kD ≈ 2π. To gain further165

insight, Figure 4 shows the influence of D/R0 at constant forcing frequency on the global res-166

onance and the global damping factor. By changing the inter-bubble distance, the proposed167

model recovers well the predictions of the effective medium approximation for kD . 3, while168

for large values of kD both models give different predictions. This discrepancy is attributed169

to the difference between crystal structure and the random bubble distribution as discussed170
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FIG. 4. (Left) Concentration effects on ωres/ω0 and (right) on ζ/ζ0. Solid lines are used for the

approximated exact solution (Nl = 12000). Dashed lines represent the solution provided by the

effective medium theory. The frequencies used are ω/ω0 = 0.0785, 0.785, 7.85 for blue, red and

green line respectively.

later on for a finite bubbly screen. In the effective medium approximation, bubbles are171

continuously and homogeneously distributed in the space, and the oscillating term e−ikDd̃ij172

is thus smoothed out. The current model is able to capture the resonance effects originated173

for particular configurations. In the particular example shown here, it is expected to find a174

first resonance for kD = 2π, corresponding to the appearance of the resonance within the175

distance between bubbles.176

177

C. Finite size bubbly screens178

In many applications, the size of the bubbly screens is limited to few tens or hundreds179

of bubbles, and the infinite screen limit may not be applicable. In addition, these systems180
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(a) D/R0 = 50 (kD = 0.67) (b) D/R0 = 400 (kD = 5.4)

FIG. 5. Distribution of 1/|Fi| for ω/ω0 = 1 in a 101× 101 bubbly screen.

present the appearance of multiple resonance frequencies as a consequence of the boundary181

effects on the dynamics of the bubbles. Figure 5 shows an example of the distribution of182

function 1/|Fi| for a 101×101 bubbly screen excited at the single bubble resonance frequency183

for two different values of the dimensionless wavenumber: kD < 1 and near kD ≈ 2π. This184

function, which is directly proportional to the intensity of the bubble oscillation, presents185

characteristic spatial patterns that are especially visible in the diluted limit when kD ≈ 2π186

(D/R0 = 400 in this case).187

The influence of spatial structures is discussed using variable Q∗i , which integrates the188

influence of interactions on the dynamics of a given bubble due to phase lag and amplitude189

changes among the other bubbles, and tends to zero in the limit of an infinite bubbly screen190

for crystal configurations. Figure 6 shows that the intensity of the mean value of |Q∗i |191

becomes maximum at resonance, tends to a plateau at larger frequencies and quickly decays192

for low frequencies. Characteristic patterns are easily identified at resonance conditions but193

also become visible for other values of the forcing frequency. Notice that it also is possible194

15



(a) ω/ω0 = 0.5 (b) ω/ω0 = 0.9 (c) ω/ω0 = 1 (d) ω/ω0 = 2

(e) ω/ω0 = 0.5 (f) ω/ω0 = 0.9 (g) ω/ω0 = 1 (h) ω/ω0 = 2

FIG. 6. The middle Figure shows the mean value of |Q∗i | of a 51×51 bubbly screen as a function of

frequency for D/R0 = 50 and D/R0 = 400. Top Figures show the |Q∗i |maps for D/R0 = 50;bottom

ones are corresponding to D/R0 = 400.

to find frequencies at which spatial patterns are difficult to identify (Figure 6c). Besides,195

bubble concentration shifts the resonance peak which also leads to a shift in the structures196

shown for a given frequency (Figure 6 ).197
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FIG. 7. Influence of concentration on < |Q∗i | > for various finite size bubbly screens and two

different values of ω/ω0.
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FIG. 8. Global resonance frequency and the global acoustical damping factor of finite bubbly

screen with different screen sizes for ω/ω0 = 1. 21× 21 (blue circle), 51× 51 (red cross sign) and

101× 101 (green square). The theoretical curves calculated for an infinite system (black solid line,

Nl = 12000) and effective medium theory are included for reference (dashed line).
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The role of the concentration on < |Q∗i | > is shown in Figure 7. At resonance (figure 7b),198

we observe a sharp transition between kD ≤ 2, where the fluctuations of < |Q∗i | > become199

of order unity, and kD > 2, where < |Q∗i | > takes significantly smaller values. Remarkably,200

in the regime of kD ≤ 2, we do not see any clear asymptotic convergence to < |Q∗i | >→ 0201

as we increase the number of bubbles in the screen. Below resonance (figure 7a), the value202

of < |Q∗i | > is small but no clear convergence to zero is observed for the screens considered.203

One of the reasons for the slow convergence may be the excitation of non-uniform modes204

induced by boundary effects. The consequences of perturbation on the plane containing the205

bubbles in the infinite case (we have imposed an unperturbed planar wave in the y-z plane)206

is left for future works.207

208

The effect of finite size effects on the global resonance frequency and damping factor can209

be seen in Figure 8 for ω/ω0 = 1. The infinite bubbly screen limit captures accurately the210

averaged bubble response of the screen, only observing some small disagreement for very211

concentrated systems, where we have seen the non-uniformity on the bubble response is212

important.213

D. Randomization214

We discuss now the influence of the randomness on the position of the bubbles. To that215

end, we perturb the position of each bubble by a random number −Θ < θ < Θ with respect216

to the crystal configuration so that ith bubble is located at ~xi = (0, y
(c)
i + θy,iD, z

(c)
i + θz,iD),217

where the superscript (c) stands for variables corresponding to the crystal configuration.218
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FIG. 9. Influence of randomness for (a) the global resonance and (b) the damping coefficient of

a finite screen size 51 × 51 and ω/ω0 = 1. An example of the spatial distribution of the bubble

positions is given in the inset of (a). For reference we include curves calculated for an infinite

system (black solid line, Nl = 12000) and effective medium theory (dashed line).

Figure 9 shows the global factors defined in equation 10 averaged over 100 realizations219

for ω/ω0 = 1 using a finite screen with 51 × 51 bubbles with different concentrations. As220

expected, the resonance effects observed at kD = 2π quickly vanish as the randomization221

parameter increases. Remarkably, the results obtained differ from the effective medium222

theory for large values of the randomization parameter and intermediate values of kD, the223

effect of randomization being especially visible on the effective damping coefficient.224

In this case, both matrix A(0) and matrix A(1) can be further decomposed as a globally225

uniform value given by the crystal structure and a correction directly attributed to ran-226

domization (see Appendix A). While the expectation of A′(0) is zero, the non-linear term227

in the A′(1) matrix with respect to the position perturbation amplitude makes the averaged228

response of the system to be different from the crystal situation for small perturbations.229
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For large perturbations, the expectation of both A′(0) and A′(1) are a-priori different from230

zero, and converge to different number with different Θ. In such a situation, the differ-231

ence between the fluctuation around the crystal configuration and the completely random232

distribution also makes the averaged response of the system to be different from EMT. In233

Figure 9 we see that the randomization intensity parameter Θ mainly increases the effective234

damping for kD > 1.235

IV. COMPRESSIBILITY EFFECTS IN THE NON-LINEAR REGIME236

A. Numerical methods for differential equations with time delay237

In the non-linear regime, it is no longer possible to find analytical solutions and one needs238

to solve the set of ODEs numerically. The differential equations considered can be written239

as240

ẏ(t) = f(t, y(t), y(t− τ1), ..., y(t− τn), ẏ(t− τ1), ..., ẏ(t− τn)), (17)

where y is called state variable representing bubble radius or bubble wall velocity in our241

case. Traditionally, Eq. 17 is usually solved as ordinary differential equations, and the242

time-delay effect thus has to be ignored (τ1, ..., τn = 0). In this work, when non-linear243

effects become important, Eq. 17 is directly solved, treated as neutral delay-differential244

equation (NDDE), which will reduce to general delay-differential equation (DDE) if ẏ(t) =245

f(t, y(t), y(t − τ1), ..., y(t − τn)) and extend to state dependent NDDE if any of (τ1, ..., τn)246

is a function of state variable (Bellen and Zennaro, 2013). Integration of DDEs cannot be247

based on the mere adaption of some standard ODE code to the presence of delayed terms,248
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which may dramatically modify the accuracy and stability of the underlying ODE method.249

To deal with NDDE, we first rewrite the Eq. 17 as:250

ẏ(t) = f(y(t), y(t− τ1), ..., y(t− τn),
y(t− τ1)− y(t− τ1 − δt)

δt
, ...,

y(t− τn)− y(t− τn − δt)
δt

),(18)

which is the dissipative approximation of the NDDE and named as retarded DDE. For small251

enough δt, the retarded DDE solver will be stable as long as the neutral DDE is stable.252

Based on Eq. 18, implicit Runge–Kutta formulas taking advantage of continuous extensions253

is used, and the retarded DDE is solved accordingly with residual control. The works of254

Shampine (2005, 2008) are recommended for detailed mathematical principles.255

B. Numerical results256

1. Weakly non-linear regime257

One important aspect on the dynamic response of bubbly liquids is the appearance of258

subharmonics, which ultimately indicate the first transition route to the chaotic response259

obtained for large enough amplitude of excitation (Lauterborn and Cramer, 1981; Lauter-260

born and Koch, 1987). The harmonic components of the acoustic wave scattered by bubbles261

or ultrasound contrast agents is also important in medical applications (Halldorsdottir et al.,262

2011; Nio et al., 2019). The harmonics emitted by bubbles has been described by many263

authors (see Lauterborn and Kurz (2010) for a review), including studies for contrast agents264

in a free field (Andersen and Jensen, 2009; Katiyar and Sarkar, 2011). More recently Fan265

et al. (2020a) has revealed the impact of compressibility and bubble-wall interaction effects266

on the subharmonic emission of a bubble in a rigid tube. However, the influence of collective267
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FIG. 10. The radius v.s. time curves. pa/p0 = 2.
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FIG. 11. The radius v.s. time curves. pa/p0 = 3.5.

effects on the subharmonic emission has not been investigated in detail yet.268

269

In this section, we compare the results obtained from the model presented for infinite270

bubbly screens imposing synchronous motion (Ri = Rj = R) with the results obtained from271

the EMT in non-linear regimes (Pham et al., 2021) where272

IEMT = −2πcṘ
R2

D2
+ 3.9

R

D
(2Ṙ2 + R̈R). (19)

To that end, we excite the bubbly screen with an incident pulse of the form273

p∞ (t) = p0 − pa
1

2

[
1− cos

(
ωext
Nc

t

)]
sin(ωextt), (20)
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where Nc = 20, and ωext = 2ω0 in order to favor the appearance of a stable subharmonic274

response. For simplicity, in this subsection we will only consider the response of an infinite275

bubble screen.276

277

In Figures 10-11, we can see the influence of concentration on the dynamic response of278

an infinite bubbly screen for two different excitation amplitudes. Consistent with the results279

in the linear regime, the effective medium model converges to the present model when the280

value of D/R0, and therefore, kextD is small. The differences between two models become281

significant as pa/p0 and kextD increases. Even in the case, where the differences between the282

two models are important (figure 11c), both models fit relatively well for small times, and283

gradually become different only after some time. One explanation could be that in-phase284

and out-phase interactions coming from different layers at different time cancel each other285

and increase oscillatingly. Besides, the fact that the differences between models become286

visible after some time seem to indicate the differences of the EMT and the current model287

on the bifurcation diagrams (Lauterborn and Kurz, 2010).288

289

Figure 12 shows the energy in the frequency spectrum of the infinite bubbly screen as a290

function of the bubble concentration from the radiated pressure (Pham et al., 2021):291

prad = 2πρc
R2Ṙ

D2
. (21)

The energy is calculated as E = 20log10( |F(prad)|
|F(prad)max|), where F(·) is the Fourier transform,292

and |F(prad)max| is highest energy observed among all simulations. Because the frequency293

of the subharmonic slightly shifts from ωext

2
with the increasing of the amplitude of the294
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FIG. 12. The frequency spectrum of the present model and EMT using pa/p0 = 3.5. The energy

is calculated by E = 20log10( |F(prad)|
|F(prad)max|), where |F(prad)max| is highest energy observed among all

simulations.
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FIG. 13. Energy of the subharmonic as a function of concentration for a constant excitation

frequency in a crystal structure.

driving pressure wave, the corresponding energy are chosen according to the peak amplitude295

rather than energy at ωext

2
. As expected the energy on the fundamental component increases296

as D/R0 decreases due to the increase of bubble concentration (Figure 12). The overall297

spectrum is well reproduced by the EMT except for kD = 2π, where we clearly see how298
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the spectrum predicted by the EMT contains a significantly higher level of energy mainly299

concentrated at the subharmonic. In Figure 13, we show that optimal subharmonic emission300

conditions appears for kextD = [0.65, 0.75]π as a consequence of the crystal configuration.301

This effect is not captured by the EMT.302

303

2. Strongly non-linear regime304
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FIG. 14. Radius versus time curves predicted by different models for ωext/ω0 = 0.1, pa/p0 =

2,D/R0 = 134 for an infinite bubbly screen oscillating synchronously and a 11× 11 bubbly screen.

In the later case, we show the averaged and the standard deviation of the bubble radius using the

full model (red line) and the incompressible model wtih Ii = Ii,0 and td = t (yellow line).

When the excitation frequency is decreased (ωext/ω0 = 0.1) the response of the bubbles

become highly non-linear with a clear distinction between the expansion phase and the

collapse and rebound region. In order to reduce the simulation time and transient effects, in

this section we excite a bubbly screen with a perfect crystal configuration with an incident
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planar wave represented by

p∞ (t) = p0 − pa sin(ωextt).

The predictions of the temporal evolution of the bubble radius predicted by different models305

are given in Figure 14 for both infinite bubbly screens and finite bubbly screens. The am-306

plitude of the initial expansion in all cases is decreased compared to the isolating oscillating307

bubble. The results from the EMT fit well the results of the infinite bubbly screen in the308

first expansion. The difference of the radial dynamics between different models appear in309

the rebound stage (Figure 15), when the Mach number(Ṙ/c) becomes important, so does310

the first order compressibility correction terms.311

312

For completeness, in Figure 14 we also include the full simulation of a 11 × 11 bubbly313

screens. Because in this case bubble motion is no longer assumed to be synchronous, we314
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represent the averaged bubble radius among all bubbles in the screen as well as the standard315

deviation in one realization. The influence of the screen is reduced in the expansion and is316

less strong than in the infinite case. Compressible effects play a visible role despite the long317

wavelength of the incident wave, and the classical incompressible bubble interaction model318

tends to over-predict the collapse time.319

V. CONCLUSION320

In this work, the compressibility effect on the bubble-bubble interaction is discussed. The321

model proposed in Fuster and Colonius (2011) is particularized to explicitely write a system322

of equations that account for first order correction compressibility effects. These effects are323

shown to be important compared with the classical incompressible interaction mechanism324

in Rayleigh–Plesset models.325

326

In the linear regime, time delay effects are always critical to capture the overall system327

response of large bubble screens. We show that the current model recovers the effective328

medium theory results up to second order for infinite crystal structures at large wavelengths329

(kD � 1). In addition, the model is able to capture resonant conditions in diluted systems330

due to crystal configurations that are not captured by averaged models. Randomization331

on the bubble position and boundary effects on bubbly screens of finite are shown to be332

responsible to the appearance of characteristic periodic structures in the screen. These333

effects can modify the effective damping measured under some conditions.334

335
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In the non-linear oscillating regime, we numerically solve the proposed model as a neutral336

delay-differential set of equations (NDDE). The fully incompressible model seems to be only337

suitable to predict the expansion phase, while during the strong collapse compressibility338

effects play a major role and need to be included. Boundary size effects are shown to limit339

the applicability of the effective medium theory valid only for infinite systems.340
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APPENDIX A:344

The system of equations 4 can be written in matrix form A~r = ~Bp′ after imposing that

the incident wave is p∞ = p0(1 + p′eıωt) with p′ � 1. The final system of equations becomes

A = A(0) + ıkR0A
(1) = ~Bp′

where

Bi = − p0

ρR2
0ω

2
0

,

A
(0)
ij =


1−

(
ω
ω0

)2

if i = j,

−
(
ω
ω0

)2

Sij otherwise,
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A
(1)
ij =


(
ω
ω0

)2

(1 + Ki)− Ki if i = j,((
ω
ω0

)2

(1 + Ki) + 1

)
Sij otherwise,

with Sij = R0

D
e−ıkDd̃ij

d̃ij
and Ki =

∑N
j 6=i Sij.345

346

In a general case where bubbles do not necessarily oscillate synchronously, it is possible

to rewrite this system by separating variables Sij and Ki into a uniform contribution and a

spatially fluctuating part attributed to the perturbation of bubbles position

Sij = S
(c)
ij + S ′ij

,

Ki = K
(c)
i + K′i =

N∑
j 6=i

S
(c)
ij +

N∑
j 6=i

S ′ij,

where the superscript (c) stands for variables corresponding to the crystal configuration, and347

and the distances between bubbles is written as d̃ij = d̃
(c)
ij + d̃′ij. In this case matrix A can348

be further decomposed as A ≈ A(C) + A′ where A(C) represents the value of A obtained349

with the values of a crystal structure and A′ is the non-uniform part350

A
′(0)
ij =


0 if i = j,

−
(
ω
ω0

)2

S ′ij otherwise,

A
′(1)
ij =


((

ω
ω0

)2

− 1

)
K′i if i = j,((

ω
ω0

)2

+ 1

)
S ′ij +

(
ω
ω0

)2

(K′iS
′
ij + K

(c)
i S

′
ij + K′iS

(c)
ij ) otherwise.
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(a) kD < 2π (b) kD = 2π

FIG. 16. Influence of the truncation Nl on the evaluation of the series in Eq. 13 for a crystal

infinite screen and different values of kD. The colorbar is Nl
D
λ .

When the position perturbation is small, taking advantage of Taylor expansion, we have:

S ′ij ≈ −ıkDd̃′ij
R0

D

e−ıkDd̃
(c)
ij

d̃
(c)
ij

.

In such a situation, the expectation of A
′(0)
ij is zero as long as the expectation of d̃′ij is zero.351

However the expectation of the K′iS
′
ij term appearing in A

′(1)
ij , which acts like a variance352

term, is different from zero even for the small perturbations. Obviously when the amplitude353

of perturbation d̃′ij is large, the expectation of both A
′(0)
ij and A

′(1)
ij are a-priori different from354

zero.355

APPENDIX B:356

The convergence of the infinite series357

f(kD) =
∞∑
l=1

4

l
e−ıkDl

(
1 +

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2)

)
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is discussed as follows. For sufficiently large value of l, because quantity p =
√

1 + (q/l)2 is358

bounded between 1 and
√

2, we can approximate the series as359

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2) ≈
∫ √2

1

2

p
eıkDl(1−p)dp = 2eıkDl

(
E1/2(ıkDl)− 21/4E1/2(

√
2ıkDl)

)
,

where E(x) is the exponential integral function. Taking the limit for l→∞, we readily find

that

lim
l→∞

(
E1/2(ıkDl)− 21/4E1/2(

√
2ıkDl)

)
= 0

implying that this term always converges. The convergence of the series is then discussed

in terms of the convergence of

∞∑
l=1

4

l
e−ıkDl =

∞∑
l

zl

l
= ln

(
1

1− z

)

where z = e−ıkD. For kD = 2πn the series diverges and it converges otherwise. The influ-360

ence of the number of layers considered on the series is reported in Figure 16 for different361

values of kD. In general, a very large value of the number of layers is required to accurately362

represent the infinity limit.363
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