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INTRODUCTION

The dynamics of cavities in liquids has attracted a lot of interest over the past few decades [START_REF] Fuster | A review of models for bubble clusters in cavitating flows[END_REF][START_REF] Lohse | Bubble puzzles: From fundamentals to applications[END_REF]. The oscillation of an isolated bubble is well described by the Rayleigh-Plesset (RP) like equations that account for compressibility effects [START_REF] Gilmore | The growth or collapse of a spherical bubble in a viscous compressible liquid[END_REF][START_REF] Keller | Bubble oscillations of large amplitude[END_REF][START_REF] Lauterborn | Physics of bubble oscillations[END_REF][START_REF] Prosperetti | Bubble dynamics in a compressible liquid. part 1. first-order theory[END_REF]. However, bubbles often appear in ensembles, and bubble-bubble interactions need to be accounted for as the bubble interface acceleration influences the pressure distribution in the bubble surroundings. One traditional way to account for the influence of interactions is to use the effective medium method. [START_REF] Foldy | The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers[END_REF], [START_REF] Caflisch | Effective equations for wave propagation in bubbly liquids[END_REF], and [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF] consider the influence that the dynamic bubble response have on the effective properties of a wave propagating in a bubbly liquid. The multiple interactions among bubbles are described by the interaction between each bubble and the averaged pressure field. However these models are limited to diluted systems and frequencies for which the wavelength is larger than the characteristic bubble radius and the inter-bubble distance.

In an attempt to generalize the range of applicability of these theories to shorter wavelengths and capture more accurately the interaction mechanisms among bubbles, some authors propose to solve a coupled system of RP like equations (Fan et al., 2020b;[START_REF] Fuster | Modelling bubble clusters in compressible liquids[END_REF][START_REF] Ilinskii | Bubble interaction dynamics in lagrangian and hamiltonian mechanics[END_REF][START_REF] Mettin | Bjerknes forces between small cavitation bubbles in a strong acoustic field[END_REF]. These approaches can be eventually coupled with an Eulerian-Lagrangian approach [START_REF] Fuster | Modelling bubble clusters in compressible liquids[END_REF][START_REF] Maeda | Bubble cloud dynamics in an ultrasound field[END_REF] to capture both, short and long wave range interactions and can be considered as two-way coupled model, where bubbles can directly feel the acoustic field emitted by each other. An intrinsic difficulty in these models is how to account for the influence of the liquid compressibility on the multiple interactions among bubbles. Indeed one of the most frequently-used assumption is to resort to the incompressible limit where the interactions among bubbles takes place instantaneously neglecting any time-delay effect due to liquid compressibility. Although this assumption is certainly valid when the wavelength of the excitation pressure wave is much larger than the characteristic size of the bubble cluster, the accuracy and degree of applicability of these models in systems with many bubbles has not been discussed in detail. Some numerical studies applied to medical related research such as high-intensity focused ultrasound [START_REF] Okita | Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement[END_REF], ultrasound contrast agent [START_REF] Faez | 20 years of ultrasound contrast agent modeling[END_REF], and drug delivery [START_REF] Coussios | Applications of acoustics and cavitation to noninvasive therapy and drug delivery[END_REF] point out the importance of compressibility effects, an in particular time-delay effects in real applications (Sujarittam and Choi, 2020). More fundamental studies including experimental works studying the acoustic propagation in the vicinity of a bubble chain [START_REF] Manasseh | Anisotropy in the sound field generated by a bubble chain[END_REF] have shown that the time-delay effects considerably change the resonance frequencies and the damping factors of the effective medium [START_REF] Doinikov | Time delays in coupled multibubble systems (l)[END_REF][START_REF] Ooi | Analysis of time delay effects on a linear bubble chain system[END_REF], so does bubble near boundaries [START_REF] Dahl | Scattering from a single bubble near a roughened air-water interface: Laboratory measurements and modeling[END_REF]van't Wout and Feuillade, 2021;Ye and Feuillade, 1997). In the context of the development of acoustic metamaterials, two-dimensional bubble layers also known as bubbly screens have also became a widely investigated system since 2009 in a series of papers published by Leroy andcoworkers (Leroy et al., 2015, 2009;[START_REF] Lombard | Nonlinear multiple scattering of acoustic waves by a layer of bubbles[END_REF].

Using the self-consistent approach based on the effective medium theory, the transmission and reflection coefficient measured experimentally in the linear regime can be well captured by accounting for the influence of time-delay effects on the interaction term among bubbles.

In non-linear regime, the asymptotic analysis based on effective medium theory [START_REF] Miksis | Effects of bubbly layers on wave propagation[END_REF][START_REF] Pham | Scattering of acoustic waves by a nonlinear resonant bubbly screen[END_REF] have shed light into the role of compressibility on the mechanisms of multiple interactions among bubbles. However, these models still face some challenges. For example it is known that, even in the dilute limit, crystal configuration have special acoustic properties [START_REF] Devaud | Sound propagation in a monodisperse bubble cloud: From the crystal to the glass[END_REF]. The capability of these models to distinguish between the properties of specific configurations (e.g. crystals) and the ensemble average of randomly distributed systems has not been clarified . Also, it is not clear how well averaged models capture the influence of boundary effects as well as polydispersity effects.

In this work we discuss the applicability and accuracy of models based on the resolution of a coupled system of RP like equations to capture the response of bubbly screens (Figure 1).

After presenting a particularization of the system of Rayleigh-Plesset like equations proposed in [START_REF] Fuster | Modelling bubble clusters in compressible liquids[END_REF] to solve for the dynamic response of the bubbles, we show that this model is able to recover the second order solution predicted by the effective medium theory in the linear oscillating regime without the need of introducing any fitting parameter.

Then the influence of boundary effects and randomness on the accuracy of the predictions from the effective medium theory are discussed in the linear regime. In the non-linear regime, we present numerical results of the solution of the system of equations using a delay-differential equation solver showing examples that reveal the importance of compressibility effects to correctly predict the bubble dynamic response.

II. BUBBLY SCREEN MODEL

The dynamics of an oscillating spherical bubble is described using the Keller-Miksis like equation [START_REF] Keller | Bubble oscillations of large amplitude[END_REF] which is a differential equation for the bubble radius of the ith bubble in a weakly compressible liquid characterized by its speed of sound c and

density ρ ρ R i Ri 1 - Ṙi c + 3 Ṙi 2 2 1 - Ṙi 3c -1 + Ṙi c + R i c d dt (p i,B -p ∞ ) = ρI i (t d ). (1)
In the equation above, p ∞ (t) = p 0 + f (t) is the pressure excitation, p i,B is the liquid pressure at the interface of the ith bubble, which we describe using a simple polytropic law

p i,B = p 0 + 2σ R i,0 R i,0 R i 3κ -2σ R i -4µ Ṙi R i
, where p 0 is the static pressure; R i,0 is the ith bubble radius at equilibrium; σ is the surface tension; µ is the liquid viscosity.

The interaction term I(t d ) represents the pressure fluctuation induced by the presence of the surrounding bubbles, which has to be evaluated at the deferred time

t d = t -d ij /c,
where d ij = | x i -x j | represents the distance from the ith bubble located at x i to the jth bubble located at x j . Following [START_REF] Fuster | Modelling bubble clusters in compressible liquids[END_REF], it can be readily shown that

I i = I i,0 + I i,1 , (2) 
I i,0 (t d ) = - N j =i R j D ij R j Rj + 2 Ṙ2 j , I i,1 (t d ) = - 1 c N j =i R j D ij Ṙj R j Rj + Ṙj 2 2 - (p j,B -p ∞ ) ρ - N j =i R 2 j D ij d dt (p j,B -p ∞ ) ρ + Ṙi I i,0 . (3) 
In the equations above, we only keep first order compressibility correction terms in the intensity of the collapse of bubbles, which scale as a function of the Mach number M a = Ṙ c , and time-delay effects. Neglecting time-delay effects (e.g. t d = t) leads to a coupled system of equations that needs to be solved. In the limit of c → ∞ we recover the classical form of the interaction term I i ≈ I i,0 evaluated at t [START_REF] Bremond | Controlled multibubble surface cavitation[END_REF][START_REF] Ida | Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction[END_REF]Yasui et al., 2008). Otherwise, as explained in Section IV, it is required to solve a differential equation with time delay.

III. COMPRESSIBILITY EFFECTS IN THE LINEAR OSCILLATION REGIME

A. General case

In this section, we start considering the dynamics of a finite bubbly screen with monodisperse bubbles excited by a weak perturbation, where R i,0 = R j,0 = R 0 . Bubbles are arranged in N l layers in the x = 0 plane (N l = 3 in Figure 1). For a system with N bubbles of the same equilibrium radius, the coupled set of equations that needs to be solved is where

R i Ri -1 + R i c d dt p i,B -p ∞ ρ = - N j =i R 2 j (t d ) d ij Rj (t d )+ N j =i R j (t d ) d ij R j (t d ) c d dt (p j,B (t d ) -p ∞ (t d )) ρ , (4) 
R i (t) = R 0 (1 + r i e ıωt ), R i (t d ) = R 0 (1 + r i e ıω(t-d ij /c) ).
For simplicity, we consider a planar wave such that p ∞ = p 0 (1 + p e ıωt ), neglect viscous, thermal, and surface tension terms during linear analysis, and thus have p i,B -p 0 = -3γp 0 r i e ıωt . For a given physical system at constant reference pressure, the dimensionless wavenumber kR 0 = ω ω 0 1 c 3κp 0 ρ depends on the frequency ratio between the excitation frequency, ω, and the resonance frequency of single isolated oscillating bubble ω 0 = 3γp 0 R 2 0 ρ . For air bubbles in water at atmospheric conditions 1 c 3κp 0 ρ ≈ 10 -2 and therefore kR 0 < 1 is usually a reasonable assumption. This parameter will be held constant in what follows, where we show the solution for particular configurations of the bubbly screen. We can also define an alternative dimensionless wavenumber using the averaged inter-bubble distance

D as kD = D R 0 ω ω 0 1 c 3κp 0
ρ , which is not always small in diluted systems.

A first remark is that, in the linear regime, the influence of the compressibility correction term in the interaction is not null, and it is not sufficient to retain the incompressible interaction term only. Neglecting terms of order (kR 0 ) 2 , the set of equations above can be written in matrix form as

(A (0) + ıkR 0 A (1) ) r = Bp ,
where the coefficients of the matrices A (0) and A (1) and vector B are defined introducing the local variable

K i = R 0 D N j =i e -ıkD dij dij
, the wavenumber k = ω/c and the nondimensional

distance dij = | x i -x j |/D (see appendix A for the full expressions).
If we only consider the solution of a planar incident wave, this linear set of equations can be numerically solved for an arbitrary constant value of the RHS to find all r i . Once these values are obtained, we can define the complex quantity

Q * i = N j =i (r i -r j ) e -ıkD dij dij r i N j =i e -ıkD dij dij
to express the solution of the system as

F i (ω/ω 0 )r i = - p 0 ρR 2 0 ω 2 0 p , (5) 
where

F i (ω/ω 0 ) = 1 - ω ω 0 2 - ω ω 0 2 K * i (6)
is defined for each bubble depending on the complex function

K * i = K i (1 -Q * i ) -ıkR 0 (1 + K i ) 2 -K i Q * i 1 + K i + ω 2 0 ω 2 . ( 7 
)
The real and imaginary parts of K * i are typically used to define the resonance frequency ω i,res and the damping coefficient ζ i for the ith bubble as

ω 2 i,res = ω 2 0 1 + (K * i ) ; ζ i = -(K * i ). ( 8 
)
It is easy to verify that, when K i → 0, we recover the limit of an isolated bubble where ω i,res = ω 0 and ζ i = ζ 0 = kR 0 representing the acoustical damping of a single bubble due to compressibility effects.

For systems where F i is not uniform for all the bubbles, multiple local resonances (corresponding to zeros of the real part of F i function) appear. Writing an equation for the bubble volume evolution,

V i = V 0 (1 + V i e ıωt
) with V 0 the bubble volume at equilibrium, we can define a global resonance and a global damping factor using the averaged change of gas volume per bubble

V 0 N N i=1 V i = 4πR 3 0 N N i=1 r i = - 4πR 0 p 0 ρ l ω 2 0 < 1 F i > p
which can be also written as

1 < 1 F i > 1 N N i=1 r i = - p 0 ρ l R 2 0 ω 2 0 p , (9) 
where

< 1 F i >= 1 N N i=1 1 F i (ω/ω 0 )
denotes the average over all the bubbles in the screen. By introducing an averaged coefficient

K * defined from 1 < 1 F i > = 1 - ω ω 0 2 - ω ω 0 2 K * ,
the global resonance and the global damping factor based on the definitions in Eq. 8 are

given as:

ω 2 res = ω 2 0 1 + (K * ) ; ζ = -(K * ). ( 10 
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2. Real and imaginary part of the function f (kD). For reference we include the predictions of the effective medium theory. The solid line is corresponding to the f (kD) and the dashed line is corresponding to EMT. The blue line is the real part, and the red line is the imaginary part.

N l = 12000 is used to keep f (kD) converge.

B. Synchronous solution for an infinite bubbly screen with crystal configuration

We start considering the synchronous solution with equal amplitude for all bubbles (Q * i = 0 for all bubbles). In this limit the solution of the system is given by the simplified expression

of F i → F F (ω/ω 0 ) = 1 - ω ω 0 2 - ω ω 0 2 (K -ıkR 0 (1 + K) 2 ), (11) 
where

K i → K = R 0 D f (kD)
is a function that is proportional to the bubble inter-spacing parameter R 0 /D and the function

f (kD) = ∞ j =i e -ıkD dij dij , (12) 
which depends on the dimensionless wavenumber kD and the particular geometry considered only. In the particular case of the crystal structure represented in Figure 1, f (kD) becomes

f (kD) = ∞ l=1 4 l e -ıkDl 1 + l q=1 2 1 + (q/l) 2 e ıkDl(1- √ 1+(q/l) 2 ) , (13) 
which needs to be evaluated numerically except in very particular cases. For instance for kD = 2πn, with n being an integer, the first term is a diverging harmonic series implying zero resonance frequency and infinite attenuation.We identify this phenomenon with a resonance phenomenon in the cavities within the bubbles. The convergence properties of this series 

K EMT = R 0 D f EMT (kD) ≈ ∞ b R 0 r e -ıkr 2πrn d dr = - R 0 D f EMT (kD), (14) 
f EMT (kD) = 2π kD (sin (kb) + ı cos (kb)) . ( 15 
)
As shown by [START_REF] Pham | Scattering of acoustic waves by a nonlinear resonant bubbly screen[END_REF], this expression is similar to the extension of the asymptotic analyses proposed by [START_REF] Caflisch | Effective equations for wave propagation in bubbly liquids[END_REF] and later extended by [START_REF] Miksis | Effects of bubbly layers on wave propagation[END_REF] to the second order, where the correction due to the collective effects of the bubbly screen is [START_REF] Pham | Scattering of acoustic waves by a nonlinear resonant bubbly screen[END_REF] f EMT (kD) = -3.9 -ı 2π kD .

(16) later on for a finite bubbly screen. In the effective medium approximation, bubbles are continuously and homogeneously distributed in the space, and the oscillating term e -ikD dij is thus smoothed out. The current model is able to capture the resonance effects originated for particular configurations. In the particular example shown here, it is expected to find a first resonance for kD = 2π, corresponding to the appearance of the resonance within the distance between bubbles.

C. Finite size bubbly screens

In many applications, the size of the bubbly screens is limited to few tens or hundreds of bubbles, and the infinite screen limit may not be applicable. In addition, these systems present the appearance of multiple resonance frequencies as a consequence of the boundary effects on the dynamics of the bubbles. Figure 5 shows an example of the distribution of function 1/|F i | for a 101×101 bubbly screen excited at the single bubble resonance frequency for two different values of the dimensionless wavenumber: kD < 1 and near kD ≈ 2π. This function, which is directly proportional to the intensity of the bubble oscillation, presents characteristic spatial patterns that are especially visible in the diluted limit when kD ≈ 2π (D/R 0 = 400 in this case).

The influence of spatial structures is discussed using variable Q * i , which integrates the influence of interactions on the dynamics of a given bubble due to phase lag and amplitude changes among the other bubbles, and tends to zero in the limit of an infinite bubbly screen for crystal configurations. Figure 6 shows that the intensity of the mean value of |Q * i | becomes maximum at resonance, tends to a plateau at larger frequencies and quickly decays for low frequencies. Characteristic patterns are easily identified at resonance conditions but also become visible for other values of the forcing frequency. Notice that it also is possible to find frequencies at which spatial patterns are difficult to identify (Figure 6c). Besides, bubble concentration shifts the resonance peak which also leads to a shift in the structures shown for a given frequency (Figure 6 ). as we increase the number of bubbles in the screen. Below resonance (figure 7a), the value of < |Q * i | > is small but no clear convergence to zero is observed for the screens considered.

One of the reasons for the slow convergence may be the excitation of non-uniform modes induced by boundary effects. The consequences of perturbation on the plane containing the bubbles in the infinite case (we have imposed an unperturbed planar wave in the y-z plane) is left for future works.

The effect of finite size effects on the global resonance frequency and damping factor can be seen in Figure 8 for ω/ω 0 = 1. The infinite bubbly screen limit captures accurately the averaged bubble response of the screen, only observing some small disagreement for very concentrated systems, where we have seen the non-uniformity on the bubble response is important.

D. Randomization

We discuss now the influence of the randomness on the position of the bubbles. To that end, we perturb the position of each bubble by a random number -Θ < θ < Θ with respect to the crystal configuration so that ith bubble is located at x i = (0, y

(c) i + θ y,i D, z (c) i + θ z,i D),
where the superscript (c) stands for variables corresponding to the crystal configuration. In this case, both matrix A (0) and matrix A (1) can be further decomposed as a globally uniform value given by the crystal structure and a correction directly attributed to randomization (see Appendix A). While the expectation of A (0) is zero, the non-linear term in the A (1) matrix with respect to the position perturbation amplitude makes the averaged response of the system to be different from the crystal situation for small perturbations.

For large perturbations, the expectation of both A (0) and A (1) are a-priori different from zero, and converge to different number with different Θ. In such a situation, the difference between the fluctuation around the crystal configuration and the completely random distribution also makes the averaged response of the system to be different from EMT. In Figure 9 we see that the randomization intensity parameter Θ mainly increases the effective damping for kD > 1.

IV. COMPRESSIBILITY EFFECTS IN THE NON-LINEAR REGIME

A.

Numerical methods for differential equations with time delay

In the non-linear regime, it is no longer possible to find analytical solutions and one needs to solve the set of ODEs numerically. The differential equations considered can be written as

ẏ(t) = f (t, y(t), y(t -τ 1 ), ..., y(t -τ n ), ẏ(t -τ 1 ), ..., ẏ(t -τ n )), ( 17 
)
where y is called state variable representing bubble radius or bubble wall velocity in our case. Traditionally, Eq. 17 is usually solved as ordinary differential equations, and the time-delay effect thus has to be ignored (τ 1 , ..., τ n = 0). In this work, when non-linear effects become important, Eq. 17 is directly solved, treated as neutral delay-differential equation (NDDE), which will reduce to general delay-differential equation (DDE) if ẏ(t) = f (t, y(t), y(t -τ 1 ), ..., y(t -τ n )) and extend to state dependent NDDE if any of (τ 1 , ..., τ n ) is a function of state variable (Bellen and Zennaro, 2013). Integration of DDEs cannot be based on the mere adaption of some standard ODE code to the presence of delayed terms, 
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The present model EMT effects on the subharmonic emission has not been investigated in detail yet.

In this section, we compare the results obtained from the model presented for infinite bubbly screens imposing synchronous motion (R i = R j = R) with the results obtained from the EMT in non-linear regimes [START_REF] Pham | Scattering of acoustic waves by a nonlinear resonant bubbly screen[END_REF] where

I EM T = -2πc Ṙ R 2 D 2 + 3.9 R D (2 Ṙ2 + RR). ( 19 
)
To that end, we excite the bubbly screen with an incident pulse of the form

p ∞ (t) = p 0 -p a 1 2 1 -cos ω ext N c t sin(ω ext t), (20) 
where N c = 20, and ω ext = 2ω 0 in order to favor the appearance of a stable subharmonic response. For simplicity, in this subsection we will only consider the response of an infinite bubble screen.

In Figures 1011, we can see the influence of concentration on the dynamic response of an infinite bubbly screen for two different excitation amplitudes. Consistent with the results in the linear regime, the effective medium model converges to the present model when the value of D/R 0 , and therefore, k ext D is small. The differences between two models become significant as p a /p 0 and k ext D increases. Even in the case, where the differences between the two models are important (figure 11c), both models fit relatively well for small times, and gradually become different only after some time. One explanation could be that in-phase and out-phase interactions coming from different layers at different time cancel each other and increase oscillatingly. Besides, the fact that the differences between models become visible after some time seem to indicate the differences of the EMT and the current model on the bifurcation diagrams [START_REF] Lauterborn | Physics of bubble oscillations[END_REF].

Figure 12 shows the energy in the frequency spectrum of the infinite bubbly screen as a function of the bubble concentration from the radiated pressure [START_REF] Pham | Scattering of acoustic waves by a nonlinear resonant bubbly screen[END_REF]:

p rad = 2πρc R 2 Ṙ D 2 . ( 21 
)
The driving pressure wave, the corresponding energy are chosen according to the peak amplitude rather than energy at ωext 2 . As expected the energy on the fundamental component increases as D/R 0 decreases due to the increase of bubble concentration (Figure 12). The overall spectrum is well reproduced by the EMT except for kD = 2π, where we clearly see how the spectrum predicted by the EMT contains a significantly higher level of energy mainly concentrated at the subharmonic. In Figure 13, we show that optimal subharmonic emission conditions appears for k ext D = [0.65, 0.75]π as a consequence of the crystal configuration.

This effect is not captured by the EMT. In the later case, we show the averaged and the standard deviation of the bubble radius using the full model (red line) and the incompressible model wtih I i = I i,0 and t d = t (yellow line).

When the excitation frequency is decreased (ω ext /ω 0 = 0.1) the response of the bubbles become highly non-linear with a clear distinction between the expansion phase and the collapse and rebound region. In order to reduce the simulation time and transient effects, in this section we excite a bubbly screen with a perfect crystal configuration with an incident planar wave represented by p ∞ (t) = p 0 -p a sin(ω ext t).

The predictions of the temporal evolution of the bubble radius predicted by different models are given in Figure 14 for both infinite bubbly screens and finite bubbly screens. The amplitude of the initial expansion in all cases is decreased compared to the isolating oscillating bubble. The results from the EMT fit well the results of the infinite bubbly screen in the first expansion. The difference of the radial dynamics between different models appear in the rebound stage (Figure 15), when the Mach number( Ṙ/c) becomes important, so does the first order compressibility correction terms.

For completeness, in Figure 14 we also include the full simulation of a 11 × 11 bubbly screens. Because in this case bubble motion is no longer assumed to be synchronous, we represent the averaged bubble radius among all bubbles in the screen as well as the standard deviation in one realization. The influence of the screen is reduced in the expansion and is less strong than in the infinite case. Compressible effects play a visible role despite the long wavelength of the incident wave, and the classical incompressible bubble interaction model tends to over-predict the collapse time.

V. CONCLUSION

In this work, the compressibility effect on the bubble-bubble interaction is discussed. The model proposed in [START_REF] Fuster | Modelling bubble clusters in compressible liquids[END_REF] is particularized to explicitely write a system of equations that account for first order correction compressibility effects. These effects are

shown to be important compared with the classical incompressible interaction mechanism in Rayleigh-Plesset models.

In the linear regime, time delay effects are always critical to capture the overall system response of large bubble screens. We show that the current model recovers the effective medium theory results up to second order for infinite crystal structures at large wavelengths (kD 1). In addition, the model is able to capture resonant conditions in diluted systems due to crystal configurations that are not captured by averaged models. Randomization on the bubble position and boundary effects on bubbly screens of finite are shown to be responsible to the appearance of characteristic periodic structures in the screen. These effects can modify the effective damping measured under some conditions.

In the non-linear oscillating regime, we numerically solve the proposed model as a neutral delay-differential set of equations (NDDE). The fully incompressible model seems to be only suitable to predict the expansion phase, while during the strong collapse compressibility effects play a major role and need to be included. Boundary size effects are shown to limit the applicability of the effective medium theory valid only for infinite systems.

(

+ K i ) -K i if i = j, ω ω 0 2 (1 + K i ) + 1 S ij otherwise, with S ij = R 0 D e -ıkD dij dij 1 
and K i = N j =i S ij .

In a general case where bubbles do not necessarily oscillate synchronously, it is possible to rewrite this system by separating variables S ij and K i into a uniform contribution and a spatially fluctuating part attributed to the perturbation of bubbles position

S ij = S (c) ij + S ij , K i = K (c) i + K i = N j =i S (c) ij + N j =i S ij ,
where the superscript (c) stands for variables corresponding to the crystal configuration, and and the distances between bubbles is written as dij = d(c) ij + d ij . In this case matrix A can be further decomposed as A ≈ A (C) + A where A (C) represents the value of A obtained with the values of a crystal structure and A is the non-uniform part When the position perturbation is small, taking advantage of Taylor expansion, we have:

A (0) ij =            0 if i = j, -ω ω 0 2 S ij otherwise, A (1) ij =            ω ω 0 2 -1 K i if i = j, ω ω 0 2 + 1 S ij + ω ω 0 2 (K i S ij + K (c) i S ij + K i S (c) ij ) otherwise.
S ij ≈ -ıkD d ij R 0 D e -ıkD d(c) ij d(c) ij .
In such a situation, the expectation of A (0) ij is zero as long as the expectation of d ij is zero.

However the expectation of the K i S ij term appearing in A is discussed as follows. For sufficiently large value of l, because quantity p = 1 + (q/l) 2 is bounded between 1 and √ 2, we can approximate the series as where z = e -ıkD . For kD = 2πn the series diverges and it converges otherwise. The influence of the number of layers considered on the series is reported in Figure 16 for different values of kD. In general, a very large value of the number of layers is required to accurately represent the infinity limit. Andersen, K. S., and Jensen, J. A. (2009). "Ambient pressure sensitivity of microbubbles investigated through a parameter study," The Journal of the Acoustical Society of America 126(6), 3350-3358. Bellen, A., and Zennaro, M. (2013). Numerical methods for delay differential equations (Oxford university press).
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 1 FIG. 1. A typical crystal distributed bubbly screen located at x = 0 plane.

  in a general case are discussed in Appendix B. It is interesting to note that the results obtained are in agreement with the expression proposed by Leroy et al. (2009) in the small kD limitation neglecting the correction of order (kR 0 • K) without the need of introducing any fitting parameter. Using an homogeneization approach and introducing a cuttoff length b = D/ √ π, Leroy et al. (2009) obtain K using the bubble density n d = 1/D 2 (number of bubbles per unit area in the screen) as
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 3 Figure 3 represents 1/|F | as a function of the frequency for three different concentrations.

  FIG. 5. Distribution of 1/|F i | for ω/ω 0 = 1 in a 101 × 101 bubbly screen.

  FIG. 6. The middle Figure shows the mean value of |Q * i | of a 51×51 bubbly screen as a function of

  FIG. 7. Influence of concentration on < |Q * i | > for various finite size bubbly screens and two

  FIG. 9. Influence of randomness for (a) the global resonance and (b) the damping coefficient of
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 9 Figure9shows the global factors defined in equation 10 averaged over 100 realizations

  FIG.10. The radius v.s. time curves. p a /p 0 = 2.

  FIG. 11. The radius v.s. time curves. p a /p 0 = 3.5.
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 13 FIG.12. The frequency spectrum of the present model and EMT using p a /p 0 = 3.5. The energy
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 14 FIG. 14. Radius versus time curves predicted by different models for ω ext /ω 0 = 0.1, p a /p 0 =

  FIG. 15. Comparison of the trajectory of the averaged bubble radius versus M a = Ṙ/c for the

  FIG. 16. Influence of the truncation N l on the evaluation of the series in Eq. 13 for a crystal

  acts like a variance term, is different from zero even for the small perturbations. Obviously when the amplitude of perturbation d ij is large, the expectation of both A

  p) dp = 2e ıkDl E 1/2 (ıkDl) -2 1/4 E 1/2 ( √ 2ıkDl) ,where E(x) is the exponential integral function. Taking the limit for l → ∞, we readily findthat lim l→∞ E 1/2 (ıkDl) -2 1/4 E 1/2 ( √ 2ıkDl) = 0implying that this term always converges. The convergence of the series is then discussed in terms of the convergence of
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which may dramatically modify the accuracy and stability of the underlying ODE method.

To deal with NDDE, we first rewrite the Eq. 17 as: ẏ(t) = f (y(t), y(t -τ 1 ), ..., y(t -τ n ), y(t -τ 1 ) -y(t -τ 1 -δ t ) δ t , ..., y(t

which is the dissipative approximation of the NDDE and named as retarded DDE. For small enough δ t , the retarded DDE solver will be stable as long as the neutral DDE is stable.

Based on Eq. 18, implicit Runge-Kutta formulas taking advantage of continuous extensions is used, and the retarded DDE is solved accordingly with residual control. The works of [START_REF] Shampine | Solving odes and ddes with residual control[END_REF][START_REF] Shampine | Dissipative approximations to neutral ddes[END_REF] are recommended for detailed mathematical principles.

B. Numerical results

Weakly non-linear regime

One important aspect on the dynamic response of bubbly liquids is the appearance of subharmonics, which ultimately indicate the first transition route to the chaotic response obtained for large enough amplitude of excitation [START_REF] Lauterborn | Subharmonic route to chaos observed in acoustics[END_REF][START_REF] Lauterborn | Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation[END_REF]. The harmonic components of the acoustic wave scattered by bubbles or ultrasound contrast agents is also important in medical applications [START_REF] Halldorsdottir | Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions[END_REF][START_REF] Nio | Optimal control of sonovue microbubbles to estimate hydrostatic pressure[END_REF]. The harmonics emitted by bubbles has been described by many authors (see [START_REF] Lauterborn | Physics of bubble oscillations[END_REF] for a review), including studies for contrast agents in a free field (Andersen and Jensen, 2009;[START_REF] Katiyar | Excitation threshold for subharmonic generation from contrast microbubbles[END_REF]. More recently Fan et al. (2020a) has revealed the impact of compressibility and bubble-wall interaction effects on the subharmonic emission of a bubble in a rigid tube. However, the influence of collective APPENDIX A:

The system of equations 4 can be written in matrix form A r = Bp after imposing that the incident wave is p ∞ = p 0 (1 + p e ıωt ) with p 1. The final system of equations becomes

where

The convergence of the infinite series