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Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss
of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or
acquired causes, but leads to similar metabolic complications with insulin resistance,
diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the
gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin
deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic
analyses, is of major importance to adapt medical care and genetic counseling. Molecular
and cellular bases of these syndromes involve, among others, altered adipocyte
differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or
premature cellular senescence. Lipodystrophy syndromes frequently present as
systemic diseases with multi-tissue involvement. After an update on the main molecular
bases and clinical forms of lipodystrophy, we will focus on topics that have recently
emerged in the field. We will discuss the links between lipodystrophy and premature
ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the
relationships between lipomatosis and lipodystrophy. Finally, the indications of
substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe
and USA, will be discussed.

Keywords: lipodystrophy, insulin resistance, diabetes, adipose tissue, genetics, senescence, lipomatosis, immunity
INTRODUCTION

Lipodystrophy syndromes are rare diseases characterized by generalized or segmental lack of
adipose tissue, and by insulin resistance-related metabolic complications such as diabetes,
hypertriglyceridemia, hepatic steatosis, and ovarian hyperandrogenism in women. Besides their
different clinical presentation with generalized or partial lipoatrophy, accompanied or not by fat
overgrowth in other body areas, lipodystrophy syndromes are highly heterogeneous diseases in
several other aspects. Specific subtypes of lipodystrophy are associated with additional clinical signs
and complications, with, among others, neurological or cardiovascular involvement, showing that
n.org January 2022 | Volume 12 | Article 8031891
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lipodystrophy syndromes are frequently complex multisystem
diseases (1–3). The onset of lipodystrophy may be precocious, in
early infancy, or delayed in late childhood or adulthood. This
review will mainly focus on genetic forms of lipodystrophies.
Other forms of lipodystrophies, that will not be covered by this
review, result from iatrogenic therapies and/or other
environmental factors. This is the case for HIV-related
lipodystrophies, due to multifactorial mechanisms resulting,
among others, from HIV infection and antiretroviral agents
(4). Glucocorticoid therapy leads to body fat redistribution and
insulin resistance (5). The identification of causative pathogenic
variants in more than 20 genes leading to monogenic forms of
lipodystrophies has highlighted several determinants of adipose
tissue pathophysiology. This field of research, still highly
productive, indicates adipose tissue as a major actor to ensure
proper whole-body insulin sensitivity (3, 6).
MAIN MOLECULAR CAUSES OF
LIPODYSTROPHY SYNDROMES AND
THEIR IMPACT ON ADIPOSE TISSUE
FUNCTIONS AND INSULIN RESPONSE

Main Molecular Causes of Lipodystrophy
Syndromes
Lipodystrophy syndromes include different congenital to adult-
onset diseases, with either generalized or partial lipoatrophy. More
than 20 genes are involved inmonogenic lipodystrophy syndromes
(6–8). Although lipodystrophy syndromes have been considered as
ultra-rare diseases, with a prevalence of less than 5 cases permillion
(9), they are largely underdiagnosed, and systematic genetic
screening suggests that 1/7000 individuals could be affected, with
a majority of partial forms (10). Table 1 indicates the main
monogenic lipodystrophy syndromes, their specific phenotypic
features and the main functions of involved genes. The diversity
of molecular causes of lipodystrophy reflects both clinical
heterogeneity and close pathophysiological relationships of these
diseases. Indeed, beyond the diversity of clinical forms,
lipodystrophy syndromes share adipose tissue dysfunction as a
key pathophysiological feature, with gene pathogenic variants
mostly affecting adipocyte development, differentiation and/or
functions (Figure 1).

Congenital generalized lipodystrophy syndromes (CGL or
Berardinelli-Seip Congenital Lipodystrophy) are autosomal
recessive diseases, mainly observed in patients from
consanguineous families. They are mainly due to null variants in
AGPAT2 encoding 1-acylglycerol-3-phosphate-O-acyltransferase
2, involved in triglyceride and phospholipid synthesis, or in BSCL2
encoding seipin, an endoplasmic reticulum membrane protein
which contributes to lipid droplet biogenesis (11–16). CGL3 and
CGL4 are due to genetic defects in caveolin-1 or cavin-1
respectively, involved in the formation of cell plasma membrane
microdomains called caveolae, that initiate several signaling
pathways. Caveolin-1 and cavin-1 are also localized at the
adipocyte lipid droplet and contribute to intracellular fluxes of
lipids (17, 18) (Figure 2). Most familial partial lipodystrophies
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(FPLD)are transmittedasautosomaldominantdiseasesdue to loss-
of-function or dominant negative mutations, with initial clinical
manifestations occurring from late childhood onwards. Apart
FPLD1, which is probably a multigenic form of lipodystrophy
syndrome (19), FPLD2 due to LMNA pathogenic variants, is the
most frequent form of genetically determined partial lipodystrophy
(10). Generalized or partial lipoatrophy is a clinical feature of
several diseases with accelerated ageing called progeroid
syndromes (Table 1).

Lipodystrophy and Lipotoxicity
Lipoatrophy is a main contributor of metabolic complications
associated with lipodystrophy syndromes. Adipocytes represent
20 to 40% of the cell population of adipose tissue and 90% of
adipose tissue volume (20, 21). They arise from mesenchymal
stem cells, adipocyte differentiation being carried out under the
control of several adipogenic transcription factors. PPARg is a
major adipogenic factor, which regulates the expression of
several genes of lipid metabolism and modulates both insulin
sensitivity and secretory functions of adipocytes (21, 22). White
adipocytes are the most abundant adipocytes in humans. They
are characterized by a single voluminous lipid vacuole
surrounding a neutral lipid core mainly composed of
triglycerides and cholesterol esters. The adipocyte lipid droplet
is coated with a monolayer of phospholipids and with proteins
belonging to the perilipin family, which play important
structural and functional roles. Indeed, white adipocytes have a
crucial role in the regulation of energy balance and systemic
metabolic homeostasis. In response to nutritional and hormonal
signals, the adipocyte lipid droplet is able to store excess energy
as triglycerides in the postprandial state, and then to release fatty
acids from triglycerides, providing energy substrates for other
organs. Adequate storage of energy in adipocytes protects other
organs from lipotoxicity due to lipid overload, which leads to
oxidative stress, mitochondrial dysfunction, apoptosis and tissue
dysfunction (23). In lipodystrophy syndromes, the very limited
adipose tissue expandability, due to the major decrease in the
capacity of adipose tissue to store lipids, exposes non-adipose
organs to lipotoxicity even in well-balanced diet conditions.
This results in muscle insulin resistance due to disruption of
insulin signaling (24), in non-alcoholic fatty liver disease, as well
as in myocardial, endothelial and pancreatic beta-cell
dysfunction (25–27). Adipocytes are also important autocrine,
paracrine, and endocrine cells that produce numerous
adipokines. Among others, leptin regulates satiety by acting on
hypothalamic neurons, and modulates carbohydrate and lipid
metabolism by acting on muscle, liver adipose tissue and
pancreatic beta-cells (28, 29). Integrated effects of leptin ensure
an efficient protection of non-adipose tissues from lipid
accumulation (30). Adiponectin produced by adipose tissue
increases fatty acid oxidation and glucose transport in muscle,
and decreases hepatic gluconeogenesis. In lipodystrophy
syndromes, the lack of functional subcutaneous fat drives
multiple metabolic alterations resulting from altered metabolic
and secretory functions of adipocytes. Decreased adipose tissue
expandability, and leptin deficiency induce ectopic accumulation
of fat upon increased energy intake, even during the
January 2022 | Volume 12 | Article 803189
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TABLE 1 | Main forms of monogenic lipodystrophy syndromes.

TYPE OF LIPODYSTROPHY TRANSMISSION SPECIFIC FEATURES ASSOCIATED WITH
LIPODYSTROPHY

GENE INVOLVED, MAIN CELLULAR FUNCTIONS

Generalized lipodystrophy syndromes
CGL1 AR Lytic bone lesions, cardiomyopathy AGPAT2: AGPAT2, synthesis of adipocyte triglycerides

and glycerophospholipids

CGL2 AR Intellectual deficiency, cardiomyopathy, rare
neurological signs (encephalopathy, spasticity)

BSCL2: seipin, formation of adipocyte lipid droplet

CGL3 AR Short stature, megaesophagus CAV1: caveolin-1, intracellular transduction pathways,
lipid droplet wall

CGL4 AR Muscular dystrophy, cardiac conduction
abnormalities, achalasia

CAVIN1: cavin-1, partner of caveolin-1

Autoinflammatory lipodystrophy
(JMP, CANDLE)

AR Fever, muscle atrophy, systemic skin and joint
inflammation

PSMB8: Immunoproteasome subunit PSMB8, regulation
of interferon production, and protein quality control
Genes encoding other immuno-proteasome subunits
have also been involved

Partial lipodystrophy syndromes
FPLD2 AD Cushingoid facies, possible association with

skeletal and cardiac muscular dystrophy
LMNA: lamin A/C, structure and functions of nucleus

FPLD3 AD Severe hypertension PPARG: PPARg, adipocyte differentiation

FPLD4 AD Acromegaloid features PLIN: perilipin-1, structure and function of lipid droplet

FPLD5 AR – CIDEC: CIDEC, structure and function of lipid droplet

AKT2- linked lipodystrophy AD Insulin-resistant diabetes with moderate
lipodystrophy

AKT2: Akt2, insulin signaling intermediate

Partial lipodystrophy syndromes with pseudo-lipomatosis/Launois-Bensaude multiple lipomatosis
FPLD6 (LIPE-linked
lipodystrophy)

AR Upper-body fat overgrowth (pseudo-lipomatosis),
lipoatrophy of limbs, insulin resistance-related
traits, muscular atrophy in some cases

LIPE: Hormone-sensitive-lipase, release of fatty acids
from stored triglycerides in adipocytes and release of
cholesterol from cholesterol esters in steroidogenic
tissues

MFN2-linked lipodystrophy AR Pseudo-lipomatosis, lipoatrophy of non-lipomatous
regions, axonal polyneuropathy

MFN2: Mitofusin-2, mitochondrial fusion

Progeroid lipodystrophies
Hutchinson-Gilford progeria
syndrome

De novo Progeria: generalized lipoatrophy, growth retardation,
dysmorphic signs, alopecia, bone and skin
abnormalities, severe atherosclerosis in childhood

LMNA: lamin A/C, structure and functions of nucleus

Progeroid laminopathies AD or de novo Lipodystrophy with progeroid signs LMNA: lamin A/C, structure and functions of nucleus

Type A mandibuloacral
dysplasia

AR Partial lipodystrophy with progeroid signs and
mandibular involvement

LMNA: lamin A/C, structure and functions of nucleus

Type B mandibuloacral
dysplasia

AR Generalized lipodystrophy with progeroid signs
and mandibular involvement

ZMPSTE24: ZMPSTE24/FACE1, post-translational
prelamin A maturation

Neonatal progeroid syndrome AR or de novo Generalized lipoatrophy, progeroid signs, other
signs depending on the gene affected

LMNA, ZMPSTE24: maturation of prelamin ACAV1:
caveolin-1, intracellular transduction pathways, structure
of lipid droplet

Werner syndrome (adult onset
progeria)

AR Cataracts, trophic skin disorders, cancers,
subcutaneous lipoatrophy and increased
perivisceral fat

WRN: WRN, DNA helicase, DNA repair

MDPL (Mandibular hypoplasia,
Deafness and Progeroid
features syndrome with
Lipodystrophy)

De novo Subcutaneous lipoatrophy and increased
perivisceral fat, acro-osteolysis, mandibular and
clavicular dysplasia, deafness

POLD1: DNA polymerase delta 1, catalytic subunit, DNA
replication and repair

NSMCE2-linked lipodystrophy AR Short stature, hypogonadism, extreme insulin
resistance

NSMCE2: E3 SUMO-protein ligase NSE2, genome
maintenance, DNA repair

EPHX1-linked lipoatrophy AR Generalized lipoatrophy, dysmorphic and progeroid
signs, hepatic cytolysis, sensorineural hearing loss

EPHX1: Epoxyde hydrolase 1, hydrolysis of epoxides to
less-reactive diols
Frontiers in Endocrinology | www.fron
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Type 1 Familial Partial Lipodystrophy (FPLD1) is a multigenic form of lipodystrophy syndrome with exacerbated android morphotype and predominant limb lipoatrophy.
AD, autosomal dominant; AGPAT2, 1-Acylglycerol-3-Phosphate-O-Acyltransferase 2; AR, autosomal recessive; CGL, congenital generalized lipodystrophy; JMP, Joint contractures,
Muscular atrophy, Microcytic anemia and Panniculitis-induced lipodystrophy syndrome; CANDLE, Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
syndrome; FPLD, familial partial lipodystrophy.
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physiological postprandial state (Figure 2). Furthermore,
decreased serum levels of adiponectin, although not to the
same extent in the different forms of lipodystrophy (31),
contribute to insulin resistance and hepatic steatosis associated
with lipodystrophy (32). Altered production of other adipokines
by lipodystrophic adipose tissue has also been described in
several studies, mostly related to HIV-related forms of
lipodystrophy (4). It could lead to adipose tissue inflammation
and fibrosis, and to a state of systemic low-grade inflammation
with insulin resistance (33). In lipodystrophy syndromes, insulin
signaling pathways are strongly impacted by mechanisms linked
to cellular lipotoxicity and metabolic inflexibility (23, 24).
Increased lipid fluxes activate hepatic production of very-low-
density lipoproteins, triglycerides and glucose, and impair
muscular glucose uptake (6, 34, 35). Leptin deficiency also
increases appetite, which worsens metabolic profile. In some
Frontiers in Endocrinology | www.frontiersin.org 4
forms of partial lipodystrophies, redistribution of body fat, with
increased visceral fat and decreased subcutaneous fat,
particularly of the lower limbs, also contributes to metabolic
dysfunction. Indeed, subcutaneous adipose tissue is
physiologically more sensitive to insulin. It has been shown
that subcutaneous adipose tissue of the lower part of the body
is protective against diabetes and cardiovascular diseases in the
general population (36, 37). Conversely, visceral adipose tissue is
more sensitive than subcutaneous adipose tissue to adipocyte
lipolysis. Furthermore, visceral adipose tissue directly releases
fatty acids into the portal vein during lipolysis, which are
captured by the liver, leading to an increased risk of liver
lipotoxicity, liver steatosis and insulin resistance (Figure 2).
Visceral fat is more susceptible to chronic inflammation and
fibrosis, and produces lower amounts of leptin than
subcutaneous tissue (38). Excess visceral, but not subcutaneous
FIGURE 1 | Cellular targets of the main molecular defects responsible for lipodystrophy syndromes. Adipocyte schematic representation with localization of the main
proteins involved in the molecular pathophysiology of lipodystrophy syndromes (hatched symbols). AGPAT2, 1-acylglycerol-3-phosphate-O-acyltransferase 2; AKT2,
serine/threonine-protein kinase 2; ATGL, adipose triglyceride lipase; BLM, Bloom syndrome protein; CAV1, caveolin-1; CAVIN1, cavin-1; CGI58, comparative gene
identification-58, also known as a/b-hydrolase domain-containing 5 (ABHD5); DGAT, diacylglycerol acyltransferase; EPHX1, epoxide hydrolase 1; FA, fatty acid; FA-
CoA, fatty acid-coenzyme A; FAS, fatty acid synthase; G3P, glycerol-3-phosphate; GLUT4, glucose transporter 4; GPAT, glycerol-3-phosphate acyltransferase; HSL,
hormone-sensitive lipase; LMNA, lamin A/C; MFN2, mitofusin-2; NEFA, non-esterified fatty acids; NSMCE2, E3 SUMO-protein ligase NSE2; PAP, phosphatidic acid
phosphatase; PLIN1, perilipin-1; POLD1, DNA polymerase delta 1, catalytic subunit; PPARg, peroxisome proliferator-activated receptor gamma; RXR, retinoid X
receptor; TAG, triacylglycerol; TCA cycle, tricarboxylic acid cycle; WRN, WRN RecQ like helicase.
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fat, is involved in adiposity-related hypertension (39).
Mitochondrial dysfunction and oxidative stress, which are
frequently observed cellular consequences of lipodystrophy,
also decrease cellular responses to insulin (40–42) (Figure 2).
MAIN CLINICAL FEATURES OF
GENERALIZED AND PARTIAL
LIPODYSTROPHIES

The diagnosis of lipodystrophy syndromes is based first and
foremost on clinical examination. Since objective clinical
measures are still lacking to document an abnormal
development of subcutaneous fat, the clinical diagnosis of
lipodystrophy is highly dependent on the clinician’s self-
experience. It can be particularly difficult in men affected with
partial lipodystrophy syndromes, in whom the diagnosis could
be missed or substantially delayed. Indeed, the nosological
framework is poorly defined between an android distribution
of fat, commonly observed in the general population, which is a
major risk factor for insulin resistance-related diseases (43), and
the lipodystrophic phenotype. This is particularly striking for
Type 1 Familial Partial Lipodystrophy (FPLD1), characterized by
a central repartition of fat with lipoatrophy of limbs and severe
insulin resistance, which is probably of polygenic origin (19).
However, several clinical features are common to lipodystrophy
syndromes, so that a distinctive clinical picture may be identified.

Lipoatrophy
The identification of generalized or segmental lipoatrophy, in the
absence of malnutrition, is a major step for diagnosis.
Frontiers in Endocrinology | www.frontiersin.org 5
In generalized forms of lipodystrophy syndromes,
lipoatrophy of the face is striking. The patient’ facies is
emaciated due to the absence of Bichat fat pads. Acromegaloid
features, with protruding eyebrow arches, cheekbones, and lower
jaw, and thick facial traits, are also observed, especially in
congenital forms of lipoatrophy, but also in some partial forms
of the disease (8, 44). These clinical signs are due to an increased
visibility of bone structures in the absence of adipose tissue, and
to the stimulation of growth factor pathways by excess insulin.
Hands and feet may also be thickened. The lack of subcutaneous
adipose tissue also increases the visibility of muscles (athletic
appearance) and of veins (pseudo-veinomegaly) in limbs, trunk
and abdomen. In addition, it should be noted that, at least in
some cases, the volume and mass of skeletal muscle are truly
increased (45, 46) (Figure 3A). Ingrown toenails are possible
consequences of severe lipoatrophy of feet. Hypomastia is
common in women, secondary to loss of breast adipose tissue
and/or to hyperandrogenism.

Fat Accumulation
In most forms of partial lipodystrophy syndromes, lipoatrophy
mainly affects lower limbs and can coexist with areas of fat
accumulation. Dunnigan syndrome (FPLD2), due to pathogenic
variants in the LMNA gene encoding Type A lamins, is
characterized by lipoatrophy of limbs and trunk with cushingoid
features of face and neck, i.e. increased supraclavicular fat pads,
double chin, buffalo hump, and with perineal accumulation of
adipose tissue. The general morphotype is strikingly android, with
a biacromial diameter greater than the bitrochanteric diameter (8,
47). Muscle hypertrophy, contrasting with the usual amyotrophy
associated with hypercortisolism, may suggest the diagnosis of
lipodystrophy syndrome (Figure 3A). Fat overgrowth may lead to
FIGURE 2 | Metabolic consequences of lipodystrophy leading to cellular lipotoxicity.
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massive pseudo-lipomatous regions in upper body and proximal
limb areas, contrasting with lipoatrophy of non-lipomatous
regions, in specific genetic forms of partial lipodystrophy
(48–55). On the contrary, in Barraquer-Simons acquired partial
lipodystrophy syndrome, a progressive lipoatrophy develops
in upper parts of the body (face, trunk and upper limbs), while
adipose tissue accumulates in lower limbs.

Insulin Resistance-Associated
Clinical Signs
Acanthosis nigricans, a brownish hyperkeratotic thickening of the
skin, and acrochorda (skin tags), are very common clinical signs
of insulin resistance in lipodystrophy syndromes (Figures 3B, C).
These skin lesions are usually located in cervical, axillary and
inguinal folds, but may be very extensive in some patients. Insulin
resistance frequently leads to ovarian hyperandrogenism in
women, with hirsutism, irregular menses and polycystic ovaries
(47, 56, 57). Hepatomegaly, resulting from dysmetabolic liver
steatosis, is common. Hypertriglyceridemia can be complicated,
or even revealed, by acute pancreatitis (7, 58).

Cardiovascular Signs
High blood pressure is frequent, and can be very severe, in
particular in partial lipodystrophies associated with pathogenic
variants of PPARG encoding the adipogenic factor PPARg
(peroxisome proliferator-activated receptor gamma) (59–61).
The risk of atherosclerosis is strongly increased, which could
result from insulin resistance, diabetes, and hypertension (62),
but also from genetic variants that directly target the vascular
wall, as observed in LMNA-related lipodystrophies (40, 63, 64).
In addition to non-specific diabetic cardiomyopathy and
atherosclerosis, several cardiovascular complications can be
observed in the different forms of lipodystrophies. Patients
Frontiers in Endocrinology | www.frontiersin.org 6
with congenital generalized lipoatrophy may suffer from
hypertrophic cardiomyopathy, with or without hypertension,
associated with ectopic cardiac fat and/or lipotoxicity (65, 66).
Pathogenic variants in LMNA are responsible for lipodystrophy
syndromes with early atherosclerosis and/or with dilated
cardiomyopathy, rhythm and/or conduction disorders and/or
extensive calcifications of cardiac valves (67–72). A regular
cardiovascular screening, with cardiac ultrasound and stress
test, and, if needed, coronary CT angiogram, 24-hour ECG
monitoring, and/or cardiac MRI is required in most patients
with lipodystrophy syndromes (7, 8).

Other Clinical Signs
Depending on their molecular cause, lipodystrophy syndrome
can be associated with several other clinical signs. Moderate
intellectual disability can be observed in type 2 Congenital
Generalized Lipoatrophy (CGL) due to BSCL2 pathogenic
variants encoding seipin (11). Digestive signs are frequent in
neonates or infants with CGL. In late infancy or adolescence,
dysphagia can reveal megaesophagus, due to esophageal
achalasia, in CGL due to pathogenic variants of CAVIN1 or
CAV1, encoding proteins involved in the formation of caveolae
at the cell plasma membrane (73–77). Growth disorders,
dysmorphic features with micrognathia, beaked nose, dental
crowding, prominent eyes, dystrophic bones, and/or signs
suggesting accelerated aging such as precocious whitening and/
or loss of hair, sclerodermatous skin appearance, joint
limitations, and/or muscle atrophy are hallmarks of progeroid
lipodystrophies (67, 78, 79). Other signs such as precocious
cataracts, trophic skin disorders, hypogonadism, predisposition
to cancer can be associated in progeroid lipodystrophy syndromes
due to defects in DNA repair (80, 81). Muscle functional defects
are observed in some patients with lipodystrophy due to
A

B C

FIGURE 3 | Phenotypic features of lipodystrophy syndromes. (A) Muscular hypertrophy and lipoatrophy of limbs in Type 2 Familial Partial Lipodystrophy (Dunnigan
syndrome). (B, C) Cervical and axillary acanthosis nigricans in patients with lipodystrophy due to LMNA (B) or BSCL2 (C) pathogenic variants.
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pathogenic variants in LMNA, CAVIN1, or PSMB8, among other
genes (67, 74, 82–85). Systemic inflammatory signs (fever,
multiorgan inflammatory involvement affecting joints, skin,
heart) are prominent features of lipodystrophies associated with
rare autoinflammatory syndromes of genetic origin (86). The
occurrence of some lipodystrophy syndromes in the context of
panniculitis or autoimmune diseases, suggests that adipose tissue
could be a target of immune tolerance disruption (87).
BIOLOGICAL CHARACTERISTICS OF
LIPODYSTROPHY SYNDROMES

Insulin resistance, resulting from adipose tissue dysfunction and
subsequent ectopic lipid deposition, is one of the hallmarks of
lipodystrophy syndromes. High serum insulin levels, with
normal or increased plasma glucose, are detected in the fasting
state and/or during oral glucose tolerance test. Patients with
diabetes display preserved or even increased C-peptide levels for
a long time, and/or frequently require very high doses of insulin
to achieve glucose control. Hypertriglyceridemia is also very
frequent, and can reach very high values, associated with a
high risk of acute pancreatitis. Low HDL-cholesterol is almost
always present. Increased liver enzymes are also common
features, due to liver steatosis or fibrosis. Biological signs of
adipose dysfunction include decreased serum adiponectin, and
either barely detectable leptin levels in generalized
Frontiers in Endocrinology | www.frontiersin.org 7
lipodystrophies, or lower leptin levels than predicted by body
mass index in partial lipodystrophies. Creatine phosphokinase
may be elevated, especially in patients with lipodystrophies and
muscular dystrophy. Ovarian hyperandrogenism results from
insulin resistance, with high levels of total and free testosterone
and of D4-androstenedione, decreased sex-hormone binding
globulin, and increased luteinizing hormone to follicle-
stimuling hormone ratio (7, 8).
IMAGING INVESTIGATIONS

Although the diagnosis of lipodystrophy is mainly based on
clinical examination, the objective measurement of fat mass by
dual energy-ray absorptiometry (DEXA) is useful to determine
the severity of lipoatrophy and, in partial forms of
lipodystrophies, to document the altered segmental distribution
of fat (Figure 4A). Abdominal ultrasound, computed
tomodensitometry (CT), or magnetic resonance imagery (MRI)
are required to search for liver steatosis and signs of cirrhosis
(Figure 4B). In women, pelvic ultrasound may reveal ovaries of
increased volume and/or with multiple follicles. Bone imaging
can show precocious non-specific degenerative radiographic
abnormalities in patients with familial partial lipodystrophies.
Several bone lesions such as osteolysis, osteosclerosis or pseudo-
osteopoikilosis are frequently present in generalized forms of
lipodystrophy, and may lead to misdiagnosis (88, 89). Muscle
FIGURE 4 | Imaging features in lipodystrophy syndromes. (A) Dual energy-ray absorptiometry (DEXA) in a 31 year-old patient with CGL1, showing a major decrease
in total and segmental fat mass. (B) Abdominal computed tomodensitometry in a 12 year-old patient with acquired generalized lipodystrophy showing homogeneous
hepatomegaly with low attenuation of the parenchyma (Hounsfield units: -13), and absence of subcutaneous adipose tissue.
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imaging (CT or MRI) may show muscular hypertrophy and/or
fatty degeneration, with lack of subcutaneous adipose tissue.
Imaging investigations may be completed by an electromyogram
to search for neuropathic and/or myopathic signs.
LIPODYSTROPHY AND AGEING

Remodeling of body fat occurs during physiological ageing, with
decrease in subcutaneous gluteofemoral adipose tissue, increase
in visceral fat depots and ectopic deposition of lipids. Together
with pro-inflammatory changes in adipose tissue, these
lipodystrophy-like features contribute to age-related insulin
resistance (90).

Accelerated ageing is probably one of the most important
pathophysiological mechanisms of primary lipodystrophies.
Arguments in favor of this hypothesis first came from studies of
LMNA-associated diseases. LMNA encodes Type A lamins,
nuclear proteins that interact with chromatin and regulate
several nuclear functions including epigenetic cell developmental
programs (91) (Figure 1). LMNA pathogenic variants cause
several different laminopathies including muscular dystrophy,
cardiomyopathy, neuropathy, lipodystrophy, and syndromes of
accelerated aging (progeria and progeroid syndromes). Both
typical FPLD2/Dunnigan syndrome, characterized by partial
lipodystrophy and insulin resistance-related complications, and
the extremely severe Hutchinson-Gilford accelerated ageing
syndrome with generalized lipoatrophy are due to LMNA
variants. In addition to lipodystrophy, several other clinical
features, although of very different severity, are part of the
clinical spectrum of both diseases. This is the case for early
atherosclerosis, leading to frequent cardiovascular events before
the age of 50 in patients with FPLD2, and to death at a mean age of
15 in Hutchinson-Gilford progeria (63, 92). In Hutchinson-
Gilford progeria, but also in FPLD2, early atherosclerosis is due
not only to metabolic risk factors, but also to direct pro-senescent
effects of LMNA pathogenic variants on endothelial and vascular
smoothmuscle cells (40, 63, 93, 94). Clinical features of accelerated
ageing are observed in patients with complex progeroid forms of
LMNA-linked lipodystrophies, with a large continuum of severity
between Dunnigan syndrome and Hutchinson-Gilford progeria
(67, 71). At the cellular level, LMNA pathogenic variants impair
the fate of several mesodermal lineages, such as endothelial
vascular cells (64), myoblasts (95), cardiomyocytes (96), and
adipocytes (97–101), and are involved in several signaling
pathways which accelerate aging processes (102, 103).

The relationships between lipodystrophy and increased
cellular senescence were further demonstrated by the
identification of several pathogenic variants in genes involved
in DNA repair as molecular causes of lipodystrophy syndromes
(Table 1 and Figure 1). As discussed above, lipodystrophies due
to genetic alterations in DNA repair are clinically expressed as
progeroid syndromes, with lipodystrophy, insulin resistance and
related metabolic alterations, and signs of premature ageing.
However, additional clinical features, specific to each different
genetic subtype, may be part of the phenotype. Among others,
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cataracts, which are not part of the phenotype of LMNA-
associated progeroid syndromes, are a typical feature of
Werner progeria syndrome (81) and MDPL (Mandibular
hypoplasia, Deafness, Progeroid features, and Lipodystrophy)
syndrome (80, 104, 105). These diseases are due, respectively, to
biallelic pathogenic variants in WRN encoding the WRN DNA
helicase and exonuclease, and to heterozygous loss-of-function
variants in POLD1, encoding a catalytic subunit of DNA
polymerase d , both enzymes playing a major role in
maintaining genome stability. Lipodystrophy is associated with
a predisposition to cancer in Werner syndrome, as well as in
Bloom syndrome, due to mutations in BLM encoding a DNA
helicase, or in ataxia-telangiectasia with altered DNA synthesis
and excision-repair pathways (106). Cultured fibroblasts from
patients with Werner or MDPL syndromes present signs of
premature senescence (81, 107). Importantly, premature
senescence was shown to impair adipogenesis in human
pluripotent stem cells lacking either WRN or BLM helicases
(108). Several other DNA replication/repair-associated
lipodystrophies have been described (7, 78, 109, 110),
frequently associated with short stature, hypogonadism, and
trophic skin disorders, among other progeroid signs.

Premature senescence and oxidative stress, directly resulting
from defects in genes involved in cellular ageing and/or genome
stability, or from consequences of other genetic defects
impacting adipocytes (79), are thus probably important
pathophysiological determinants of lipodystrophies.
LIPODYSTROPHY AND IMMUNO-
INFLAMMATORY DISEASES

Lipodystrophy syndromes can develop during the course of
systemic immune and/or inflammatory diseases, suggesting
that adipose tissue dysfunction could result from auto-immune
and/or inflammatory damages. This is the case in CANDLE
(Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy
and Elevated temperature) syndrome and related auto-
inflammatory genetic diseases, due to genetic defects in
immunoproteasome subunits (86, 111). Dysregulation of the
interferon pathway is a key pathophysiological link between
the molecular causes of these diseases and their clinical
expression (112). Lipodystrophy with metabolic complications
is also part of the phenotype of several autoimmune diseases.
Generalized lipodystrophy with severe hyperinsulinemia and
leptin deficiency has been described in a child with APECED
(Autoimmune PolyEndocrinopathy-Candidiasis-Ectodermal
Dystrophy) due to pathogenic variant in AIRE resulting in the
disruption of immune tolerance (113). The term “acquired
lipodystrophy”, which designates lipodystrophy syndromes
without any known genetic cause, underlies several auto-
immune diseases with adipose tissue involvement (114–116).
Autoantibodies directed against perilipin-1, an important lipid
droplet protein which regulates lipolysis, could be involved in
adipocyte dysfunction (87). Barraquer-Simons partial
lipodystrophy syndrome, which predominantly affects women,
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is associated in one third of the cases with decreased C3 and/or
C4 complement factors, and with membranoproliferative
glomerulopathy due to C3 nephritic autoantibodies (117, 118).

Recently, lipodystrophy syndromes have been reported
during the course of targeted cancer therapy using immune
checkpoint inhibitors (119–122). These agents, by releasing
nonspecific immunosuppressive pathways, are known to
lead to multiorgan auto-immune related adverse events.
Inflammatory features and infiltration of adipose tissue with
CD3+ and/or cytotoxic CD8+ lymphocytes have been identified
in anti-PD1-related lipodystrophy syndromes, strongly
suggesting that disrupted immune tolerance to adipocyte self-
antigens could be the cause of lipodystrophy (119–122).

To note, HIV-related lipodystrophies which are reviewed
elsewhere (4), also result from altered adipocyte differentiation
and inflammatory dysregulation (123).
LIPODYSTROPHY AND LIPOMATOSIS:
SOME SHARED PATHOPHYSIOLOGICAL
MECHANISMS?

In specific genetic forms of partial lipodystrophy, due to MFN2
or LIPE biallelic pathogenic variants, fat overgrowth may lead to
massive pseudo-lipomatous regions in upper body and proximal
limb areas, leading to the diagnosis of multiple symmetric
lipomatosis. However, recent studies have shown that fat
accumulates in non-encapsulated pseudo-lipomas, which differ
from the organization of typical lipomas, and that patients also
present with lipoatrophy of non-pseudo-lipomatous region and
with lipodystrophy-related metabolic complications. Therefore,
multiple symmetric lipomatosis could be, at least in MFN2 and
LIPE-related forms, an exacerbated form of partial lipodystrophy
(49–55).

MFN2-associated lipodystrophy is a mitochondrial disease
due to biallelic pathogenic variants including a specific MFN2
p.Arg707Trp substitution. MFN2 encodes mitofusin-2, a
transmembrane protein of the outer mitochondrial membrane
whose oligomerization drives mitochondrial fusion (124)
(Figure 1). Lipoatrophy, low serum leptin and adiponectin
levels, as well as adipose tissue mitochondrial defects, oxidative
stress and increased expression of some thermogenic markers,
provide evidence of adipose tissue dysfunction in patients with
MFN2-associated lipodystrophy (52, 54). Apart from
lipodystrophy/pseudo-lipomatosis, patients may present with
other clinical signs of mitochondrial involvement, including
Charcot-Marie-Tooth peripheral neuropathy.

LIPE biallelic pathogenic variants may also lead to pseudo-
lipomatous forms of partial lipodystrophy (49, 50, 53, 55). LIPE
encodes the key lipolytic enzyme hormone-sensitive lipase
(HSL) (Figure 1), and LIPE pathogenic variants leading to
lipodystrophy act through loss-of-function mechanisms.
Functional studies using adipose stem cells have shown that
defective lipolysis and impaired adipocyte differentiation, but
also mitochondrial dysfunction, could contribute to
pathophysiological mechanisms in LIPE-related lipodystrophy
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syndrome (55). Importantly, although the metabolic phenotype
and potential lipodystrophy signs were not systematically
investigated, some patients carrying mtDNA mutations
responsible for the myoclonic epilepsy and ragged red fibers
(MERRF) syndrome were also reported with multiple symmetric
lipomatosis (125). Mitochondrial defects have also been
described in the most frequent form of multiple symmetric
lipomatosis, associated with excessive alcohol consumption (126).

Therefore, mitochondrial alterations could lead to both
pseudo-lipomatous and/or lipodystrophic diseases. Whether
other mitochondriopathies induce lipodystrophic diseases in
humans, as shown in mice, requires further investigations (127).
METRELEPTIN TREATMENT OF
METABOLIC COMPLICATIONS
ASSOCIATED WITH LIPODYSTROPHY
SYNDROMES

Lipodystrophy syndromes are multi-tissue diseases, which
require a multidisciplinary management. Regarding metabolic
alterations, dietary measures and physical activity are very
important therapeutic tools. Indeed, avoiding a positive energy
balance leading to ectopic lipid infiltration is a major objective to
prevent and/or treat metabolic alterations in the context of
adipose tissue failure (7). To date, no medication has proven to
be effective to cure lipoatrophy. Metformin is frequently used as a
first-line pharmacological drug to decrease insulin resistance.
Statins are frequently prescribed to reduce the cardiovascular
risk, and fenofibrate can be added in case of insufficient response
on triglycerides. Medium chain fatty acid supplementation is
used to reduce hypertriglyceridemia in children. Very limited
data are available regarding the effects of antidiabetic drugs in
patients with lipodystrophic diabetes. Very high doses of insulin
therapy are frequently used, due to severe insulin resistance.

The orphan drug metreleptin, a recombinant leptin analog, is
the only specific treatment for the metabolic complications of
lipodystrophy syndromes. Metreleptin, administered by
subcutaneous injection once daily, is used as a hormone
replacement therapy in patients with leptin deficiency.
Metreleptin therapy obtained a marketing authorization to treat
the complications of leptin deficiency in patients with
lipodystrophy in Japan in 2013, in USA in 2014 (for generalized
forms), and in Europe in 2018. Although metreleptin was not
studied in placebo-controlled trials in the context of rare diseases,
and although it does not lead to the reconstitution of lacking
adipose tissue, it was shown effective, as an adjunct to diet, on
metabolic and hepatic parameters in generalized lipodystrophy
syndromes (Figure 5). In patients with lipodystrophy, metreleptin
replacement therapy prevents ectopic storage of lipids, by
decreasing food intake due to central effects, and by directly
increasing peripheral insulin sensitivity (128–131). Metreleptin
therapy has been shown to increase insulin sensitivity and insulin
secretion, to reduce hypertriglyceridemia, hyperglycemia, HbA1c
and fatty liver disease, and to improve quality of life (3, 6, 7, 130,
132–134) (Figure 5). Other recent studies have shown that
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metreleptin could also improve cardiac hypertrophy by reducing
lipotoxicity and glucose toxicity (135), and decrease mortality risk
in patients with lipodystrophy (134). In accordance with the
different severity of leptin deficiency, metreleptin therapy seems
more efficient in generalized than in partial forms of lipodystrophy
(136). In a recent post-hoc statistical analysis of two clinical trials
conducted at NIH, HbA1c improved by a mean 2.16 percentage
point after 12 months of treatment with metreleptin in patients
with generalized forms of lipodystrophy (n=59), but only by a
mean 0.61 percentage point in patients with partial lipodystrophy
(n=36) (137). Therefore, in patients with partial lipodystrophies,
metreleptin is recommended in selected patients, with severe
hypoleptinemia, HbA1c > 8% and/or serum triglyceride > 500
mg/dL, for whom standard treatments have failed to achieve
adequate metabolic control (7). Further studies are needed to
determine specific predictive factors for metreleptin response in
patients with partial lipodystrophies.

Metreleptin therapy is well tolerated in the majority of
patients. The dose of metreleptin is adapted to metabolic
responses and to tolerance, with particular attention to the
extent of weight loss, which is an expected effect of the
treatment but should be controlled. Common adverse effects
mainly comprise localized skin reaction, pain at injection sites,
and hypoglycemia when the decrease of other antidiabetic
treatments is not sufficiently anticipated. Very rare cases of
lymphoma have been reported in patients with autoimmune
forms of lipodystrophy treated with metreleptin, without any
established causal relationship with the treatment (138).
Although they display only exceptionally neutralizing effects,
circulating anti-leptin autoantibodies frequently develop under
Frontiers in Endocrinology | www.frontiersin.org 10
treatment. Anti-leptin autoantibodies interfere with enzyme-
linked immunosorbent assays for serum leptin, complicating
the correct interpretation of leptinemia in treated patients.
Further studies are needed to identify other consequences of
anti-leptin autoantibodies (6).
CONCLUSION

Lipodystrophy syndromes are rare and heterogeneous diseases.
Their diagnosis is difficult and can be significantly delayed, since
adipose tissue is not systematically investigated during clinical
exam, and several symptoms are nonspecific (7). Most clinical
forms of lipodystrophy remain genetically unexplained. Next
generation sequencing technologies with exome or genome
analysis will probably allow for discovering new causative
genetic variants in the near future, and lead to a better
understanding of the pathophysiology in these rare diseases.
However, the interpretation of genetic variants is increasingly
challenging (44). Closely associated genetic, clinical and
fundamental research, as well as broad collaborations are needed
to explore new pathophysiological determinants of lipodystrophy
syndromes, and improve the care of affected patients.
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et al. Human Lipodystrophies: Genetic and Acquired Diseases of Adipose
Tissue. Endocr Dev (2010) 19:1–20. doi: 10.1159/000316893

2. Garg A. Clinical Review: Lipodystrophies: Genetic and Acquired Body Fat
Disorders. J Clin Endocrinol Metab (2011) 96:3313–25. doi: 10.1210/jc.2011-
1159

3. Akinci B, Meral R, Oral EA. Phenotypic and Genetic Characteristics of
Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and
Comorbidities. Curr Diabetes Rep (2018) 18:143. doi: 10.1007/s11892-018-
1099-9

4. Koethe JR, Lagathu C, Lake JE, Domingo P, Calmy A, Falutz J, et al. HIV and
Antiretroviral Therapy-Related Fat Alterations. Nat Rev Dis Primers (2020)
6:48. doi: 10.1038/s41572-020-0181-1

5. Fardet L, Antuna-Puente B, Vatier C, Cervera P, Touati A, Simon T, et al.
Adipokine Profile in Glucocorticoid-Treated Patients: Baseline Plasma
Leptin Level Predicts Occurrence of Lipodystrophy. Clin Endocrinol (Oxf)
(2013) 78:43–51. doi: 10.1111/j.1365-2265.2012.04348.x

6. Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: A
Paradigm for Understanding the Consequences of “Overloading” Adipose
Tissue. Physiol Rev (2021) 101:907–93. doi: 10.1152/physrev.00032.2020

7. Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The
Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society
Practice Guideline. J Clin Endocrinol Metab (2016) 101:4500–11.
doi: 10.1210/jc.2016-2466

8. Sollier C, Vatier C, Capel E, Lascols O, Auclair M, Janmaat S, et al.
Lipodystrophic Syndromes: From Diagnosis to Treatment. Ann
Endocrinol (Paris) (2020) 81:51–60. doi: 10.1016/j.ando.2019.10.003

9. Chiquette E, Oral EA, Garg A, Araujo-Vilar D, Dhankhar P. Estimating
the Prevalence of Generalized and Partial Lipodystrophy: Findings and
Challenges. Diabetes Metab Syndr Obes (2017) 10:375–83. doi: 10.2147/
DMSO.S130810

10. Gonzaga-Jauregui C, GeW, Staples J, Van Hout C, Yadav A, Colonie R, et al.
Clinical and Molecular Prevalence of Lipodystrophy in an Unascertained
Large Clinical Care Cohort. Diabetes (2020) 69:249–58. doi: 10.2337/db19-
0447
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Nuclear Envelope-Related Lipodystrophies. Semin Cell Dev Biol (2014)
29:148–57. doi: 10.1016/j.semcdb.2013.12.015

43. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA,
et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of
the International Diabetes Federation Task Force on Epidemiology and
Prevention; National Heart, Lung, and Blood Institute; American Heart
Association; World Heart Federation; International Atherosclerosis Society;
and International Association for the Study of Obesity. Circulation (2009)
120:1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644
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GLOSSARY

Acromegaloid
features

clinical signs typically associated with acromegaly, due to
growth hormone overproduction, which may also be
observed in insulin resistance syndromes, i.e. broadened
extremities and coarsening of facial lines with widened and
thickened nose, prominent cheekbones, and enlarged
forehead

Android fat
distribution/
morphotype

body fat distribution characterized by a predominant
localization of adipose tissue in abdominal and upper
thoracic regions

Autoinflammatory
diseases

heterogeneous group of diseases characterized by recurrent
inflammatory episodes with fever and increased inflammatory
markers, due to a dysregulation of innate and/or adaptive
immunity

Bichat fat pads subcutaneous facial fat of the cheeks and temples
Cellular
lipotoxicity

cellular dysfunction mediated by the accumulation of fatty
acids derivatives

Cushingoid
features

clinical signs typically associated with Cushing syndrome,
due to corticosteroid overproduction, which may also be
observed in some partial lipodystrophy syndromes, i.e.
rounded face, doubled chin, supraclavicular, axillar and
dorsocervical fat accumulation (buffalo hump)

Diabetic
cardiomyopathy

myocardial dysfunction in the absence of overt clinical
coronary artery disease or valvular disease observed in
patients with diabetes mellitus

Liver steatosis lipid accumulation in the liver which may lead to liver
dysfunction, inflammation and fibrosis

Metabolic
inflexibility

inability to adapt substrate oxidation to nutrient availability
and hormone regulation – for example, in insulin resistance
states, inability to switch from lipid to carbohydrate oxidation
upon insulin stimulation

Multisystem
diseases

disorders that affect several organs or tissues involved in
specialized functions or in different physiological systems (i.e.
cardiovascular system, endocrine system, central or peripheral
nervous system, digestive system, immune system …)

Osteolysis destruction of bone tissue

Osteosclerosis localized or diffuse increased density of bone tissue

Progeroid
syndromes

heterogeneous group of rare diseases characterized by
clinical features of accelerated aging

Pseudo-
lipomatous
regions/pseudo-
lipomas

unencapsulated masses of adipose tissue which can be
clinically misdiagnosed as lipomas (encapsulated benign
tumors of fatty tissue)

Pseudo-
osteopoikilosis

numerous islands of osteosclerosis in the skeleton detected
as spotted lesions on x-ray pictures

Segmental
lipoatrophy

loss of adipose tissue involving a part of the body

Trophic skin
disorders
(observed in
progeroid
syndromes)

skin atrophy, dry and/or rigid skin with increased visibility of
veins, changes in color and temperature, and/or impaired
wound healing
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