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Abstract: Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the
European Food Safety Authority recently banned the use of TiO2 nano-additive in food products.
Following the intent of relating nanomaterials atomic structure with their toxicity without having
to conduct large-scale experiments on living organisms, we investigate the aggregation of titanium
dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory
to get an accurate determination of the energetics and electronic structure, we switch to classical
Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two
identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the
key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle
is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand
nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the
aggregation free energy and two numerical parameters used to correct the observed deviation from
the aggregation kinetics described by the Smoluchowski theory. Ultimately, molecular descriptors can
be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties,
enabling safe design strategies.

Keywords: Density Functional Theory; Molecular Dynamics; Umbrella Sampling; Brownian dynamics;
multiscale; nanoparticle; aggregation; clustering

1. Introduction

Materials with characteristic size in the range of 1–100 nm are commonly defined
as nanomaterials and play a crucial role in a number of fields ranging from the energy
sector [1–3] up to drug delivery and biomedicine [4,5]. As such, in the last years, the avail-
ablity of nanosized materials in commercial products (e.g., sunscreen and food additives)
has raised the concern about their toxicological effects [6]. Despite a large number of exper-
iments, it is difficult to establish clear trends in structure-toxicological endpoints because of
the multiple factors regulating cell uptake and toxicity of nanoparticles. Dimension, degree
of crystallinity, shape, aspect ratio, and ability to aggregate, may result in different levels of
toxicity. To address this problem, several research projects recently funded by the European
Union are currently ongoing, among which stand out for relevance NanoInformaTIX [7]
and NanoSolveIT [8]. The project partners of both projects work towards the organization
of the huge amount of values of toxicological endpoints already available and carry on
other experiments with a clear rationale to fill the gaps in the literature, with the final scope
to create a platform for easy consultation of the data. Nanomaterials raising health and
safety concerns can be grouped into four broad categories: oxides such as titanium and
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silicon dioxide, soluble materials such as zinc oxide, metals such as gold and silver, and
carbon-based nanomaterials such as carbon fibers and nanotubes. The present work is part
of the NanoInformaTIX project and is focused on calculating physicochemical descriptors,
in this case, nanoparticle free energy of aggregation and clustering, to be fed into Quan-
titative Structure-Activity Relationship models (QSAR) to finally predict toxicity. QSAR
models are based on correlation existing between molecular properties (descriptors) of
substances and their toxic endpoints, which allows predicting unknown toxic endpoints
for substances known their molecular descriptors [9]. One of the main tasks of the partners
involved in NanoInformaTIX is to find suitable descriptors for QSAR models providing
atomic/molecular information useful for toxicity prediction. Recently used descriptors
for oxide nanoparticles involve energetic, geometric, and electronic structure parameters
such as total energy, bandgap, or composition of core-shell regions, and are obtained by
ab initio and force-field classical modelling [10–12]. In this work, we provide descriptors
obtained by different scales of calculations, from ab initio to Brownian dynamics, for a
set of titania nanoparticles. In particular, we believe the aggregation free energy, calculated
in this work using classical Molecular Dynamics (MD) simulations, provides valuable
information on the behavior of such particles in water: it determines the speed of the
aggregation and, therefore, the final size of the nanomaterial can reach, ultimately regu-
lating cellular uptake [13,14]. Although computationally expensive, it could potentially
be used as a descriptor in the QSAR models, in addition to the common ones. Moreover,
for titanium dioxide nanoparticles with radius in the range 0.78–2 nm, there is a linear cor-
relation between aggregation free energy and volume, additional free energy calculations
will prove if this correlation exists also for larger nanoparticles and materials other than
titanium dioxide.

In this work, we focus on titanium dioxide nanoparticles (NPs), whose possible toxicity
after human consumption has recently raised concerns; for this reason, the simulations are
carried out in the water, which is the main solvent in the body compartments. Titanium
dioxide is widely used for its bright white color, stemming from the large bandgap of
3.2 eV [15], which makes the material absorb light in the UV region of the electromagnetic
spectrum. Despite the large bandgap, which restricts the light absorption to the UV range,
titanium dioxide is commonly employed as a photocatalyst for decomposition of organic
pollutants, because it is chemically stable, low cost, and both its most common polymorphs
anatase and rutile show an excellent photocatalytic activity [16]. It is also added to polymers
to make them more resistant to UV light, reducing their fading and cracking. In automotive
manufacturing, titanium dioxide is used as a protective coating for polycarbonates, which
substitute metal and glass parts in lightweight vehicles [17]. Titanium dioxide is used
as a white pigment in paints, papers, textiles, cosmetics, and foods; the European Food
Safety Authority (EFSA), however, recently published an updated safety report for titanium
dioxide, labeled as an E171 food additive, which states that titanium dioxide is not allowed
anymore for human consumption due to possible genotoxic effects after ingestion [18].
E171 has ≈50% of particles with a diameter smaller than 100 nm, less than 1% of particles
are below 30 nm [18,19]. Nano-TiO2 used in sunscreen is made of even smaller particles
with a diameter in the range of 1 to 150 nm; to avoid cellular damage from the reactive
oxygen species produced during titanium dioxide photocatalytic activity, nanoparticles are
commonly coated with alumina or silica, which also improve dispersion [20]. The small
size of nanomaterials increases enormously the surface-to-bulk ratio, changing dramatically
the macroscopic properties of the material. Due to their size, nanomaterials are hard to
characterize experimentally, whereas simulations can be of great help to shed light on the
physicochemical properties. However, such nanoparticles are too large to be simulated at a
quantum level, hence it is necessary to make some approximations, the most common one
is to consider a planar slab representative of the material [21,22]. The main problem of this
approximation is that nanospheres, nano ellipsoid, and nanorods have a broader range of
uncoordinated Ti sites than nanocrystals and slabs [23], furthermore, nanoparticles present
a wide range of low index facets because of their curvature, so considering a single, low
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index slab can lead to different results, especially in an aqueous environment, where water
molecule can absorb on the surface in a molecular, dissociative or even a mixture of the
two ways [24,25].

The present work develops a multiscale modeling approach aiming to predict the
aggregation kinetics of colloidal suspensions of nanoparticles based on their atomistic
description. The proposed method synergistically combines classical MD and Brownian
dynamics (BD) simulations: the former was used to obtain the pairwise interaction potential
(PMF) between identical NPs, which is then used as input in the latter to simulate the
aggregation of a large set of NPs. Ab initio Density Functional Theory (DFT) is used in
selected structures to characterize the energetics of bare and solvated particles; potential
energies can be used as nanoparticle descriptors [12,26] First, the simulation protocol and
the studied setups are described in the Section 2 in order to ensure the reproducibility
of the obtained results. In the Section 3, the PMFs obtained via MD simulations, their
fitting via polynomial functions, and the main results of BD simulations are reported.
Finally, in the Section 4, the simulation results are compared with classical theoretical
models of interaction and aggregation between NPs: the obtained PMFs are compared with
DLVO theory, while the clustering process is compared with Smoluchowski aggregation
theory. The obtained results show a deviation from the theoretical predictions, particularly
when considering large volume fractions of NPs, thus the proposed modeling approach is
essential to predict realistic behavior of dense suspensions of NPs.

2. Materials and Methods
2.1. Molecular Models and Strategy

We selected three spherical stoichiometric nanoparticles cut out of the bulk anatase
crystalline structure with the web-based tool Vi-seem [27]: Ti111O222 of radius 0.78 nm,
Ti417O834 of radius 1.50 nm and Ti985O1970 of radius 2.00 nm. They were chosen to be
representative of small nanoparticles found in several commercial applications, and to be
calculable by classical force fields MD. Figure 1 displays the models used.

(a) (b) (c)

Figure 1. TiO2 nanoparticles used in this work: (a) Ti111O222, radius 0.78 nm; (b) Ti417O834, radius
1.5 nm; (c) Ti985O1970, radius 2 nm. Image obtained with VMD software [28], version 1.9.3.

The strategy of the present work is to characterize the behavior of the three NP
configurations at different computational levels: ab initio DFT, classical MD, and BD.
The structures are first equilibrated in a water box by means of classical MD, then the
equilibrated structures are evaluated using ab initio DFT to assess energetics in a vacuum
and in the presence of implicit water solvent, and, finally, BD simulations give insights into
the aggregation process.



Nanomaterials 2022, 12, 217 4 of 18

2.2. Ab Initio DFT Calculations

The VASP code version 5.4.4 was used to perform the DFT calculations [29]. Core elec-
trons are represented by the projector-augmented wave method PAW [30] pseudopotentials
H, Ti, and Os (1, 4, and 6 valence electrons respectively), and a cutoff energy of 282 eV
was used for the plane waves. The generalized gradient approximation (GGA) approach
was applied for the exchange and correlation potential with the Perdew–Burke–Erzenhof
(PBE) functional [31], spin non-polarized. The tests performed on the bulk anatase i.e., bulk
geometry and thermodynamics, are in good agreement with the experimental values, see
Table S3 in the Supporting Information. The energy convergence criterium was set to
0.1 meV for the electronic loop. The gamma-only version was used; a single point calcu-
lation on a snapshot obtained from the MD trajectory was computed. The nanoparticle
models were put in a box with a minimum of 10 Å between images. The solvation energy in
water was only computed for the smallest particles due to resources limitations, following
the procedure described in [32].

2.3. Classical Molecular Dynamics Simulations

Classical MD simulations were performed using version 4.09 of the DL_POLY compu-
tational package [33] patched with version 2.5.1 of Plumed [34–36]. We started by placing
a single nanoparticle in the center of a cubic box large enough to avoid interaction with
the periodic images, the size of the cubic boxes were 5 nm to contain the 0.78 nm radius
nanoparticle, 6 nm to contain the 1.50 nm radius nanoparticle, and 7 nm to contain the
2.00 nm radius nanoparticle. The box was filled with water molecules and duplicated
along the x axis to get an orthorhombic box containing two identical TiO2 nanoparticles.
We performed classical MD simulations in water because it is the solvent in biological
environments; it is a widely used approximation [37–39] to body fluids, that are rich in ions,
proteins, and lipids which are large molecules that would make MD simulations extremely
expensive; moreover, their structure is not relevant in the present work. The simulation
temperature was set at 310 K (body temperature) and the pressure at 1 bar. The timestep
was set to 0.1 fs, the system cutoff was 8 Å, the Nosé-Hoover algorithm [40,41], with a relax-
ation time of 0.1 ps, was employed in both NVT and NPT ensembles to ensure consistency
between the equilibration and the production runs. We used the force field of Matsui and
Akaogi [42] for titanium dioxide, with the modifications introduced by Alimohammadi and
Fichthorn for titania-SPC/E water interactions [43], as previously used by the authors [44].
Our MD protocol consisted of an initial 0.25 ns equilibration in an NVT ensemble (constant
number of particles, constant volume, and constant temperature), followed by a second
0.25 ns equilibration in an NPT ensemble (constant number of particles, constant pressure,
and constant temperature); the NPs were kept frozen during this equilibration, to adjust
the water density at the experimental conditions. Afterward, the Umbrella Sampling (US)
technique [45] was used to obtain the free energy profile (or Potential of mean Force, PMF)
for the aggregation of the two NPs. This method makes use of a harmonic potential as a
driving force to move NPs at a specific target distance, the PMF for the approaching can
be calculated through the Weighted Histogram Analysis Method (WHAM) [46–48]. The
US simulations were run in an NPT ensemble, to obtain the Gibbs free energy considering
the simulation parameters is reported in Supplementary Table S1. The computational
effort required by this technique is massive: a single US window runs 24 h on 32 cores of
HPC@POLITO facility, a complete PMF, in this case, requires 13 simulations to be combined
using the WHAM analysis.

The computed PMF accounts for the steric repulsion at a short distance and the
attraction at longer distances. The depth of the potential well gives the aggregation free
energy (AFE), located at dAFE, and allows building the inter-particle potential. The free
energy profiles for the aggregation of two identical NPs in water, calculated atomistically
with the force field of Matsui and Akaogi [42], were fitted considering both the repulsive
short-range part of the energy profile and the attractive long-range contribution. Both the
attractive and repulsive contributions were modeled as 5-th order polynomials. Beyond the
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cutoff radius rc, namely the maximum distance simulated in MD, the particle interaction
was fitted by a logarithm function which asymptotically decays towards zero, namely
predicting no interaction between the NPs. Thus, the fitting equation for each NP size can
be described as:

PMF =



5

∑
i=0

ai di if d ≤ dAFE ,

5

∑
j=0

bj dj if dAFE < d ≤ rc ,

c1 ln d + c0 if d > rc,

(1)

being d the center-to-center NPs distance.

2.4. Brownian Dynamics Simulations

The analytical curves fitting the PMFs were used to create three sets of table potentials,
each with a discretization step of 2 × 10−3 nm, which were employed to perform BD
simulations with GROMACS (version 2019.6) [49]. A similar approach has been successfully
used by some of the authors to simulate the aggregation kinetic of alumina NPs [50].
Each NP is mapped to a single spherical bead and their mass was estimated from their
stoichiometric definition, i.e., as the sum of the mass of the atoms forming the NP (see
Figure 1), while their diameter is intrinsically expressed through the fitted PMF curve.
The aggregation kinetic was investigated by solving Langevin’s equation, which adds
friction and a noise term to the Newton’s equation [51]:

d2ri
dt2 = −γi

dri
dt

+
Fi(ri(t))

mi
+ωωωi , (2)

where mi is the mass of the i-th nanoparticle, ri is its position at time t, γi is a friction
coefficient. ωωωi is a random process with zero mean and no with past positions or velocity
and its auto-correlation function is

〈
ωωωi(t), ωωω j(t + τ)

〉
= 2γikBTm−1

i δ(τ)δij, ref. [52] where
kB is the Boltzmann constant, and T is the reference temperature of the system, δ(τ) is the
delta function and δij is the Kronecker delta function. The friction coefficient γi, expressed
in ps−1, accounts for the particle-solvent interactions and was evaluated according to the
Stoke’s relation as:

γi =
6πµRi

u
(3)

where Ri is the particle radius, µ is the dynamic viscosity of the fluid at the reference
temperature T and the constant u = 1.66054 × 10−27 kg was used for the conversion to
atomic mass units. In GROMACS, Equation (2) is implemented as a difference equation for
the particle velocity vi over a small time-step ∆t by applying the friction and noise terms as
an impulse [53]. Thus, Equation (2) can be re-written in its differential form as [49]:

v′i = v(t− ∆t/2) +
Fi(t)
mi

∆t ,

∆vi = −(1− exp (−γi∆t))v′i +ωωωG
i

√(
1− (1− exp (−γi∆t))2

) kBT
mi

∆t ,
(4)

where ωωωG
i is a zero-mean Gaussian distributed noise with unitary variance. Simula-

tions were run for at least 30 µs, using periodic boundary conditions, with a timestep
of 0.1 ps and a temperature of 310 K, to keep consistency through scales. We used a
100 nm × 100 nm × 100 nm cubic box, while the number of simulated particles, randomly
distributed in the simulation domain, was changed to match the target volume fraction φ.
Four different volume fractions were tested for each NP size: 0.8%, 1.8%, 3.5%, and 7.0%.
A detailed list of the parameters used for each simulation is listed in Supplementary
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Tables S4 and S5. Each simulation ran on 64 cores of the HPC facility for 800 to about
2000 h (1 to 3 months), depending on the considered volume fraction.

The size and population of the clusters formed during the simulations were analyzed
via an in-house MATLAB® post-processing algorithm. The proposed implementation does
not require the a priori knowledge of the number of clusters present in the simulation box,
which are in fact determined by the pairwise distance between each particle. Two particles
were considered as neighboring and belonging to the same aggregate if their distance is
less than a threshold distance, here considered to be 3R. Thus, two neighboring NPs must
be in the attractive region of their interaction potential, while a third particle cannot be
interposed between them.

The distance between two particles ∆ was evaluated using Euclidean distance:

∆ =
√

dx2
ij + dy2

ij + dz2
ij , (5)

while periodic boundary conditions were considered when evaluating each component of
the distance between two particles i and j, namely:

dxij = xi − xj − hbox

⌈ xi − xj

hbox

⌋
, (6)

where the notation dxc stands for the round operator and hbox = 100 nm is the size of the
considered cubic box. Through Equations (5) and (6), also the clusters that straddle the
boundary of the simulation box can be considered as included in the same aggregate.

3. Results

The section is organized as follows: first, we report the energetic properties of the
nanoparticles obtained ab initio, then we report the aggregation free energy profiles ob-
tained through Classical MD and US technique; last, we show the NP aggregation and
clustering observed in the BD trajectories.

3.1. Ab Initio DFT Characterization

A snapshot was selected from the MD simulations to calculate ab initio properties of
each nanoparticle model. Due to computational limitations, the energy of the particles was
obtained as single-point in a vacuum, and in the presence of implicit water. Table 1 collects
the different properties obtained in the single-point calculations. First, the ab initio energy
was computed and used to evaluate the standard formation energy ∆H◦f , which is −8.28,
−8.45 and −8.86 eV for the 0.78 nm, 1.50 nm, and 2.00 nm, respectively. Compared to the
bulk value, −9.46 eV, there is a clear thermodynamic stabilization as the size increases, yet
not reaching the bulk value. As for the solvation energies in water, the values of −0.42 eV
and −0.34 eV are moderate (the value for a water molecule is −0.32 eV), indicating a
better stabilization upon solvation for the smaller particle. Table 1 summarizes selected
physico-chemical properties of the models together with ab initio energies.

Table 1. Selected physico-chemical properties for the three molecular models. SASA is the solvent-
accessible surface area, Etot is the total energy in eV, ∆H◦f /TiO2 is the standard formation enthalpy
(experimental value for bulk anatase is −9.78 eV [54]), Esol is the solvation energy [32] in eV (not
available for the largest particle).

Property 0.78 nm 1.5 nm 2.0 nm Bulk

TiO2 unit formula 111 417 985 4
SASA × 107 (m2) 2.15 4.44 7.14 -
Etot (eV) −2808.98 −10,623.23 −25,498.99 −105.93
∆H◦f /TiO2 (eV) −8.28 −8.45 −8.86 −9.46
Esol (eV) −0.42 −0.34 - -
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3.2. Potential of Mean Force for the Approach of Two Identical Titanium Dioxide Anatase
Nanoparticles in Water

The free energy profiles for the approaching of two identical NPs in water are presented
in Figure 2, where the black curve is given directly using the WHAM analysis on the US
trajectories. The red dashed line were fitted with Equation (1) by the least-squares methods
and were used to perform the BD simulations (see Section 2.4). The fitting coefficients
obtained for each configuration are reported in Supplementary Table S2. The corresponding
aggregation free energies (AFE), calculated as the depth of the minimum of the potential
well with respect to the energy at a non-interacting distance, and its distance with respect
to the NP surface (dAFE − 2R) are reported in Table 2. Increasing the diameter of the NP,
the potential well becomes wider, and the minimum of the free energy curve shifts towards
a longer distance along the x axis, approximately 0.25 nm–0.5 nm beyond the NPs surface,
which corresponds to the sum of the van der Waals radii of the surface atoms of the two
NPs in contact. From Table 2 and Supplementary Figure S1, it is possible to see that the
AFE increases with particle size; considering the particle volume, the size-free energy
relationship is linear in the size range considered in this work.
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Figure 2. Free Energy profiles for the aggregation of two TiO2 NPs in water with chemical formula (A)
Ti111O222, (B) Ti417O834 and (C) Ti985O1970. The results of the MD simulations (solid black line) were
fitted with Equation (1) (dotted red line) to produce the pair-wise tabled potentials. The PMFs and
their respective fit curves were represented as down-shifted considering a null interaction at d→ ∞.
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Table 2. Aggregation free energy (AFE) and its distance from the surface dAFE − 2R of NPs pairs in
water, calculated using Classical MD and US technique; the aggregation free energy was evaluated as
the depth of the potential well (see Figure 2).

NP Radius, R (nm) AFE (kJ mol−1) dAFE − 2R (nm)

0.78 44.18 0.23
1.50 54.35 0.35
2.00 75.56 0.46

3.3. Aggregation of Titanium Dioxide Anatase Nanoparticles Using Brownian Dynamics

The fitted PMF curves were used to perform BD simulations and retrieve the aggre-
gation kinetics of the simulated anatase NPs at four different volume fractions. All the
configurations tested were initially composed of randomly distributed NPs (see Figure 3A,
600 NPs) and presented the progressive formation of aggregates, mostly spherical and
ellipsoidal or, occasionally, slightly branched ellipsoids (see Figure 3B). These results are in
agreement with previous experimental observations, where spherical TiO2 NPs in water
were found to form branched aggregates [55].

0

1000

0

1000

0

1000 𝑡 = 0 𝜇𝑠 0

800

𝑡 = 30 𝜇𝑠

0

800

800

0

0

A B

Figure 3. Formation of clusters during a BD production run of 600 NPs of Ti417O834 with φ = 0.8%,
reported as an example; (A) Initial configuration with randomly distributed and isolated NPs;
(B) After 3 µs, the particles formed 8 major aggregates. For a detailed view on xy, xz and yz planes,
see Figure S2.

In general, the more concentrated is the solution (namely, higher values of φ), the faster
is the onset of the clustering process given the higher frequency of collisions.

The clustering process can occur through three different mechanisms: (i) collision of a
single particle with another single-particle; (ii) collision of a single particle with a cluster;
(iii) collision of two clusters. Figures 4 and 5 show the aggregation kinetic of some of the
tested configurations and can be used to highlight the three aggregation mechanisms.
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Figure 4. Aggregation kinetic of (A) Ti111O222, and (B) Ti985O1970 with φ = 7%, reporting the total
number of clusters present in the simulation box (solid black line) and their average size (blue circles).
Note that in the latter the NPs formed a single cluster after approximately 7 µs of simulations.

For the first instants of simulation, mechanism (i) predominates due to the large
amount of isolated NPs: the number of clusters in the simulation box decreases sharply
while their medium size remains small (see Figure 4). After the first µs, the few remaining
isolated NPs collide with already formed clusters, which therefore grow (mechanism (ii)).
Finally, after a few µs, there are no more isolated NPs, so only mechanism (iii) is possible and
the aggregation process is slower (see Figure 4). The aggregation process is characterized
by the increase of the clusters dimension, from a few up to thousands of NPs, depending
on the volume fraction considered and the particle size.

The process described can be clearly observed in Figure 5, which shows the aggregation
kinetic with R = 0.78 nm and φ = 3.5%: the clusters size distribution at 0.2 µs, 5 µs and
30 µs was investigated via histograms and 3D snapshots. At the beginning of the simulation,
given the high mobility of dispersed NPs and small clusters, aggregation proceeds rapidly:
at 0.2 µs, most NPs were grouped into small clusters, each containing 150 or fewer NPs
(see Figure 5A). As the simulation proceeds, small clusters merge and reach up to 1500 NPs
per aggregate, as it can see observed by comparing Figure 5A to Figure 5B,C, where the
number of small aggregates progressively decreases and the probability distribution peak
shifts towards larger aggregate size. The aggregation kinetics of the other configurations
tested proceeded similarly, being faster or slower depending on the particle radius R and
volume fraction φ.
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Figure 5. Aggregation kinetic of Ti111O222 with φ = 3.5% at (A) 0.2 µs, (B) 10 µs and (C) 30 µs. As the
simulation advances, the clusters size distribution (histograms, left-hand side) tends towards the
equilibrium configuration, namely fewer and larger clusters. Note that the aggregates were colored
for simplicity of representation only.

4. Discussion

The fundamental theoretical background describing the interaction of surfaces im-
mersed in a liquid the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory [56–58], which
evaluates the pair-wise potential as the combination of attractive van der Waals forces
with repulsive electric forces given by the electric double layer formed at the solid-liquid
interface. All the configurations considered in this work are charge-neutral, as the TiO2
NPs were built according to their stoichiometric composition. Therefore, we expect that
most of the contribution to the stability of the suspension is given by the van der Waals
attraction between particles, whereas the repulsion given by the electric double layer is
negligible: the DLVO theory, in this case, predicts an unstable suspension which flocculates,
just as we observed in our BD simulations. However, the well-established theories used to
predict the van der Waals attraction fail to effectively describe NPs potential curves. In fact,
the attraction potential between two identical spheres with radius R can be evaluated
as [59]:

W = −AH
6

[
2R2

d2 − 4R2 +
2R2

d2 + ln
(

d2 − 4R2

d2

)]
(7)

where AH = 6 × 10−20 J is the Hamaker constant for TiO2-TiO2 in water [59] and d is
the distance between the centres of the spheres. The interaction potentials obtained from
Equation (7) and those obtained by the MD simulations are compared in Figure 6. The
DLVO potential given by Equation (7) predicts an attraction well, which asymptotically
tents to −∞ as the surface-to-surface distance between the NPs tends to zero, i.e., d→ 2R
(see blue dashed lines in Figure 6). The results of the MD simulations show that the free
energy minimum appears at a larger distance with respect to d = 2R: as commented
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above, this is the effect of the van der Waals radii of the surface atoms, which exert a
strong repulsive force opposing to further approach of the NPs, and can not be modeled by
Equation (7). Steric repulsion avoids the mutual penetration of NPs as they enter the region
of the potential well: a direct implementation of the obtained DLVO potential would not
allow the BD simulations to converge to an equilibrium configuration. These results are in
line with those previously reported in the literature [50] and reaffirm the inadequacy of
DLVO theory in describing the interaction potential between NPs.
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Figure 6. Comparison between the classic DLVO theory (dashed blue line), evaluated through
Equation (7), and the PMF evaluated obtained by WHAM procedure (solid black line) for a pair of
(A) Ti111O222 NPs, (B) a pair of Ti417O834 NPs and (C) a pair of Ti985O1970 NPs.

The pioneering work of Smoluchowski [60] describes the time evolution of the aggre-
gate size distribution by means of an integrodifferential equation, and sets the basis for
the theoretical modeling in several processes. Considering the cluster formation (NP-NP
interaction) and growth (NP-cluster and cluster-cluster interaction), the particles sticking
probability, thus their interaction potential, leads to two limiting regimes: diffusion- and
reaction-limited. The former considers the motion of particles and aggregates to be the
main constraint to aggregation, thus considering extremely probable the aggregation of
particles as soon as they come into contact, while the latter considers the opposite case. The
interaction potentials obtained from the MD simulations show no energy barrier preventing
particles from entering the potential well region, suggesting a diffusion-limited process.
Furthermore, the results of the cluster analysis presented in Section 2.4 showed very fast
aggregation kinetics at the beginning of the simulation (see Figure 4), suggesting a high
probability that the particles remain attached once their collision occurs. Therefore, the com-
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parison between the BD simulations and theoretical results was performed considering a
diffusion-limited aggregation. According to Smoluchowski’s model, the average number
of NPs per aggregate at time t can be evaluated as [61,62]:

Nt = 1 + t/tp , (8)

where tp is the aggregation time constant and depends on the particles size, concentration
and interaction potential, and the properties of the solvent. For a diffusion limited cluster-
cluster aggregation, Einstein’s diffusion equation yields and tp can be expressed as [62]:

tp =
πµR3W

kBTφ
, (9)

where µ is the dynamic viscosity of the solvent and W is the stability ratio of the colloidal
suspension. Considering the limiting case of a stable and well-dispersed colloidal sus-
pension, the combination of strong repulsive forces (namely, a high energy barrier in the
pair-wise interaction potential) and hydrodynamic NP-NP interactions limit the diffusion of
the particles, leading to W � 1 and tp → ∞. On the opposite case, considering nano-sized
particles, a negligible energy barrier and hydrodynamic interaction W → 1 and tp � 1.
Being the simulated NP neutral and in the absence of electrolytes in the considered solution,
the Stability ratio can be evaluated as:

W = 2R
∫ ∞

0

B(h)

(h + 2R)2 exp
(

WR + WA
kBT

)
dh , (10)

where h = d − 2R is the surface to surface separation between a pair of NPs, B(h) is
a correction coefficient to include the hydrodynamic NP-NP interaction, and WA and
WR are the attractive and repulsive components of the interaction potential, respectively,
and should be evaluated according to the DLVO theory. As previously stated, the system
considered is charge-neutral, thus WR ≈ 0 and WA was evaluated through Equation (7).
The hydrodynamic coefficient is commonly evaluated as [63,64]:

B(h) =
6(h/R)2 + 13(h/R) + 2

6(h/R)2 + 4(h/R)
(11)

Equations (8)–(11) were used to evaluate the average size of the aggregates in the colloidal
suspension at time t, considering the NPs as initially well-dispersed. Note that the adopted
theoretical model does not account for a limited number of particles in the system and
predicts the same size for all the aggregates present in the solution.

The theoretical predictions (solid red lines) and simulation results (black circles) of
some of the tested configurations are compared in Figure 7. The setups with smaller NPs
exhibit greater deviations from theoretical predictions (see Figure 7A,B for R = 0.78 nm and
Figure 7C,D for R = 1.5 nm): while aggregation proceeds faster at low simulation times,
after about 2 µs it will proceed more slowly than the Smolochowski model. This result
can be interpreted considering that aggregation in highly concentrated solutions could
initially proceed faster due to multi-particle collisions, whereas the Smoluchowski theory
only considers binary collisions [65], and slow down at higher times due to the reduced
mobility of larger aggregates. On the other hand, the largest particles tested presented
faster aggregation kinetics with respect to the theoretical model (see Figure 7E,F). The
discrepancy between the analytical and numerical results was evaluated by the root mean
square error (RMSE), which is shown as a function of φ and R in Supplementary Figure S3.
In general, the results show higher values of the RMSE for smaller NPs and larger φ,
which is in agreement with previous results: it was shown that the classic aggregation
theory works well for extremely dilute solutions, namely φ < 0.1%, which are controlled
by binary collisions, whereas are dominating in systems with larger φ, thus leading to
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faster aggregation is higher than the one predicted by the original model [65]. Clearly,
when small NPs are considered, the theoretical model overestimates the mobility of large
aggregates. Furthermore, this effect is enhanced at high volume fractions, which the clusters
growth rate.
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Figure 7. Comparison between the Smoluchowski theoretical model (solid red lines), the simulation
data (black circles) and the modified aggregation models (shaded blue and green areas). The com-
parison was performed considering the configurations with R = 0.78 nm and (A) φ = 0.8% or
(B) φ = 3.5%; with R = 1.50 nm and (C) φ = 0.8% or (D) φ = 3.5%; with R = 2.00 nm and
(E) φ = 0.8% or (F) φ = 3.5%. To avoid numerical artifacts in the fitting procedure, only the time
frames presenting more than 5 clusters were considered by the fitting algorithm.

Thus, to recover the simulated aggregation kinetic, the theoretical model was modified
by simply including a single fitting coefficient n1 in the definition of tp, namely:

t∗,1p = n1tp , (12)

where tp can be evaluated from Equation (9). The numerical coefficient n1 was fitted on
the simulation data by the least-squares method. The results of the fitted model are shown
in Figure 7 in the form of blue shaded areas, representing the model predictions in the
uncertainty range given by the simulation data. As can be observed, by adding a single
numerical coefficient, the aggregation kinetics of the configurations with values R = 2
nm can be recovered. However, the model does not account for the progressive increase
in aggregate size, thus failing to reliably predict the behavior of the configurations with
R = 0.78 nm and R = 1.5 nm.

Thus, to provide an accurate descriptor of the aggregation process, the original aggre-
gation model was time-discretized to include the average size of the NPs clusters in the
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aggregation kinetic. Considering a time-step ∆t, Equation (8) was re-written to evaluate
the average numbers of NPs in each aggregate Ni at time ti = i∆t.

Ni = Ni−1 +
∆t
t∗,2p

, (13)

where t∗,2p is a modified time constant used to fit the simulation results:

t∗,2p = exp

(
n2

(
Ni−1

φ

)1/3
)

πµR3W∗

kBTφ
, (14)

where n2 is a numerical fitting coefficient and the modified stability ratio W∗ was evaluated
as W∗ = n3W. The proposed correction allows to include the average instantaneous size
of the aggregates in the evaluation of t∗,2p and to slow down the aggregation kinetic for
larger values of Ni, mimicking a reduction of the aggregates mobility as their size increases.
Equations (13) and (14) were iteratively solved considering Ni=0 = 1 and used to fit the
numerical constants 0 ≤ n2 , n3 ≤ 1 on the aggregation trends reported. Clearly, by setting
n2 = 0 and n3 = 1 the original aggregation model is recovered. Figure 7 reports the fitting
results (shaded green area), while the best-fit values of n2 and n3 are reported in Table 3. To
grant statistical representation, the fitting algorithm considered only the time frames with
more than 5 aggregates in the simulation box (dotted black lines in Figure 7). As it can be
observed, the proposed adapted model is in excellent agreement with the simulation data
and it is suited to describe the predicted aggregation kinetic of all the configurations tested.

Table 3. Values of the numerical coefficients n1 and n2 used in Equations (13) and (14), obtained by
minimizing the RMSE between the modelling predictions and the simulation data. The modified
theoretical model allows to obtain an analytical description of the aggregation kinetic consistent with
the predictions of the multi-scale model proposed.

R (nm) φ n2 n3

0.78

0.8% 0.101 0.221
1.8% 0.101 0.362
3.5% 0.134 0.221
7.0% 0.148 0.101

1.50

0.8% 0.141 0.181
1.8% 0.134 0.161
3.5% 0.268 0.027
7.0% 0.027 0.094

2.00

0.8% 0.0 0.698
1.8% 0.162 0.114
3.5% 0.169 0.067
7.0% 0.040 0.034

5. Conclusions

This work aimed at presenting a method for describing TiO2 NP aggregation in
water starting from their atomistic description. The coordinates of the atoms forming the
NPs were retrieved from quantum calculations. MD simulations of pairs of NPs were
performed to calculate their interaction potential (PMF) using the Umbrella Sampling
technique. The results obtained were compared with the theoretical PMF predicted by
the DLVO theory, finding significant discrepancies and justifying the proposed approach.
The PMF was used to perform BD simulations of tens of thousands of NPs at a relatively
low computational cost. Such large systems could not have been studied with regular
MD simulations, so the protocol adopted was crucial for understanding the aggregation
kinetic of TiO2 NPs. Thus, the proposed protocol bridges the gap between the quantum
description of a single particle and the observation of the microscopic clustering process.
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Although the method was applied to TiO2 NPs, its generality makes it suitable for
a wide variety of other materials, including charged or coated particles. In fact, the NPs
considered in this work are neutral, while they might present a net non-zero surface charge
arising from the positive under-coordinated Ti4+ and Ti5+ sites as well as the negative
under-coordinated oxygen sites. Therefore, the case reported could be considered as a
limiting case of TiO2 NPs at their isoelectric point, namely the value of the solution pH at
which an NP has zero net electric charge. The presence of a net surface charge results in a
repulsive barrier, that increases the stability of the colloidal suspension, as evidenced by
experimental [66] and theoretical works [50]. From a multi-scale perspective, future work
will focus on modeling under-coordinated reactive sites and their role in determining an
energy barrier in PMF. This may involve moving from diffusion-limited to reaction-limited
kinetics, thus allowing to test the Smoluchowski theory on a complete DLVO system.
The computational bottleneck is represented by the calculation of the PMF curve and the
aggregation free energy using MD and US, which is very demanding in terms of computing
resources: this is unfortunately mandatory because of the inability of the DLVO theory to
correctly describe the interaction between two NPs.

The aggregation kinetics obtained via BD simulations were compared with the classic
Smoluchowski theory, observing larger deviations for smaller NPs at higher volume frac-
tions. The traditional theory was time-discretized and modified to relate the aggregation
kinetic with the instantaneous average cluster size, including two numerical coefficients
to be fitted on the simulation data, obtaining excellent agreement. In a future perspective,
increasing the number of simulations performed in the considered range of parameters
would allow regressing the fitting coefficients, providing an analytical description of the
aggregation kinetics consistent with the predictions of the proposed multi-scale model,
for any configuration within its range of validity.

Since the scope of the H2020 project NanoInformaTIX [7] is to predict toxicity cor-
relating the atomic structure with the toxic endpoints, in a future work, we will do BD
simulations of NPs and amino acids to better describe the biological environment in contact
with potentially toxic NPs. Similar studies with nanomaterials other than titanium dioxide
are also being performed and will be reported in the near future.
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