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Abstract

Organic matter management is key to sustain ecosystem services provided by soils. How-

ever, it is rarely considered in a holistic view, considering local resources, agro-environmen-

tal effects and harmonization with farmers’ needs. Organic inputs, like compost and biochar,

could represent a sustainable solution to massive current challenges associated to the inten-

sification of agriculture, in particular for tropical regions. Here we assess the potential of agri-

cultural residues as a resource for farmer communities in southwestern India to reduce their

dependency on external inputs and sustain ecosystem services. We propose a novel joint

evaluation of farmers’ aspirations together with agro-environmental effects of organic inputs

on soils. Our soil quality evaluation showed that biochar alone or with compost did not

improve unilaterally soils in the tropics (Anthroposol, Ferralsol and Vertisol). Many organic

inputs led to an initial decrease in water-holding capacities of control soils (-27.3%: coconut

shell biochar with compost on Anthroposol). Responses to organic matter inputs for carbon

were strongest for Ferralsols (+33.4% with rice husk biochar), and mostly positive for Anthro-

posols and Vertisols (+12.5% to +13.8% respectively). Soil pH responses were surprisingly

negative for Ferralsols and only positive if biochar was applied alone (between -5.6% to

+1.9%). For Anthroposols and Vertisols, highest increases were achieved with rice husk bio-

char + vermicomposts (+7.2% and +5.2% respectively). Our socio-economic evaluation

showed that farmers with a stronger economical position showed greater interest towards

technology like biochar (factor 1.3 to 1.6 higher for farmers cultivating Anthroposols and/or

Vertisols compared to Ferralsols), while poorer farmers more skepticism, which may lead to

an increased economical gap within rural communities if technologies are not implemented

with long-term guidance. These results advocate for an interdisciplinary evaluation of agricul-

tural technology prior to its implementation as a development tool in the field.
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Introduction

Agricultural intensification over the last decades has contributed substantially to the decrease

of ecosystem services provided by soils [1, 2]. The (over)use of synthetic inputs in agricultural

production has unbalanced biogeochemical cycles, depleted natural resource pools, contami-

nated water bodies, polluted and degraded the arable soils as the backbone of agriculture and

ultimately increased the dependency of farmers [2–4]. In India, the liberalization of agriculture

during the green revolution in the 1960ies induced a trend towards cash crop production [5,

6] and contributed to major ecological as well as socio-economic crises [7]. The reduction of

soil fertility, and accordingly decreasing crop yields, has led to significant farmers’ distress and

indebtedness [5, 8], necessitating an urgent, yet possible [9] shift towards sustainable agricul-

tural practices and simultaneous support to ecosystem services essential for food production

and farmers livelihoods [10, 11]. Organic matter management (OMM) can regulate essential

biochemical and physical processes in soils and sufficient, long-term amounts of soil organic

matter (SOM) is precondition for soils to provide the ecosystem services needed for durable

soil fertility and agricultural production [12–14]. Availability of organic matter (OM; crop resi-

dues, animal excreta) in India can be between 320 up to 840 Million tons annually [9, 15],

which equals on average 2.5 tons OM per hectare (considering a total cropping area of 180.9

million hectares [9]). The surplus OM (i.e. OM not used for any other domestic purposes) is

between 25–72%, including major crops grown in the study area in Karnataka (sugarcane

bagasse, wheat, coconut shell, rice straw, banana) [16, 17].

Agriculture in tropical regions is highly relevant regarding food production and security at

the global scale [18]. However, the tropics are more vulnerable to global changes such as cli-

mate and land-use change across climate zones of the Earth [4]. The state of Karnataka, mostly

located in sub-humid to semi-arid climates in the southern part of the Indian peninsula, is

among the most vulnerable Indian states to climate change [19]. Major parts are prone to

drought and soil degradation, which are only two of the challenges in relation to climate and

land-use changes observed in many places in the tropics [19, 20]. In many parts of India, espe-

cially in the South, irrigation and consequently agricultural production depends to a large

extent on monsoonal rainfall patterns and groundwater irrigation [19, 21]. In addition, soils

are highly depleted in SOM, because of conditions favorable to high export of carbon through

crop production, limited inputs of OM to soils [22, 23]; and high mineralization rates [18].

These soils are subject to leaching of major macro- and micronutrients, and reduction in

aggregate stability [24–26], resulting in a limited potential to provide essential ecosystem ser-

vices [1].

OM inputs are also key for securing agricultural sustainability of rural livelihoods through

appropriate income generation [11] and reducing dependency on external inputs [4, 27].

Adaptive OMM to site-specific agro-ecosystems, which identifies and embeds traditional

(local) knowledge (defined as “tacit and explicit knowledge possessed and used by people who
share the same culture” according to the Oxford Dictionary of Human Geography ([28])) and

agricultural practices of rural communities, is critical to be a successful solution to the current

challenges as it include site-specific adaptation barriers for farmer communities. Tailor-made

OMM considers social issues such as traditional perception and livelihood practices of farm-

ers, autonomy and participation concerns, knowledge dissemination in existing networks and

the farmers’ need satisfaction [29]. Barriers also refer to site-specific economical concerns like

agricultural residue availability [11, 29] and resource competition for different uses of OM

[23].

Among existing OMM techniques, composting and vermicomposting (utilizing earth-

worms to digest pre-composted OM), involving a process of aerobic or anaerobic degradation
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of mostly lingo-cellulosic biomass and/or animal excreta [30], are already perceived as valuable

methods of converting OM into soil amendments [31, 32] and are applied by rural farmer

communities in India [33]. Biochar, a carbonaceous product of intended heating of OM under

the absence or low levels of oxygen and temperatures above 200˚C (“pyrolysis”) [34], has been

shown to have multifaceted effects on soil properties including changes in soil pH, porosity,

water-retention potential and plant-available nutrients [35–38]. Both composts and biochar

have been proposed to increase soil fertility and agricultural productivity, while simultaneously

reducing the environmental impact of agriculture and socio-economic dependency of farmers

[39, 40]. Next generation of OM inputs, like biochar-based fertilizers, consider the comple-

mentarity of inputs combined together. In this case, inputs with synergic and antagonistic

properties are added together to the soil, for example biochar and compost, combining amend-

ment (physico-chemical capacity of biochar) and fertilizers (compost) [38, 41].

Besides the prerequisite of a certain financial capital, availability of agricultural residues,

knowledge and technical skills, biochar is considered to be a sustainable tool for helping rural

farmer communities managing agricultural residues and reducing their dependency on exter-

nal inputs [12, 42, 43]. Adaptation of biochar technology to specific agro-ecological and socio-

economic settings, inclusion of traditional (local) knowledge and practices of rural farmer

communities, and resource competition with domestic usage of OM are further concerns that

need to be addressed when implementing tailor-made biochar systems to any site-specific con-

text [3, 42, 43]. In this regard, biochar-based fertilizer can be a solution to both environmental

as well as socio-economic concerns [38].

The challenges described above call for an agriculture that fulfills in the same time ecologi-

cal, socio-economic as well as political aspects of sustainability [11, 44]. The benefits of OMM

according to soil types and agro-ecosystems as well as the site-specific, socio-economic barriers

are currently studied separately, in particular regarding applicability and alignment with the

agricultural sector [29, 45]. However, there is an urgent need to connect these evaluations in

an interdisciplinary effort across multiple scientific communities from the natural and social

sciences in order to develop and implement innovative cropping systems adaptive to specific

agro-ecosystems that improve rural farmers’ livelihoods in parallel to soil ecosystem services

[46–48]. We propose a novel, joint assessment of soil quality and farmers’ aspiration in order

to evaluate the conformity of OMM to existing rural farming communities by using a variety

of complementary methodologies rooted in human geography and the soil sciences. Our inter-

disciplinary approach could be seen as a first practical example on how to link agro-ecological

and socio-economic questions in agricultural research that can form the basis for future in-

depth, long-term field trials on OMM together with local farmer communities in tropical

regions [46, 47]. This could ultimately help to develop sustainable agricultural technologies for

the development or local agricultural and industrial sectors. We led in parallel qualitative inter-

views and a soil manipulative study to evaluate the potentials of OM inputs ((vermi-) composts

(derived from OM such as crop residues, cow dung, leaves, etc.), biochar (derived from coco-

nut shell and rice husk) or next generation combination of inputs) to common tropical soil

types from southwestern India (Anthroposol, Ferralsol and Vertisol). To do so, we estimated

effect sizes of soil quality indicators, selected from a list of commonly used parameters, such as

water-holding capacity (WHC), total carbon, total nitrogen (TC and TN) and pH after OM

application [14]. Then, we evaluated farmers’ aspiration through in-depth, qualitative inter-

views based on a predefined topic guide and by selecting farmers cultivating the same soils

as those experiments took place. The study was conducted in the cultivated watershed of

Berambadi in southwestern India, which is part of the Kabini CZO and SNO M-TROPICS

program [49].
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Material and methods

Case study: The Berambadi watershed in southwestern Karnataka (India)

Research was carried out in the Berambadi watershed (11˚43’00’’ to 11˚48’00’’ N, 76˚31’00’’ to

76˚4’’00’’ E) in Chamarajanagar district in southwestern Karnataka. The watershed is situated

on the Deccan plateau east of the Western Ghats and represents a sub-humid tropical water-

shed. It belongs to the Kabini CZO and SNO M-TROPICS program, and is a collaboration

between the Indian Institute of Science (IISc) and IRD [49, 50].

The geology in the southern parts of the Deccan plateau is characterized by granitic gneiss,

which represent the basis of the predominantly occurring red soils (Ferralsols and chromic

Luvisols) on hills/hill slopes and the black soils (Vertisols and Vertic integrades) close to the

river banks [51, 52]. The topography induced by the Western Ghats mountain range results in

an increasing water availability from east towards west as well as an spatially heterogeneous

pattern of soil types. These natural factors, which cause a variable environment on a small

scale, make the Berambadi watershed a critical geographical region for scientific observations

[50].

Agriculture in the region is dictated by monsoon dynamics and groundwater tables, and

crops are grown either in Kharif season (June to September) and/or Rabi Season (October to

December), whereas in summer (January to May) only limited, irrigated agriculture is prac-

ticed [50, 52]. Farmers either grow perennial (turmeric, sugarcane, banana), annual (Jowar,

sunflower, Ragi) or short-term (vegetables, pulses, grams) crops, mainly dependent on the irri-

gation type with farmers owning bore wells cultivating all year round [49, 52].

Soil sampling and characterization

We excavated three pits for each of the three prevalent soil types cultivated by farmers

(Anthroposol, Ferralsol and Vertisol) in Berambadi watershed to a depth of 20 centimeters

(agricultural horizon), subsequently mixed the soil to one composite sample for each soil,

which was air-dried and packed for transportation. Samples of the Anthroposol (Ferralsol

where river (tank) sediments were applied [53]) were taken on the farm of F23 in Berambadi

town. Samples of the Ferralsol (field along a gentle hillslope) and Vertisol (field next to the

streambed) were taken on the farm of F11 and F12 in Gopalpura town respectively. The main

characteristics of the studied soils are shown in Table 1.

Organic matter inputs

Substrates were liberally provided by the University of Agricultural Sciences (UAS Bangalore,

Prof. Prakash Nagabovanalli), by the Indo-French Cell for Water Sciences (Indian Institute of

Science, Bangalore) and by Karthik Vermicompost and Earthworm Consultancy. Five OM

inputs have been used: a compost (C1), produced in rotating drums from a mixture of cow

Table 1. Control soil water-holding capacity (WHC), total carbon and nitrogen (TC and TN) contents, C:N ratio

and pH of the Anthroposol, Ferralsol and Vertisol. Values are means (n = 3) ± one standard deviation (in

parentheses).

Anthroposol Ferralsol Vertisol

WHC (%) 14.02 ± (0.69) 5.97 ± (0.24) 16.38 ± (1.20)

TC (%) 1.13 ± (0.03) 0.45 ± (0.03) 1.56 ± (0.05)

TN (%) 0.119 ± (0.004) 0.070 ± (0.006) 0.098 ± (0.002)

C:N ratio 9.55 ± (0.10) 8.64 ± (0.37) 15.89 ± (0.30)

pH (-) 6.97 ± (0.06) 7.10 ± (0.10) 7.77 ± (0.11)

https://doi.org/10.1371/journal.pone.0263302.t001
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dung and crop residues (dried OM, leaves, etc.) where a microbial inoculum was added (UAS

Bangalore), two vermicomposts (VC1: produced in heaps of cow dung and crop residues in

the first phase, then filled in long solid tanks to which a earthworm culture was introduced

and then covered by plastic sheets (UAS Bangalore) and VC2: produced by farmers in heaps of

cow dung and organic waste (crop residues, food waste, leaves, branches) in a ratio 3:1, then

filled in solid tanks along an earthworm culture (Karthik Vermicompost and Earthworm Con-

sultancy)) and two types of biochar (coconut shell (B1), produced with the Kiln technique for

charcoal purposes and rice husk (B2), produced at the UAS Bangalore, using a retort pyroly-

ser). Main characteristics of the OM inputs are shown in Table 2 below.

Soil manipulative experiment

To study the effect of individual and combined OM inputs on four selected properties (WHC,

TC, C:N (TN), pH) of the three studied soils (Table 1), a static incubation experiment under

controlled conditions was performed over 70 days (based on [26, 54]). Soils were pre-incu-

bated with 15% deionized water of total mass for eight days. A total of 60 grams dry-equivalent

soil was put into 0.2 liter plastic cups and then thoroughly mixed with the OM. The amount of

OM to be added was calculated based on approximate application rates of farmers in Beram-

badi watershed. The empirical material from farmer interviews shows that farmers can gener-

ally apply between 5–10 tons of OM per hectare (t ha-1). With an approx. bulk density of 1.3

tons per cubic meter (t m-3), the amount is calculated as followed:

OM input ¼ Soilmass �
AROM

SoildepthxSoilareaxSoilBD
ð1Þ

where OM input represents the OM input for each cup (converted from tons (t) to milligrams

(mg), Soilmass the dry-equivalent soil mass for each cup (60 g = 0.00006 t), AROM the applica-

tion rate of OM by farmers (we took the upper value of the range from 5–10 t ha-1 = 10 t ha-1),

Soildepth the depth of the agricultural horizon (20 centimeters = 0.2 meter), Soilarea the refer-

ence area of one hectare in square meters (1 ha = 10’000 m2) and SoilBD represents the approx-

imated soil bulk density (1.3 t m-3). For single OM inputs (only biochar or only composts),

this resulted in an OM input of 230 mg to the soil (0.00006t�(10t/(0.2m�10’000m2�1.3 t m-3)) =

2.3�10−7 t = 230 mg), for combined OM inputs a mass equivalent of 115 mg of two OM (e.g.

C1 + B1). The OM was carefully mixed with the first few centimeter of soil. The soil was

slightly compressed and plastic cubs were put in 2 liter glass jars alongside a 20 milliliter glass

vial filled with deionized water. The jars were put into an incubator and kept at 24 ˚C, which

corresponds to the mean annual air temperature of Berambadi weather station. Each OM

input for each soil was prepared in triplicates. The samples were periodically weighed to track

loss of moisture and the jars were regularly opened to renew oxygen. Controls were prepared

the same way without application of OM in triplicates.

Table 2. Water-holding capacity (WHC), total carbon and nitrogen (TC and TN) contents, C:N ratio and pH of the selected biochar (B1: Coconut shell, B2: Rice

husk) and compost (C1: Compost, VC1 and VC2: Vermicomposts) inputs. Values are means (n = 3) ± one standard deviation (in parentheses). n.d. = not detected.

B1 B2 C1 VC1 VC2

WHC (%) 9.27 ± (0.44) 6.27 ± (1.49) 16.70 ± (1.36) 18.66 ± (0.65) 17.28 ± (0.16)

TC (%) 85.73 ± (4.65) 42.66 ± (0.75) 13.04 ± (2.38) 11.30 ± (0.40) 14.28 ± (1.41)

TN (%) n.d. 0.40 ± (0.28) 1.37 ± (0.23) 1.34 ± (0.10) 1.41 ± (0.19)

C:N ratio n.d. 138.88 ± (69.20) 9.48 ± (0.13) 8.42 ± (0.16) 10.08 ± (0.57)

pH (-) 9.07 ± (0.06) 7.33 ± (0.06) 6.83 ± (0.06) 7.43 ± (0.07) 6.73 ± (0.06)

https://doi.org/10.1371/journal.pone.0263302.t002
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Soil analysis

After the experiment, (soil) samples were dried for 24 hours at 40 ˚C and then milled using a

planetary mill (Fritsch pulverisette 5, Fritsch GmbH, Idar-Oberstein, Germany). Biochar sub-

samples were further milled with a horizontal mill (Retsch MM400, Retsch GmbH, Haan, Ger-

many). The pH was measured with a Methrom 692 pH/Ion meter (Methrom Schweiz AG,

Zofingen, Switzerland) in a 1:5 soil:water solution according to ISO 10390:2021. The sieved

(< 2 mm) samples were preliminary stirred for 30 minutes at a rate of< 500 rpm, then put to

settle for one hour before measurement, and then the pH was measured in the soil suspension

with a glass electrode. Water-holding capacity (WHC) was assessed with a pF laboratory sta-

tion from ecoTech (ecoTech Umwelt-Messsysteme GmbH, Bonn, Germany). Each replicate

was weighed by volume into metal rings and the material was held by a fine tissue net. Weights

were noted down and subsequently put into a water bath for 24 hours until saturation

occurred. Samples were placed on a suction plate and the suction tension was set for field

capacity at -325 to -335 millibar (= 33 kPa). Samples were regularly weighed and measure-

ments stopped when only minor variations occurred (<0.5 grams). Samples were dried for 24

hours at 105 ˚C and then weighed. The volumetric water content (or the WHC) was calculated

as the difference between the weight in equilibrium at field capacity and the dry weight. Total

C and N contents were measured by an Elemental Analyzer-Isotope Ratio Mass Spectrometer

(EA-IRMS; Flash 2000-HT Plus, linked by Conflo IV to Delta V Plus isotope ratio mass spec-

trometer, Thermo Fisher Scientific, Bremen, Germany).

Statistical analysis

We performed an analysis of variance for the full dataset derived from the incubation experi-

ment, testing for significant differences of measured soil properties (WHC, TC, C:N, pH)

between soils, OM and their interactions (two-way ANOVA, n = 3). Subsequently, we per-

formed another analysis of variance on the measured soil properties (WHC, TC, C:N, pH) for

each soil type separately, with the OM inputs as the independent variable (one-way ANOVA,

n = 3). For both ANOVA’s, we used Levene’s test to check the assumption of homogeneity of

variance (center = mean), a Shapiro-Wilk test on the ANOVA residuals to check for the

assumption of normality and a Fisher’s least significant difference (LSD) post-hoc test to check

for significance (alpha = 0.05, p.adj. = bonferroni). Statistical analysis was carried out using R

Studio 1.3.1093 (2009–2020), R Version 4.0.3 (R Core Team, 2020). All values reported repre-

sent means with one standard deviation.

While it would have been possible to use simple, descriptive statistics on the numbers

derived from the coding of empirical data of farmers’ interviews, we refrained from doing so

because these numbers (mainly percentages) represent assigned codes to text sequences that

originate from the statements of farmers during the interviews, and not measured data (see

next section). However, there is an ongoing debate in qualitative research if simple statistics

can be used for qualitative data [55].

Assessment of farmers’ traditional (local) knowledge, practices and

aspirations—Grounded Theory Methodology

Qualitative data collection followed the order of: 1) Explorative expert interviews (n = 9) with

scientists to get an overview over the agrarian context of the research area and to initialize a

network to the research area [56–58], 2) Familiarization with the area of research, leading dis-

cussions with local experts (scientists, NGO-workers and private companies) were done

(n = 5) and 3) In-depth, qualitative interviews with farmers (n = 29; Anthroposol: n = 13,
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Ferralsol n = 10 and Vertisol n = 6) to assess traditional (local) knowledge, practices and aspi-

rations of farmers towards OMM in the research area [59]. Interviews with farmers in the

Berambadi watershed were conducted with the help of a translator. Sampling of experts and

farmers for the interviews was conducted based on the logics of theoretical sampling and satu-

ration according to Grounded Theory Methodology [60, 61].

Qualitative data analysis was continuously performed, starting during data collection, and

according to Grounded Theory Methodology, an inductive, data-driven, flexible and circular

research approach in social sciences [60–62]. All audio recordings from interviews were tran-

scribed using word-by-word transcription in order to sustain as much information as possible

(NCH Express Scribe Transcription Software Pro 5.90). The empirical material (transcripts)

was subsequently coded and categorized according to Grounded Theory [61–63] with the cod-

ing software MAXQDA 12 (VERBI GmbH). Analysis and comparison of codes and categories

was stopped when theoretical saturation occurred, i.e. additional empirical material and their

conceptualization (codes) did not contribute to new insights within the created categories

[61]. Results of this process were formulated in theses about the traditional (local) knowledge,

practices and aspirations of farmers on OMM (including biochar applications) in the research

area. Codes about specific dimensions of the research (i.e. expectations or doubts about tech-

nology) from interview data were used to calculate the amount of farmers designating a spe-

cific point of interest (i.e. number of farmer designating interest in biochar divided by all

farmers (or all farmers of each soil type)).

Qualitative research was conducted according to the “Guidelines on Ethics and Safety in

Fieldwork for Researchers in Human Geography” of the Department of Geography, University

of Zurich (accessible online at https://www.geo.uzh.ch/dam/jcr:d546eb46-376b-4109-ae9d-

719d2d400f3d/Ethics_Guidelines.docx) and the guidelines of data protection in qualitative

research described in ref [64]. Farmers were informed about the aim and content of the

research study and verbally asked for their consent to participate in the interview campaign.

Permission to conduct and record interviews and subsequently transcribe and analyze inter-

view data anonymously was obtained prior to each interview. Each farmer was assigned a

unique, anonymous code (F1-F29).

Results and discussion

Effect sizes of soil quality indicators after organic matter inputs

Neither application of biochar, composts nor combined OM inputs had a clear unilateral bene-

ficial effect on the studied soil properties of the Anthroposol, Ferralsol and Vertisol (Figs 1 and

2; Tables 3 and 4), in line with the most recent review on the effect of biochar systems on soil

and plant responses [38]. In consequence, OMM results in tradeoffs for the farmer (Fig 3)

[65]. Studied parameters (WHC, TC, C:N and pH) showed strong differences between soils

and OM inputs, as well as their interaction (Table 3).

Almost all OM inputs led to an initial reduction of the WHC of soils after 70 days of incuba-

tion (Fig 1a and Table 4). In case of the Anthroposol (initial WHC = 14.02 ± 0.69%), except for

coconut shell biochar (B1 = 13.52 ± 0.54; p> 0.05), all OM inputs resulted in significant

decreases in WHC, up to –27.29 ± 0.97% compared to the control (B2+C1 = 10.12 ± 0.14%;

p< 0.05). Despite low initial value (5.97 ± 0.24%—Table 1; characteristic of soils from the sub-

humid tropics [51, 67]), the WHC of the Ferralsol only tends to increase with coconut shell

biochar alone (B1 = 6.07 ± 0.16%; p> 0.05) or the same biochar mixed with composts

(B1+C1 = 6.57 ± 0.07%, B1+VC1 = 6.26 ± 0.31% and B1+VC2 = 6.12 ± 0.02%), but only the

first two of the mixed OM inputs were significantly different from the control soil (Table 4;

p< 0.05). All other OM inputs led to a significant relative decrease compared to the control
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(-1.91 ± 5.20% to -17.70 ± 0.96%; Fig 1a), with lowest WHC when rice husk biochar was

applied in combination with vermicompost to the Ferralsol (B2+VC2 = 4.91 ± 0.06%;

p< 0.05). For the Vertisol, most OM inputs led to a slight, not significant decrease in WHC

(initial WHC = 16.38 ± 1.20%; comparable to the volumetric water contents of Vertisols stud-

ied elsewhere in the research area [51]). This was not the case for three treatments where the

WHC increased for B2+VC2 = 16.89 ± 0.21%, B1+C1 = 18.16 ± 3.28% and B2+-

C1 = 18.90 ± 1.87%; however only significantly in the last case (Table 4; p< 0.05). Overall,

highest increases were observed for coconut shell biochar + compost added to the Ferralsol

(+10.07 ± 1.14%) and Vertisol (+10.87 ± 20.04%), and rice husk biochar and compost added to

the Vertisol (+15.4 ± 11.42%), but with considerable variability (Fig 1a). The positive responses

of soil WHC after a combined application of biochar with either compost [68] or vermicom-

post [69] were also found in previous research. Application of OM to soils is expected to

improve soil moisture content, micro- and macro-pore density, and thus infiltration [70–72].

Despite its initial very low WHC and general poor characteristics (Table 1), the Ferralsol gen-

erally did not benefit from these OM applications. This contradicts several studies where bio-

char [73–75] or compost [69–72] increased water storage in soils, particularly also for sandy

soils with low initial WHC common in tropical regions [38, 73, 74] and also for other Ferral-

sols [68]. In addition, we observed the strongest negative responses in soil WHC in the pres-

ence of rice husk biochar, which contradicts a study using the same biochar feedstock [75].

Fig 1. Relative changes (%) of a) water-holding capacity (WHC), b) total carbon (TC) content, c) C:N ratio and d) pH after application of sole

(biochar (B1: Coconut shell, B2: Rice husk) and composts (C1: Compost, VC1 and VC2: Vermicomposts)) and mixed inputs (combination of

each biochar with one of the composts) to control Anthroposol, Ferralsol and Vertisol. Values are means (n = 3) ± one standard deviation.

https://doi.org/10.1371/journal.pone.0263302.g001
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Reduction of soil WHC in presence of biochar may be linked to initial hydrophobic properties

of its surface, which disappear over the long-term with the oxidation of hydrophobic func-

tional groups [73, 76]. Another possible explanation for the low and/or mostly negative WHC

responses observed in our study could be related to the application rate of 10 t OM ha-1 (based

on local conditions of farmers in the research area), which is much lower compared to rates

(133 and 40 t biochar ha-1 respectively) in controlled-condition experiments [74] or summa-

rized in a recent review [38].

Fig 2. Comparison of effectively measured relative changes (%) of mixed inputs (always a biochar mixed with a compost prior to application) with the

theoretically expected weighted averaged changes (%) of sole inputs after application to control Anthroposol, Ferralsol and Vertisol for a) water-

holding capacity (WHC), b) total carbon (TC) content, c) C:N ratio and d) pH using a similar approach as in [66]. Organic matter inputs include

biochar (B1: coconut shell, B2: rice husk) and composts (C1: compost, VC1 and VC2: vermicomposts) treatments. Values are means (n = 3). Solid line

represents 1:1-line.

https://doi.org/10.1371/journal.pone.0263302.g002

Table 3. P-values from the linear model output (one-way ANOVA) comparing the studied parameters (water-

holding capacity (WHC; in %), total carbon content (TC; in %), C:N ratio and pH (unitless)) between the soils and

treatments, and their interaction (n = 3, p.adj. = 0.05). For details on the statistical approach, see Material and meth-

ods section.

WHC [%] TC [%] C:N pH [-]

Soil < 2.0x10-16 < 2.0x10-16 < 2.0x10-16 < 2.0x10-16

OM input 0.0006 0.0395 1.02x10-9 6.79x10-5

Soil: OM input 5.58x10-6 0.2512 0.0016 1.35x10-5

https://doi.org/10.1371/journal.pone.0263302.t003
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Highest increases in TC were observed after application of biochar alone or in combination

with composts (Fig 1b and Table 4), as expected considering the high C content and relative

stability of these substrates (B1 = 85.73 ± 4.65% and B2 = 42.66 ± 0.75%; Table 2) [37, 38]. Pre-

vious research has even shown a linear relationship between C added by OM including

Table 4. Descriptive statistics (means ± standard deviation (n = 3)) for the measured parameters (water-holding capacity (WHC; in %), total carbon content (TC; in

%), C:N ratio and pH (unitless) for the control Anthroposol, Ferralsol and Vertisol and after treatment of these three soils with biochar (B1: Coconut shell, B2: Rice

husk), composts (C1: Compost, VC1 and VC2: Vermicomposts) and combined OM inputs. Letters (= group) indicate significant differences (p < 0.05) in the linear

model output (one-way ANOVA: n = 3, p.adj = 0.05). For details on the statistical approach, see Material and methods section.

WHC [%] TC [%] C:N ratio pH [-]

mean std group mean std group mean std group mean std group

Anthroposol

Control 14.02 0.69 a 1.13 0.03 ab 9.55 0.10 e 6.97 0.06 d

B1 13.52 0.54 ab 1.22 0.10 a 10.84 0.53 ab 7.00 0.20 d

B2 12.46 0.50 bc 1.26 0.04 a 11.00 0.22 a 7.07 0.06 d

C1 12.05 0.40 c 1.15 0.09 ab 9.50 0.03 e 7.23 0.06 c

VC1 11.59 0.18 cd 1.20 0.05 a 9.60 0.28 e 7.03 0.11 d

VC2 11.72 1.12 cd 1.04 0.06 b 9.61 0.03 de 7.27 0.06 bc

B1+C1 12.08 0.27 c 1.16 0.06 ab 10.19 0.21 c 7.33 0.06 abc

B1+VC1 12.06 0.76 c 1.21 0.15 a 10.44 0.51 bc 7.37 0.06 abc

B1+VC2 10.80 0.72 de 1.27 0.11 a 10.88 0.56 ab 7.40 0.00 ab

B2+C1 10.12 0.14 e 1.21 0.04 a 10.16 0.32 cd 7.37 0.06 abc

B2+VC1 10.58 0.30 de 1.21 0.10 a 10.63 0.23 abc 7.46 0.06 a

B2+VC2 12.46 1.59 bc 1.25 0.06 a 10.46 0.33 abc 7.33 0.06 abc

Ferralsol

Control 5.97 0.24 bc 0.45 0.03 b 8.64 0.37 de 7.10 0.10 abc

B1 6.07 0.16 bc 0.54 0.12 ab 11.43 0.72 abc 7.23 0.06 a

B2 5.55 0.10 de 0.60 0.09 ab 11.42 1.06 abc 7.17 0.06 ab

C1 5.25 0.27 ef 0.47 0.06 ab 8.53 0.02 e 6.97 0.15 abcde

VC1 5.27 0.28 ef 0.45 0.07 b 8.90 1.27 de 6.83 0.11 cde

VC2 5.17 0.36 ef 0.47 0.10 ab 8.52 0.18 e 7.03 0.06 abc

B1+C1 6.57 0.07 a 0.66 0.26 a 12.42 2.71 a 7.00 0.26 de

B1+VC1 6.26 0.31 ab 0.59 0.05 ab 11.77 0.66 ab 6.73 0.25 de

B1+VC2 6.12 0.02 bc 0.49 0.18 ab 11.11 1.53 abc 6.93 0.06 bcde

B2+C1 5.86 0.31 cd 0.51 0.07 ab 10.43 0.42 bcd 7.07 0.06 abc

B2+VC1 5.36 0.27 e 0.53 0.06 ab 10.34 0.07 bcde 6.93 0.38 de

B2+VC2 4.91 0.06 f 0.54 0.04 ab 9.65 0.48 cde 6.70 0.10 e

Vertisol

Control 16.38 1.20 bc 1.56 0.05 bc 15.89 0.30 abcd 7.77 0.11 bcd

B1 16.06 0.28 bc 1.72 0.03 ab 17.02 0.17 a 8.03 0.06 ab

B2 15.86 0.15 c 1.47 0.28 c 15.97 0.29 abc 8.03 0.06 ab

C1 15.63 0.48 c 1.57 0.02 abc 15.33 0.67 bcd 7.97 0.11 abc

VC1 15.81 0.70 c 1.57 0.13 abc 15.27 0.64 bcd 7.70 0.36 cd

VC2 15.45 0.58 c 1.60 0.07 abc 14.66 0.25 d 7.90 0.10 abcd

B1+C1 18.16 3.28 ab 1.57 0.06 abc 14.90 0.71 cd 7.97 0.06 abc

B1+VC1 14.98 0.40 c 1.75 0.18 ab 16.84 1.62 a 7.67 0.30 d

B1+VC2 15.73 0.46 c 1.63 0.07 abc 16.12 0.28 abc 7.97 0.15 abc

B2+C1 18.9 1.87 a 1.77 0.13 a 16.48 0.95 ab 8.10 0.10 a

B2+VC1 16.23 1.59 bc 1.70 0.09 ab 16.34 0.57 ab 8.17 0.11 a

B2+VC2 16.89 0.21 abc 1.71 0.08 ab 16.60 1.04 a 8.07 0.06 a

https://doi.org/10.1371/journal.pone.0263302.t004
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biochars and TC contents of the amended soil [37, 68]. Even if all OM inputs except for one of

the vermicomposts (VC2 = 1.04 ± 0.06%; possibly due to fast decomposition of the added and/

or native C [40]) increased the C content of the control Anthroposol (1.13 ± 0.03%), these

changes were not significant (Table 4; p> 0.05). Highest relative changes in TC contents

(+12.54 ± 10.29%; Fig 1b) were observed after applying coconut shell biochar mixed with ver-

micompost for the Anthroposol (B1+VC2 = 1.27 ± 0.11%). Also in case of the Ferralsol with

the lowest initial C content (0.45 ± 0.03%), all OM inputs, except for the combination of coco-

nut shell biochar and compost (B1+C1 = 0.66 ± 0.26%; p< 0.05), resulted in no significant

increase in the C content of the soil (Table 4). For the Vertisol (initial C content of

1.56 ± 0.05%), only the combination of rice husk biochar and compost (1.77 ± 0.13%

(13.84 ± 8.15%; Fig 1b) led to a significant increase in C contents (Table 4; p < 0.05). For this

specific parameter, the initial C contents of soil, lower for the Ferralsol, explain directly our

observations that for a given OM input, the relative increases compared to control soils were

mostly highest for the Ferralsol and lowest for the Vertisol (Fig 1b). The relative changes

observed for the Ferralsol are in the same magnitude as for a Ferralsol amended with different

mixtures of biochar, composts and fertilizer in tropical, northern Australia [68] or lateritic,

low-quality soils in plot studies in Tamil Nadu, India [18]. However, the effects were not

strictly additive, but rather synergetic for certain OM inputs and soils (Fig 2b) [37]. Consider-

ing the relative short duration of our experiment, it is probable that biochar protected the asso-

ciated compost from decomposition, which is in line with our observation of higher soil C

contents after 70 days of incubation for biochars mixed with composts compared to composts

only [40]. The amplitude of the TC increase was also very dependent on the type of biochar

and compost and the initial soil [38]. However, no clear trend can be associated to these

changes and most positive responses in C contents of amended soils where not significant

Fig 3. Comparison of the total interest and skepticism of farmers cultivating Anthroposols, Ferralsols and

Vertisols towards biochar and compost technologies, the importance of selected soil quality criteria (water,

nutrients and fertility) rated by farmers and the relative changes (%) of the water-holding capacity (WHC), total

carbon (TC) content, C:N ratio and pH after application of sole (biochar (B1: Coconut shell, B2: Rice husk) and

composts (C1: Compost, VC1 and VC2: Vermicomposts)) and mixed inputs (combination of each biochar with

one of the composts) to control Anthroposol, Ferralsol and Vertisol.1 Illustration by Tara von Grebel, Information

Technology, MELS/SIVIC, University of Zurich.

https://doi.org/10.1371/journal.pone.0263302.g003
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compared to the three control soils (Anthroposol, Ferralsol and Vertisol), which is in line with

similar incubation studies with biochar and tropical soils [26].

C:N ratios increased when biochar was applied alone or in mixture with composts, and gen-

erally remained close to the initial soil C:N value with no significant difference after applica-

tion of composts alone (Figs 1c and 2c; Table 3). The Anthroposol with an initial C:N ratio of

9.55 ± 0.10 showed highest increases when biochar was applied alone (B1 = 10.84 ± 0.53

(+13.54 ± 5.56%) and B2 = 11.00 ± 0.22 (+15.16 ± 2.33%)) or in combination with vermicom-

post (B1+VC2 = 10.88 ± 0.56 (+13.91 ± 5.82%)). All OM inputs including biochar significantly

increased the C:N ratio of the Anthroposol (Table 3; p< 0.05). For the Ferralsol, the same

effect for the application of biochar alone or in combination with composts could be observed

on the initial soil C:N ratio as for the Anthroposol (Fig 1c and Table 3). In contrast however,

only biochar alone and coconut shell biochar with composts (up to 12.42 ± 2.71 (+43.72 ±
31.43%) for B1+C1) were significantly different from the control, but not the combination of

rice husk biochar and composts (Table 3; at p< 0.05). In addition, the OM inputs had gener-

ally more influence on the C:N ratio of the Ferralsol (mostly > 20% increase; Figs 1c and 2c)

than the Anthroposol. No differences between the Vertisol treated with OM and the control

soil could be observed in our data in terms of C:N (Table 3; p> 0.05), probably because the

initial C:N of the Vertisol was already high (15.89 ± 0.30). The highest effect was achieved with

application of coconut shell biochar (e.g. B1 = 17.02 ± 0.17). Our observations of steady C:N

ratios after application of composts [39, 77], and increases after application of biochar alone

[37, 78] or in combination with composts are in line with previous field and/or laboratory

studies [77, 79]. Considering C:N values of the OM inputs (Table 2), we expected that compost

would compensate for C:N increase due to biochar. On the contrary, the C:N became very

high in presence of biochar, in particular for the Ferralsol (Fig 1c). Considering that this nitro-

gen can be a source of nutrients for plants on the long-term, the increase of C at the detriment

of N may be a potential issue for soil fertility, as already pointed out in the literature [80, 81].

However, even if the C:N increases in presence of sole ore mixed biochar applications with

composts, the (surface) properties of biochar may have positive effects on the N availability

through reduced losses of ammonium and nitrate by volatilization or leaching [69, 79, 82].

All OM inputs resulted in a pH increase of the Anthroposol compared to the control

(6.97 ± 0.06), but the effect was mostly only significant when biochar was applied in combina-

tion with composts and highest for rice husk biochar mixed with vermicompost (B2+VC1 =

7.46 ± 0.06 (+7.18 ± 0.83%); Fig 1d and Table 4). The Ferralsol included in our study had a

higher pH (7.10 ± 0.10) compared to the values generally reported for Ferralsols in literature

[67, 68]. Only applying biochar alone slightly increased the pH (+1.88 ± 0.81% (coconut shell)

resp. +0.94 ± 0.81% (rice husk)), while all other inputs led to a relative decrease by up to

-5.63 ± 1.41% for biochar in combination with composts (B2+VC2 = 6.70 ± 0.10; Table 4;

p<0.05). This initial high pH could have resulted from application of alkaline fertilizers (ashes

from slash-and-burn agriculture) by the farmer prior to our sampling. The addition of rice

husk biochar and composts resulted in a significant relative increase of up to +5.15 ± 1.49% in

the Vertisol (+0.4 in pH for B2+VC1 (8.17 ± 0.11)), whereas all other OM inputs were not dif-

ferent from the control soil (7.77 ± 0.11; Table 4). The effect of biochar application depends

largely on intrinsic soil properties such as initial soil pH and cation exchange capacity, but

also on biochar quality (pH, exchangeable base cation concentration, CaCO3 content and

therefore acid (H+) buffer capacity) and quantities applied [37, 83, 84]. Biochar application

results mainly in positive, increasing effects on pH of non-amended soils with a larger effect

on acidic soils [37, 38]. This is what we observed here, with stronger increases in the Anthro-

posol. We did not observe differences in soil pH responses related to the biochar quality (input

material, production conditions); probably because the differences in pH between soils were
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not so strong resp. important (no significant differences in soil pH between OM inputs includ-

ing coconut shell resp. rice husk biochar). In addition, and in contrast to the slight and signifi-

cant positive effect size of biochar application on soil pH found in a global meta-analysis [37],

we could not observe any significant response in soil pH after biochar was applied alone

(Table 3). Application of composts may lead to reduction of soil pH through the release of

organic acids during decomposition of added OM or salts leaching [85], or an increase because

of the production of base cations or hydroxide anions during decomposition. Our data showed

effects in both directions: a decrease of the pH of the Ferralsol, and an increase of pH for

Anthroposol and Vertisol (Fig 1b). Fig 2d shows that mixed application of biochar and com-

posts resulted in a decreased pH of the Ferralsol, but increased pH for the Anthroposol and

Vertisol. An increase in soil pH after application of mixtures of biochar and composts was also

observed under field conditions for Acrisols in the tropics [39, 69] and in pot experiments [86,

87]. In contrast, and, in line with our findings, a Ferralsol in the tropics of northern Queens-

land also showed reduced or similar pH to control soils after mixed OM inputs [88], which

may be the result of the increased mineralization of SOM after application of fresh OM to the

Ferralsol with low TC content [89, 90].

Contrary to what was expected from the literature, and what was expected for the farmers,

biochars alone or in mixture did not improve unilaterally the soil properties of these tropical

soils, particularly of the Ferralsol, nicely highlighting the diverse responses of plant-soil sys-

tems to biochar applications [37, 38]. While it seems relatively simple to increase the TC con-

tent and to certain extends the pH of the soil [37], water and long-term nutrient status did not

improve, or degraded with the OM inputs (Figs 1 and 2; Table 3). It is likely that the duration

of the present incubation (70 days) could not capture the transition of biochar surfaces from

hydrophobicity towards higher affinity to water [76], but increases in the WHC of biochar-

amended soils on the long-term have already been proven in many cases [38, 73]; however, in

terms of nutrients such as N, our observations are to be seen more critical if these are not

plant-available on the longer-term [80, 81]. This divergent effect was even more marked for

the Ferralsol, which was identified with lower fertility, so where the largest impact was

expected [38, 91]. In addition, contrarily to our expectations, the mixture between composts

and biochar did not compensate systematically the shortcomings of OM inputs when applied

alone (as compared in Fig 2) [40]. While the TC content and C:N were almost systematically

higher for the mix, showing a synergetic effect between the two inputs [79], this was soil-

dependent for the WHC and for the pH. These two aspects highlight the versatility of biochar

inputs to soil properties [37], and so the need to locally estimate its multi-seasonal impact,

under specific pedo-climatic conditions [38, 42].

Traditional (local) knowledge and practices of farmers in the Berambadi

watershed regarding organic matter management

Tailor-made compost and biochar systems need to be adopted by the practices of rural farmer

communities as well as their aspirations towards working with the new OMM techniques in

their farming system [42, 43, 47]. To evaluate this, we conducted expert interviews (n = 14)

with scientists, NGOs and private companies active in the field of agricultural development,

and in-depth, qualitative interviews based on a standardized topic guide with farmers of the

Berambadi watershed (n = 29), cultivating the same soil types used for the manipulative soil

study (Anthroposol n = 13, Ferralsol n = 10 and Vertisol n = 6). The topic guide included ques-

tions about farming practices in general, about specific practices and perceptions regarding

OMM (i.e. composting, slash-and-burn, other usage of OM) and finally on aspirations upon

the introduction of new technologies like biochar (see Material and methods and S1 File).
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Our empirical data from the interviews revealed that farmers used specific traditional prac-

tices of composting (97% of farmers). These could range from traditional techniques like Jee-

vamrutha (liquid compost made of ten liters of cow urine, ten kilograms of cow dung, two

kilograms of black bean (powder), two kilograms of (black) Jaggery and one fist of soil, 17%)

or farmyard manure preparation (97%) to more knowledge-intensive setups of composting

(i.e. vermicomposting, 28%). Most of these practices have already been described in detail in

the literature, also specific methods practiced in India, but they are normally highly variable

locally [30]. Other traditional usage of OM included mulching (90%), forage for animals

(52%), fuel for cooking (72%), application of river sediments (17%; see ref [53]) and the appli-

cation of ash/charcoal from slash-and-burn agriculture or indoor cooking (59%), and these

were also found in a farmer survey in Karnataka, India [33]. Farmers’ knowledge about these

OM inputs originated from traditions (family/community, practical experience, 72%), individ-

uals (55%), local agricultural department (41%) or media (TV, books: 41%). Knowledge

included awareness regarding the preparation (materials, setup), application (rate), timing and

effects on soils (structure, moisture and nutrient contents, soil biota (earthworms)) and plants

(growth dynamics and yield) (Quote 1).

Quote 1 (F4): «So when he introduces this into the soil, there’s a rotation happening because
of the worms and the soil. And then they form pores. Because of this, the soil becomes more
nutrient and when it becomes more nutrient, it gives a better yield.»

We further asked farmers about their knowledge on vermicomposting and biochar inputs.

Regarding vermicomposting, we found a gap between farmers’ knowledge and its practical

application (Quote 2). Even if farmers had such knowledge (97%) and some of them were will-

ing to apply the technology in their farming system (35%), the implementation level was found

to be low according to our data (28%). Information on implementation levels provided by

local scientists and NGO-workers in the study area (25% of farmers are using installed vermi-

composting units) and in scientific literature [33] confirm our results. Farmers stressed their

lack of practical experience (52%) or their negative experiences, i.e. weed growth, heat genera-

tion and short effect duration (21%) and lack of institutional guidance (14%; Table 5 and

Quote 3).

Quote 2 (F18): «So he says, he makes a bed of the cow dung first and then he puts the green
leaves. And then he puts the worms. And then he sprinkles it with water. Because it has to be
cold. Else the worms die. And once this is done, these eat and then you have the compost.»

Quote 3 (F22): «They have a communication problem from the officials. Because nobody
guided him so that he can do this. And there is a problem in our administrative system and in
the Karnataka government that whatever they want to do, is not reaching the farmers. So the
implementation is not there. Nobody is there to guide them properly and communicate ideas
to them.»

According to our discussions with experts, biochar systems in India were limited to scien-

tific studies and a broader public interest at the time of fieldwork, which is confirmed by recent

reports on the topic [16, 92]. Interview data showed that only few farmers knew about biochar

systems (31%) and even fewer who actively engaged in the concept (Quote 4). Nonetheless,

even if the level of knowledge can be considered low, still many farmers showed great interest

in biochar systems (83%, Fig 3) and 17% asked about implementing it in their farming system
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(Quote 5) if guidance and support would be guaranteed (Table 5). Knowledge transfer through

demonstration and long-term support are critical socio-economic barriers for successful

implementation of technologies such as biochar systems [29, 48].

Quote 4 (F2): «Yes there is not a fertile. Just there is some media. Biochar is medium. It’s not a
fertile. Just media is that material is kept all the microorganisms to in holding capacity is
there. So it will give the plants.»

Table 5. Socio-economic (education, finance, technology) and agro-ecological (soil, plant, ecosystem) expectations and doubts of farmers in the Berambadi water-

shed upon the introduction of vermicompost and biochar technology in their farming systems. Number in parentheses are percentage of farmers from all farmers

(n = 29) who designated specific issues (%; VC = vermicompost, B = biochar).

Expectation (VC = 72%; B = 93%) Doubt (VC = 48%; B = 52%)
Socio-

economic

Education • Guidance, demonstration and long-term support

(VC = 41%; B = 48%)
• Acquisition of practical knowledge/experience (preparation,

application (rate), timing)

(VC = 21%; B = 55%)
• Traditional practices as a basis (i.e. ash/charcoal for biochar

applications

(B = 59%)
• Easy and direct application

(VC = 3%; B = 45%)

• Lack of institutional, long-term support

(VC = 14%; B = 7%)
• Requirement of specific knowledge

(B = 7%)

Finance • Purchase or free, institutional supply

(VC = 38%; B = 21%)
• Investment capacity

(VC = 14%; B = 14%)
• On-farm production

(VC = 7%; B = 21%)
• Cost-efficiency and income generation

(VC = 10%)
• Reduction of mineral fertilizer use

(B = 3%)

• Resource availability (dependent on cultivated crops and tree

availability)

(VC = 21%; B = 21%)
• Extra cost and labor

(VC = 17%; B = 7%)
• Resource competition (with other usages)

(VC = 7%; B = 7%)

• Investment risk

(VC = 7%)

Technology • Supply of tools (tank, pyrolysis unit, energy)

(VC = 14%; B = 17%)
• Health improvements

(VC = 7%)

• Duration/patience

(VC = 10%; B = 3%)

Agro-

ecological

Soil • Soil fertility increase

(VC = 17%; B = 21%)
• No need for new technology (soil microorganisms & traditional

methods sufficient)

(VC = 10%; B = 7%)
• Burned organic matter harms soil

• Heat generation (only applicable with water)

(VC = 14%; B = 10%)
• Survival of earthworms/microorganisms

(VC = 10%; B = 7%)

Plant • Sustain or increase crop growth/yield

(VC = 48%; B = 41%)
• Weed control

(B = 3%)

Ecosystem • Suitable (and locally available) organic matter inputs

(B = 24%)
• Non-hazardous for plant-soil system

(VC = 14%; B = 17%)
• Reduction of fertilizer usage

(B = 3%)

• Production and application quantity

(VC = 21%; B = 21%)
• Usage of wood from on-farm trees or forests

(B = 14%)

https://doi.org/10.1371/journal.pone.0263302.t005
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Quote 5 (F15): «How come we have not heard about it and nobody has told us about it?»

When discussing about biochar technology, farmers often related to their traditional (local)

knowledge and practice of ash/charcoal application (59%; Table 5). Application of ash/char-

coal was considered to be beneficial (28%) or hazardous (21%) for soil fertility and plant

growth by farmers (Quotes 6 and 7), including positive (improvement in moisture and nutri-

ent contents and soil structure) and negative (heat generation, death of earthworms, decreased

crop growth) effects. The rationales of adopting slash-and-burn agriculture (or applying ash/

charcoal to soils) of farmers in the research area are in line with the literature [93]. Further-

more, in accordance with the divided opinions of farmers towards the benefits and risks of this

practice (Quotes 6 and 7), the sustainability of slash-and-burn agriculture is highly debated in

the scientific literature until today [93–95].

Quote 6 (F1): «Because of the water-holding capacity he is using the ash.»

Quote 7 (F18): «And the remains is an ash. Nobody puts that ash back into the soil because if
you put that, you’ll never get a yield. The plants will never grow well. So nobody uses that.»

Farmers’ perceptions about ash/charcoal application greatly influenced their attitude

towards the introduction of biochar-based fertilizer systems, and farmers who engaged in

these traditional practices were generally more open to biochar technology. The occurrence of

such soil fertilization practices involving ash/charcoal applications from various sources

(slash-burn agriculture, home cooking, and processing agricultural residues) could increase

the implementation potential of biochar-based fertilization [43, 48]. A shift from slash-and-

burn to slash-and-char farming practices could be viable since farmers possess significant

knowledge about OMM and burning processes; however, site-specific concerns such as the

availability and suitability of OM for charring and potential increased labor requirements due

to collection of OM on fields instead of burning need to be addressed [12, 48].

Farmers’ aspirations towards the introduction of tailor-made biochar-

based fertilizer systems

Interviewed experts pointed out three socio-economic and three agro-ecological categories

that are crucial for a successful implementation of biochar-based fertilizer systems (Table 5).

Socio-economic categories included educational issues (long-term guidance, knowledge

requirements), financial issues (cost-efficiency, labor, level of effort, resource availability and

competition) and technological issues (low-tech setups, duration). Agro-ecological categories

included soil related issues (increase nutrient level and soil fertility), plant related issues

(increase crop growth/yield) and ecosystem related issues (OM inputs, suitability for agro-eco-

systems). Empirical data from interviews with farmers showed that farmers could precisely

name their socio-economic and agro-ecological aspirations towards tailor-made OMM

(Table 5, according to expert categories). Farmers especially emphasised their need for guid-

ance and acquisition of practical knowledge in a participatory way when it came to new OMM

(79%), and they expressed doubts about the long-term institutional support (21%), which con-

stitute major adaptation barriers to technology [29, 48]. Another crucial socio-economic

aspect concerns the implementation costs especially regarding additional labor requirements

and investment capacities (48%) [42, 43]. Both farmers and experts stressed out resource avail-

ability and suitability as well as the competition with other local usages of OM as major con-

straints for tailor-made, site-specific biochar systems (Table 5), which was also emphasized in

a recent review on biochar systems [38, 48]. Whether OM was perceived as a viable agronomic
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input for OMM, including biochar production, depended on the site-specific cropping systems

(farming system (organic or conventional), traditional OMM practices, type of plants grown)

of individual farmers (Quotes 8 and 9) [17, 23]. The production of biochar from on-farm (hor-

ticulture) or forest trees was considered to be problematic and concerns were expressed

regarding the need for collecting wood biomass when engaging with biochar technology [3].

In this regard, it could well be that implementation of biochar systems could compete with tra-

ditional practices of OM usage (as defined above) for resources [6], and needs to be considered

in further agricultural development projects [48].

Quote 8 (F7): «Yes it is good that what we can put into the soil, the remains of the plants. He
puts it into the soil.»

Quote 9 (F23): «So he feels that if you remove that it’s just a waste. So what can you do with
it? So they burn it and put it into the field.»

Interview data further revealed that improved soil fertility and crop growth/yield were the

major agro-ecological aspirations of farmers towards vermicomposting and biochar technol-

ogy (Table 5). These aspirations could be met with biochar-based fertilizers (see Figs 1 and 2

and explanations above) and literature suggests that the site-specific environmental (water

scarcity if no bore well irrigation) and soil quality problems (low SOC, generally low pH, poor

structure) of sub-humid tropical regions like Berambadi watershed could be tackled through

OM inputs such as biochar [12, 38, 42].

Matching the effect of biochar-based fertilizers on soil quality with

farmers’ aspirations on organic matter management

Interviews with farmers (Table 5) and the manipulative soil study (Figs 1 and 2) revealed that

the site-specific contexts, to which OMM techniques such as biochar systems are intended to

be applied to, are key for successful implementation and sustainable agricultural development

as suggested also in recent literature [29, 38, 42]. Our dual interdisciplinary approach

highlighted a series of strong clear trends as well as contradictions or mismatches between

farmer’s expectations and measured soil quality changes (Fig 3). The data from our socio-eco-

nomic study indicated that farmers were generally more interested in biochar technology than

composting irrespective of the farming system, which follows partially our soil quality evalua-

tion (Fig 3). However, farmers cultivating more fertile Vertisols and/or farmers who experi-

enced a stronger economic position based on bore well irrigation capacities (year round crop

production; see ref [50]) and land ownership, showed a greater interest towards new technol-

ogy like biochar, but a lower interest in existing, traditional (local) practices such as compost-

ing. Farmers who cultivated Ferralsols with poorer soil quality felt more confident with

traditional (local) practices rather than biochar technology, and greater skepticism towards

biochar indicated their low investment capacity and readiness to assume risks [29, 48].

According to these findings, there is a clear danger that new technology implementation will

mainly benefit to the wealthiest, and may increase the gap between farmers within a commu-

nity if innovations are not widely accessible to all [3].

Besides their interest and skepticism, farmers could further exactly rate the relative impor-

tance of soil quality criteria such as water and nutrient levels, and soil fertility in general (Fig

3), which allowed to assess which technology would match their aspirations (Table 5). Even if

water represented a major problem in the study area [50, 52], farmers did not designate it as

the major criteria during fieldwork (<50% mentioned water as a criteria), partially because

irrigation is still possible year round using groundwater for farmers possessing bore wells
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(compared to rain-fed irrigation) [50]; however, with depletion of groundwater resources and

climate change, water availability will likely become a major concern for many more farmers

in the semi-arid areas of southwestern India [52]. Biochar-based fertilizer (mixture of biochar

and composts) only improve WHC for the Vertisol and Ferralsol in some cases, but not for the

Anthroposol, which represented the soil cultivated by farmers that rated water as most impor-

tant (Fig 3), but these effects likely change over longer-term [76]. More generally, while aspira-

tions and global effects of biochar and compost are in line, we observed several mismatches at

local level between the absolute soil quality criteria, the expectations from the farmers given a

particular soil, and the potential of new OM inputs to improve the soil quality. These very local

contradictions could only be detected by combining interviews and experimentations, so we

can only strongly encourage such approaches to design the implementation of new cropping

systems [38, 42].

Conclusions

Our study demonstrates that OM inputs such as biochar for sustainable agricultural develop-

ment need to be tailor-made for site-specific socio-economic and agro-ecological contexts. By

applying an interdisciplinary research approach, we could identify OMM techniques that can

increase the ecosystem services of soils with specific ecological challenges that needed to be

solved in order to sustain or increase agricultural production and rural farmer livelihoods, and

that simultaneously address the site-specific adaptation barriers and aspirations of farmer

communities towards biochar technology.

Biochar-based fertilizers that include a mixture of biochar and other OM such as composts

represented a viable solution for soil quality improvements of three tropical, agricultural soils

(Anthroposol, Ferralsol and Vertisol) along with their suitability to incorporate traditional

(local) knowledge and practices of small-scale farmers in a sub-humid tropical watershed.

Including traditional (local) knowledge and practices related to OMM, farmers’ aspirations

towards new technologies and concerns regarding resource availability, suitability and compe-

tition for biochar-based fertilizers will ultimately increase the implementation potential of

such applications for sustainable agricultural development.

The substantial interest of farmers in biochar technology, irrespective of farming systems,

provides scope for in-depth field trials, where biochar-based fertilizers can directly be tested

together with farmers, including the site-specific socio-economic and agro-ecological chal-

lenges faced by rural farmer communities in different environmental settings. Future research

could therefore provide answers to questions regarding type, quality and rates of OM applied,

the influence of a changing climate on tropical agro-ecosystems as well as future cropping

strategies of rural farmer communities.
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