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Decoding Activity in Broca’s Area Predicts the
Occurrence of Auditory Hallucinations Across
Subjects
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Josselin Houenou, Pierre Thomas, Sébastien Szaffarczyk, Philippe Domenech, and
Renaud Jardri
ABSTRACT
BACKGROUND: Functional magnetic resonance imaging (fMRI) capture aims at detecting auditory-verbal
hallucinations (AVHs) from continuously recorded brain activity. Establishing efficient capture methods with low
computational cost that easily generalize between patients remains a key objective in precision psychiatry. To
address this issue, we developed a novel automatized fMRI-capture procedure for AVHs in patients with
schizophrenia (SCZ).
METHODS: We used a previously validated but labor-intensive personalized fMRI-capture method to train a linear
classifier using machine learning techniques. We benchmarked the performances of this classifier on 2320 AVH
periods versus resting-state periods obtained from SCZ patients with frequent symptoms (n = 23). We
characterized patterns of blood oxygen level–dependent activity that were predictive of AVH both within and
between subjects. Generalizability was assessed with a second independent sample gathering 2000 AVH labels
(n = 34 patients with SCZ), while specificity was tested with a nonclinical control sample performing an auditory
imagery task (840 labels, n = 20).
RESULTS: Our between-subject classifier achieved high decoding accuracy (area under the curve = 0.85) and
discriminated AVH from rest and verbal imagery. Optimizing the parameters on the first schizophrenia dataset and
testing its performance on the second dataset led to an out-of-sample area under the curve of 0.85 (0.88 for the
converse test). We showed that AVH detection critically depends on local blood oxygen level–dependent activity
patterns within Broca’s area.
CONCLUSIONS: Our results demonstrate that it is possible to reliably detect AVH states from fMRI blood oxygen
level–dependent signals in patients with SCZ using a multivariate decoder without performing complex preprocessing
steps. These findings constitute a crucial step toward brain-based treatments for severe drug-resistant hallucinations.

https://doi.org/10.1016/j.biopsych.2021.08.024
Hearing distressing voices that other people do not [called
auditory-verbal hallucinations (AVHs) (1)] becomes a thera-
peutic impasse for more than 30% of patients with schizo-
phrenia (SCZ) (2). These complex sensory experiences are
highly variable (3,4), making the characterization of their
neurobiological basis especially challenging. This situation
creates a technical challenge for people who need to detect/
decode AVH states from brain activity for therapeutic
purposes.

AVHs were first explored using functional magnetic reso-
nance imaging (fMRI) trait studies, which compared SCZ pa-
tients with and without AVHs (5). These studies reported
inconsistent alterations in brain connectivity and activity, either
increased or decreased, within functional networks associated
with language, memory, or error monitoring in patients with
AVHs (6,7). Even if heterogeneity may result from a subtle
combination of nonorthogonal causes, one possible
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explanation could be that, unlike other symptoms of SCZ,
AVHs are intermittent experiences (ON/OFF), an aspect not
efficiently addressed with trait designs.

Hence, alternative approaches (called symptom-capture
fMRI designs) were developed in an attempt to reduce the
inherent complexity of AVHs by focusing on the transient
neural changes associated with AVH onsets and offsets (8–11).
In these capture studies, hallucinators typically signal AVH
occurrence online by pressing a button, revealing a wide range
of overactive sensory cortical regions that reflects the high
phenomenological interindividual variability in hallucinatory
experiences (12–14). Among the brain regions most frequently
reported as being associated with AVHs, we can mention
Broca’s area (BA), the superior temporal gyrus, the tempor-
oparietal junction, and the hippocampal complex (11), which
are all part of an associative speech-related network more
loosely linked with the sensory content of the AVH experience.
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However, it remains unclear whether the brain networks
identified using online self-report capture designs are involved
1) in the AVH experience itself, or 2) in the metacognitive/motor
processes required to detect and signal the onset of AVHs.
Furthermore, these studies referred to a massively univariate
activation-based statistical framework known to potentially
lose sensitivity by not considering the covariance between
voxels (15), which is not particularly well-suited for analyses at
the subject level.

In previous studies, we attempted to address these con-
cerns by building upon these paradigms and proposing a
button-press free fMRI-capture design based on an indepen-
dent component analysis, a data-driven multivariate technique
(13,16). This approach was proven to reliably detect AVHs from
a post-fMRI interview without creating a dual-task situation
(i.e., experiencing a vivid AVH and at the same time, pressing a
button). However, despite its demonstrated effectiveness, the
application of this symptom-capture approach to new patients
still required intensive manual labor to individually tailor the
analysis pipeline, limiting its translational potential and its
applicability/replicability to nonexpert centers. Tackling this
issue depends critically on the development of an accurate and
easily generalizable method to automatically detect AVHs from
brain activity of new SCZ patients with a low additional pro-
cessing cost.

Here, we propose a novel approach, abstracting out the
highly variable content of AVHs by considering these expe-
riences as stereotyped discontinuous mental events, char-
acterized by core modality-independent properties (17,18).
To do so, we combined our previously validated fMRI-
capture method with supervised machine learning to char-
acterize the informational mapping of AVH states in highly
symptomatic patients with schizophrenia, both within and
between subjects (19). We found that AVH occurrences can
be accurately and reliably decoded from individual fMRI
blood oxygen level–dependent (BOLD) signals and that this
signature was robust to concurrent mental processes while
being generalizable to new data. This predictive signature is
time-selective and appears to mainly rely on the BOLD
pattern in the BA. In contrast to previous brain imaging
studies that emphasized the distributed nature of AVH brain
representations, our results show that a multivariate pattern
of neural response in a single hub, namely, the BA, is suffi-
cient to robustly predict whether a patient is experiencing
AVH, paving the way for the therapeutic use of fMRI-based
neurofeedback or brain-computer interfaces for closed-loop
neuromodulation.

METHODS AND MATERIALS

Participants

Two independent groups of right-handed patients with SCZ
(DSM-IV-TR) were recruited and scanned on two different MRI
scanners. Twenty-three patients were enrolled in sample 1
(SCZ#1), and 34 in sample 2 (SCZ#2). They all experienced
very frequent and drug-resistant AVHs (i.e., more than 10 ep-
isodes/hour). AVH severity was assessed with the P3-item of
the Positive and Negative Syndrome Scale (20). See
Supplemental Methods for a full list of exclusion criteria. The
clinical characteristics of these samples, including the average
Biological Psy
dosage of antipsychotic medication (in chlorpromazine equiv-
alent), are summarized in Table 1. The study received approval
from a national ethical committee (CPP Nord-Ouest, France IV,
#2009-A00842-55), and written informed consent was ob-
tained for each participant enrolled in the study upon inclusion.

Procedure

Each patient underwent a single MRI session after clinical
evaluation. This acquisition included two runs: 1) an anatom-
ical MRI and 2) an AVH-capture fMRI. For full details of the
experimental procedure, see the Supplement.

Data Labeling

For each patient, a cortex-based independent component
analysis (ICA) was performed. ICA allowed us to blindly extract
nth components (with n equal to 10% of the total number of
volumes) from the fMRI BOLD signal time series recorded from
cortical voxels. To identify AVH periods, we applied the
two-step method summarized in Figure 1 (13,16,21). Because
ICA does not naturally order the resulting components ac-
cording to their relevance, our first step was to manually sort
the ICs capturing only noise or recording artifacts and those
capturing neurophysiological sources (IC-fingerprint method).
Then, among the components capturing neurophysiological
sources, we searched for those with a temporal dynamic
compatible with the post-fMRI interview data in terms of
number of episodes and times of occurrence. Previous reports
confirmed the high accuracy of the postscan information in
such a context (16).

We finally checked whether these ICs contained brain re-
gions previously identified during AVHs (e.g., speech-related
network) (Figure 1A, B). As a second step, three labels were
defined on the normalized signal time course of these AVH-
related ICs (Figure 1C): ON for the AVH experience (per-AVH
periods feature an increased BOLD signal [z score .0] main-
tained for at least 12 seconds; SCZ#1: 2320 and SCZ#2: 2000
volumes labeled ON), OFF for periods without AVHs (periods
with decreased BOLD signals [z score ,0] that occurred prior
to the ON periods and persisted for at least 6 seconds; SCZ#1:
997 and SCZ#2: 1302 volumes labeled OFF), and REST for
wider (noisier) resting-state periods, distant from any halluci-
natory event (SCZ#1: 2974 and SCZ#2: 13,688 volumes
labeled REST) (see Figure S1).

Data Analysis

We used the Python scikit-learn library to implement linear
support vector machine (lSVM) classifiers (22) using the pre-
viously described labels (Figure 1D). The workflow described
below was conducted independently for each sample (SCZ#1
and SCZ#2). For a full description of multivoxel pattern analysis
preprocessing, see Supplemental Methods.

Supervised Analysis With lSVM. To avoid overfitting
and to limit the complexity of our classifier, we used linear
SVMs to perform multivoxel pattern analysis analyses. Using
the labels extracted from the cortex-based ICA analysis (see
Data Labeling), we trained classifiers to distinguish between
MRI volumes labeled ON versus OFF (or between MRI vol-
umes labeled ON vs. ALL [OFF 1 REST]). These classifiers
chiatry January 15, 2022; 91:194–201 www.sobp.org/journal 195
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Table 1. Demographic and Descriptive Characteristics of the Recruited Participants

Characteristics SCZ Dataset #1 (n = 23) SCZ Dataset #2 (n = 34) CTL Dataset (n = 20)

Age, Years, Mean 6 SD 34.3 6 8.3 35.2 6 9.8 29.9 6 10.1

Sex, Female, n (%) 11 (43.5%) 10 (29.4%) 6 (40%)

Duration of SCZ, Years, Mean 6 SD 16.8 6 10.5 17.1 6 10.8 –

PANSS Total Score, Mean 6 SD 79.1 6 23.3 82.4 6 20.3 –

PANSS Positive Score, Mean 6 SD 21.4 6 5.8 21.6 6 5.5 –

P3 Item, Mean 6 SD 5.1 6 0.9 5.6 6 1.2 –

AHRS Score, Mean 6 SD 24.1 6 6.8 26.5 6 6.1 –

CPZ-Eq, mg, Mean 6 SD 353.6 6 273.6 324.5 6 246.4 –

AHRS, Auditory Hallucinations Rating Scale; CPZ-Eq, medication dosage in chlorpromazine equivalent; CTL, control; P3 Item, third item of the
positive subscale of the PANSS; PANSS, Positive and Negative Syndrome Scale; SCZ, schizophrenia.
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were trained either within subject (using only a subset of the
labels from a given subject at a time for training, and testing
on the remaining labels) (Figure 2A–C) or across subjects
(using a subset of the labels from all subjects pooled
together and testing on the remaining pooled labels)
(Figure 2B–D). Corresponding maps are available on Neu-
roVault. Areas under the curve (AUCs) were calculated for
each classifier by randomly taking half of the sample data as
the training set and half of the sample data as the test set.
Receiver operating characteristic (ROC) curves were
computed on the test set. To assess the statistical signifi-
cance of the results, we applied two complementary stra-
tegies: 1) in the case of within-subject classifiers, we
performed a Monte Carlo cross-validation with 1000 random
2-fold splits; 2) in the case of between-subject classifiers,
we performed a leave-one-subject-out cross-validation on a
per-subject basis. Hyperparameter optimization is presented
in Figure S2. Discriminative weight-maps illustrating the
spatial patterns that best discriminate between AVH states
(ON or OFF) were extracted and projected onto glass brains
(voxel clusters including more than 10 connected voxels, in
the 8-neighbor sense).
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Contribution of Local Multivariate BOLD Patterns to
AVH-State Prediction. To assess the contribution of
nonuniform response signs to AVH-state predictions (i.e., the
mixture of activation/deactivation in neighboring voxels within
a macroscopic region), we ran an additional multiscale sensi-
tivity analysis, in which voxel coordinates were shuffled within
the target brain regions prior to training and testing lSVMs to
decode ON and OFF AVH states. This procedure intended to
destroy all local spatial information within these areas while
preserving the target overall voxel BOLD activity distribution.
The loss of information induced by shuffling voxel location was
quantified by building the corresponding ROC curves and
computing AUCs, as was done in the main multivoxel pattern
analysis.

Generalization of the Classifiers (I). The false positive
rates of the classifiers were computed using an additional
control dataset described below. After a brief training session,
20 healthy volunteers (later called the control group; mean
age = 29.9 years, age range = 23–49 years) (see Table 1) un-
derwent an fMRI experiment on the same 1.5T scanner as the
SCZ#1 sample, during which they performed a verbal mental
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Figure 1. Labeling of the functional magnetic
resonance imaging (fMRI) volumes in ON/OFF/REST
periods to train linear classifiers. As previously
published (13,16,21), we performed (A) a spatial in-
dependent component (IC) analysis of the fMRI time
series collected from patients with frequent
auditory-verbal hallucinations (AVHs), resting in the
scanner (from schizophrenia samples #1 and #2). (B)
IC fingerprinting. For each patient, we selected the
component (IC12n) whose spatial network topog-
raphy matched known AVH-related functional net-
works (11) and whose temporal activity matched the
reported frequency of AVHs based on post-fMRI
interviews. (C) Finally, we labeled each fMRI vol-
ume as being ON (AVH1), OFF (AVH2), or REST,
based on the selected component z-scored tem-
poral dynamics. We labeled fMRI volumes in which
the z-scored component was positive for at least 12
consecutive seconds as being ON. Conversely, we
labeled volumes as OFF if at least 3 consecutive
time points were negative and if they were at least 6

EST. (D) Illustration of the training protocol. ON and OFF labels were used to
lane separating these two classes. The independent test set consisted of all
nar imaging; IC1–n, independent component 1-to-n; l, left; PCC, posterior
yrus; vmPFC, ventromedial prefrontal cortex.
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Figure 2. Decoding auditory-verbal hallucinations
(AVH) using a linear support vector machine (lSVM)
trained within subjects (A, C) and between subjects
(B, D). (A) Group average of within-subject AVH
decoding performances (ON vs. OFF). (B) Group
average of between-subject AVH decoding perfor-
mance (ON vs. OFF, first schizophrenia dataset). The
black circle indicates chance level, as estimated
using Monte Carlo simulation (with 1000 permuta-
tions). Error bars indicate between-subject SEM (A,
B). (C) An example of a within-subject contribution
map (patient #23). (D) Between-subjects contribu-
tion map. The 100 most informative voxels are color
coded to illustrate their contribution to the classifier
(lSVM weight). L, left; R, right.
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imagery task. We chose this condition, as verbal imagery was
previously found to share neural correlates with AVHs (23,24)
(see Supplemental Methods). Data were preprocessed
following the steps as described in Supplemental Methods,
and functional volumes from this experimental condition were
used to challenge the lSVM specificity for AVHs. To take into
account the fact that AVH periods typically occur during
several time volumes in a row, we convolved the lSVM output
probabilities applied to these controls with a flat window of
varying size to minimize false positives. The optimal window
size was taken as the one minimizing the false positive rates
both when the classifier was trained on ON/OFF labels of
SCZ#1 and tested on all volumes of SCZ#2, and conversely
(Figure S3).

Generalization of the Classifiers (II). Finally, an out-of-
sample cross-validation step was added. Performance
generalization of the decoding model built and optimized on
the SCZ#1 dataset was tested using fMRI data from the SCZ#2
sample kept in a lockbox (25). Conversely, we checked the
effect of training/optimizing a decoding model built from
SCZ#2, later generalized on the SCZ#1 dataset (kept in the
lockbox) for the final performance generalization step.

RESULTS

We first trained lSVM classifiers to detect BOLD activation
patterns concomitant with AVHs, either within subject (one
classifier per subject) (Figure 2A–C) or between subjects (one
classifier for the whole SCZ#1 population) (Figure 2B–D). On
average, the within-subject classifier used 100 ON versus 43
OFF volumes/subject (Figure S1). Its mean decoding accuracy
for AVHs was 0.96 6 0.04 across patients, which was
significantly above chance (Monte Carlo simulations of the null
distribution, 1000 permutations) (see Figure 2A). The between-
subjects classifier used a total of 2320 ON versus 997 OFF
volumes. Its decoding accuracy for AVHs was also significantly
above chance at 0.79 6 0.06 (1000 permutations) (Figure 2B).
Although MRI data were normalized using only a standard
linear transformation, this value was in the same range as the
within-subject classifier accuracy. The ROC curve also
Biological Psy
indicated a high probability for correct classification for
the between-subjects classifier (AUCH0 = 0.55 vs. AUC = 0.85,
p , 1 3 1023) (Figure 3A).

Then, we built contribution maps from the predictive weight
given to each voxel by the ON versus OFF lSVM classifier,
which revealed AVH-related BOLD activity patterns in the
bilateral inferior frontal gyri (i.e., the BA and its right homolog),
the supplementary motor area (SMA) and the pre-SMA (SMA
will be used to designate these two structures), and the bilat-
eral supramarginal gyri (Figure 2C, D). These brain regions
have previously been shown to be involved in AVH patho-
physiology (6,11,23).

As a sanity check, we ensured that these performances
did not depend on the ON/OFF volume ratio across subjects
or on frame displacements (Figure S4). We confirmed that
these findings and the performance of the classifier did not
depend on the threshold applied for feature selection (i.e., the
number of voxels included in the training set up to 10,000
voxels (see Table S1) and that the between-subjects
decoding performances were stable and reliable for all
training sample sizes larger than 10 patients, indicating that
the multivariate pattern of BOLD activity used by the classi-
fier seems especially robust and well conserved between
subjects (Figure 3B).

We also ran a series of additional analyses aimed at
assessing the specificity and robustness of this between-
subject ON versus OFF classifier. First, we estimated its false
positive rate when applied to new data. We applied the clas-
sifier trained with SCZ#1 ON/OFF labels to noisier volumes
(ON vs. [OFF 1 REST]) taken either from the same dataset
(SCZ#1, n = 23) or from a different dataset (SCZ#2, n = 34). As
shown in Figure 3C (blue bars), false positive rates were initially
high in both cases (i.e., 35% on average). However, by
applying a smoothing kernel to the output of the classifier to
take into account the fact that ON and OFF periods should
cover consecutive volumes, the false positive rate dropped at
21% (with an AUC of 85% for SCZ#1 / SCZ#1 and 81% for
SCZ#1 / SCZ#2). It is noteworthy that the application of the
smoothing kernel mainly acted by limiting the risk of false
positives over the 3 volumes preceding or succeeding actual
AVH states (Figure S3C, D).
chiatry January 15, 2022; 91:194–201 www.sobp.org/journal 197
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and true positive label classification (6SEM).
(B) Reliability of between-subjects auditory-verbal
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performance level (6SEM) estimated using Monte
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Similarly, when applying the classifier to a third dataset
acquired in healthy control subjects performing a verbal im-
agery task (a mental process potentially overlapping AVH; see
control dataset, Methods and Materials), the initial false posi-
tive rates were high (37%), but filtering the classifier’s output
resulted in a decrease in this false positive rate to 25%
(Figure 3C) (light-green bars). Finally, retraining the lSVM
classifiers on a composite dataset mixing OFF labels with
some REST and/or IMA labels from the #SCZ1/2 and/or IMA
dataset (i.e., using a subpart of the control dataset to enhance
the training sets) reduced false positives to a reasonable level
of approximately 20% in all conditions without altering AVH
decoding accuracy (Figure 3C) (dark-green bars) (see also
Figure S5 presenting the decoding accuracy and contributive
maps for a between-subject classifier trained on ON vs.
[OFF 1 REST] with SCZ#1).

To ensure out-of-sample generalization and control for the
risk of hyperparameter overfitting, the classifier trained on
the SCZ#1 dataset was then challenged to predict the labels of
the independent SCZ#2 sample (fully held out from the opti-
mization process and only accessed to generate a new unbi-
ased estimate of the AVH decoder’s performance). We
AUC: .85
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switched this procedure by training a classifier on SCZ#2 and
predicting labels on SCZ#1. In both cases, the AUCs were
found to be significantly different from chance (0.85 and 0.88,
respectively), while the resulting contributive voxels over-
lapped in 75% of the cases within the BA (Figure 4).

Finally, we assessed how much AVH-related information
was local, encoded as a spatial mixture of activation/deacti-
vation within each brain region identified in the main analysis
(namely, the BA and SMA) while controlling for global patterns
of average regional levels of BOLD activity (for example, higher
mean BA BOLD activity and lower mean SMA activity during
AVHs). We found that shuffling voxel coordinates within the BA
and SMA prior to training/testing the classifier had a significant
effect on AVH prediction within the BA (Figure 5A) (blue ROC
curve, p , 1 3 1025), but not within the SMA (Figure 5A) (pink
ROC curve). Moreover, ROC curves when only BA voxels were
shuffled were not statistically significant from the ROC curves
when both BA and SMA voxels were shuffled (Figure 5A)
(dashed black ROC curve). This suggests that most AVH-
related information captured by the linear classifier is repre-
sented locally in the spatial BOLD pattern of BA and not
elsewhere in the brain.
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Figure 4. Generalization of the auditory verbal
hallucination (AVH) decoder to out-of-sample data.
We checked for possible overfitting and overhyping
of the AVH linear support vector machine (lSVM)
classifier. In conjunction with the cross-validation
approach used on the first schizophrenia dataset
(SCZ#1) (cf. Figures 2–4), we refer to a lockbox
approach, in which the second sample of patients
with SCZ scanned during AVH occurrences was set
aside from the beginning of the study and used only
after hyperparameter optimization of the AVH clas-
sifier to check its accuracy on a completely new
dataset (upper panel). We repeated the procedure to
ensure that we could obtain similar generalization
performances when starting training and optimizing
the decoder on the SCZ#2 dataset and testing ac-
curacy on the SCZ#1 dataset (lower panel). AUC,
area under the curve; L, left; R, right.
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Figure 5. Local vs. global patterns of blood oxygen level–dependent
activity associated with auditory verbal hallucinations. (A) Receiver oper-
ating characteristic curve of a between-subjects ON vs. OFF linear support
vector machine (lSVM) indicating the trade-off between false positive and
true positive label classification (black line, first schizophrenia dataset). Pink
and blue lines indicate the receiver operating characteristic curves after a
volume-by-volume shuffling of voxel locations within each of the two re-
gions of interest (ROIs) (pink: supplementary motor area [SMA] shuffled,
blue: Broca’s area [BA] shuffled). The dashed black line indicates the per-
formance of the classifier when the spatial locations of voxels within both
ROIs are simultaneously shuffled. Note that voxels belonging to an ROI are
always shuffled to a location within that same ROI. Shaded blue and pink
areas indicate between-subjects SEM. (B) Contribution map of the between-
subjects lSVM (ON vs. OFF) (top panel) against an updated activation like-
lihood location (ALE) meta-analysis of the literature on per–auditory verbal
hallucination blood oxygen level–dependent activity (bottom panel). L, left;
R, right.
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Taken together, these results shed new light on the patho-
physiology of AVHs, which was previously thought to be
inherently distributed in a complex network of brain-wide re-
gions, and suggest instead that a nonuniform BA functional
pattern is critical to predict AVH occurrences (Figure S6) and
set it apart from normal perception.

DISCUSSION

The online detection of spontaneous AVH occurrence has long
been very challenging (9,13,16). By demonstrating that a
simple linear classifier can robustly decode hallucinatory states
from out-of-sample resting-state fMRI data without complex
preprocessing, we substantially extended recent work in the
field of AVH fMRI capture by departing from a classic
activation-based to a multivariate information-based
perspective. Notably, we found a 79% between-subjects ac-
curacy in distinguishing hallucinatory and nonhallucinatory
periods (ON vs. OFF, 0.85 AUC).

We demonstrated the robustness of our findings by con-
ducting a set of supplemental analyses to precisely charac-
terize our decoder features: 1) repeating the performance
measures while increasing the sample size, 2) confirming good
performances even when using noisier data, and 3) reducing
false positive rates after enforcing temporal regularization and
training the algorithm to selectively ignore verbal imagery. We
further addressed a crucial issue in the classification literature:
replicability of the decoder performances (26). Here, we went
beyond conventional leave-one-subject-out cross-validation
strategies by replicating our results both ways, using either
SCZ#1 or SCZ#2 as a training/test set or as an out-of-sample
Biological Psy
dataset aside in a lockbox [and thus independent from the
optimization process (25)].

We identified a BOLD multivariate signature predictive of
AVH in speech-related motor/planning brain regions, such as
the Brodmann area 44, part of the BA (27), and the SMA
[Brodmann area 6, medially (28)]. This functional signature
highlights the special role of BA in hallucinatory experiences
among all the regions previously reported in per-AVH activa-
tion studies, whether in first-episode psychosis (13,29), SCZ
(9,16,30,31), or nonclinical voice hearers (23). Interestingly, this
last study reported differences in the timing of SMA activations
(relative to BA activations) between AVHs and a verbal imagery
condition, which appears fully compatible with our optimiza-
tion procedure that allowed us to strengthen AVH/imagery
discrimination. In addition, consistent with these findings, our
BA cluster overlaps with coordinate-based meta-analytic
findings of per-AVH hyperactivations in schizophrenia (11) or
conditioned hallucinatory mapping obtained from nonclinical
participants (32) (Figure 5B; see also Tables S2 and S3 and
Figure S7).

The BA and SMA are also known to be involved in error
monitoring and inhibition (33), suggesting that AVHs may
result from aberrant motor representations/predictions
(despite an absence of online self-report in the participants),
which may be a core mechanism in the lack of insight
typically associated with hallucinations (34). This appears
compatible with previous hypotheses of inner speech as a
form of action (35). In contrast, hippocampal or temporopar-
ietal structures, also known to be involved in AVH
pathophysiology (6,36–38), possibly by reflecting the spatio-
temporal, rich, and complex content of these experiences
(21,39), were not necessary to reach high decoding perfor-
mances. Even if anteroposterior dysconnectivity between
speech-related areas has been regularly shown to be involved
in AVHs (40), this new finding suggests either 1) that the
highly variable nature of the information computed by these
temporal-hippocampal structures is not stereotyped enough
to be decoded using lSVM or 2) that most of the relevant fine-
grained information conserved between subjects is encoded
in Broca’s BOLD activity.

Although the main goal of this study was to demonstrate the
feasibility of a reliable and easily deployable multivariate AVH
decoder, it also adds several insights to AVH pathophysiology.
We know that the performance of a classifier is dependent on
the functional features used to train the lSVM. This is why we
referred to a valid strategy to determine ON/OFF labels
(13,16,21) that proved able to achieve good performances
even without special regularization preprocessing steps (41).
This may appear surprising at first glance because previous
work conducted on more subtle functional profiles (i.e., states
preceding AVH onsets) showed that specific classification al-
gorithms with total variation penalty were better at detection
than lSVM (39).

In reality, the good performances demonstrated by our
classifier reflect the remarkable consistency of the AVH-related
BOLD pattern across patients, robust to varying magnetic field
strength or sequence parameters (e.g., image resolution, time
repetition of the sequence, or differences in number of vol-
umes between SCZ#1 and SCZ#2 datasets). Limited activation
studies have previously reported similar spatial stability in per-
chiatry January 15, 2022; 91:194–201 www.sobp.org/journal 199
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AVH activation patterns (16,30), and we propose that such
consistency could be due to the involvement of the BA.

The BA is a highly preserved anatomical-functional hub [for
an evolutionary perspective, see (42)], which may relate to the
coding of a very generic, amodal feature of the AVH experi-
ence. In this vein, the BA could be sensitive to intrusiveness
into consciousness, irrespective of the highly variable
phenomenological content of the voices (4). Even if speculative
at this stage, this assumption appears compatible with recent
findings showing the involvement of the inferior frontal gyrus in
the intrusion of unwanted thoughts more broadly, notably in
patients with obsessive-compulsive disorder experiencing
severe obsessions (43), while states of mind-blanking were
shown to be associated with BA deactivation (44).

In our study, this assumption was also confirmed by
voxel permutation tests performed to challenge the local
distribution of response signs in contributive maps. Such
permutations flattened the lSVM accuracy when applied to
the BA, while extending this operation to the SMA only
slightly (yet significantly) impacted the classifier. This can be
interpreted as a form of redundancy in the information
processed by the SMA, while the BA could locally compute
crucial elements for AVH intrusion prediction, coded in its
microstructure (and not elsewhere in the brain), experi-
mentally accessible only because of the use of multivariate
pattern classification methods.

Until now, AVH fMRI capture has been considered to be
complex and time-consuming because of its many technical
constraints. This situation has limited the use of these
methods to offline applications in the lab, which has signifi-
cantly hindered therapeutic innovations. Thanks to our newly
validated and replicable biomarker, reading out hallucinatory
states online from resting-state fMRI is now possible,
providing a gateway to further validate fMRI-based neuro-
feedback procedures to relieve severe AVHs and develop
brain-computer interfaces for closed-loop neuromodulation
(45). Indeed, both approaches require clearly defined cortical
targets at key points in the brain networks involved in AVHs
(46).

The moderate sample size and the recruitment of only right-
handed participants should be acknowledged. However, the
high number of ON/OFF labels, replication on a second inde-
pendent group (SCZ#2), and the good performance stability
across sample sizes all suggest that only little improvement
can be expected from further increasing the sample size
(Figure 3).

The unpredictable nature of brain-state changes over time
associated with hallucinations has long remained a major (and
supposedly insuperable) challenge in neuroscience, and most
therapeutic alternatives to medications have attempted to
modulate network activity [see for instance, noninvasive brain
stimulation targeting the temporoparietal junction (47)]. We
believe that our findings not only uncovered a neurofunctional
reconfiguration associated with this fascinating mental expe-
rience but also provide a translational way to automatically
identify a dynamic neural pattern playing an important, if not
critical, role in AVH occurrences (i.e., intrusiveness). This paves
the way for the generalization of fMRI capture and the devel-
opment of new image-guided therapeutic strategies for drug-
resistant hallucinations, such as fMRI neurofeedback based
200 Biological Psychiatry January 15, 2022; 91:194–201 www.sobp.or
on multivoxel patterns of brain activity and closed-loop cortical
stimulation.
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