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ON BIRATIONAL TRANSFORMATIONS OF HILBERT

SCHEMES OF POINTS ON K3 SURFACES

PIETRO BERI AND ALBERTO CATTANEO

Abstract. We classify the group of birational automorphisms of Hilbert schemes
of points on algebraic K3 surfaces of Picard rank one. We study whether
these automorphisms are symplectic or non-symplectic and if there exists a
hyperkähler birational model on which they become biregular. We also present
new geometrical constructions of these automorphisms.

1. Introduction

Hilbert schemes of points on smooth complex K3 surfaces are examples of ir-
reducible holomorphic symplectic (ihs) manifolds, i.e. compact simply connected
Kähler manifolds with a unique, up to scalar, holomorphic two-form, which is ev-
erywhere non-degenerate. The second integral cohomology group of ihs manifolds
admits a lattice structure, provided by the Beauville-Bogomolov-Fujiki (BBF) qua-
dratic form. The global Torelli theorem for K3 surfaces has been generalized to ihs
manifolds, albeit in a weaker form, making possible to investigate automorphisms
of these manifolds by studying their action on the BBF lattice.

For an integer t ≥ 1 consider a complex algebraic K3 surface S whose Picard
group is generated by an ample line bundle H with H2 = 2t, i.e. a very general
element of the 19-dimensional space of 2t-polarized K3 surfaces. A classification
of the group of biregular automorphisms of the Hilbert scheme S[n] := Hilbn(S)
has been given by Boissière, An. Cattaneo, Nieper-Wißkirchen and Sarti [5] in the
case n = 2, and by the second author for all n ≥ 3 [8]. In particular, Aut(S[n]) is
either trivial or generated by an involution which is non-symplectic, i.e. it does not
preserve the generator of H2,0(S[n]). If t 6= 1, the involution is not induced by an
involution of the surface S (we say that it is non-natural). The results of [5] and [8]
provide explicit numerical conditions on the parameters n and t for the existence
of a non-trivial biregular automorphism on S[n]. The first aim of the paper is to
give a similar classification for the group Bir(S[n]) of birational automorphisms of
the Hilbert scheme, thus generalizing the results of Debarre and Macŕı [11, 10] for
the case n = 2.

Section 2 briefly recalls the basic theory of Pells equations, which are the fun-
damental number theoretic tool in our study. Then, in Section 3 we combine the
description of the movable cone of S[n] due to Bayer and Macŕı [2] with Markman’s
results on monodromy operators [16] to obtain numerical necessary and sufficient
conditions on n and t for the existence of birational automorphisms on S[n]. For
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σ ∈ Bir(S[n]) let σ∗ ∈ O(H2(S[n],Z)) be its pullback action on the BBF lat-

tice. We set H2(S[n],Z)σ
∗

:=
{
v ∈ H2(S[n],Z) | σ∗(v) = v

}
and H2(S[n],Z)σ∗ :=

(H2(S[n],Z)σ
∗

)⊥.

Theorem 1.1. Let S be an algebraic K3 surface with Pic(S) = ZH, H2 = 2t and
n ≥ 2.

If t ≥ 2, there exists a non-trivial birational automorphism σ : S[n]
99K S[n] if

and only if t(n − 1) is not a square and the minimal solution (X,Y ) = (z, w) of
Pell’s equation X2 − t(n − 1)Y 2 = 1 with z ≡ ±1 (mod n − 1) satisfies w ≡ 0
(mod 2) and (z, z) ≡ (j, k) ∈ Z

2(n−1)Z × Z

2tZ with (j, k) ∈ {(1, 1), (1,−1), (−1,−1)}.
If so Bir(S[n]) = 〈σ〉 ∼= Z/2Z and

• if (j, k) = (1,−1), then σ is non-symplectic with H2(S[n],Z)σ
∗ ∼= 〈2〉;

• if (j, k) = (−1,−1), then σ is non-symplectic with H2(S[n],Z)σ
∗ ∼= 〈2(n −

1)〉;
• if (j, k) = (1, 1), then σ is symplectic with H2(S[n],Z)σ∗ ∼= 〈−2(n− 1)〉.

If t = 1, let (X,Y ) = (a, b) be the integer solution of (n− 1)X2 − Y 2 = −1 with
smallest a, b > 0. If n − 1 is a square or b ≡ ±1 (mod n − 1), then Bir(S[n]) =
Aut(S[n]) ∼= Z/2Z. Otherwise n ≥ 9, Bir(S[n]) ∼= Z/2Z × Z/2Z and Aut(S[n]) ∼=
Z/2Z.

For more details on the action σ∗ ∈ O(H2(S[n],Z)), see Proposition 3.1. We
remark that, by a classical result of Saint-Donat [26], the case t = 1 is the only
one where the K3 surface S has a non-trivial automorphism (S is a double covering
of P2 ramified over a sextic curve), hence Aut(S[n]) ∼= Z/2Z is generated by the
corresponding natural (non-symplectic) involution for all n ≥ 2.

It is interesting to notice that, differently from the biregular case, birational
involutions of S[n] can be symplectic, for (infinitely many) suitable choices of n, t. In
Proposition 3.5 we give examples of sequences of degrees of polarizations t = tk(n)
which realize all cases in Theorem 1.1.

By [16, §5.2], the closed movable cone of a projective ihs manifold X has a
wall-and-chamber decomposition

(1) Mov(X) =
⋃

g

g∗ Nef(X ′)

where the union is taken over all non-isomorphic ihs birational models g : X 99K X ′.
The chambers g∗ Nef(X ′) are permuted by the action of any birational automor-
phism of X . By Markman’s Hodge-theoretic global Torelli theorem [16, Theorem
1.3] biregular automorphisms are exactly those which map Nef(X) to itself. If X
admits a birational automorphism σ, it is natural to ask whether there exists an ihs
birational model g : X 99K X ′ such that g ◦σ ◦ g−1 is biregular on X ′. We confront
this problem for Hilbert schemes S[n] in Section 4, by using the explicit description
of the walls between chambers coming from [2, Theorem 12.3]. For a fixed n ≥ 2,
we say that a value t ≥ 1 is n-irregular if, for a very general 2t-polarized K3 surface
S, the group Bir(S[n]) contains an involution which is not biregular on any ihs bira-
tional model of S[n]. We provide a numerical characterization of n-irregular values
in Propositions 4.3 and 4.5. In particular, we verify that symplectic birational in-
volutions remain strictly birational on all birational models. On the other hand, in
the case of non-symplectic birational automorphisms there are only finitely many
n-irregular t’s for a fixed n ≥ 2 (see Corollary 4.7).
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Section 5 provides an in-depth analysis of the case n = 3. By studying solutions
of two particular Pell’s equations we show that, when Bir(S[3]) is not trivial, the
number of chambers in the movable cone of S[3] (i.e. the number of non-isomorphic
ihs birational models) is either one, two, three or five. For n = 2 it is known that
the number of chambers in Mov(S[2]) is at most three. As n increases, computing
an upper bound for the number of chambers becomes more and more difficult, since
walls arise from the solutions of an increasing number of Pell’s equations. The new
results for n = 3 are summed up in Proposition 5.6.

In Section 6 we show how Theorem 1.1 can be generalized to study birational
maps between Hilbert schemes of points on two distinct K3 surfaces of Picard
rank one (which need to be Fourier-Mukai partners). In the literature, isomorphic
Hilbert schemes of points on two non-isomorphic K3 surfaces are called (strongly)
ambiguous. The main result of the section is Theorem 6.2, an improved version
of the criterion [17, Theorem 2.2] for the determination of ambiguous pairs (up to
isomorphism or birational equivalence).

In Section 7 we go back to the case of biregular involutions. For ihs manifolds
of K3[n]-type (i.e. deformation equivalent to Hilbert schemes of n points on a K3
surface) we compare moduli spaces of polarized manifolds and moduli spaces of
manifolds with an involution whose action on the second cohomology has invariant
lattice of rank one. Theorem 7.5 gives a modular interpretation of the classification
of non-symplectic involutions for manifolds of K3[n]-type (see for instance [7]),
which for n = 2 has been highlighted in [4]. For n ≥ 3 this requires some additional
care, since we deal with moduli spaces which may be non-connected.

Finally, in Section 8 we give new geometrical examples of birational involutions as
in Theorem 1.1, for Hilbert schemes of points on quartic surfaces. Finding similar
constructions is an interesting problem, since the Torelli-like results used in the
proof of Theorem 1.1 give no insight on the geometry. Moreover, we describe up to
deformation birational involutions of S[n], when S is a general K3 surface of degree
2((n− 1)k2 +1) for some integer k. These involutions are obtained by deforming a
combination of Beauville involutions on the Hilbert scheme of n points of a specific
K3 surface of Picard rank two, in such a way that the deformation path goes only
through ihs manifolds which are still Hilbert schemes of points on K3’s.

Acknowledgements. The authors are indebted to Alessandra Sarti for reading
a first draft of the paper and for her precious remarks. This work has greatly bene-
fited from discussions with Samuel Boissière, Chiara Camere and Georg Oberdieck.
A. C. is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality
and financial support. A. C. is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – GZ
2047/1, projekt-id 390685813.

2. Preliminaries on Pell’s equations

A generalized Pell’s equation is a quadratic diophantine equation

(2) X2 − rY 2 = m

in the unknowns X,Y ∈ Z, for r ∈ N and m ∈ Z \ {0}. If m = 1, the equation is
called standard. If the equation (2) is solvable and r is not a square, the (infinite)
set of solutions is divided into equivalence classes: two solutions (X,Y ) and (X ′, Y ′)

http://arxiv.org/abs/projekt-id/3906858
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are said to be equivalent if

XX ′ − rY Y ′

m
∈ Z,

XY ′ −X ′Y

m
∈ Z.

If the equation is standard, then it is solvable and all solutions are equivalent.
Inside any equivalence class of solutions, the fundamental solution (X,Y ) is the

one with smallest non-negative Y , if there is a single solution with this property
in the class. Otherwise, the smallest non-negative value of Y is realized by two
conjugate solutions (X,Y ), (−X,Y ): in this case, the fundamental solution of the
class will be (X,Y ) with X > 0. If (X,Y ) is a fundamental solution, all other
solutions (X ′, Y ′) in the same equivalence class are of the form

(3)

{
X ′ = aX + rbY

Y ′ = bX + aY

where (a, b) is a solution of the standard Pell’s equation a2 − rb2 = 1.
A solution (X,Y ) of (2) is called positive if X > 0, Y > 0. The minimal solution

of the equation is the positive solution with smallest X . In particular, the minimal
solution is one of the fundamental solutions. We also use the expression “minimal
solution with a property P” to denote the positive solution with smallest X among
those which satisfy the property P .

Let (X,Y ) = (z, w) be the minimal solution of the equation X2 − rY 2 = 1. The
half-open interval [(

√
m, 0), (z

√
m,w

√
m)) on the hyperbolaX2−rY 2 = m contains

exactly one solution for each equivalence class. The solutions in this interval are all
the solutions (X,Y ) of (2) such that X > 0 and 0 ≤ Y

X
< w

z
. Moreover, if (X,Y )

is a fundamental solution of (2) and m > 0, then:

(4) 0 < |X | ≤
√

(z + 1)m

2
, 0 ≤ Y ≤ w

√
m

2(z + 1)
.

We will often make use of the following lemma.

Lemma 2.1. For t ≥ 1 and n ≥ 2 such that t(n− 1) is not a square, let (z, w) be
the minimal solution of X2 − t(n− 1)Y 2 = 1 with z ≡ ±1 (mod n − 1). If w ≡ 0
(mod 2), then

(i) z ≡ 1 (mod 2(n − 1)) and z ≡ 1 (mod 2t) if and only if (z, w) is not the
minimal solution of X2 − t(n− 1)Y 2 = 1.

(ii) z ≡ −1 (mod 2(n − 1)) and z ≡ −1 (mod 2t) if and only if the equation
X2 − t(n− 1)Y 2 = −1 has integer solutions.

(iii) if z ≡ 1 (mod 2(n−1)) and z ≡ −1 (mod 2t) then the equation (n−1)X2−
tY 2 = −1 has integer solutions; if t ≥ 2 the converse also holds.

(iv) if z ≡ −1 (mod 2(n−1)) and z ≡ 1 (mod 2t) then the equation (n−1)X2−
tY 2 = 1 has integer solutions; if n ≥ 3 the converse also holds.

Proof. Let w = 2m for some m ∈ N.

(i) – (ii) Write z = 2(n− 1)p± 1 = 2tq± 1 for p, q ∈ N. Then p((n− 1)p± 1) = tm2

and (n− 1)p = tq, hence r := p
t
∈ N. We have r((n− 1)rt± 1) = m2 and it

follows that there exist s, u ∈ N such that r = s2, (n−1)tr±1 = u2,m = su,
hence u2 − t(n − 1)s2 = ±1. If the sign is +, notice that u < z, therefore
(z, w) is not the minimal solution of X2 − t(n − 1)Y 2 = 1. Conversely,
assume first that X2 − t(n− 1)Y 2 = −1 has integer solutions and let (a, b)
be the minimal one. Then, by [10, Lemma A.2] the minimal solution of
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X2−t(n−1)Y 2 = 1 is (z, w) = (2t(n−1)b2−1, 2ab), which satisfies z ≡ −1
(mod 2(n − 1)) and z ≡ −1 (mod 2t). Similarly, if the minimal solution
(u, s) of X2 − t(n − 1)Y 2 = 1 does not satisfy u ≡ ±1 (mod n − 1), then
by (3) we have (z, w) = (2t(n− 1)s2 +1, 2us), hence z ≡ 1 (mod 2(n− 1))
and z ≡ 1 (mod 2t).

(iii) – (iv) Write z = 2(n− 1)p± 1 = 2tq∓ 1 for p, q ∈ N. Then p((n− 1)p± 1) = tm2

and (n − 1)p ± 1 = tq, hence pq = m2. Since gcd(p, q) = 1, there exist
s, u ∈ N such that p = s2, q = u2 and m = su, thus (n− 1)s2 − tu2 = ∓1.
Vice versa, let (a, b) be the solution of (n− 1)X2− tY 2 = ±1 with smallest
a > 0. By [10, Lemma A.2], the assumption t ≥ 2 (if the sign is −) or n ≥ 3
(if the sign is +) implies that the minimal solution of X2 − t(n− 1)Y 2 = 1
is (z, w) = (2(n− 1)a2∓ 1, 2ab), which satisfies z ≡ ∓1 (mod 2(n− 1)) and
z ≡ ±1 (mod 2t). �

3. Birational automorphisms of S[n]

Let S be an algebraic K3 surface with Pic(S) = ZH , H2 = 2t, t ≥ 1. For
n ≥ 2, let S[n] be the Hilbert scheme of n points on S and {h,−δ} a basis for
NS(S[n]) ⊂ H2(S[n],Z), where h is the class of the nef (not ample) line bundle
induced by H on S[n] and 2δ is the class of the exceptional divisor of the Hilbert–
Chow morphism S[n] → S(n). We consider H2(S[n],Z) equipped with the (even)
lattice structure given by the Beauville–Bogomolov–Fujiki integral quadratic form.
In particular, we haveH2(S[n],Z) ∼= H2(S,Z)⊕Zδ ∼= U⊕3⊕E8(−1)⊕2⊕〈−2(n−1)〉,
where for an integer d 6= 0 we denote by 〈d〉 the rank one lattice generated by an
element of square d.

3.1. The action on cohomology. By [24, Corollary 5.2] the group Bir(S[n]) is
finite and the homomorphism Bir(S[n]) → O(H2(S[n],Z)), σ 7→ σ∗ := (σ−1)∗ is in-
jective by [3, Proposition 10]. Moreover, the kernel of Ψ : Bir(S[n]) → O(NS(S[n])),
σ 7→ σ∗|NS(S[n]), is the subgroup of natural automorphisms, which is isomorphic

to Aut(S) (see [5, Lemma 2.4] and notice that ker(Ψ) ⊂ Aut(S[n]) by the global
Torelli theorem [16, Theorem 1.3]). By [26, §5], this implies that ker(Ψ) = {id}
if t ≥ 2, while for t = 1 we have ker(Ψ) = 〈ι[n]〉, where ι is the involution which
generates Aut(S) and ι[n] is the natural involution induced by ι on S[n].

Let Mov(S[n]) ⊂ NS(S[n])R be the movable cone of S[n], i.e. the open cone
generated by the classes of divisors whose base locus has codimension at least two.
It contains the ample cone AS[n] . If there exists σ ∈ Bir(S[n]) non-natural, then
the action σ∗ on NS(S[n]) is a non-trivial isometry and by [16, Lemma 6.22] it
preserves the movable cone; more specifically, σ∗ exchanges the two extremal rays
of Mov(S[n]). By [2, Proposition 13.1], t(n−1) is not a square, (n−1)X2− tY 2 = 1

has no integer solutions (if n 6= 2) and Mov(S[n]) = 〈h, zh− twδ〉R≥0
, where (z, w)

is the minimal solution of z2− t(n− 1)w2 = 1 with z ≡ ±1 (mod n− 1); moreover,
we have z ≡ ±1 (mod 2(n− 1)) and w ≡ 0 (mod 2).

By imposing the conditions σ∗(h) = zh− twδ, σ∗(zh− twδ) = h, one computes
that the matrix which describes σ∗ ∈ O(NS(S[n])) with respect to the basis {h,−δ}
is

(5)

(
z −(n− 1)w
tw −z

)
.
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This is an involution of NS(S[n]) thus from the description of ker(Ψ) that we
recalled above we conclude that the group Bir(S[n]) is either {id}, Z/2Z or Z/2Z×
Z/2Z. Assuming that there exists a non-natural birational involution σ ∈ Bir(S[n]),
then if t ≥ 2 we have Bir(S[n]) = 〈σ〉, while Bir(S[n]) = 〈ι[n], σ〉 if t = 1. Notice
that the isometry σ∗ is the reflection of NS(S[n]) which fixes the line spanned by
(n− 1)wh− (z− 1)δ. Let ν = bh− aδ ∈ NS(S[n]) be the primitive generator of this
line with a, b > 0, (a, b) = 1.

In the following, for any even lattice L with bilinear form (−,−) we denote by
AL := L∨/L the discriminant group, which is a finite abelian group equipped with
a finite quadratic form qL : AL → Q/2Z induced by the quadratic form on L. If
AL is cyclic of order m, we write AL

∼= Z

mZ
(α) if qL takes value α ∈ Q/2Z on a

generator of AL. For g ∈ O(L) we denote by g the isometry induced by g on AL.

In the case of the lattice H2(S[n],Z) we have AH2(S[n],Z)
∼= Z

2(n−1)Z

(
− 1

2(n−1)

)
. For

any x ∈ H2(S[n],Z) let div(x) be the divisibility of x in H2(S[n],Z), i.e. the positive
generator of the ideal (x,H2(S[n],Z)) ⊂ Z. The transcendental lattice of S[n] is
Tr(S[n]) = NS(S[n])⊥ ⊂ H2(S[n],Z).

Proposition 3.1. Let S be an algebraic K3 surface with Pic(S) = ZH, H2 = 2t,
t ≥ 1. For n ≥ 2, let σ ∈ Bir(S[n]) be a non-natural automorphism and ν =
bh− aδ ∈ NS(S[n]) be the primitive generator of the line fixed by σ∗ with a, b > 0.
Then one of the following holds:

• σ∗|Tr(S[n]) = − id and

◦ either σ∗ = − id and ν2 = 2, i.e. (a, b) is an integer solution of (n −
1)X2 − tY 2 = −1;

◦ or σ∗ = id, ν2 = 2(n−1) and div(ν) = n−1, i.e. (a, b
n−1 ) is an integer

solution of X2 − t(n− 1)Y 2 = −1.
• n ≥ 9, σ∗|Tr(S[n]) = id, σ∗ = − id and ν2 = 2t, i.e. the minimal solution of

X2 − t(n− 1)Y 2 = 1 is (b, a
t
) and b 6≡ ±1 (mod n− 1).

Proof. Let (z, w) be the minimal solution of X2 − t(n − 1)Y 2 = 1 with z ≡ ±1
(mod n−1); then, as we recalled before, z ≡ ±1 (mod 2(n−1)) and w ≡ 0 (mod 2).
By [16, Theorem 1.3], σ∗ is a monodromy operator (see [16, Definition 1.1]) hence
it acts on AH2(S[n],Z) as ± id by [16, Lemma 9.2]. Moreover, since Tr(S[n]) ∼= Tr(S)

has odd rank, σ∗|Tr(S[n]) = ± id (because σ∗ is a Hodge isometry; see [14, Corollary

3.3.5]). If t 6= 1, by imposing that σ∗|Tr(S[n]) glues with the isometry σ∗|NS(S[n]) of

the form (5), we conclude (by [21, Corollary 1.5.2]) that σ∗|Tr(S[n]) = id if and only

if z ≡ 1 (mod 2t) and σ∗|Tr(S[n]) = − id if and only if z ≡ −1 (mod 2t). On the

other hand σ∗ = id if and only if z ≡ −1 (mod 2(n− 1)) and σ∗ = − id if and only
if z ≡ 1 (mod 2(n− 1)), for all t ≥ 1 (see [8, Remark 5.2]).

If σ∗ acts as − id on Tr(S[n]) and t ≥ 2, then the statement follows as in the
proof of [8, Proposition 5.1] and by [8, Lemma 6.3].

Assume that z ≡ 1 (mod 2t) (hence, σ∗|Tr(S[n]) = id or t = 1). By Lemma 2.1

and by the hypothesis that (n − 1)X2 − tY 2 = 1 has no integer solutions we have
z ≡ 1 (mod 2(n− 1)), i.e. σ∗ acts as − id on the discriminant group of H2(S[n],Z).
Moreover, (z, w) = (2t(n − 1)s2 + 1, 2us), where (u, s) is the minimal solution of
X2 − t(n− 1)Y 2 = 1. The axis of the reflection σ∗|NS(S[n]) is spanned by

(n− 1)wh− (z − 1)δ = 2s(n− 1) (uh− tsδ) .
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Since gcd(u, ts) = 1, we conclude that the primitive generator of the axis of the
reflection is ν = uh − tsδ, whose square is 2t. By looking at quadratic residues
modulo n− 1, we see that the minimal solution (u, s) of X2 − t(n− 1)Y 2 = 1 can
have u 6≡ ±1 (mod n− 1) only if n ≥ 9. �

Remark 3.2. Let ω be a generator ofH2,0(S[n]). Then NS(S[n]) = ω⊥∩H2(S[n],Z),
therefore an automorphism σ ∈ Bir(S[n]) is symplectic (i.e. σ∗ω = ω) if and only
if σ∗|Tr(S[n]) = id. As a consequence of [18, Lemma 3.5, Corollary 5.1] (see also [8,

Proposition 4.1]) any symplectic non-trivial birational automorphism of S[n] is not
biregular. We will return to this point in Section 4.

3.2. Classification of birational automorphisms. Let L be an even lattice and
l ∈ L such that (l, l) 6= 0. We define the reflection

Rl : LR → LR, m 7→ m− 2
(m, l)

(l, l)
l.

This map restricts to a well-defined isometry Rl ∈ O(L) if and only if the divisibility
of l is either |(l, l)| or |(l, l)| /2. Recall that the real spinor norm of L is the group

homomorphism snL
R
: O(L) → R∗/ (R∗)2 ∼= {±1} defined as

snL
R
(g) =

(
− (v1, v1)

2

)
. . .

(
− (vr, vr)

2

)
(mod (R∗)2)

where gR = Rv1 ◦ . . . ◦ Rvr is the factorization of gR ∈ O(LR) with respect to
reflections defined by elements vi ∈ L. In particular, if the signature of L is (l+, l−),
after diagonalizing the bilinear form of L over R it is immediate to check that
snL

R
(− id) = (−1)l+ .

Proof of Theorem 1.1 for t ≥ 2. By Proposition 3.1, Lemma 2.1 and the previous
discussion, the numerical conditions in the statement of the theorem are necessary
for the existence of a birational automorphism of S[n] with non-trivial action on
NS(S[n]) (i.e. a non-trivial automorphism, since t 6= 1). Assume now that these
conditions hold. If n 6= 2 the equation (n−1)X2− tY 2 = 1 has no integer solutions,

since (j, k) 6= (−1, 1) (Lemma 2.1). We therefore have Mov(S[n]) = 〈h, zh−twδ〉R≥0

by [2, Proposition 13.1]. Using again Lemma 2.1, we give the following definitions
depending on (j, k).

(i) If (j, k) = (1,−1), then (n − 1)X2 − tY 2 = −1 has integer solutions. Let
(a, b) be the solution with smallest a > 0 and set ν = bh− aδ. By Lemma
2.1 we have (z, w) = (2(n − 1)a2 + 1, 2ab), since we are assuming t ≥ 2.
As ν2 = 2, we can define φ = −Rν ∈ O(H2(S[n],Z)). Then φ = − id ∈
O(AH2(S[n],Z)) by [12, Proposition 3.1].

(ii) If (j, k) = (−1,−1), then X2 − t(n − 1)Y 2 = −1 has integer solutions.
Let (a, b) be the minimal solution and set ν = (n − 1)bh − aδ. Then
(z, w) = (2t(n−1)b2−1, 2ab). The class ν has square 2(n−1) and divisibility
n − 1 (see [8, Lemma 6.3]), so we can define φ = −Rν ∈ O(H2(S[n],Z))

and φ = id by generalizing [12, Corollary 3.4].
(iii) If (j, k) = (1, 1), let (b, a) be the minimal solution of X2 − t(n− 1)Y 2 = 1

and set ν = bh− taδ. Then (z, w) = (2t(n− 1)a2 + 1, 2ab). The primitive
element γ = (n− 1)ah− bδ satisfies γ2 = −2(n− 1), while the divisibility
of γ in H2(S[n],Z) is either n− 1 or 2(n− 1). This implies that φ = Rγ ∈
O(H2(S[n],Z)) and moreover φ = − id by [16, Proposition 9.12].
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Notice that there is no ambiguity in the definitions of ν and φ when n = 2.
By construction, φ|Tr(S[n]) = − id in cases (i), (ii) and φ|Tr(S[n]) = id in case (iii).

Thus φ extends to a Hodge isometry of H2(S[n],C). Moreover, φ is orientation-

preserving. Indeed, let snR := sn
H2(S[n],Z)
R

; then if φ = −Rν we have

snR(φ) = snR(− id)snR(Rν) = −snR(Rν) = sgn(ν2) = +1

where we used the fact that H2(S[n],Z) has signature (3, 20). If φ = Rγ , then

snR(φ) = −sgn(γ2) = +1. We conclude, by [16, Lemma 9.2], that φ ∈ Mon2Hdg(S
[n])

(in the case φ = Rγ , also see [16, Proposition 9.12]).
From the relations between (a, b) and (z, w) that we remarked for each of the

three pairs (j, k), it is immediate to check that ν ∈ Mov(S[n]) and that φ|NS(S[n])

is the isometry (5) fixing the line spanned by ν, hence φ(Mov(S[n])) = Mov(S[n]).
Then, by [16, Lemma 6.22 and Lemma 6.23] φ ∈ Mon2Bir(S

[n]), i.e. there exists a
birational automorphism σ ∈ Bir(S[n]) such that σ∗ = φ. �

We are left to discuss the case t = 1. For all n ≥ 2 the group Aut(S[n]) contains
the natural involution induced by the generator of Aut(S). Here, the equation
(n − 1)X2 − tY 2 = −1 has always integer solutions, while X2 − t(n − 1)Y 2 = −1
has no integer solutions if we assume that (n− 1)X2 − tY 2 = 1 has none.

Proof of Theorem 1.1 for t = 1. Let (z, w) be the minimal solution of z2 − (n −
1)w2 = 1 with z ≡ ±1 (mod n−1). If there exists a non-natural automorphism then
w ≡ 0 (mod 2), which implies z ≡ 1 (mod 2t). Thus, by the proof of Proposition
3.1, (z, w) is not the minimal solution of the equation, i.e. b 6≡ ±1 (mod n − 1).
On the other hand, if we assume b 6≡ ±1 (mod n − 1) then (n − 1)X2 − Y 2 =
1 has no integer solutions by [10, Lemma A.2]. The existence of a symplectic
automorphism follows as in the proof for t ≥ 2, case (iii). By [8, Proposition 1.1],
this automorphism is not biregular. �

If S is a 2-polarized K3 surface of Picard rank one, the smallest n such that
Bir(S[n]) ∼= Z/2Z× Z/2Z is n = 9.

Remark 3.3. Notice that t = 1 is the only value of t such that the isometry
(5) of NS(S[n]) can be glued to both + id,− id ∈ O(Tr(S[n])). This follows from
[21, Corollary 1.5.2], since the discriminant group of Tr(S[n]) is Z

2tZ . If t = 1, let

ν = bh− aδ ∈ NS(S[n]) be as in the proof of Theorem 1.1. Then (−Rν)⊕ (− id) ∈
O(NS(S[n])⊕Tr(S[n])) extends to −Rν ∈ O(H2(S[n],Z)), while (−Rν)⊕ id extends
to Rγ , with γ = (n− 1)ah− bδ. If n− 1 is not a square and b 6≡ ±1 (mod n− 1),
both isometries Rγ and −Rν of the cohomology lattice are Hodge monodromies

which lift to (distinct) non-natural birational automorphisms of S[n]. The lift of
Rγ is symplectic while the lift of −Rν is non-symplectic. Each automorphism can

be recovered by composing the other with ι[n], where ι is the covering involution
which generates Aut(S). Indeed, (ι[n])∗|NS(S[n]) = id and (ι[n])∗|Tr(S[n]) = − id

(since ι[n] is a natural involution).

Remark 3.4. If for n ≥ 2, t ≥ 2 there exists a non-trivial birational automorphism
on S[n], it is biregular if and only if n, t satisfy condition (iii) of [8, Theorem 6.4],
which guarantees that AS[n] = Mov(S[n]). If t ≤ 2n − 3 the automorphism is not
biregular by [8, Proposition 1.1].
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The following proposition provides examples of polarization degrees for the K3
surface S so that S[n] has a non-natural birational automorphism, for each of the
three different actions on cohomology of Proposition 3.1.

Proposition 3.5. Fix n ≥ 2. For t ≥ 1, we denote by S an algebraic K3 surface
with Pic(S) = ZH, H2 = 2t.

(i) There exist infinitely many t’s such that Bir(S[n]) contains a non-natural,

non-symplectic automorphism σ with H2(S[n],Z)σ
∗ ∼= 〈2〉, e.g. t = (n −

1)k2 + 1 for k ≥ 1.
(ii) There exists t such that Bir(S[n]) contains a non-natural, non-symplectic

automorphism σ with H2(S[n],Z)σ
∗ ∼= 〈2(n − 1)〉 if and only if −1 is a

quadratic residue modulo n− 1. If so, this happens for infinitely many t’s,

e.g. t = (n− 1)k2 + 2qk + q2+1
n−1 for k, q ≥ 1 and q2 ≡ −1 (mod n− 1).

(iii) There exists t such that Bir(S[n]) contains a non-natural, symplectic auto-

morphism σ if and only if n− 1 = q2−1
h

for some q ≥ 3, h 6≡ 0 (mod q± 1).

If so, H2(S[n],Z)σ∗ ∼= 〈−2(n− 1)〉 and this happens for infinitely many t’s,
e.g. t = (n− 1)k2 + 2qk + h for k ≥ 1.

Proof. As before, we denote by (z, w) the minimal solution of X2 − t(n− 1)Y 2 = 1
with z ≡ ±1 (mod n− 1).

(i) If t = (n − 1)k2 + 1 and k ≥ 1, then t(n − 1) is not a square and (z, w) =
(2t − 1, 2k) = (2(n − 1)k2 + 1, 2k) by [10, Lemma A.2], since (k, 1) is the
solution of (n− 1)X2 − tY 2 = −1 with smallest X > 0. We conclude with
Theorem 1.1.

(ii) If there exists t such that Bir(S[n]) contains a non-natural, non-symplectic

automorphism σ with H2(S[n],Z)σ
∗ ∼= 〈2(n−1)〉, then by Theorem 1.1 and

Lemma 2.1 the equation X2 − t(n − 1)Y 2 = −1 is solvable, hence −1 is a
quadratic residue modulo n − 1. On the other hand, let t = (n − 1)k2 +

2qk+ q2+1
n−1 for k, q ≥ 1 and q2 ≡ −1 (mod n− 1). The minimal solution of

X2− t(n− 1)Y 2 = −1 is (q+(n− 1)k, 1), therefore t(n− 1) is not a square
and (z, w) = (−1 + 2t(n − 1), 2q + 2(n − 1)k), again by [10, Lemma A.2].
The existence of the automorphism and its action on cohomology follow
then from Theorem 1.1.

(iii) If Bir(S[n]) contains a symplectic automorphism σ, then by Theorem 1.1
and Lemma 2.1 the minimal solution (u, s) of X2 − t(n − 1)Y 2 = 1 has

u 6≡ ±1 (mod n − 1). Hence n − 1 = u2−1
ts2

≥ 8 and u ± 1 ∤ ts2. Let now

t = (n−1)k2+2qk+h for k, q, h as in the statement. The minimal solution
of X2− t(n−1)Y 2 = 1 is (u, s) = (q+(n−1)k, 1). Since h 6≡ 0 (mod q±1),
we have q 6≡ ±1 (mod n−1), therefore (z, w) = (1+2t(n−1), 2q+2(n−1)k),
which allows us to conclude by using Theorem 1.1. �

4. Decomposition of the movable cone and automorphisms of

birational models

We consider the wall-and-chamber decomposition (1) of the closed movable cone

Mov(S[n]) ⊂ NS(S[n])R = Rh ⊕ Rδ. As shown in [8, Lemma 2.5] by using [2,
Theorem 12.1], the walls are spanned by the classes of the form Xh− 2tY δ which
lie in the movable cone, for (X,Y ) a positive solution of one of Pell’s equations
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X2 − 4t(n − 1)Y 2 = α2 − 4ρ(n − 1) with X ≡ ±α (mod 2(n − 1)), where the
possible values of ρ and α are:





ρ = −1 and 1 ≤ α ≤ n− 1;

ρ = 0 and 3 ≤ α ≤ n− 1;

1 ≤ ρ < n−1
4 and 4ρ+ 1 ≤ α ≤ n− 1.

(6)

Definition 4.1. For n ≥ 2, let S be an algebraic K3 surface with Pic(S) = ZH ,
H2 = 2t, t ≥ 1. The value t is said to be n-irregular if there exists a birational
automorphism σ ∈ Bir(S[n]) such that for all ihs birational models g : S[n]

99K X
the involution g ◦ σ ◦ g−1 ∈ Bir(X) is not biregular.

Remark 4.2. If the decomposition of Mov(S[n]) has an odd number of chambers,
and there exists a non-natural automorphism σ ∈ Bir(S[n]), then the generator ν of
the axis of the reflection σ∗|NS(S[n]) is in the interior of one of the chambers. This

follows from the fact that the isometry σ∗ acts on the set of chambers by [16, Lemma
5.12], hence if their number is odd, one of them is preserved by σ∗, and therefore it
contains ν. As a consequence, there exists an ihs birational model (corresponding to
the preserved chamber) on which the involution becomes biregular, by [16, Theorem

1.3]. Notice that Mov(S[n]) has only one chamber if and only if σ ∈ Aut(S[n]). On
the other hand, if there is an even number of chambers in the decomposition of

Mov(S[n]), then ν lies on one of the walls in the interior of the cone, and therefore
σ is not biregular on any of the ihs birational models of S[n].

This implies that t is n-irregular if and only if Bir(S[n]) contains a non-natural
birational automorphism and the wall-and-chamber decomposition of Mov(S[n])
has an even number of chambers.

Proposition 4.3. For n ≥ 2 and t ≥ 1, assume that there exists a non-natural
birational automorphism σ ∈ Bir(S[n]) and either t = 1 or σ∗|Tr(S[n]) = id. Then t
is n-irregular.

Proof. By the proof of Proposition 3.1, if t = 1 or σ∗|Tr(S[n]) = id the axis of the

reflection σ∗|NS(S[n]) is spanned by the class ν = bh−taδ, where (b, a) is the minimal

solution of X2−t(n−1)Y 2 = 1. Moreover, n ≥ 9 and Mov(S[n]) = 〈h, zh−twδ〉R≥0

with (z, w) = (2t(n − 1)a2 + 1, 2ab). Since (b + 1)(b − 1) = t(n − 1)a2, we have

c := max{gcd(n− 1, b− 1), gcd(n− 1, b+ 1)} ≥ 2. We define α := max{4, 2(n−1)
c

},
which is an even integer such that 4 ≤ α ≤ n − 1. We consider Pell’s equation
X2− 4t(n− 1)Y 2 = α2. The pair (X,Y ) = (bα, aα

2 ) is a solution with the property
2Y
X

= a
b
. We also have X = bα ≡ ±α (mod 2(n− 1)) by construction, hence ν lies

on the wall (in the interior of the movable cone) spanned by the classXh−2tY δ. �

By the previous proposition, a non-natural birational automorphism of S[n]

which acts on Tr(S[n]) as id (or as ± id if t = 1) is not biregular on any ihs
birational model of S[n], which is stronger than what we stated in Remark 3.2.
By Proposition 3.5, for n fixed the number of n-irregular values t for which this
happens is either zero or infinite.

Example 4.4. For any odd k ≥ 5 with k 6≡ ±1 (mod 8), define t = k2−1
8 ∈ N. We

can readily check that S[9] admits a symplectic non-natural involution by Theorem
1.1, hence t is 9-irregular by Proposition 4.3.
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For non-symplectic automorphisms when t 6= 1, the behaviour is different. We
now show that, for a fixed n ≥ 2, there is only a finite number of n-irregular values t
for which the non-natural birational automorphism of S[n] acts as − id on Tr(S[n]),
and we provide an algorithm to compute them.

Proposition 4.5. Let t ≥ 2 and n ≥ 2, such that t(n − 1) is not a square and
(n− 1)X2 − tY 2 = 1 has no integer solutions (if n 6= 2). Assume that one between
(n− 1)X2 − tY 2 = −1 and X2 − t(n− 1)Y 2 = −1 admits integer solutions; define
ℓ = 1 if the first equation is solvable or ℓ = n − 1 if the second one is, and let
(a, b) be the solution with smallest a > 0. Then t is n-irregular if and only if
there exists a pair (α, ρ) as in (6) and a positive solution (X,Y ) of Pell’s equation
X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1) with X ≡ ±α (mod 2(n− 1)) such that

4tℓY 2 = (α2 − 4ρ(n− 1))a2.

Proof. Let ν = ℓbh − aδ ∈ Mov(S[n]) be the class of square 2ℓ as in the proof
of Theorem 1.1. Then ν lies on one of the walls in the interior of Mov(S[n]) if
and only if a

ℓb
= 2t Y

X
, where (X,Y ) is a positive solution of one of the equations

X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1) with X ≡ ±α (mod 2(n− 1)) and (α, ρ) as in
(6). We write the condition on the slopes as:

Y

X
· ℓb

2(n− 1)a
=

1

4t(n− 1)

and we observe that (2(n−1)a)2−4t(n−1)(ℓb)2 = −4ℓ(n−1). Hence this becomes:
√

1

4t(n− 1)
− α2 − 4ρ(n− 1)

4t(n− 1)X2

√
1

4t(n− 1)
+

4ℓ(n− 1)

4t(n− 1)(2(n− 1)a)2
=

1

4t(n− 1)
.

If we rearrange the equation, we obtain:

(7) ℓX2 − (n− 1)(α2 − 4ρ(n− 1))a2 = ℓ(α2 − 4ρ(n− 1))

i.e. 4tℓY 2 = (α2 − 4ρ(n− 1))a2. �

Remark 4.6. • Notice that, by (7) and (n − 1)a2 − t(ℓb)2 = −ℓ, we have
X2 = (α2−4ρ(n−1))tℓb2. However, tℓ has to divide α2−4ρ(n−1) (because
tℓ is coprime with a), hence α2−4ρ(n−1) = tℓr2 for some r ∈ N. This gives
an easy way to compute a (finite) list of candidates for the n-irregular values
t, among the divisors of α2 − 4ρ(n − 1) for (α, ρ) as in (6). In particular,
t ≤ (n− 1)(n+ 3).

• In order to check if a value t ≥ 2 is n-irregular in Proposition 4.5, it is
enough to consider the pairs (α, ρ) such that α2 − 4ρ(n − 1) > 0 and
the positive solutions (X,Y ) with smallest X in each equivalence class of
solutions of X2− 4t(n− 1)Y 2 = α2 − 4ρ(n− 1), otherwise the wall spanned
by Xh− 2tY δ is not in the interior of the movable cone.

Corollary 4.7. For a fixed n ≥ 2, the number of n-irregular values t for which
Bir(S[n]) contains a non-symplectic birational automorphism is finite. In particular,
for n ≤ 8 there is only a finite number of n-irregular values t.

Proof. By Proposition 3.1, assuming t ≥ 2 a non-natural automorphism σ ∈
Bir(S[n]) satisfies σ∗|Tr(S[n]) = − id if and only if the minimal solution of X2 −
t(n−1)Y 2 = 1 has X ≡ ±1 (mod n−1). In particular, this always holds for n ≤ 8.
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Then, by Theorem 1.1, either (n − 1)X2 − tY 2 = 1 or X2 − t(n − 1)Y 2 = 1 is
solvable. The statement follows from Proposition 4.5 and Remark 4.6. �

In Table 1, for n ≤ 14 we list all n-irregular values t as in Corollary 4.7. We
separate the values of t for which the middle wall of the movable cone is spanned
by a primitive class ν of square 2 (i.e. ℓ = 1), from those where the generator has
square 2(n − 1) and divisibility n − 1 (i.e. ℓ = n − 1). For n 6= 9, 12, the values t
in the table are all the n-irregular values, 9 and 12 being the only n ≤ 14 which
satisfy Proposition 3.5 (iii). We observe that, for n ≤ 5, all n-irregular values are
of the form t = n or t = 4n− 3.

Table 1. n-irregular values t for n ≤ 14 as in Corollary 4.7.

n n-irregular t’s s.t. ν2 = 2 n-irregular t’s s.t. ν2 = 2(n− 1)
2 5
3 3, 9 /
4 4, 13 /
5 5, 17 /
6 6, 9, 21 /
7 7, 25, 49 /
8 2, 4, 8, 11, 16, 29, 37 /
9 1, 9, 33, 57 /
10 10, 13, 37, 61, 85 /
11 11, 19, 41, 49, 121 /
12 3, 4, 5, 12, 15, 25, 27, 45, 125 /
13 1, 13, 49 /
14 14, 17, 22, 38, 49, 53, 77, 121, 133 5

Lemma 4.8. For all n ≥ 3, the value t = n is n-irregular. For all n ≥ 2, the value
t = 4n− 3 is n-irregular.

Proof. Notice that t = n and t = 4n−3 are values of the form t = (n−1)k2+1, for
k = 1, 2 respectively. By Proposition 3.5 the Hilbert scheme S[n] has a non-natural
birational automorphism which acts as − id on Tr(S[n]). The minimal solution of
(n− 1)X2 − tY 2 = −1 is (a, b) = (k, 1).

• If t = n and n ≥ 3, consider the equation X2−4t(n−1)Y 2 = α2−4ρ(n−1)
for ρ = −1 and α = 2. Its minimal solution is (X,Y ) = (2n, 1), which
satisfies X ≡ α (mod 2(n− 1)).

• If t = 4n− 3 and n ≥ 2, consider the equation X2 − 4t(n − 1)Y 2 = α2 −
4ρ(n−1) for ρ = −1 and α = 1. Its minimal solution is (X,Y ) = (4n−3, 1),
which satisfies X ≡ α (mod 2(n− 1)).

In both cases the relation 4tY 2 = (α2 − 4ρ(n − 1))a2 holds, hence the statement
follows from Proposition 4.5. �

In the case t = n, it is known that the automorphism of S[n] which acts as the
reflection in the (only) wall contained in the interior of Mov(S[n]) is Beauville’s
involution [3, §6], which is biregular if and only if n = 2.

In Proposition 3.5 we showed that for t = (n − 1)k2 + 1, k ≥ 1 the Hilbert
scheme S[n] has a non-symplectic birational involution. We observed in Lemma 4.8
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that the involution is not biregular for k = 1, 2, while by [8, Proposition 6.7] it is
biregular (i.e. AS[n] = Mov(S[n])) whenever k ≥ n+3

2 . It seems however that this
lower bound on k is far from optimal.

Conjecture 4.9. Let n ≥ 2 and t = (n − 1)k2 + 1, for k ∈ N. Let S be an
algebraic K3 surface with Pic(S) = ZH, H2 = 2t. If k ≥ 3, then the non-natural
non-symplectic involution which generates Bir(S[n]) is biregular.

We checked computationally that the conjecture holds for all n ≤ 14.
The results of [8, Proposition 6.7] can be adapted also to the other family of

polarizations in Proposition 3.5 giving rise to non-symplectic birational involutions.

Lemma 4.10. Let n ≥ 3 and q ∈ N be such that q2 ≡ −1 (mod n − 1). Let

t = (n− 1)k2 + 2qk + q2+1
n−1 for k ≥ 1 and S an algebraic K3 surface with Pic(S) =

ZH, H2 = 2t. If k ≥ n+3
2 , then the non-natural non-symplectic involution which

generates Bir(S[n]) is biregular.

Proof. By Proposition 3.5 we just need to prove that AS[n] = Mov(S[n]). De-
fine Q = (n − 1)k + q. For k ≥ n+3

2 we have 4t(n − 1) > (n + 3)2(n − 1)2 ≥(
α2 − 4ρ(n− 1)

)2
for all (α, ρ) as in (6), hence the solutions of X2 − 4t(n −

1)Y 2 = α2 − 4ρ(n− 1) are encoded in the convergents of the continued fraction of√
4t(n− 1) = 2

√
Q2 + 1 = [2Q;Q, 4Q] (for details see [9, Chapter XXXIII, §16]).

The proof then follows as for [8, Proposition 6.7]. �

5. Kähler-type chambers and automorphisms for n = 3

It is known that for a K3 surface S of Picard rank one the number of Kähler-type

chambers in the decomposition of Mov(S[2]) is d ∈ {1, 2, 3} (see for instance [10,
Example 3.18]). We now detail the computation of the number of chambers for

n = 3 in the cases where Mov(S[n]) = 〈h, zh − twδ〉R≥0
, with (z, w) the minimal

solution of X2− t(n− 1)Y 2 = 1 with z ≡ ±1 (mod n− 1). In particular, this holds
whenever Bir(S[3]) 6= {id}.

For an integer t ≥ 2 such that 2t is not a square, consider the following two
generalized Pell’s equations:

P8t(9) : X
2 − 8tY 2 = 9

P8t(12) : X
2 − 8tY 2 = 12.

Remark 5.1. • If we write the two equations as X2 − 8tY 2 = 8 + α2, with
α ∈ {1, 2}, then it is clear that all solutions (X,Y ) satisfyX ≡ ±α (mod 4).

• If (X,Y ) is a solution of P8t(9) and (X ′, Y ′) is a solution of P8t(12), then
Y
X

6= Y ′

X′ since
√

12
9 is not rational.

• Assume that P8t(12) is solvable and let (X,Y ) be a solution. Then X = 2Z
for some Z ∈ Z such that (Z, Y ) is a solution of P2t(3) : Z2 − 2tY 2 = 3.
Notice that Z ≡ 1 (mod 2), Y ≡ 1 (mod 2) and t ≡ 1 (mod 2), since
3 is not a quadratic residue modulo 4. By [20, Theorem 110], if P2t(3) is
solvable it has one equivalence class of solutions if t ≡ 0 (mod 3), otherwise
it has two classes of solutions, which are conjugate. Then one can easily
see that the same holds for P8t(12).
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The next two lemmas give bounds for the number of equivalence classes of solu-
tions of P8t(9) and P8t(12), depending on t.

Lemma 5.2. If t ≡ 3 (mod 18), then P8t(12) is either not solvable or it has one
class of solutions. If t ≡ 5, 11, 17 (mod 18), then P8t(12) is either not solvable or
it has two classes of solutions. In all other cases, P8t(12) is not solvable.

Proof. By Remark 5.1 the equation P8t(12), if it is solvable, has one class of solu-
tions when t ≡ 0 (mod 3), two classes otherwise. We also remarked that solutions
(X,Y ) of P8t(12) are of the form (2Z, Y ) for (Z, Y ) solution of P2t(3), and that
P8t(12) is not solvable if t ≡ 0 (mod 2).

If t ≡ 1 (mod 3), write t = 3q+1 for q ∈ N0 and assume that (Z, Y ) is a solution
of P2t(3). Then Z2 − (6q + 2)Y 2 = 3, i.e. Z2 ≡ 2Y 2 (mod 3). This implies that
Z ≡ Y ≡ 0 (mod 3), which gives a contradiction. Hence, P8t(12) has no solutions.

If t ≡ 0 (mod 9), write t = 9q for q ∈ N. If (X,Y ) is a solution of P8t(12), then
X = 6X ′ for some X ′ ∈ N and 3(X ′)2 − 6qY 2 = 1, which is impossible. Hence,
P8t(12) has no solutions.

If t ≡ 6 (mod 9), write t = 9q + 6 for q ∈ N0. If (X,Y ) is a solution of P8t(12),
then X = 3X ′ for some X ′ ∈ N and 3(X ′)2 − 8(3q + 2)Y 2 = 4. This implies
Y 2 ≡ −1 (mod 3), which cannot be. Hence, P8t(12) has no solutions. �

Lemma 5.3. If t ≡ 1 (mod 3) or t ≡ 3, 6 (mod 9), then all solutions of P8t(9)
are equivalent to (X,Y ) = (3, 0). If t ≡ 0 (mod 9), then P8t(9) has either one, two
or three classes of solutions. If t ≡ 2 (mod 3), then P8t(9) has either one or three
classes of solutions.

Proof. If t = 3q+1, for q ∈ N0, then X
2 ≡ 2Y 2 (mod 3), hence all solutions (X,Y )

are of the form (3X ′, 3Y ′), with (X ′)2 − 8t(Y ′)2 = 1. This is now a standard Pell’s
equation, which has only one class of solutions, thus the same holds for P8t(9).

If t = 3q for q ∈ N and (q, 3) = 1, then X = 3X ′ for some X ′ ∈ Z such that
3(X ′)2−8qY 2 = 3. Since 3 ∤ q we need (X,Y ) = (3X ′, 3Y ′) with (X ′)2−24q(Y ′)2 =
1. There exists only one class of solutions (X ′, Y ′) for this standard Pell’s equation,
thus also the solutions of P8t(9) form a single class.

Assume now that t = 9q for q ∈ N. Then a solution (X,Y ) of P8t(9) is of the
form (X,Y ) = (3X ′, Y ) with (X ′)2 − 8qY 2 = 1. Let (z, w) be the minimal solution
of P8t(1) : z

2 − 8tw2 = 1. Notice that the solutions of P8t(1) are the pairs (X ′, Y3 )
for all solutions (X ′, Y ) of (X ′)2−8qY 2 = 1 such that Y ≡ 0 (mod 3). Let (a, b) be
the minimal solution of (X ′)2 − 8qY 2 = 1. Since this is a standard Pell’s equation,
by (3) its next two solutions (for increasing values of X ′) are (a2 + 8qb2, 2ab) and
(a3 + 24qab2, 8qb3 + 3a2b). We observe that one among these first three positive
solutions (X ′, Y ) has Y ≡ 0 (mod 3), since either a2 (hence, a) or 8qb2 = a2 − 1
is divisible by 3. The positive solution (X ′, Y ) with this property and smallest X ′

is therefore equal to (z, 3w), thus the corresponding solution (X,Y ) = (3X ′, Y ) of
P8t(9) satisfies

Y
X

= w
z
, i.e. it is the first positive solution in the same equivalence

class of (3, 0). We conclude that P8t(9) has either one, two or three classes of
solutions.

Finally, assume that t ≡ 2 (mod 3). Let (z, w) be the minimal solution of P8t(1)
and let (u1, v1), (u2, v2) be two positive solutions of P8t(9) such that, for i = 1, 2:

(8) 0 < ui ≤ 3

√
z + 1

2
, 0 < vi ≤

3w√
2(z + 1)

.
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By (4), this is equivalent to asking that either (ui, vi) or (−ui, vi) is a fundamental
solution of P8t(9), different from (3, 0). Thus u1, v1, u2, v2 are not divisible by three.
From u21 − 8tv21 = 9 and u22 − 8tv22 = 9 we get

(9) u1v2 ≡ ±u2v1 (mod 9), u1u2 ≡ ±8tv1v2 (mod 9)

where the signs in the two congruences coincide. If we now multiply u21 − 8tv21 = 9
and u22 − 8tv22 = 9 member by member, we obtain

(10)

(
u1u2 ∓ 8tv1v2

9

)2

− 8t

(
u1v2 ∓ u2v1

9

)2

= 1

where by (9) the two squares in the LHS term are integers. If we assume that
(u1, v1) and (u2, v2) are distinct, then u1v2 ∓ u2v1 6= 0. Since (z, w) is the minimal
solution of P8t(1), from (10) we have |u1v2 ∓ u2v1| ≥ 9w. However, from (8) we
compute |u1v2 ∓ u2v1| < 9w, which is a contradiction. We conclude u1 = u2,
v1 = v2. Thus, there are at most three classes of solutions for P8t(9): the class of
(3, 0) and possibly the classes of (u1, v1) and (−u1, v1). Notice that the latter two
classes are always distinct: in order for them to coincide we would need

u21 + 8tv21
9

∈ Z,
2u1v1
9

∈ Z

which does not happen, since (u1, 3) = (v1, 3) = 1. Hence, the equation has either
one or three classes of solutions. �

We remark that all cases in the statements of Lemma 5.2 and Lemma 5.3 occur,
for suitable values of t.

Let S be an algebraic K3 surface such that Pic(S) = ZH , H2 = 2t, t ≥ 2. As
explained in Section 4, if Bir(S[3]) 6= {id} then 2t is not a square, 2X2−tY 2 = 1 has
no integer solutions and the minimal solution of X2−2tY 2 = 1 has Y ≡ 0 (mod 2).

As a consequence, Mov(S[3]) = 〈h, zh − 2twδ〉R≥0
, where (z, w) is the minimal

solution of P8t(1) : z
2− 8tw2 = 1. The walls in the interior of the movable cone are

the rays through Xh−2tY δ, for (X,Y ) positive solution of X2−8tY 2 = 8+α2 such
that α ∈ {1, 2}, X ≡ ±α (mod 4) and 0 < Y

X
< w

z
. By Remark 5.1, this implies

that the number of chambers in the interior of the cone coincides with the number
of combined equivalence classes of solutions for P8t(9) and P8t(12) (the class of the
solution (3, 0) of P8t(9) determines the two extremal rays of the movable cone).
Hence, Lemma 5.2 and Lemma 5.3 give the following result.

Proposition 5.4. Let t ≥ 2 such that 2t is not a square, 2X2 − tY 2 = 1 has no
integer solutions and the minimal solution of X2 − 2tY 2 = 1 has Y ≡ 0 (mod 2).
The following table provides the numbers of classes of solutions for the equations
P8t(9) and P8t(12) and the number of chambers in the movable cone of S[3], for S
an algebraic K3 surface such that Pic(S) = ZH, H2 = 2t.

t mod 18 0 1 2 3 4 5 6 7 8
# eq. classes P8t(9) 1, 2, 3 1 1, 3 1 1 1, 3 1 1 1, 3
# eq. classes P8t(12) 0 0 0 0, 1 0 0, 2 0 0 0

# chambers 1, 2, 3 1 1, 3 1, 2 1 1, 3, 5 1 1 1, 3
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t mod 18 9 10 11 12 13 14 15 16 17
# eq. classes P8t(9) 1, 2, 3 1 1, 3 1 1 1, 3 1 1 1, 3
# eq. classes P8t(12) 0 0 0, 2 0 0 0 0 0 0, 2

# chambers 1, 2, 3 1 1, 3, 5 1 1 1, 3 1 1 1, 3, 5

In all cases where Mov(S[3]) has no walls in its interior (i.e. there is only one
chamber), then any birational automorphism is biregular by the global Torelli the-
orem for ihs manifolds.

Corollary 5.5. Let S be an algebraic K3 surface such that Pic(S) = ZH, H2 = 2t,
t ≥ 1. If t ≡ 1, 4, 6, 7, 10, 12, 13, 15, 16 (mod 18), then Bir(S[3]) = Aut(S[3]).

From Theorem 1.1, Corollary 4.7 and the results of this section we conclude the
following.

Proposition 5.6. Let S be an algebraic K3 surface such that Pic(S) = ZH, H2 =
2t. If t = 1, then Bir(S[3]) = Aut(S[3]) ∼= Z/2Z. If t ≥ 2, then Bir(S[3]) 6= {id} if
and only if:

• 2t is not a square;
• 2X2 − tY 2 = 1 has no integer solutions;
• either 2X2 − tY 2 = −1 or X2 − 2tY 2 = −1 has integer solutions.

If Bir(S[3]) 6= {id}, let d be the number of chambers in the decomposition of

Mov(S[3]). Then d ∈ {1, 2, 3, 5} and one of the following holds:

• d = 1 and Bir(S[3]) = Aut(S[3]) ∼= Z/2Z;
• d = 2, t = 3 or t = 9, Aut(S[3]) = {id} and Bir(S[3]) ∼= Z/2Z;
• d = 3, 5, Aut(S[3]) = {id} and Bir(S[3]) ∼= Z/2Z

If t 6= 3, 9 and σ ∈ Bir(S[3]), there exists an ihs sixfold X and a birational map
g : S[3]

99K X such that g ◦ σ ◦ g−1 ∈ Aut(X).

Table 2 lists the number d of chambers in the decomposition of Mov(S[3]) and
the structure of the groups Aut(S[3]), Bir(S[3]), for an algebraic K3 surface S with
Pic(S) = ZH , H2 = 2t, 1 ≤ t ≤ 30 when Bir(S[3]) 6= {id}.

Table 2. Chambers and automorphisms for n = 3.

t d Aut(S[3]) Bir(S[3])
1 1 Z/2Z Z/2Z
3 2 {id} Z/2Z
5 3 {id} Z/2Z
9 2 {id} Z/2Z
11 5 {id} Z/2Z
13 1 Z/2Z Z/2Z
19 1 Z/2Z Z/2Z
25 1 Z/2Z Z/2Z
27 3 {id} Z/2Z
29 3 {id} Z/2Z
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6. Ambiguous Hilbert schemes and birational models

Having classified the group of birational automorphisms of S[n], for a K3 surface
S with Picard rank one, we explain in this section how the same approach can be
used to study the more general problem of whether there exists a K3 surface Σ,
again of Picard rank one, and a birational map φ : S[n]

99K Σ[n] which do not come
from an isomorphism S → Σ. This is related to the notion of (strong) ambiguity
for Hilbert schemes of points on K3 surfaces, which for n = 2 (and φ biregular)
has been investigated in [11] and [27]. Some of the results of this section overlap
(even though they are proved differently) with those of [17], where birationality of
derived equivalent Hilbert schemes of K3 surfaces is studied.

It is known that, if S[n] and Σ[n] are birational, then S and Σ are Fourier–Mukai
partners and S[n] and Σ[n] are derived equivalent (see [25, Proposition 10]). If
Pic(S) = ZH with H2 = 2t, t ≥ 1, then by [23, Proposition 1.10] the number
of non-isomorphic FM partners of S is 2ρ(t)−1, where ρ(t) denotes the number of
prime divisors of t (and ρ(1) = 1).

We can classify the Fourier–Mukai partners Σ of S as follows (for details see for
instance [23, Section 4]). The overlattice L = H2(Σ,Z) of Tr(S) ⊕ NS(S) (with
integral Hodge structure defined by setting L2,0 = Tr(S)2,0) corresponds to an
isotropic subgroup IL ⊂ ATr(S) ⊕ ANS(S) =

Z

2tZ (− 1
2t ) ⊕ Z

2tZ (
1
2t ) (as in [21, Section

1.4]). Since NS(S) and Tr(S) are primitive in L, the group IL is of the form IL =

Ia := 〈ǫ+ aη〉 for some a ∈ (Z/2tZ)×, a2 ≡ 1 (mod 4t), where ǫ (respectively, η) is
a generator of ATr(S) (respectively, ANS(S)) on which the finite quadratic form takes

value− 1
2t (respectively, +

1
2t ). For each a ∈ (Z/2tZ)

×
, a2 ≡ 1 (mod 4t), there exists

a K3 surface Σa (unique up to isomorphism) such thatH2(Σa,Z) is Hodge-isometric
to the overlattice La of Tr(S) ⊕ NS(S) defined by Ia. Moreover, Σa

∼= Σb if and
only if b ≡ ±a (mod 2t). Indeed, 2ρ(t)−1 (which is the number of non-isomorphic

FM partners of S) is the cardinality of
{
a ∈ (Z/2tZ)

×
, a2 ≡ 1 (mod 4t)

}
/± id.

Remark 6.1. If there exists a birational map φ : S[n]
99K Σ[n] as above, then

φ∗(Mov(Σ[n])) = Mov(S[n]) ([16, Corollary 5.7]). Let {hS, δS} and {hΣ, δΣ} be the
canonical bases for NS(S[n]) and NS(Σ[n]) respectively, as in Section 3.1. Then
by [6, Theorem 1] the map φ is induced by an isomorphism of the underlying K3
surfaces if and only if φ∗(δΣ) = δS . As a consequence, if φ does not come from
an isomorphism S → Σ then φ∗(hΣ) is the primitive generator of the extremal ray
of Mov(S[n]) not spanned by hS . This implies that Σ is uniquely defined, up to
isomorphism: in fact, if we also have φ′ : S[n]

99K (Σ′)[n] which does not come
from an isomorphism S → Σ′, then φ′ ◦ φ−1 : Σ[n]

99K (Σ′)[n] is induced by an
isomorphism Σ → Σ′, since its pullback maps hΣ′ to hΣ (hence, also δΣ′ to δΣ).

Theorem 6.2. Let S be an algebraic K3 surface such that Pic(S) = ZH, with
H2 = 2t, t ≥ 1. For n ≥ 2, let (z, w) be the minimal solution of X2−t(n−1)Y 2 = 1
with z ≡ ±1 (mod n − 1). There exists a K3 surface Σ and a birational map
φ : S[n]

99K Σ[n] which is not induced by an isomorphism S → Σ if and only if:

• t(n− 1) is not a square;
• if n 6= 2, (n− 1)X2 − tY 2 = 1 has no integer solutions;
• z ≡ ±1 (mod 2(n− 1)) and w ≡ 0 (mod 2).

If so, the K3 surfaces S and Σ are isomorphic if and only if z ≡ ±1 (mod 2t).
Moreover, φ is biregular if and only if, for all integers ρ, α as follows:
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• ρ = −1 and 1 ≤ α ≤ n− 1, or
• ρ = 0 and 3 ≤ α ≤ n− 1, or

• 1 ≤ ρ < n−1
4 and max

{
4ρ+ 1,

⌈
2
√
ρ(n− 1)

⌉}
≤ α ≤ n− 1

if Pell’s equation
X2 − 4t(n− 1)Y 2 = α2 − 4ρ(n− 1)

is solvable, the minimal solution (X,Y ) with X ≡ ±α (mod 2(n − 1)) satisfies
Y
X

≥ w
2z .

Proof. If there exists a birational map φ : S[n]
99K Σ[n] which does not come

from an isomorphism S → Σ then both extremal rays of Mov(S[n]) correspond
to Hilbert–Chow contractions (Remark 6.1). By [2, Theorem 5.7], t(n − 1) is not
a square, (n − 1)X2 − tY 2 = 1 has no integer solutions (if n 6= 2) and z ≡ ±1
(mod 2(n− 1)), w ≡ 0 (mod 2). On the other hand, assume that these conditions

are satisfied. Let a ∈ (Z/2tZ)
×
, a2 ≡ 1 (mod 4t), such that S ∼= Σa. Since

z2 − t(n − 1)w2 = 1 and w is even, we can consider the FM partner Σza of S.
As Tr(S[n]) ∼= Tr(S) and NS(S[n]) ∼= NS(S) ⊕ 〈−2(n − 1)〉, the groups Ia and Iza
(defined at the beginning of the section) can also be seen as isotropic subgroups
of ATr(S[n]) ⊕ ANS(S[n]) (in particular, we assume 2tη = h ∈ NS(S[n])). It is then

immediate to check that the overlattices of Tr(S[n])⊕NS(S[n]) defined by these two

subgroups are H2(Σ
[n]
a ,Z) and H2(Σ

[n]
za ,Z) respectively. Let µ ∈ O(NS(S[n])) be

the isometry (5). We have that id⊕µ ∈ O(Tr(S[n])⊕NS(S[n])) extends to a Hodge

isometry ψ : H2(Σ
[n]
a ,Z) → H2(Σ

[n]
za ,Z), because µ(aη) = zaη ∈ ANS(S[n]) (here we

use the fact that w is even). Notice that the discriminant group of H2(S[n],Z) is

generated by the class of δ
2(n−1) and µ

(
δ

2(n−1)

)
= − (n−1)wh

2(n−1) − zδ
2(n−1) = ± δ

2(n−1) .

By [21, Corollary 1.5.2], ψ extends to a Hodge isometry H∗(Σa,Z) → H∗(Σza,Z)

between the Mukai lattices of the two K3 surfaces Σa,Σza. We conclude that Σ
[n]
a

and Σ
[n]
za are birationally equivalent, by [16, Corollary 9.9].

As stated before, Σa and Σza are isomorphic if and only if a ≡ ±za (mod 2t), i.e.
z ≡ ±1 (mod 2t). The isomorphism φ : S[n]

99K Σ[n] is biregular if and only if the
Hodge isometry φ∗ : H2(Σ[n],Z) → H2(S[n],Z) is effective, that is if it maps ample
classes to ample classes. Since φ∗ permutes the two extremal rays of the movable
cones, this is equivalent to asking that the movable cone of S[n] coincides with the

ample cone, i.e. that there is only one chamber in the decomposition of Mov(S[n]).
The last part of the statement follows then as in the proof of [8, Theorem 6.4]. �

Remark 6.3. If S ∼= Σ the existence of a birational map S[n]
99K Σ[n] which does

not come from an isomorphism of the K3 surfaces is equivalent to the existence of
a non-natural birational automorphism in Bir(S[n]). Indeed, in this case Theorem
6.2 gives the same conditions of Theorem 1.1.

Remark 6.4. It can be readily checked that the conditions in the first part of
Theorem 6.2 are equivalent to those of [17, Theorem 2.2]. Write z = 2(n− 1)k + ǫ
and w = 2h for k, h ∈ N and ǫ ∈ {±1}. Then, z2 − t(n − 1)w2 = 1 implies
k(k(n − 1) + ǫ) = th2. Since the two factors in the LHS term are coprime, there
exist p, q, r, s ∈ N such that k = sp2, k(n−1)+ǫ = rq2, h = pq, t = rs. In particular,
(n − 1)sp2 − rq2 = ±1, which is what is requested in [17, Theorem 2.2]. The FM
partner Σ of S such that there exists a birational map S[n]

99K Σ[n] not coming
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from an isomorphism S → Σ is the moduli space MS(p
2s, pqH, q2r) ∼=MS(s,H, r).

Notice that z ≡ ±1 (mod 2t) (i.e. Σ ∼= S) if and only if {r, s} = {1, t}.
Corollary 6.5. Let S be an algebraic surface with Pic(S) = ZH, H2 = 2t and
n ≥ 2 an integer such that S[n] admits an involution which is not biregular. Assume
that t is not n-irregular, hence there exists an ihs birational model X of S[n] with
a biregular involution. Then X is not isomorphic to the Hilbert scheme of n points
on a K3 surface.

Proof. Let (z, w) be the minimal solution of X2 − t(n − 1)Y 2 = 1 with z ≡ ±1
(mod n− 1). By contradiction, assume that X ∼= Σ[n] for some K3 surface Σ. The
groups Aut(Σ[n]) and Aut(S[n]) are different so S is not isomorphic to Σ, while Σ[n]

and S[n] are birational. So z 6≡ ±1 (mod 2t) by Theorem 6.2, which is in contrast
with Theorem 1.1. �

By [8, Proposition 1.1], Corollary 6.5 is applicable for the values t ≤ 2n−3 which
satisfy Theorem 1.1 and which are not n-irregular (see Table 1), e.g. (n, t) = (6, 2).

7. Moduli spaces of polarized manifolds of K3[n]-type

We say that an ihs manifold is of K3[n]-type if it is deformation equivalent to the
Hilbert scheme of n points on a K3 surface. Let Λn = U⊕3⊕E8(−1)⊕2⊕〈−2(n−1)〉,
which is isometric to the second cohomology lattice of any ihs manifold of K3[n]-
type (with the BBF quadratic form). A polarization type is the choice of a O(Λn)-
orbit [k], with k ∈ Λn primitive and (k, k) > 0. We denote by M[k] the moduli

space of polarized manifolds (X,D), with X of K3[n]-type and D a primitive ample
class on X such that there exists an isomorphism η : H2(X,Z) → Λn (called a
marking) such that η(D) = k. More generally, we denote by Mn

2d,γ the moduli

space which parametrizes manifolds of K3[n]-type with a polarization of square 2d
and divisibility γ, for d, γ ∈ N (for more details on these moduli spaces, we refer to
[13] and [1]).

From [16, §7.1], two polarized manifolds (X1, D1), (X2, D2) ∈ Mn
2d,γ are in

the same connected component of the moduli space if and only if there exists a
parallel transport operator g : H2(X1,Z) → H2(X2,Z) such that g(D1) = D2.
Let ιXi

: H2(Xi,Z) →֒ Λ := U⊕4 ⊕ E8(−1)⊕2 be in the canonical O(Λ)-orbit of
primitive embeddings in the Mukai lattice (see [16, Corollary 9.5]). We denote by
T (Xi, Di) the rank-two positive definite lattice which arises as saturation, inside
Λ, of the sublattice generated by ιXi

(Di) and ιXi
(H2(Xi,Z))

⊥. Then there exists
a polarized parallel transport operator between (X1, D1) and (X2, D2) if and only
if (T (X1, D1), ιX1(D1)) and (T (X2, D2), ιX2(D2)) are isomorphic as lattices with a
distinguished vector ([1, Proposition 1.6]).

Let X be a manifold of K3[n]-type with a non-symplectic biregular involution
i ∈ Aut(X) such that H2(X,Z)i

∗

has rank one. By [7, Proposition 4.3] there
exists an i∗-invariant primitive class D ∈ AX such that (X,D) belongs to one
of the following moduli spaces: Mn

2,1; Mn
2,2 (non-empty only if n ≡ 0 (mod 4));

Mn
2(n−1),n−1 (non-empty only if

(
−1
n−1

)
= 1, using Legendre symbol).

Proposition 7.1. [1, Corollary 2.4 and Proposition 3.1], [13, Examples 3.8, 3.10]
Let n ≥ 2 and for r ∈ N denote by ρ(r) the number of distinct prime divisors of r.

• The moduli space Mn
2,1 is connected; the polarization type is unique.
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• If n ≡ 0 (mod 4), then Mn
2,2 is connected; the polarization type is unique.

• If n ≡ 0 (mod 2) and
(

−1
n−1

)
= 1, then Mn

2(n−1),n−1 has 2ρ(n−1)−1 con-

nected components; the polarization type is unique.

• If n ≡ 1 (mod 4) and
(

−1
n−1

)
= 1, then Mn

2(n−1),n−1 has 2ρ(
n−1
4 ) connected

components.

• If n ≡ 3 (mod 4) and
(

−1
n−1

)
= 1, then Mn

2(n−1),n−1 has 2ρ(
n−1
2 )−1 con-

nected components.

Given n, t ≥ 2 we define the property
(∗) : for an algebraic K3 surface S with Pic(S) = ZH , H2 = 2t, the Hilbert

scheme S[n] is equipped with a biregular non-natural automorphism.
Equivalently, this means that n, t satisfy the numerical conditions given in [8,

Theorem 6.4].
Take n, t which satisfy (∗). Let (a, b) (resp. (a, b

n−1 )) be the integer solution

of (n − 1)X2 − tY 2 = −1 (resp. X2 − t(n − 1)Y 2 = −1) with minimal X > 0,
depending on which of the two equations is solvable (see Proposition 3.1). We
consider the moduli space K2t of 2t-polarized K3 surfaces and U ⊂ K2t the subset
of elements (Σ, H) such that D := bh − aδ ∈ NS(Σ[n]) is ample, where as usual
h ∈ NS(Σ[n]) is the class of the line bundle induced by H and 2δ is the class of the
exceptional divisor of the Hilbert–Chow contraction Σ[n] → Σ(n). In particular, by
Proposition 3.1 U contains all 2t-polarized K3 surfaces of Picard rank one. For
(Σ, H) ∈ U , the polarized manifold (Σ[n], D) is in one of the moduli spaces Mn

2,1,

Mn
2,2 if (n− 1)X2 − tY 2 = −1 is solvable, otherwise (Σ[n], D) ∈ Mn

2(n−1),n−1.

Assume that D2 = 2. One can readily check that the divisibility of D is
gcd(b, 2(n − 1)), hence (Σ[n], D) ∈ Mn

2,1 if b is odd while (Σ[n], D) ∈ Mn
2,2 if b

is even.
If D2 = 2(n− 1), we are interested in determining the connected component of

Mn
2(n−1),n−1 which contains (Σ[n], D). The canonical embedding ιΣ[n] in the Mukai

lattice satisfies (see [16, Example 9.6])

ιΣ[n] : H2(Σ[n],Z) →֒ Λ

h 7→ (0,−H, 0)
−δ 7→ (1, 0, n− 1),

where we identify Λ with H∗(Σ,Z) = H0(Σ,Z)⊕H2(Σ,Z)⊕H4(Σ,Z). The image
of ιΣ[n] is the orthogonal complement of v = (1, 0, 1 − n). Let β = b

n−1 ∈ N. The

primitive sublattice T t
n := T (Σ[n], D) ⊂ Λ is generated by v and w = 1

n−1(av −
ιΣ[n](D)) = (0, βH,−2a). With respect to the basis {v, w}, the polarization is
ιΣ[n](D) = av− (n− 1)w and the bilinear form of the lattice is given by the matrix

(
2(n− 1) 2a

2a 2tβ2

)
.

In the following we assume that n, t satisfy (∗) and we denote by M(n, t) the
connected component (of one the moduli spaces Mn

2,1, Mn
2,2, Mn

2(n−1),n−1) which

contains the polarized manifolds (Σ[n], bh− aδ) as above, for (Σ, H) ∈ U .

Lemma 7.2. For n ≥ 2, let t1, t2 ≥ 2 be such that X2 − ti(n − 1)Y 2 = −1 is
solvable, and let (ai, βi) be the minimal solution. Assuming that both t1, t2 satisfy
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(∗), the connected components M(n, t1), M(n, t2) of Mn
2(n−1),n−1 coincide if and

only if a1 ≡ ±a2 (mod n− 1).

Proof. By the previous discussion, the connected components coincide if and only
if there exists an isometry λ : T t1

n → T t2
n such that λ(a1v1 − (n − 1)w1) = a2v2 −

(n− 1)w2. In particular, λ(w1) = ±w2 and λ((n− 1)w1) = (n− 1)w2− (a2± a1)v2.
Such isometry exists if and only if a1 ≡ ±a2 (mod n− 1). �

We now consider the map nφ2t : U → M(n, t), (Σ, H) 7→ (Σ[n], bh− aδ). Clearly
the image of nφ2t is contained in the Noether–Lefschetz locus of M(n, t), that is
the subset of polarized manifolds whose Picard group has rank at least two. Let
C2t ⊂ M(n, t) be the locus which parametrizes polarized manifolds (X,D) whose
Picard group contains a primitive hyperbolic rank-two sublattice K ∋ D and such
that K⊥ ⊂ H2(X,Z) has discriminant −2t. The proof of [11, Proposition 7.1] can
be generalized to obtain the following result.

Proposition 7.3. Given n, t which satisfy (∗), the subset U ⊂ K2t is open and the
rational map nφ2t : K2t 99K M(n, t) is birational onto an irreducible component of
C2t.

For n ≥ 2, let MΛn
be the moduli space of marked ihs manifolds of K3[n]-type

and fix a connected component M0
Λn

(see [16, §1.1] for details). Let ρ ∈ O(Λn)
be an involution such that (Λn)

ρ = 〈k〉, with k primitive of square 2d > 0 and
divisibility γ for some (d, γ) ∈ {(1, 1), (1, 2), (n− 1, n− 1)}. Notice that ρ = −Rk.
Following [15] and [7], we can consider the moduli spaceMn

〈2d〉,ρ ⊂ M0
Λn

of (ρ, 〈2d〉)-
polarized manifolds of K3[n]-type. An element of this moduli space is a marked
manifold (X, η) which admits a non-symplectic involution i ∈ Aut(X) such that
ρ = η◦i∗◦η−1. Notice that i is uniquely determined, by the injectivity of Aut(X) →
O(H2(X,Z)), i 7→ i∗. By [7, Theorem 3.3], the moduli space Mn

〈2d〉,ρ is non-empty

if and only if the induced isometry ρ ∈ O(AΛn
) is ± idAΛn

.
Let (X, η), (X ′, η′) be two (ρ, 〈2d〉)-polarized manifolds, with involutions i ∈

Aut(X) and i′ ∈ Aut(X ′) such that ρ = η ◦ i∗ ◦ η−1 = η′ ◦ (i′)∗ ◦ (η′)−1. Let
T := (Λn)

ρ and Mon2(Λn, T ) :=
{
g ∈ Mon2(Λn) | g(T ) = T

}
, where Mon2(Λn) :=

ηMon2(X)η−1 = η′ Mon2(X ′)(η′)−1 ⊂ O(Λn). We say that the pairs (X, i), (X ′, i′)
are isomorphic if there exists an isomorphism f : X → X ′ such that i′ ◦ f = f ◦ i.
In this case we have η ◦ f∗ ◦ (η′)−1 ∈ Mon2(Λn, T ); moreover, η ◦ f∗ ◦ (η′)−1 = idΛn

if and only if (X, η) and (X ′, η′) are equivalent in Mn
〈2d〉,ρ.

Proposition 7.4. The quotient Mρ := Mn
〈2d〉,ρ/Mon2(Λn, T ) is the coarse moduli

space of isomorphism classes of pairs (X, i), for (X, η) ∈ Mn
〈2d〉,ρ and i ∈ Aut(X)

the involution such that ρ = η ◦ i∗ ◦ η−1.

Proof. This follows from [15, Theorem 10.5]: since (Λn)
ρ has rank one, Mρ is

irreducible by [15, Theorem 9.11], i.e. all (ρ, 〈2d〉)-polarized manifolds of K3[n]-
type deform in the same family. For the same reason every pair (X, i) ∈ Mρ is
simple in the sense of [15, Definition 10.3]. �

The following statement generalizes [4, Corollary 4.1] for n = 2.

Theorem 7.5. For (d, γ) ∈ {(1, 1), (1, 2), (n− 1, n− 1)}, let ρ ∈ O(Λn) be an
involution such that ρ = ± idAΛn

and (Λn)
ρ is generated by a primitive element k



22 P. BERI AND A. CATTANEO

of square 2d and divisibility γ. Then Mρ is isomorphic to a connected component
of M[k] ⊂ Mn

2d,γ.

Proof. Let (X, η) be (ρ, 〈2d〉)-polarized, with i ∈ Aut(X) the non-symplectic in-
volution such that ρ = η ◦ i∗ ◦ η−1. If D is the primitive ample divisor which
generates H2(X,Z)i

∗

= η−1((Λn)
ρ), then (X,D) ∈ Mn

2d,γ. The morphism α :

Mρ → Mn
2d,γ, (X, i) 7→ (X,D) is clearly well-defined at the level of moduli spaces

and its image is contained in a connected component M ⊂ Mn
2d,γ . Indeed, if

(X1, η1, i1), (X2, η2, i2) are (ρ, 〈2d〉)-polarized then g = η−1
2 ◦ η1 is a parallel trans-

port operator (because (X1, η1) and (X2, η2) lie in the same connected component
of MΛn

) such that g(D1) = D2. The connected component M is determined by
the explicit choice of the isometry ρ. By construction, M ⊂ M[k] with (Λn)

ρ = 〈k〉.
Let now (X,D) be a polarized manifold in M. By [8, Proposition 5.3] there is a
(unique) non-symplectic involution i ∈ Aut(X) such that i∗ = −RD. Since (X,D)
is in the same connected component of any α(X ′, i′) and ρ = −Rk there exists a
marking η : H2(X,Z) → Λn such that (X, η) ∈ M0

Λn
and ρ = η ◦ i∗ ◦ η−1, hence we

have a well-defined map M → Mρ, (X,D) → (X, i) which is the inverse of α. �

Remark 7.6. Let (d, γ) ∈ {(1, 1), (1, 2), (n− 1, n− 1)} and fix a connected com-
ponent M ⊂ Mn

2d,γ . For (X,D) ∈ M let η : H2(X,Z) → Λn be a marking such

that (X, η) ∈ M0
Λn

and define ρ = −Rη(D) ∈ O(Λn). Then it is clear from the
proof of the previous proposition that M is the connected component of Mn

2d,γ

which is isomorphic to Mρ via the map α.

8. Geometrical constructions

Let S be a 2t-polarized K3 surface of Picard rank one and n ≥ 2. Theorem 1.1
allows us to determine the values n, t for which Bir(S[n]) 6= {id}, however it does
not provide any indication on how to construct these automorphisms geometrically.
If t = n, then Bir(S[n]) is generated by Beauville’s (non-symplectic) involution [3,
§6]. For 2 ≤ n ≤ 10, 2 ≤ t ≤ 7, t 6= n, the pairs (n, t) such that Bir(S[n]) 6= {id}
are the following:

(n, t) = (2, 5), (3, 5), (4, 7), (6, 2), (8, 2), (8, 4), (9, 3), (9, 5).

The involution which generates Bir(S[n]) is symplectic for (n, t) = (9, 3), (9, 5),
non-symplectic in the other cases.

The general K3 surface S of degree 2t = 10 is a transverse intersection Gr(2, 5)∩
Γ∩Q ⊂ P9, where Γ ∼= P6 and Q is a quadric. The birational involution of S[2] was
constructed by O’Grady in [22, Section 4.3], while a geometric description for the
involution of S[3] has been provided in [10, Example 4.12].

We give new constructions of the non-symplectic involutions for (n, t) = (6, 2),
(8, 2). Let K4 be the moduli space of 4-polarized K3 surfaces. We denote by
Dx,y ⊂ K4 the Noether–Lefschetz divisor corresponding to polarized K3 surfaces
(S,H) for which there exists B ∈ Pic(S) with (H,B) = x, B2 = y and such that
the sublattice of Pic(S) generated by B,H is primitive. A general K3 surface S of
degree 4 can be embedded as a smooth quartic surface in P3 and we consider the
polarization H ∈ Pic(S) given by a hyperplane section.

Example 8.1 (n = 6, t = 2). Let S ⊂ P3 be a smooth quartic surface which does
not contain any twisted cubic curve, e.g. (S,H) /∈ D3,−2. If p1, . . . , p6 ∈ S are in
general linear position there exists a single rational normal curve (i.e. a twisted
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cubic) passing through them, which we denote by C3. Since C3 does not lie on S,
the intersection S ∩ C3 consists of twelve points. By associating the pi’s with the
six residual points of intersection, we obtain a birational involution of S[6].

For n = 6, t = 2 the equation X2 − t(n − 1)Y 2 = −1 is solvable, with minimal
solution (a, b) = (3, 1). Thus for (S,H) ∈ K4 with Pic(S) = ZH , the birational non-
symplectic involution σ which generates Bir(S[6]) satisfies H2(S[6],Z)σ

∗

= Zν ∼=
〈10〉 with ν = 5h− 3δ.

Example 8.2 (n = 8, t = 2). Let S ⊂ P3 be a smooth quartic surface such that,
if a curve C ⊂ P3 of degree four is contained in two different quadric surfaces, then
C 6⊂ S. This holds for instance outside the divisors D4,0, D4,2 (notice that we do
not have to exclude D4,−2, since a rational quartic curve in P3 is contained in a
unique quadric surface). Consider p1, . . . , p8 ∈ S in general linear position. The
linear system of quadric surfaces in P3 passing through p1, . . . , p8 is a pencil. Its
base locus is a quartic curve C4, given by the intersection of two different divisors in
the pencil. By the initial assumption C4 is not contained in S, hence C4 intersects
S along sixteen points, eight of which are the p′is. This gives rise to a birational
involution of S[8].

For n = 8, t = 2 the equation (n − 1)X2 − tY 2 = −1 is solvable, with minimal
solution (a, b) = (1, 2). Thus for (S,H) ∈ K4 with Pic(S) = ZH , the birational non-
symplectic involution σ which generates Bir(S[8]) satisfies H2(S[8],Z)σ

∗

= Zν ∼= 〈2〉
with ν = 2h− δ.

Take n, t which satisfy (∗). If (n−1)X2− tY 2 = −1 admits solutions let (a, b) be
the minimal one, otherwise we take (a, b) such that (a, b

n−1 ) is the minimal solution

of X2 − t(n − 1)Y 2 = −1. Consider the rational map nφ2t : K2t 99K M(n, t) and
U ⊂ K2t as in Proposition 7.3. In the following, for a K3 surface S and L ∈ Pic(S)

we denote by L̃ ∈ Pic(S[n]) the line bundle induced by L on S[n] (and, with a small
abuse of notation, its class in NS(S[n])).

Proposition 8.3. For n ≥ 2, t ≥ 2 which satisfy (∗) and (Ω,Θ) ∈ K2t, assume that

there is j ∈ Bir(Ω[n]) which acts on H2(Ω[n],Z) as −RD, for D = bΘ̃ − aδ. Then
for every (S,H) ∈ U there exists a deformation family of ihs manifolds π : X → B
over an analytic connected base B, a line bundle L on X and points 0, p ∈ B such
that

• (π−1(0),L|
π−1(0)

) ∼= (Ω[n], bΘ̃−aδ) and (π−1(p),L|
π−1(p)

) ∼= (S[n], bH̃−aδ);
• for every b ∈ B \{0} the pair (π−1(b),L|

π−1(b)
) is of the form (Σ[n], bL̃−aδ)

for some (Σ, L) ∈ U .

Proof. Since U is path-connected, for any (S1, H1), (S2, H2) ∈ U there exists a
polarized deformation of K3 surfaces π′ : (X ′,H) → B′ between (S1, H1) and
(S2, H2) with B′ ⊂ U . Passing to the Hilbert schemes, this gives a polarized

deformation π : (X ,F) → B := nφ2t(B
′) between (S

[n]
1 , bH̃1 − aδ) and (S

[n]
2 , bH̃2 −

aδ), whose fibers are all of the form (Σ[n], bL̃− aδ) for (Σ, L) ∈ U .
Consider now (Ω,Θ) as in the statement. If D is ample then (Ω,Θ) ∈ U , hence

the previous argument allows us to conclude. On the other hand, if j is not biregular
then D is movable. However, since U is open, we can still find a family of ihs
manifolds with a line bundle π : (X ,L) → B such that the fiber over a point 0 ∈ B

is (Ω[n], D), while for all b ∈ B, b 6= 0 the fiber π−1(b) is of the form (Σ[n], bL̃− aδ)
for (Σ, L) ∈ U . �
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Combined with the results of Section 7, the proposition gives a description of
a deformation path of ihs manifolds with an involution, from (Ω[n], j) to (S[n], σ),
where σ is the non-symplectic involution of the Hilbert scheme of n points on a
very general 2t-polarized K3 surface S. This deformation path has the advantage
to be explicit, in the sense that it is induced by a deformation of K3 surfaces from
Ω to S. Hence it lies in a 19-dimensional subspace of the 20-dimensional moduli
space of (〈2d〉, ρ)-polarized ihs manifolds of K3[n]-type with the prescribed action
on cohomology. This allows us to keep track of the action of the involution on
length n subschemes of K3 surfaces, along the deformation path.

As an application of Proposition 8.3, we give a geometrical description (up to
deformation) of the biregular involutions of Hilbert schemes of very general K3
surfaces of degree 2t = 2((n − 1)k2 + 1). This extends the results of [4, §6] for
n = 2.

For n, k ≥ 2 we consider the hyperbolic rank two lattice Mn,k whose Gram
matrix, with respect to a suitable basis, is

(
2n 2n+ k − 1

2n+ k − 1 2n

)
.

By [19, Corollary 2.9] there exists a K3 surface Σ whose Picard group is iso-
morphic to Mn,k. Let d1, d2 ∈ Pic(Σ) be primitive generators such that (d1, d1) =
(d2, d2) = 2n, (d1, d2) = 2n+ k − 1.

Lemma 8.4. For n ≥ 2 and k ≥ 3, there exists H ∈ Pic(Σ) ample with H2 =
2((n− 1)k2 + 1). The Hilbert scheme Σ[n] has a birational involution whose action
on H2(Σ[n],Z) is −R(H̃−kδ).

Proof. Let L = (k + 1)d1 − d2 ∈ Pic(Σ), which satisfies L2 = 2((n − 1)k2 + 1).
Consider the chamber decomposition of {x ∈ Pic(Σ)R : (x, x) > 0} where the walls
are orthogonal to (−2)-classes. We show that d1, d2, L are in the interior of the same

chamber. Any (−2)-class in Pic(Σ) is of the form N = (−(2n+k−1)y±
√
∆

2n )d1 + yd2,

with y ∈ Z and ∆ = y2(k − 1)(4n + k − 1) − 4n. A direct computation shows
that (N, d2) · (N,L) > 0, hence d2 and L are in the interior of the same chamber.

By convexity, the same holds for d1 = d2+L
k+1 . By [14, Corollary 8.2.9] there exists

an isometry ̺ ∈ H2(Σ,Z) which maps d1, d2, L to the ample cone. We denote
Di = ̺(di) and H = ̺(L).

For i = 1, 2, we observe that Di is very-ample by [26, §8], since there is no
B ∈ Pic(Σ) such that (B,B) = 0 and (B,Di) ∈ {1, 2}. As a consequence, we
have two distinct embeddings ϕ|Di| : Σ →֒ Pn+1 whose image is a surface of degree
(Di, Di) = 2n. Each of these embeddings gives rise to a Beauville involution ιi ∈
Bir(Σ[n]), which acts on H2(Σ[n],Z) as the reflection fixing the line spanned by

D̃i − δ. Now we take j = ι1ι2ι1 ∈ Bir(Σ[n]): its invariant lattice is generated by

ι∗1(D̃2 − δ) = H̃ − kδ. �

Recall that for t = (n−1)k2+1 the minimal solution of (n−1)X2− tY 2 = −1 is
(k, 1). Thus, from the lemma and Proposition 8.3 we obtain the following geometric
description.

Proposition 8.5. For n ≥ 2 and k ≥ n+3
2 , the non-natural, non-symplectic in-

volution of the Hilbert scheme of n points on a K3 surface of Picard rank one in
K2((n−1)k2+1) can be described, up to a deformation as in Proposition 8.3, as the
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conjugation of a birational Beauville involution with respect to another birational
Beauville involution.

Remark 8.6. • The proposition holds for all k ≥ 3 such that the birational
involution which generates Bir(S[n]), for S a 2((n− 1)k2 +1)-polarized K3
surface of Picard rank one, is biregular (cfr. Conjecture 4.9).

• For k = 2 (i.e. t = 4n − 3) the wall orthogonal to the (−2)-class d1 − d2
separates d1 and d2, therefore the construction of Lemma 8.4 cannot be
performed. We already know that this value of t is n-irregular (Lemma
4.8), hence Proposition 8.3 is not applicable.

For n = 2 both Beauville involutions in Proposition 8.5 are biregular, as one can
show that there are no lines on the quartic surfaces ϕ|Di|(Σ) ⊂ P3. For k odd, this
construction is [4, Theorem 6.1].
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