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Local anesthetics are frequently employed during surgery in order to control peri- and
postoperative pain. Retrospective studies have revealed an unexpected correlation
between increased long-term survival and the use of local anesthetics during
oncological surgery. This effect of local anesthetics might rely on direct cytotoxic effects
on malignant cells or on indirect, immune-mediated effects. It is tempting to speculate, yet
needs to be formally proven, that the combination of local anesthetics with oncological
surgery and conventional anticancer therapy would offer an opportunity to control residual
cancer cells. This review summarizes findings from fundamental research together with
clinical data on the use of local anesthetics as anticancer standalone drugs or their
combination with conventional treatments. We suggest that a better comprehension of
the anticancer effects of local anesthetics at the preclinical and clinical levels may broadly
improve the surgical treatment of cancer.
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INTRODUCTION

Malignant disease remains the second cause of death worldwide. According to the World Health
Organization, cancers were responsible for 10 million deaths in 2020 (1). In most cases, treatment of
solid cancers relies on tumor removal by surgical excision combined with conventional therapies
such as chemotherapy and radiotherapy (2). However, standard oncological surgery may promote
recurrence by facilitating cancer cell dissemination due to the mechanical removal of the tumor
accompanied by the stimulation of vascular endothelial growth factor (VEGF) production by the
surrounding tissue (3). Moreover, surgery often induces a stress response composed of organismal
metabolic changes, local inflammation and pain, thus causing an elevation of circulating
Abbreviations: ACTH, adrenocorticotropic hormone; Ca2+, calcium ion; DNMT, DNA methyltransferase; EGA, epidural-
general anesthesia; EGFR, epithelial growth factor receptor; GA, general anesthesia; HB-EGF, heparin-binding epidermal
growth factor-like growth factor; IFN, interferon; IL, interleukin; LA, local anesthetic; MMP, matrix metalloproteinase; NK,
natural killer; PCA, patient controlled analgesia; PGE2, prostaglandin E2; PVB, paravertebral block; ROS, reactive oxygen
species; TGF, tumor growth factor; TNF-a, tumor necrosis factor a; VEGF, vascular endothelial growth factor.
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glucocorticoids and compromising antitumor immune responses
(4–6). Finally, surgery negatively impacts on natural killer (NK)
lymphocytes that spontaneously recognize and kill cancer cells
and are known to play a determinant role in controlling tumor
metastasis (7). Thus, we need novel adjuvant treatments during
oncological surgery to optimally control pain, while limiting
inflammation in order to decrease glucocorticoid stress, sustain
anticancer immune responses and control residual cancer cells.

Surprisingly, several observational retrospective studies
reported an improved overall survival after the use of local
anesthetics (LAs) employed alone or in combination with
general anesthesia during solid tumor resection. Thus, as
compared to general anesthesia alone, the combination of
epidural and general anesthesia, which is usually performed to
relief major surgery-induced pain, was associated with a better
long-term survival after abdominal and gynecological debulking
(8–11). An enhancement of clinical progression-free time was
also noticed after regional anesthesia after prostate, liver or
breast primary tumor removal (12–14). Despite supplemental
meta-analyses strengthening these positive outcomes, no
guidelines emerged from these studies given their limits and
weaknesses (15–18). However, rational hypotheses to explain
these observations appeared in the literature, supporting the
possibility of novel guidelines in oncological anesthesia.

Here we aim at discussing the main signaling pathways
underlying the antitumor effect of local anesthetics. For this,
we summarize published fundamental and clinical research while
focusing on the mechanisms through which the immune system
is activated by local anesthetics. We specifically dwell on their
capacity to potentiate conventional antineoplastic therapies,
hoping to improve clinical praxis in this area of oncology.
LOCAL ANESTHETICS POSSESS DIRECT
ANTITUMORAL ACTIVITIES

Local Anesthetics Counteract
Tumor Cell Migration
LAs such as lidocaine, ropivacaine, levobupivacaine,
bupivacaine, procaine or chloroprocaine are used in clinical
practice for their analgesic properties, which are explained by
the blockade of voltage-gated sodium channels necessary for
pain nerve conduction (19). Surprisingly, many observational
preclinical studies noticed unexpected side effects of LAs on
tumor cells. For instance, migration of cancer cells was
profoundly impaired after LA exposure, likely due to effects on
Ca2+ signaling that affect the cytoskeleton. In human triple-
negative breast cancer MDA-MB-231 cells, lidocaine (10 µM or
100 µM) inhibited the CXCR4-induced Ca2+ release, leading to
actin polymerization and impaired cytoskeletal remodeling (20).
Lidocaine-inhibited migration and invasion are also mediated by
TRPV6 downregulation that reduced Ca2+ influx in MDA-MB-
231 cells, prostate cancer PC-3 cells and ovarian cancer ES-2 cells
(21). Finally, infiltration of lidocaine at surgical concentrations
(5-20 mM) reduced cellular migration by inhibiting the shedding
of heparin-binding epidermal growth factor-like growth factor
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from human fibrosarcoma cells and by modulating intracellular
Ca2+ (22). Ropivacaine was also described to increase E-cadherin
protein expression and to downregulate vimentin, which is a
major intermediate filament, thus contributing to reduce
metastases (23). Note that tetracaine inhibits the formation of
tubulin microtentacles that are required to promote
reattachment of detached breast tumor cells during metastatic
dissemination (24). Taken together, these findings indicate the
existence of multiple molecular mechanisms by which LAs
inhibit cancer cell dissemination. It is important to point out
that, despite the presence of voltage-gated sodium channels on
various cancer types such as breast, colon and lung tumor cells,
most of the LA-induced anti-metastatic processes may be
ascribed to mechanisms that do not require the inhibition of
voltage-gated sodium-channels (22, 25–27) Figure 1.

In addition, bupivacaine, procaine and ropivacaine are
endowed with the capacity to minimize the migration of
neoplastic cells by inhibiting mitochondrial function. Indeed,
due to their capacity to block signaling pathways operating
downstream of RhoA such as the ROCK/MLC, ERK/MAPK/
FAK and Rac1/JNK/paxillin/FAK pathways that commonly lead
to apoptosis, local anesthetics inhibit the migration of cancer
cells (25–28).

A non-negligible role of microRNAs in cancer regulation and
cells migration was suggested in different models of solid cancers
treated by LAs. Thus, ropivacaine enhances miT-520a-3p
expression in gastric cancer cells, thereby inactivating WEE1
and PI3K/AKT signaling and inhibiting cell migration (29).
Lidocaine showed an unexpected ability to up-regulate miR-
145 and miR-539 expression in gastric carcinoma MKN45 cells
and in lung cancer cells, respectively. These microRNAs directly
downregulate epithelial growth factor receptor (EGFR), which is
a prominent target for anticancer drugs and plays a major role in
tumorigenesis and cancer cell invasion (30, 31). In addition,
procaine induces similar antiproliferative effects by up-regulating
miR-133b (32).

At clinically relevant concentrations, both lidocaine and
ropivacaine block cell invasion. LAs interact with the secretion
of matrix metalloproteinases (MMP) such as MMP-2 and with
tumor necrosis factor (TNF) a-dependent MMP-9 involved in
invasion process by inhibiting Src-dependent inflammatory
signaling pathways (33, 34). This anti-invasive effect does not
result from direct effects on the cytoskeleton but rather from the
capacity of LAs to block cancer cell migration secondary to their
anti-inflammatory properties. Indeed, Src protein tyrosine kinase
plays a key role in the homeostasis of the endothelial barrier. Its
activation by phosphorylation is induced in response to
inflammation. Furthermore, surgical procedures provoke acute
inflammatory process including vasodilatation, edema and loss of
endothelial barrier integrity, thereby facilitating transmigration,
extravasation and dissemination of tumor cells through
lymphatic and vascular circulation Figure 1.

Interestingly, some LAs (lidocaine and bupivacaine) elicit an
anti-invasive property at concentrations lower than those used in
clinical practice (< 1mM) (21, 25). We may hypothesize that low
plasma concentrations of LAs from patients receiving local or
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regional injection of LAs could suffice to exert systemic effects on
residual cancer cells, stopping their migration.

Finally, in models of tumor resection established in
immunocompetent mice that have developed syngeneic
transplantable EL4 lymphomas or 4T1 breast cancers, lidocaine
and bupivacaine used alone or combined with general anesthesia
significantly decreased spontaneous metastasis independently of
the route of administration (intravenous, spinal block or local
infiltration of the inoculation site) (35–38). The mechanisms
accounting for these antimetastatic effects remain unclear.
However, an LA-induced reduction of circulating MMP-2
levels might contribute to impair tumor cell migration (38).

Local Anesthetics Inhibit Tumor
Cell Proliferation
LAs are able to stop tumor cell proliferation as indicated by the
decrease in the mitotic marker Ki-67 as well as by a cell cycle
arrest (39, 40). Most of the published data showed that this effect
is concentration and time dependent (41–43). Many
mechanisms may explain this process. LAs directly interfere
Frontiers in Oncology | www.frontiersin.org 3
with the advancement of the cell cycle by reducing cyclins (A2,
B1, B2, D, E) and cyclin-dependent kinases expression in various
models of human solid cancers (colon, lung, melanoma, thyroid,
liver, breast) (28, 34, 39, 44–47). In addition, LAs induce
mitochondrial dysfunction causing inhibition of respiratory
chain activity and ATP production as well as a shutdown of
glycolysis. This LA-induced disruption leads to mitochondrial
membrane depolarization, the release of cytochrome c into the
cytosol favoring the activation of apoptotic caspases, as well as
cell damage mediated by reactive oxygen species (ROS) (48–51).
Some LAs affect the DNA methylation status by modulating
DNA methyltransferases (DNMT) activation in several types of
cancer cell lines. The decrease in global methylation induced by
LAs may restore the expression of previously silenced tumor
suppressor genes and mediate growth-inhibitory effects on
cancer cells (40, 52–58). Furthermore, some experiments
suggest the implication of microRNAs in the inhibition of
cancer cell proliferation (23, 29, 59). Finally, in a model of
human colorectal cancer, bupivacaine and its levorotatory
enantiomer levobupivacaine promote the expression of C/EBP
FIGURE 1 | Direct cytotoxic effects of local anesthetics. Scheme summarizing direct effects of local anesthetics on cancer cells including the regulation of signaling
pathways that control proliferation, survival and migration of cancer cells. Ca2+, calcium ion; CHOP, C/EBP Homologous protein; Cyt, Cytoplasm; DNMT, DNA
methyltransferase; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; Ext, extracellular space; IGFR, insulin growth factor receptor; Mg2+,
magnesium ion; Na+, sodium ion; TNFR, tumor necrosis factor receptor; ROS, reactive oxygen species; PERK, protein kinase R-like ER kinase.
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homologous protein (CHOP), which is one of the key effectors of
the endoplasmic reticulum stress response (60).

Local Anesthetics Promote Cancer
Cell Death
Many preclinical studies suggested the capacity of LAs to induce
apoptosis after triggering the activation of tumor suppressor
protein p53 (TP53) (61), DNA damage (62), dissipation of the
mitochondrial transmembrane potential (48, 51, 63, 64), ROS
production (51, 64, 65) or activation of the mitogen-activated
protein kinase (MAPK) pathway (64). LAs can provoke
mitochondrial rupture and cause the release of pro-apoptotic
molecules such as cytochrome c (48, 63, 64) and SMAC (61). In
addition, LAs upregulate the pro-apoptotic proteins Bax, Bak
(31, 34, 42, 43, 47, 55, 64, 66) and down-regulate their antagonist
BCL-2 (34, 42, 63, 64, 66). This ultimately favors the formation of
the apoptosome (composed by APAF1, caspase 9 and
cytochrome c) (67) and the proteolytic activation of a range of
pro-caspases (30, 34, 51, 61–64, 68) including pro-caspase 3 (31,
34, 42, 47, 48, 51, 63, 64, 66, 69–71) and in fine the cleavage of
poly (ADP-ribose) polymerase 1, marking the apoptotic death of
cancer cells (31, 51, 63, 64, 66, 67, 71).
LOCAL ANESTHETICS MAY POSSESS
INDIRECT ANTITUMORAL EFFECTS BY
SUSTAINING THE IMMUNE SYSTEM

Surgery per se induces stress responses involving endocrine and
metabolic reactions which generate acute inflammation and interact
with the immune system (6). From incision, afferent nerve pathways
stimulate catecholamine production and activate the corticotropic
axis (6). The increase of plasma cortisol and catecholamine levels
modifies the distribution of circulating leukocytes leading to
lymphopenia and promotes the synthesis of the pro-tumoral
cytokine IL-6, hence potentially enhancing tumor progression.
Epinephrine and norepinephrine may act on beta-adrenergic
receptors found in several tumor types such as breast, prostate or
liver cancer and stimulate cancer cell proliferation and migration
(72, 73). The adrenocorticotropic hormone (ACTH) interferes with
antibody synthesis and inhibits the production of interferon (IFN)
by T cells (74). This glucocorticoid stress is sufficient to profoundly
subvert anticancer immunosurveillance in a range of murinemodels
(4). In this context, it appears important to note that regional
anesthesia by LAs injected into the epidural space provides a stable
pain relief by blocking nociceptive pathways. Moreover, different
neuroaxial anesthetic modalities possess the outstanding capacity to
minimize glucocorticoid stress during surgery and to counteract the
immunodepression induced by general anesthesia. Assessment of
cortisol, epinephrine and norepinephrine in the serum and in the
urine of patients after laparotomy under spinal anesthesia were
significantly decreased during peri- and postoperative period
compared to patients under general anesthesia (75–78). Thus,
LAs could prevent the neuroendocrine stress responses resulting
from oncological surgery and sustain anticancer immunity. This is
strongly suggested by a preclinical study of Bar-Yosef et al., in which
spinal block using bupivacaine not only controlled pain in rats
Frontiers in Oncology | www.frontiersin.org 4
during laparotomy but also attenuated the post-surgical
dissemination of metastases (79) Figure 2.

Acute pain generated by surgery also compromises NK cell-
mediated immunity, which is in the first line of defense against
tumor development (80, 81), and fosters T helper lymphocyte
polarization towards a Th2 profile (82). These findings highlight
the need for optimal perioperative analgesia and the necessity to
strengthen the immune system. Of note, at clinically relevant
concentrations lidocaine enhances the cytotoxic effect of NK cells
assessed by the release of lytic granules (granzyme B and perforin)
(83). In addition, the serum from patients receiving LAs during
tumor resection (independently of the route of administration)
was particularly competent to kill cancer cells (84, 85), to preserve
lymphocyte proliferation and to attenuate apoptosis of peripheral
blood lymphocytes. The ratio of Th1/Th2 cells inclined towards a
Th1 profile with secretion of IFN-g (86). Finally, the level of Th17
and regulatory T cells (Tregs) was also significantly lower
compared to the control group (87) Table 1 and Figure 2.

Another hypothesis that might explain indirect anticancer
effects of LAs is their capacity to blunt surgical inflammation.
Despite the employment of minimally surgical procedures, the
production of pro-inflammatory cytokines (IL-1b, IL-6 and TNF-
a) and the inhibition of IFN-g responses occur from the incision
of the patient’s skin (82). Inflammation is marked by major
vascular and exudative phenomena (edema, diapedesis and
congestion) compromising the endothelial barrier and thus
facilitating the formation of new metastases. Secretion of
inflammatory cytokines also stimulates MMP-9 and VEGF
production in the tumor-surrounding tissue and activates Src
kinase that compromises vessel barrier integrity and facilitates
cancer cell migration through the extracellular matrix (94).
Moreover, the cytokine IL-6 produced in the microenvironment
exerts a pro-tumor activity (95). IL-6 directly stimulates the
proliferation and survival of cancer cells by stimulating the
advancement of the cell cycle, the expression of anti-apoptotic
molecules and angiogenesis (72, 96). In addition, IL-6 exerts
immunosuppressive effects by inhibiting dendritic cells and
lymphocytes, by activating Tregs and in fine by promoting
tumor immune escape. In clinical practice, high levels of IL-6
predict chemotherapy resistance and poor prognosis in many type
of cancers (97). Taken together, these data suggest that the anti-
inflammatory effects of LAs may contribute to sustain immune
effectors and to reduce tumor progression. Indeed, several
randomized controlled trials showed a significant decrease of IL-
1, IL-6, IL-8 and MMP-3 and-9 in the serum of patients after LA
injection (88, 89, 92). Unfortunately, the impact on clinical
outcomes has not yet been investigated Table 1 and Figure 2.
LOCAL ANESTHETICS COULD IMPACT
ON ONCOLOGICAL OUTCOMES

Local Anesthetics Potentiate Conventional
Anticancer Treatments
Primary tumor resection is often combined with neo-adjuvant or
adjuvant anticancer treatments (chemotherapy, radiotherapy or
immunotherapy) shortly before or after the surgical procedure.
January 2022 | Volume 11 | Article 821785
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Interestingly, LAs can sensitize cancer cells to conventional
antitumor therapeutics. Thus, the cytotoxic effects of
chemotherapy (with 5-fluorouracil, paclitaxel, cisplatin or
carboplatin) or protein kinase inhibitors (such as vemurafenib
or erlotinib) were significantly potentiated by LAs (25, 27, 50, 54,
58, 68, 98, 99). Associated with 5-aza-2′-deoxycytidine, lidocaine
showed additive demethylating effects in breast cancer cells (57).
In vivo, the combination of cisplatin and LAs increased life span
and cure rate in several mouse models (42, 100, 101), contrasting
with the observation that bosutinib reversed the anti-metastatic
effect of lidocaine (38). Surprisingly, procaine demonstrated an
unexpected protection against cisplatin-induced nephrotoxicity
Frontiers in Oncology | www.frontiersin.org 5
as indicated by reduced blood urea nitrogen and renal tubular
degeneration (102).

Local Anesthetics Improve Overall Survival
After Cancer Surgery
Many retrospective clinical studies investigated the impact of
LAs on oncological prognosis. Thirteen trials suggest a potential
benefit of LA injection on recurrence free survival and overall
survival after cancer surgery compared to control groups. For
instance, in a cohort of 588 patients undergoing primary colon
cancer resection, epidural anesthesia improved the five-year
survival after adjustement for relevant patient characteristics,
FIGURE 2 | Indirect effects of local anesthetics Schematic representation of indirect effects induced by local anesthetics on cancer cells and immune effectors:
inhibition of inflammation, inhibition of cancer cell proliferation and migration, surgical stress control, reduction of neoangiogenesis, preservation of immunity and
clinical effects. IFN, interferon; IL, interleukin; MMP, matrix metalloproteinase; NK, natural killer cell; VEGF, vascular endothelial growth factor.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu Chuang et al. Local Anesthetics Induce Cancer Cell Death
tumor type, and type of treatment ([adjusted HR]=1.30 95% CI
1.05-1.59, p=0.01) (8). In the study of Cummings et al. involving
42 151 patients, the use of neuroaxial anesthesia significantly
improved overall survival ([adjusted HR] = 0.91, 95% CI 0.87-
0.94, p<0.001) (103). After hepatic resection for colorectal
metastases, epidural analgesia appeared as an independent
predictor of longer recurrence-free survival [HR] = 0.74, 95%
CI 0.56-0.95, p=0.036) (104). After gastro-esophageal resection,
epidural anesthesia increased the time to recurrence ([HR] =
0.33, 95% CI 0.17-0.63, p < 0.0001), and overall survival
([HR] = 0.42, 95% CI 0.21-0.83, p < 0.0001) at 2 years of
follow-up (105). It should be noted that ten retrospective trials
failed to confirm these findings. However, the putative anticancer
effects of LAs are difficult to demonstate as they are influenced by
various independent factors such as- cancer type, comorbidities,
the drug used for local anesthesia and its posology
(concentration, exposure time, administration route), as well as
the combination with other anesthetics (opioids, volatile agents),
which may affect immunosurveillance as well Table 2.
Frontiers in Oncology | www.frontiersin.org 6
Irrespective of these limitations, four large meta-analyses all
concluded in favor of beneficial effects of epidural anesthesia alone
or associated with general anesthesia. With 14 studies including
47 000 patients, Chen et al. demonstrated an improved overall
survival of epidural anesthesia compared with general anesthesia
alone (HR=0.84, 95% CI 0.74-0.96, p=0.013) (15). In the meta-
analysis by Pei et al., combined general-epidural anesthesia was
associated with decreased recurrence and metastasis rate in the
subgroup of prostate cancer patients and in the subgroup with
followup less than or equal to 2 years (OR = 0.66, 95% CI 0.46-
0.95, p=0.027; OR = 0.70, 95% CI 0.51-0.98, p=0.035; respectively)
(16). Sun et al. showed similar results with a significant better
overall survival for patients receiving perioperative regional
anesthesia ([HR] = 0.84, 95% CI, 0.75-0.94; I2 =41%) compared
to the control group (17). Finally, the meta-analysis byWeng et al.
involving 21 studies and 51 620 patients concluded that neuroaxial
anesthesia improved both overall survival ([HR] = 0.853, CI=
0.741-0.981, p=0.026) and recurrence-free survival ([HR] = 0.846,
CI=0.718-0.998, p=0.047) (18) Table 3.
TABLE 1 | Trials assessing local anesthetics on biological markers.

Cancer Patients Design Biological markers outcome Ref

Breast N=17 Control group: general anesthesia (sevoflurane)+opioid PVB decreased IL-1b, MMP-3, MMP-9 and increased IL-10
(88)N=15 Studied group: general anesthesia (propofol) + PVB

Breast N=20 Studied group: general anesthesia (propofol) + PVB
(bupivacaine)

PVB decreased IL-6, increased IL-12, IFN-g and IL-10/IFN-g ratio
(89)

N=20 Control group: general anesthesia (sevoflurane) + fentanyl
Breast N=15 Control group: general anesthesia (sevoflurane) -PVB inhibited surgical stress response (reduced plasma glucose, cortisol

and C-reactive protein levels) (90)
Postoperative: PCA (morphine) -No significant difference in VEGF and PGE2 values between groups

N=15 Studied group: general anesthesia (sevoflurane) + PVB
(bupivacaine)

Breast N=20 Control group: general anesthesia (sevoflurane) Increased VEGF after surgery in the general anesthesia group
(91)Postoperative (morphine) TGF-b1 increased after surgery in the propofol-PVB group

N=20 Studied group: general anesthesia (propofol) + PVB
(levobupivacaine bolus and infusion for 48h)

Cervical N=15 Control group: general anesthesia (sevoflurane) + fentanyl Lidocaine preserved lymphocyte proliferation, attenuated apoptosis of
peripheral blood lymphocyte, maintained the balance of Th1/Th2 cells and
decreased production of cytokines

(86)N=15 Studied group: general anesthesia (sevoflurane) + fentanyl +
bolus and infusion of lidocaine

Colon N=20 Control group: general anesthesia (desflurane) + epidural
(ropivacaine + morphine)

Lidocaine via both epidural and IV routes decreased opioid consumption
and reduced production of pro-inflammatory cytokines (IL-6, IL-8 and IL-1) (92)

N=20 Studied group: general anesthesia+ epidural analgesia
(lidocaine bolus and infusion) + Postoperative epidural
(ropivacaine + morphine)

N=20 Studied group: general anesthesia + epidural analgesia
(lidocaine bolus and infusion) + lidocaine IV + Postoperative
epidural (ropivacaine + morphine)

ENT N=15 Control group: general anesthesia (isoflurane) + morphine Epidural analgesia decreased the requirement of morphine and stress
response (blood glucose and serum cortisol) (78)N=15 Studied group: general anesthesia (isoflurane) + epidural

(ropivacaine)
Liver N=30 Control group: general anesthesia (sevoflurane) Epidural shifted Th1/Th2 balance (Th1 dominance) and decreased Th17 and

Treg cells (87)Postoperative: morphine
N=31 Studied group: general anesthesia (sevoflurane) + epidural

(bupivacaine); Postoperative: bupivacaine + morphine
Ovary N=30 Control group: general anesthesia (propofol) + fentanyl Epidural group: higher NK cell cytotoxicity, higher serum concentrations of

IL-10 and IFN-g and lower serum concentrations of IL-1b and IL-8 (85)N=31 Studied group: general anesthesia (propofol) + fentanyl +
epidural (ropivacaine + lidocaine bolus and infusion)

Ovary N=20 Control group: general anesthesia (volatile agents) Intraperitoneal ropivacaine reduced time of chemotherapy initiation
(93)N=20 Studied group: general anesthesia (volatile agents) +

intraperitoneal ropivacaine
January 2022 | Volume 11 | Article 821
ENT, ear nose throat; IL, interleukin; IV, intravenous; MMP, metalloproteinase; NK, natural killer; PCA, patient-controlled analgesia; PGE2, prostaglandin E2; PVB, paravertebral block; TGF,
tumor growth factor; VEGF, vascular endothelial growth factor.
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TABLE 2 | Retrospective studies assessing local anesthetics impact on cancer prognosis.

Cancer Patients Design Cancer prognosis outcome Ref

Breast N=79 Control group: general anesthesia (sevoflurane) Studied group: lower recurrence-
and metastasis-free survival
(p=0.012)

(14)
Postoperative: PCA (morphine)

N=50 Studied group: general anesthesia (sevoflurane) + PVB (bolus and infusion of levobupivacaine for
48h)

Cervical N=69 Control group: general anesthesia Studied group: not associated
with lower cancer burden or a
reduced risk of tumor recurrence
and mortality

(106)N=63 Studied group: neuraxial anaesthesia (spinal and epidural analgesia)

Colon N=2 299 Control group: general anesthesia + opioid-based analgesia No association between epidural
analgesia and recurrence or
death

(107)N=449 Studied group: loading dose of lidocaine + general anesthesia and epidural anesthesia
(bupivacaine with or without fentanyl for 48-72h)

Colon N=668 Control group: general anesthesia Peridural analgesia:not
associated with better
oncological outcome

(108)N=208 Studied group: epidural anesthesia

Colon N=189 Control group: general anesthesia Epidural analgesia: better 5-year
survival (p=0.01)

(8)
N=399 Studied group: epidural anesthesia

Colon N=253 Control group: general anesthesia Epidural: lower cancer recurrence
in patients older than 64 years (109)N=256 Studied group: epidural anesthesia

Colon N=32 481 Control group: general anesthesia Epidural anesthesia: improved
survival (p<0.001) (103)N=9 670 Studied group: epidural anesthesia

Colo-rectal N=93 Control group: general anesthesia sevoflurane or desflurane + fentanyl and IV morphine for 2 to 5
days

Epidural anesthesia: lower
mortality in the sub-group of
rectal cancer (p=0.049)

(110)
N=562 Studied group: general anesthesia sevoflurane or desflurane + epidural (bolus local anesthetic and

fentanyl or local anesthetic alone and infusion of local anesthetic with fentanyl or local anesthetic
and morphine for 2-5 days)

Colo-rectal N=173 Control group: PCA (morphine) No significant difference in overall
survival or disease-free survival at
5 years

(111)N=107 Studied group: epidural anesthesia (Bolus and infusion of bupivacaine with fentanyl for 48h)
N=144 Studied group: spinal anesthesia (bupivacaine with morphine)

Colo-rectal N=307 Control group: general anesthesia (isoflurane or desflurane + fentanyl) Epidural analgesia: greater long-
term survival (p<0.02)

(9)
N=442 Studied group: general anesthesia (isoflurane or desflurane + fentanyl) + epidural analgesia

Colo-rectal +
liver
metastases

N=120 Control group: IV anesthesia Epidural anesthesia: improved
five-year recurrence free survival
(p=0.036)

(104)N=390 Studied group: epidural anesthesia

Gastro-
oeso-
phageal

N=140
(total)

Control group: general anesthesia (sevoflurane or propofol infusion) + IV opioid analgesia Epidural was associated with
2-year recurrence and overall
survival benefit (p<0.0001)

(105)Studied group: general anesthesia (sevoflurane or propofol) + epidural anesthesia (bupivacaine
bolus + infusion with morphine for 96h)

ENT N=160 Control group: general anesthesia + morphine Epidural anesthesia:increased
cancer-free survival (p=0.04) and
overall survival (p=0.03)

(112)N=111 Studied group: general anesthesia + epidural anesthesia

Liver N=244 Control group: general anesthesia (sevoflurane or propofol) + sufentanil + nonsteroidal anti-
inflammatory drugs

Local anesthetic increased
recurrence free survival (p=0.002)
and overall survival (p=0.036)

(12)

N=245 Studied group: lidocaine+nonsteroidal anti-inflammatory drugs
Melanoma N=221 Control group: general anesthesia (isoflurane or propofol) + sufentanil or remifentanil Spinal anesthesia: a trend of

better cumulative survival rate (113)N=52 Studied group: spinal anesthesia (bupivacaine)
NSCLC NA Control group: general anestheisa (isoflurane, sevoflurane or desflurane) + IV opioid analgesia;

postoperative PCA (hydromorphone, fentanyl or morphine)
No difference on recurrence-free
survival or overall survival (114)

Studied group: general anesthesia (isoflurane, sevoflurane or desflurane) + IV opioid analgesia
Postoperative: epidural (bupivacaine + fentanyl or bupivacaine + hydromorphone or ropivacaine
and fentanyl)
Studied group: general anesthesia (isoflurane, sevoflurane, or desflurane) + IV opioid analgesia
Postoperative: epidural/PCA: bupivacaine + fentanyl or bupivacaine + hydromorphone or
ropivacaine + fentanyl

Ovary N=37 Control group: general anesthesia (sevoflurane or isoflurane) + PCA fentanyl Epidural anesthesia: greater 3-
and 5-year overall survival rates
(p=0.043)

(10)
N=106 Studied group: epidural anesthesia (Infusion of bupivacaine or ropivacaine and morphine for 48h)

Ovary N=43 Control group: general anesthesia (volatile + fentanyl) Epidural anesthesia: not
associated with improved overall
survival or time to recurrence

(115)Postoperative: ketorolac and PCA (morphine)
N=37 Studied group: general anesthesia +epidural anesthesia (bolus of bupivacaine with or without

fentanyl); Postoperative: ketorolac and epidural for 48h
Pancreas N=2 239

(total)
Control group: general anesthesia (sevoflurane) + epidural analgesia (ropivacaine) Lidocaine group:longer overall

survival (p=0.013)
(11)

Studied group:lidocaine bolus+ continuous infusion + general anesthesia (sevoflurane) + epidural
analgesia (ropivacaine);

(Continued)
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Finally, among 11 prospective randomized controlled trials,
two studies reported a better disease-free survival after epidural
anesthesia (ropivacaine or bupivacaine) associated with
intravenous or volatile agents during colon (p=0.012) or bladder
tumor resection (p=0.02) compared to general anesthesia alone
(119, 120). One study investigated the antitumor activity of patient
sera after levobupivacaine infiltration during breast cancer
resection. A significant blockade of MDA-MB-231 breast
carcinoma cells was observed (p=0.01) (121). A better survival
after hepatectomy was also noticed after infiltration of ropivacaine
close to the incision site (p=0.029) (122). However, other trials
failed to confirm these findings, perhaps due to a lack of power
and major confusion bias compromising data analyses (injection
of multiple different anesthetic agents, inclusion of cancers at
different stages, loss of patients due to deficient followup,
heterogenous groups…). Table 4 Multicenter randomized
controlled trials with high quality of methodology are urgently
awaited to definitevely conclude on the potential benefit of LAs on
oncological outcomes.

Until now, no guidelines and no recommendations in onco-
anesthesia are available to guide clinical practice. Indeed, most of
the results issued from clinical studies are not convincing enough
to elaborate new guidelines due to a lack of power, presence of
Frontiers in Oncology | www.frontiersin.org 8
bias, heterogeneity of groups and the combined use of various
anesthetics that exert conflicting effects on tumor cells. However,
based on the sheer number of prospective multicenter
randomized controlled trials, we may expect the translation of
preclinical data into the clinics for the near future. Thus, we
anticipate that Phase III clinical trials will confirm that, beyond
their useful analgesic properties, local anesthetics exert
antitumor effects, meaning that their use will be approved for
this additional indication.
DISCUSSION

Oncological surgery generates neuroendocrine stress, inflammation
and acute pain responsible for immunosuppression, hence
impacting on the antitumor immune response (4, 83). The
manipulation of the tumor by the surgeon, vascular invasion and
the peri-operative synthesis of VEGF also promote the migration
and proliferation of residual cancer cells and thus, future metastatic
recurrence (131).

The impact of local anesthetics on cancer and its recurrence after
surgery has spurred a wave of interest over the last decade. Two
recent reviews covering this field have been published (132, 133).
TABLE 2 | Continued

Cancer Patients Design Cancer prognosis outcome Ref

Prostate N=123 Control group: general anesthesia(propofol) + fentanyl Epidural anesthesia: lower risk of
recurrence (p=0.012)

(13)
Postoperative: PCA (morphine)

N=102 Studied group: general anesthesia (propofol) + fentanyl
Postoperative: local anesthetic infusion for 48-72h

Prostate N=158 Control group: general anesthesia (isoflurane) + fentanyl; Postoperative: ketorolac + paracetamol Epidural analgesia: improved
clinical progression-free survival
(p=0.002).

(116)N=103 Studied group: general anesthesia (isoflurane) + Epidural (bupivacaine) + fentanyl

Prostate N=533 Control group: intravenous analgesia Epidural analgesia:not associated
with a significant effect (117)N=578 Studied group: epidural analgesia

Visceral N=63 Control group: general anesthesia (isoflurane + fentanyl); A trend in favor of epidural
anesthesia was observed for
recurrence free survival

(118)Postoperative: morphine
N=69 Epidural group: bupivacaine + general anesthesia (isoflurane); postoperative: bupivacaine +

morphine
Jan
uary 2022 | Volume 11 | Article 82
IV, intravenous; PCA, patient-controlled analgesia; PVB, paravertebral block.
PCA, patient-controlled analgesia; IV, intravenous.
TABLE 3 | Meta-analyses assessing local anesthetics impact on cancer prognosis.

Cancer Patients Design Cancer prognosis outcome Ref

Solid
tumors

14 studies
(47 000
patients)

Control group: general anesthesia Epidural anesthesia improved overall survival (p=0.013).
(15)Studied group: epidural anesthesia

with or without general anesthesia
Solid
tumors

10 studies
(3254
patients)

Control group: general anesthesia Combined general-epidural anesthesia was associated with decreased recurrence (p=0.027) and
metastasis rate (p=0.035) within the subgroup of prostate cancer patients and the subgroup with
follow-up less than or equal to 2 years

(16)Studied group: combined general-
epidural anesthesia

Solid
tumors

20 studies
(NA)

Control group: general anesthesia Perioperative regional anesthesia associated with improved overall survival ([HR] = 0.84, 95% CI,
0.75-0.94; I 2 =41%) (17)Studied group: perioperative

regional anesthesia
Solid
tumors

21 studies
(51 620
patients)

Control group: general anesthesia Neuroaxial anesthesia improved overall survival (p=0.026) and recurrence-free survival (p=0.047)
(18)Studied group: neuroaxial

anesthesia combined with or
without general anesthesia
1
785
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In the present article we attempted to synthesize the current
preclinical and clinical state of the art, while evoking the capacity
of local anesthetics to stimulate anticancer immune responses,
thereby potentiating the efficacy conventional anticancer
therapies. Particular emphasis has been laid on the difference
direct effects impacting on cancer cells and indirect, immune-
mediated effects controlling residual tumor cells that mediate local
relapse or distant metastasis.

LAs possess analgesic and anti-inflammatory properties that
indirectly improve cancer immunosurveillance. In addition, LAs
have direct molecular effects on mitochondrial metabolism,
generate oxidative stress, trigger apoptosis pathways in cancer
cells and activate NK cells (34, 64). Preclinical studies found that
treatment of cancer cells with clinically relevant concentrations
of LAs inhibits their proliferation and migration or induces cell
death (39). These direct antitumor effects described in many
cancer cell lines are time- and concentration-dependent. In
murine models, LAs showed a remarkable ability to decrease
the incidence of metastases after surgery (35, 38). In humans,
several clinical studies noticed that LAs used for extradural block
Frontiers in Oncology | www.frontiersin.org 9
attenuated the immunosuppressive endocrine effects generated
by surgery (75). In addition, an array of retrospective trials and
meta-analyses concluded that LAs used alone or in combination
with general anesthesia preserved NK cell activity and improved
overall survival and recurrence-free survival (18).

Several putative mechanisms may explain the antitumor
properties of LAs. First, LAs reduce the immunosuppressive
effects of surgery by reducing glucocorticoid stress and by
dampening inflammation (88). Second, LAs stimulate the
proliferation and the activity of NK cells that play an
important role in the innate immune defense against cancer
(83). Third, LAs have direct toxicity on cancer cells and may
induce apoptosis before residual cancer cells migrate into
adjacent tissues or reach the lumen of lymphatic or vascular
capillaries. Finally, LAs reduce the consumption of major
protumor molecules such as opioids and volatile agents during
cancer surgery (78, 92). Preclinical data sustaining these findings
are rather convincing as they have been reproduced in many
cancer types. However, these promising data now need
translation into the clinics. The outcome of ongoing
TABLE 4 | Randomized controlled trials assessing local anesthetics impact on cancer prognosis.

Cancer Patients Design Cancer prognosis outcome Ref

Bladder N=150 Control group: general anesthesia (sevoflurane)+fentanyl Local anesthesia: longer disease-free survival (p=0.02)
(119)Postoperative (morphine)

N=510 Studied group (propofol) +lidocaine+ epidural (ropivacaine)
Breast N=11 Control group: general anesthesia (sevoflurane) + morphine postoperative: PCA

(morphine)
Patient serum from studied group reduced MDA-MB-
231 breast carcinoma cell proliferation (p=0.01) (121)

N=11 Studied group: general anesthesia (propofol) + PVB (bolus and infusion of
levobupivacaine)

Breast N=30 Control group: general anesthesia (volatile anesthetic) No difference between groups
(123)N=30 Studied group: general anesthesia (volatile anesthetic) + PVB (ropivacaine bolus and

infusion)
Breast N=1065 Control group: general anesthesia (sevoflurane) No difference between groups

(124)N=1043 Studied group: general anesthesia (propofol) + PVB
Breast N=58 Control group: general anesthesia (propofol) No difference between groups

(125)N=56 Studied group: general anesthesia + single injection PVB (ropivacaine)
N=59 Studied group: general anesthesia + continuous-PVB (ropivacaine for 72h)

Colon N=92 Control group: general anesthesia (isoflurane)+ fentanyl Epidural improved survival in patients without
metastases (p=0.012) (120)N=85 Studied group: general anesthesia (isoflurane) + fentanyl + epidural group

(bupivacaine)
Colon
Rectum

N=30 Control group: general anesthesia (propofol+ remifentanyl); postoperative: PCA
fentanyl

No difference for postoperative NK cell cytotoxicity
and IL-2, recurrence or metastasis (126)

N=30 Studied group: general anesthesia (propofol and remifentanyl) + surgical wound
infiltration of ropivacaine

Liver N=20 Control group: tramadol injections Ropivacaine increased postoperative survival
(p=0.029) (122)N=20 Studied group: local incision analgesia (ropivacaine bolus + infiltration)

N=20 Studied group: PCA (fentanyl)
Lung N=200 Control group: general anesthesia (propofol/sevoflurane+ sufentanyl/remifentanyl);

postoperative: PCA morphine
No difference between groups for recurrence-free and
overall survival (127)

N=200 Studied group: general anesthesia (propofol/sevoflurane+ sufentanyl/remifentanyl)+
epidural anesthesia (ropivacaine)

Prostate N=50 Control group: general anesthesia; postoperative: morphine No difference between groups
(128)N=49 Studied group: general anesthesia + ropivacaine bolus and infusion with fentanyl

Solid
tumors

N=216 Control group: general anesthesia; postoperative: opioid-based analgesia No difference between groups
(129)N=230 Studied group: general anesthesia + epidural group (bupivacaine or ropivacaine);

postoperative: continous bupivacaine or ropivacaine + fentanyl or pethidine
Solid
tumors

N=822 Control group: general anesthesia (propofol/sevoflurane+ sufentanyl/remifentanyl/
fentanyl); postoperative: PCA morphine

No difference between groups for overall survival
(130)

N=772 Studied group: general anesthesia (propofol/sevoflurane+ sufentanyl/remifentanyl/
fentanyl)+ epidural anesthesia (ropivacaine)
January 2022 | Volume 11 | Article 82
PCA, patient-controlled analgesia; NK, natural killer; PVB, paravertebral block.
1785

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu Chuang et al. Local Anesthetics Induce Cancer Cell Death
randomized multicenter prospective trials dealing with the
potential anticancer effects of LAs are urgently awaited. Indeed,
the confirmation that LAs improve patient outcome would have
a major impact on clinical practice, in particular in the context of
oncological surgery.
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