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The isolation of infectious individuals is a key measure of public health for the control of commu-
nicable diseases. However, involving a strong perturbation of daily life, it often causes psychosocial
distress, and severe financial and social costs. These may act as mechanisms limiting the adoption of
the measure in the first place or the adherence throughout its full duration. In addition, difficulty
of recognizing mild symptoms or lack of symptoms may impact awareness of the infection and
further limit adoption. Here, we study an epidemic model on a network of contacts accounting
for limited adherence and delayed awareness to self-isolation, along with fatigue causing overhasty
termination. The model allows us to estimate the role of each ingredient and analyze the tradeoff
between adherence and duration of self-isolation. We find that the epidemic threshold is very sensitive
to an effective compliance that combines the effects of imperfect adherence, delayed awareness and
fatigue. If adherence improves for shorter quarantine periods, there exists an optimal duration of
isolation, shorter than the infectious period. However, heterogeneities in the connectivity pattern,
coupled to a reduced compliance for highly active individuals, may almost completely offset the
effectiveness of self-isolation measures on the control of the epidemic.

I. INTRODUCTION

A pillar of non-pharmaceutical interventions for the con-
trol of COVID-19 pandemic is the isolation of individuals
testing positive for SARS-CoV-2 infection. The aim is to
avoid onward propagation of the disease, while contacts
are traced to further break the chains of transmission [1].
This measure, however, is met with a set of challenges,
as it has no immediate benefit for the index case, but a
number of downsides. It often causes psychosocial dis-
tress [2], and it may have severe financial and social costs
impacting daily life, if a structured support program is
not in place.
Ideally, the measure should cover the entire duration

of the infectivity period. In practice, isolation may start
when a person is already infectious, typically at the onset
of symptoms, or when alerted by a contact tracing inves-
tigation. Also, the length of the infectious period may
be strongly variable across individuals [3, 4]. Additional
factors may undermine the effectiveness of isolation. Mild
symptoms or lack of symptoms may ruin the motivation
to respect it, as physical conditions are not an impediment
to carry out the daily routine. The legal enforcement of
the measure may create tradeoffs discouraging individu-
als to self-declare as cases [5]. Survey data report that
adherence is low [6–8]. Among the reported reasons for
non-adherence are lower socioeconomic grade, psychologi-
cal distress, inadequate information and long quarantine
duration [2].

During COVID-19 pandemic, the duration of isolation
has been one flexible component that authorities adapted
from initial estimates of 14 days [9] to shorter periods
to make the measure more bearable, at the first signs in
summer 2020 showing the difficulty of implementation of

the measure [10, 11]. Variable durations mark a tradeoff
between a long enough period of isolation to prevent
onward transmission, and a short enough period that is
acceptable by the population. Some countries went as low
as 5 to 7 days to increase adherence [12, 13], especially in
countries where self-isolation was not legally compulsory.
Further changes (extension to 10 days [14]) occurred later
because of the circulation of the Alpha variant (B.1.1.7
lineage), showing the complexity of the biological and
social aspects of setting this public health measure [15].

As gaps in any of these aspects may undermine the ef-
fectiveness of isolation in aiding epidemic control, here we
study through mathematical modeling the role of delayed
awareness in entering into isolation and fatigue inducing
early release of the measure. Our model is a variation of
the standard susceptible-infected-susceptible (SIS) com-
partmental model for infectious disease dynamics [16, 17],
allowing for three additional compartments: an isolated
(Q) compartment, an undecided (U) compartment, and a
fatigued (F) compartment. Here we borrow the classical
notation Q commonly used in compartmental models to
define the isolation of infectious individuals, notably with
the susceptible-infected-quarantined-susceptible (SIQS)
model [18–23]. We do not consider the quarantine as
the preventive isolation of suspect cases or of contacts of
confirmed cases [24–26] , and in the following we will use
the terms quarantine and self-isolation as synonyms. The
existence of (temporary) immunity against SARS-CoV-2
would suggest the consideration of a SIR-like dynamics.
We prefer to consider a SIS-based modeling framework
as the absence of an immune state allows us to keep ana-
lytical derivations simpler while still providing (a worse
case scenario) intuition on the behavioral mechanisms re-
lated to the self-isolation measure. We expect that similar
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results would be obtained for a SIR-like model.
The undecided compartment U corresponds to an inter-

mediate state, following infection, during which awareness
arises around the knowledge of being infected, involving
a delay before the decision to comply with isolation. This
state may also be interpreted as the time between infec-
tion and testing (thus corresponding to logistical delays
in accessing and performing a test, and obtaining the
test results), or to the time between infection and symp-
toms onset (thus corresponding to a pre-symptomatic
phase) [1, 27]. Another addition to the standard SIQS
model is the possibility that the individual exits self-
isolation before its full duration and while still infectious.
The compartmental model and transitions are fully ex-
plained in the next section.
We investigate the model on a networked population

with a mean-field approach, highlighting how the key pa-
rameters describing the epidemic dynamics – i.e. the epi-
demic threshold and the prevalence of infected individuals
in the endemic state – depend on the different durations
associated to these states. We then consider increasingly
more accurate mean-field types of approach, allowing to
analyze in detail how individual heterogeneities influence
collective properties of the system. We therefore rely on
proven effective analytical and numerical tools in order
to quantitatively uncover the role of various kinds of im-
perfections of self-isolation in the spread of a pathogen,
which can be of public health relevance to the control of
the currently ongoing pandemic.

II. EPIDEMIC MODEL WITH QUARANTINE,
DELAY AND FATIGUE

The model we consider is a modification of the usual SIS
dynamics [16], based on the existence of three additional
compartments, beyond the standard S (susceptible) and
I (infected) states.
The contact of a susceptible individual with an infec-

tious one leads to a transmission of the pathogen at rate
β. The newly infected individual enters the state U (un-
decided) preceding the decision on whether to self-isolate
or not. The decision process is assumed to be Poissonian
with rate µU . After the decision, the individual enters
the quarantined state Q with probability pQ (quarantine
probability). With complementary probability he/she
instead enters the infected state I. In the latter case the
individual behaves as in the standard infected state of
the SIS model. In the Q state instead the individual has
no contacts, and does not transmit the infection. Compli-
ance to isolation may however end before full recovery, as
fatigue sets in. We model this assuming that each quaran-
tined individual transitions to compartment F (fatigued)
at rate µQ. Individuals in state F are infectious with the
same transmissibility β of those in state I.

As the progression of the disease does not depend on the
isolation status, spontaneous recovery transitions occur
from states U, I, Q and F to the susceptible state S,

Figure 1. Schematic representation of compartments and
transition rates of the model

.

at same rate µ. As a consequence of this choice, the
average time spent before reaching the S compartment
from any of the infected states U, I, Q and F is 1/µ,
also when there exist multiple paths to recovery. The
computation of the average time should indeed receive the
contributions of all the possible paths, each weighted by
the probability of being chosen; when multiple transitions
out of a compartment are possible, the average time of
each transition must be conditioned on the fact that the
other possible transitions were not undergone.

Our model overall depends on five independent param-
eters pQ, β, µU , µQ and µ. The compartments and the
transitions allowed between them are depicted in Fig. 1.
All transitions are spontaneous except the one taking indi-
viduals in state S to the undecided state U, which occurs
because of a contact between a susceptible individual and
an infectious one. Note that in this model individuals
in compartments I, F, U are all infectious with the same
transmissibility.

III. MEAN-FIELD APPROACH

Let us define as S(t), U(t), I(t), Q(t), F (t), the proba-
bilities for an individual to be in the respective compart-
ments. The sum of these probabilities equals 1, leaving
only 4 independent quantities. We assume a homoge-
neous pattern of interactions, with average number of
contacts ⟨k⟩. Then, the differential equations describing
the evolution of the aforementioned probabilities read as
follows:

U̇ = β ⟨k⟩ (1− I − U − F −Q)(I + U + F )
−(µU + µ)U

İ = µU (1− pQ)U − µI

Q̇ = µUpQU − (µQ + µ)Q

Ḟ = µQQ− µF

(1)

The disease-free state (S,U, I,Q, F ) = (1, 0, 0, 0, 0) is
always an equilibrium solution of the system. Lineariza-
tion around it shows that it is not stable if λ = β/µ is
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above the critical value λc, marking the existence of an
endemic state:

λc =
1

⟨k⟩
1

1− pQ
µµU

(µQ+µ)(µU+µ)

=
1

⟨k⟩
1

1− pQ(
1+ T

TQ

)(
1+

TU
T

) ,
(2)

where the temporal scales T = 1/µ, TQ = 1/µQ and TU =
1/µU are the average times spent in the corresponding
states. Eq. (2) contains several known results for limit
values of its parameters. pQ = 0 – individuals never in
isolation – yields the well-known SIS Mean-field result
λc = 1/ ⟨k⟩. The same limit is recovered if the quarantine
has vanishing duration (T/TQ → ∞) or when the time to
take a decision diverges (TU/T → ∞).
For generic values of the parameters Eq. (2) can be

written as

λc =
1

⟨k⟩
1

1− peffQ

(3)

where

peffQ =
pQ(

1 + T
TQ

) (
1 + TU

T

) . (4)

The quantity peffQ is a scaling law turning the effect of
compartments U, F into an effective probability to self-
isolate in a SIQS model. It is smaller than pQ and reflects
the reduction in the efficacy of the quarantine due to
undecidedness and fatigue. Note that, even for full com-
pliance with the quarantine prescription (pQ = 1), any
value TQ < ∞ or TU > 0 is sufficient to make the thresh-
old finite. For relatively large decision time (compared
with recovery time) or small quarantine duration, the
factor multiplying pQ in Eq. (4) is small and therefore the
increase of the epidemic threshold for a full quarantine
probability (pQ = 1) compared to none (pQ = 0), might
be very limited.

In the endemic state, the densities of individuals in the
various compartments are given by

U∗ = 1
1+T/TU

λ−λc

λ

I∗ = (1− pQ)
1

1+TU/T
λ−λc

λ

Q∗ =
pQ

(1+TU/T )(1+T/TQ)
λ−λc

λ

F ∗ =
pQ

(1+TU/T )(1+TQ/T )
λ−λc

λ

(5)

where the quantity λ−λc

λ is the total density of infected
individuals 1−S∗ = U∗+I∗+Q∗+F ∗. The total density
of infectious individuals instead is

I∗tot = I∗ + U∗ + F ∗ =
1

⟨k⟩

(
1

λc
− 1

λ

)
. (6)

For any λ, I∗tot depends on pQ, TQ and TU only via
the value of the epidemic threshold. Equation (6) then
indicates that, for a given λ, changing parameters in order

to increase the epidemic threshold simultaneously reduces
the overall prevalence of infectious individuals. Therefore
maximizing the epidemic threshold, minimizing I∗tot and
maximizing S∗ = λc/λ are equivalent procedures.
In general, the two parameters pQ and TQ are likely

to be dependent, as the perspective of long isolation
may discourage people from isolating. We assume that
the quarantine probability is a function pQ(TQ) of its
duration. In particular we expect that pQ decreases as
TQ increases. This leads to the existence of an optimal
quarantine duration T ∗

Q. For small values of TQ adherence
to quarantine is high, but its duration is too short, so that
people exit from it when they are still infectious. For large
values of TQ isolated individuals recover when in isolation,
but compliance is low. An optimal tradeoff exists between
these two limits. We want to find the optimal duration
of self-isolation TQ that minimizes pathogen circulation,
i.e. it either minimizes I∗tot or maximizes the epidemic
threshold. This occurs when the denominator of the
epidemic threshold (Eq. (2)) attains its minimum, i.e. for
TQ = T ∗

Q such that

dpQ
dTQ

∣∣∣∣
TQ=T∗

Q

= −
pQ(T

∗
Q)

T ∗
Q

1

1 +
T∗
Q

T

. (7)

We make the relationship between pQ and TQ explicit,
making the following minimal assumption:

pQ(TQ) =
1

1 + cTQ/T
, (8)

where the parameter c determines how quickly the proba-
bility to enter quarantine decays with its duration. This
way compliance tends to be perfect (pQ → 1) for ex-
tremely short quarantine, while virtually nobody decides
to isolate (pQ → 0) if the duration of self-isolation is much
longer than the average recovery time.
The optimal quarantine duration, solution of Eq. (7),

is then

T ∗
Q

T
=

1√
c
, (9)

corresponding to an optimal probability to quarantine
p∗Q = 1/(1 +

√
c) and to the maximum threshold

λ∗
c =

1

⟨k⟩
1

1− 1

(1+
√
c)

2
(
1+

TU
T

) . (10)

We find that for the optimal duration of quarantine T ∗
Q

the threshold is a decreasing function of the parameter
c (see Fig. 2).

IV. HETEROGENEOUS MEAN FIELD
APPROACH

We now allow for the more realistic assumptions of
individuals to have heterogeneous contact rates. We start
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Figure 2. Dependence of the epidemic threshold on the quar-
antine duration TQ for various values of the parameter c in
Eq. (8). Vertical lines indicate the optimal values from Eq. (9).
T = 1, TU = 0.2 and ⟨k⟩ = 0.6.

investigating this case by means of the Heterogeneous
Mean Field (HMF) approximation [16, 28], which assumes
that the probability of being in a given compartment only
depends on the degree k of an individual. Hence the state
of the system is described by the set of variables Sk(t),
Uk(t), Ik(t), Qk(t), Fk(t), where k spans the degree values
in the network and normalization to 1 holds for any k.
This approach is equivalent to assuming that the under-
lying contact network among individuals is annealed [29],
i.e., connections are fully rewired at each time step while
preserving the degree of each node. For the standard
SIS dynamics on power-law degree-distributed networks
with P (k) ∼ k−γ , the HMF approximation provides very
accurate results if γ < 5/2 [30] while for larger values
of γ it fails for large systems [30, 31]. For simplicity we
further assume that the network is uncorrelated so that
P (k′|k) = k′P (k′)/ ⟨k⟩.

A. Epidemic parameters independent of k

We first consider the case where all individuals behave
in the exact same way so that parameters take fixed
values.

The HMF equations are easily written down
U̇k = β(1− Ik − Uk −Qk − Fk)kΘ− (µU + µ)Uk

İk = µU (1− pQ)Uk − µIk
Q̇k = µUpQUk − (µQ + µ)Qk

Ḟk = µQQk − µFk

(11)
where Θ is the probability that a neighbor of a given

node is infectious in an uncorrelated network

Θ =
∑
k′

k′P (k′)

⟨k⟩
(Ik′ + Uk′ + Fk′). (12)

At stationarity we have
0 = β(1− Ik − Uk −Qk − Fk)kΘ− (µU + µ)Uk

0 = µU (1− pQ)Uk − µIk
0 = µUpQUk − (µQ + µ)Qk

0 = µQQk − µFk

(13)
whose solution reads

U∗
k = λkΘ

(1+µU/µ)(1+λkΘ)

I∗k = µU

µ (1− pQ)U
∗
k

Q∗
k =

µUpQ

µQ+µU
∗
k

F ∗
k =

µQ

µ
µUpQ

µQ+µU
∗
k

(14)

Inserting the stationary values into Eq. (12) we find

Θ =
∑

k′
k′P (k′)

⟨k⟩

[
1− pQ

(1+µQ/µ)(1+µ/µU )

]
(1 + µU/µ)U

∗
k′

(15)
A nontrivial solution Θ > 0 only exists if the derivative
with respect to Θ of the r.h.s. of Eq. (15) [where we
substitute U∗

k′ by its explicit dependence on Θ using
Eq. (14)] evaluated for Θ = 0, is larger than 1. This
condition allows us to determine the epidemic threshold

λc =
1

1− pQ(
1+ T

TQ

)(
1+

TU
T

) ⟨k⟩
⟨k2⟩

. (16)

We observe that this threshold is simply the HMF thresh-
old for SIS [28] modulated by a factor that takes into
account quarantine probability, duration as well as delay.
The effect of topology factorizes. For a homogeneous
network Eq. (2) is recovered, since

〈
k2
〉
= ⟨k⟩2.

We perform numerical checks of these predictions, by
simulating SIS dynamics (using a Gillespie optimized
algorithm [32]) on networks built according to the un-
correlated configuration model [33]. In this model, we
consider an upper cutoff on the degrees – k ∈ [kmin =

3, kmax =
√
N ] – in order to have an uncorrelated net-

work without multiple and self connections. The epidemic
threshold is estimated by finding the value of λ = β/µ at
which the susceptibility of the system reaches a maximum
value [30]. Such susceptibility is computed for the num-
ber of infected individuals in the quasistationary regime
(the order parameter of the epidemic phase transition).
Of course only surviving runs of the dynamics need to
be considered. In order to work with the equivalent of
surviving runs, we implemented the so-called Quasista-
tionary State method (QS) [30], for which the dynamics
never allows the system to enter the healthy absorbing
state.

In the following, we consider networks with an exponent
γ = 2.25 of the degree distribution and, unless otherwise
specified, with a network size N = 105.

In Fig. 3 we plot the epidemic threshold as a function of
the system size N for several values of the probability pQ
to enter quarantine. We first note an excellent agreement
between the theory (dashed lines) and the simulations
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Figure 3. Epidemic threshold λc as a function of the system
size N for γ = 2.25 and several values of pQ. Dashed lines
represent the theoretical prediction, Eq (16), while symbols
are the numerical estimates, obtained from the peak of the
susceptibility [32]. T = 1, TU = 0.25, TQ = 1.

Figure 4. Epidemic threshold λc as a function of TQ for T = 1,
TU = 0.2 and various pQ. Symbols are the results of numerical
simulations, dashed lines are the predictions of HMF theory,
dotted lines are the predictions of QMF theory.

(symbols), further increasing as N grows. The value of the
threshold decreases as a function of size, as a consequence
of the diverging second moment at the denominator of
Eq. (16). A higher quarantine probability leads to an
increase of the threshold but for the present choice of
parameter values (T = 1, TU = 0.25, TQ = 1), the effect is
not dramatic: even a complete participation to quarantine
(pQ = 1) implies only a (slightly more than) two-fold
increase in the value of the threshold with respect to the
pQ = 0 case. In Fig. 4 we show the dependence of the
threshold on the duration of quarantine for various values
of the probability pQ. We observe that a longer duration
of quarantine leads to a larger epidemic threshold, but

Figure 5. Epidemic threshold λc as a function of TQ for T = 1,
pQ = 0.7 and various TU . Dashed lines are the predictions
of HMF theory and dotted lines are the predictions of QMF
theory while symbols are the results of numerical simulations.

Figure 6. Density of individuals in the various compartments
in the stationary state as a function of λ for T = 1, TU = 0.2,
TQ = 0.33 and pQ = 0.7.

the effect is sizeable only provided pQ is quite large. In
Fig. 5 we show the dependence of the threshold on the
duration of quarantine for various delays TU . Here too
the threshold increases smoothly with TQ. If the decision
time is much smaller than the time to heal the effect
becomes relevant also for reasonable values of TQ.

Finally in Fig. 6 we report the dependence of the total
density of individuals in the various compartments as a
function of λ, showing a fair agreement between theory
and numerics. As long as the parameters of the model are
finite and strictly positive, each of these densities carries
information on the global state of the epidemic, each of
them simply being a fraction of the order parameter.
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B. Degree-dependent epidemic parameters

Empirical evidence [34] suggests that people having
more contacts or being more active tend to be more reluc-
tant in reducing their interactions to prevent contagion.
This may be due to the fact that each interrupted contact
carries with it a substantial economical, social and/or
psychological cost. Real data also suggest that individ-
uals with high activity are more attractive, which may
make it more difficult for them to self-isolate given the
numerous solicitations they receive from others [23]. It
is then quite natural to believe that also adherence to
the prescription to self-isolate may be different (and in
particular be suppressed) for people with a large number
of contacts. In our framework it is possible to model such
a realistic element by assuming that the probability to
enter quarantine and/or its duration depend on the degree
of the node, a proxy of individual activity. In particular
it is reasonable to expect both pQ and TQ to decrease
with k.

By repeating the calculations already performed in the
case with degree-independent parameters we easily find
that the epidemic threshold reads

λc =
⟨k⟩〈(

1− pQ(k)(
1+ T

TQ(k)

)(
1+

TU
T

)
)
k2

〉 , (17)

where ⟨X(k)⟩ =
∑

k P (k)X(k). Hence, depending on how
pQ and TQ behave for large k, quarantine may reduce or
not the vulnerability of scale-free networks to epidemics.
We test this prediction again by performing simulations on
networks built according to the uncorrelated configuration
model. For reference, we compare with results obtained
with degree-independent parameters tuned to have exactly
the same average value of the degree-dependent case.
We first check what happens assuming pQ(k) = kmin/k,
so that compliance is perfect for nodes having minimal
connectivity while it becomes very small for large k. In
Fig. 7 we report the behavior of the epidemic threshold
as a function of TQ for the degree-dependent case and
for a degree independent case such that pQ = ⟨pQ(k)⟩.
It turns out that the threshold is smaller in the degree-
dependent case and in particular that it grows much more
slowly with TQ. The effect of a long self-isolation of less
connected individuals is almost completely offset by the
little compliance of nodes of large degree.

We then check what happens instead when TQ(k) =
(T−TU )(kmax−k)/(kmax−kmin). Complying individuals
with few contacts self-isolate until full recovery, whereas
individuals with large connectivities spend a vanishing
time in quarantine. This degree-dependent scenario is
compared in Fig. 8 to the degree-independent one in such
a way that in the latter TQ = ⟨TQ(k)⟩. We find that the
possibility for a few hubs to undergo shorter isolation

Figure 7. Epidemic threshold as a function of TQ for T = 1,
TU = 0.25. In the heterogeneous case (circles and bottom
lines) pQ(k) = kmin/k. In the homogeneous case (squares and
top lines) pQ is the same for all nodes: pQ = ⟨pQ(k)⟩ = 0.66.
Dashed lines are for the HMF predictions whereas dotted lines
are for the QMF ones.

Figure 8. Epidemic threshold as a function of pQ for T = 1,
TU = 0.25. In the heterogeneous case (circles and bottom
lines) TQ(k) = (T − TU )(kmax − k)/(kmax − kmin). In the
homogeneous case (squares and top lines) TQ is the same for
all nodes TQ = ⟨TQ(k)⟩ = 0.71. Dashed lines are for the HMF
predictions whereas dotted lines are for the QMF ones.

.

periods than the average individual of the population
lowers the epidemic threshold the more the larger the
quarantine probability. The linear interpolation between
the extreme behaviours of hubs and poorly-connected
individuals seems to be slow enough not to completely
offset the advantages put forward by the self-isolation
prescription.
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V. QUENCHED MEAN FIELD APPROACH

A. Epidemic parameters independent of k

A more refined approach to the model dynamics on
networks is provided by the Quenched Mean Field (QMF)
approximation [35–37] (also known as Individual Based
mean-field approach), which takes into account the de-
tailed structure of the network encoded in the adjacency
matrix Aij . Defining as Ii(t), Ui(t), Qi(t), Fi(t) the prob-
abilities that node i is in state I, U, Q and F respectively,
the evolution of the model is described by the set of 4N
equations


U̇i = λ(1− Ii − Ui −Qi − Fi)·

·
∑

j Aij(Ij + Uj + Fj)− (µ+ µU )Ui

İi = µU (1− pQ)Ui − µIi
Q̇i = µUpQUi − (µ+ µQ)Qi

Ḟi = µQQi − µFi

(18)

By linearizing around the healthy state and imposing
the largest eigenvalue of the Jacobian matrix to be equal
to 0 one obtains the epidemic threshold

λc =
1

1− pQ(
1+ T

TQ

)(
1+

TU
T

) 1

ρ(A)
, (19)

where ρ(A) is the spectral radius of the adjacency matrix
(i.e. its largest eigenvalue). This expression is perfectly
analogous to the QMF result for standard SIS dynamics
(corresponding to Eq. (19) for pQ = 0), for which it is well
known [16, 38] that the QMF threshold is a lower bound
of the true threshold. We expect this to be true also for
the present modification of the SIS model. Indeed Figs. 4
and 5 show that Eq. (19) is a tight lower bound, as it is
the case for γ = 2.25 < 5/2. For larger values of γ instead
additional nontrivial effects [39] make the QMF estimate
inaccurate for large networks. We note also that the HMF
predictions are slightly closer than QMF to the numerical
results. This better performance of HMF with respect
to QMF (which occurs also for SIS [40]) is accidental:
the additional approximation introduced by HMF partly
cancels the error due to the QMF approximation. It is
only for larger values of γ > 3 and larger system sizes
that QMF reveals its more accurate qualitative behavior.

B. Degree-dependent epidemic parameters

If the parameter pQ depends on k we obtain that the
threshold is

λc =
1

ρ(Ã)
. (20)

The quantity Ã is a modification of the adjacency matrix
of the system

Ã = A

1 − PQ
1(

1 + T
TQ

) (
1 + TU

T

)
 , (21)

where PQ = diag(pQ(k(i))).
If instead the parameter TQ depends on k we obtain

that the threshold is

λc =
1

ρ(Ã)
. (22)

Ã is now

Ã = A

1 − pQ
1(

1 + T
TQ

) (
1 + TU

T

)
 , (23)

where TQ = diag(TQ(k(i)))).

VI. CONCLUSIONS

In this paper we have defined and used an epidemic
model to study the role of delayed case detection/infection
awareness, compliance to self-isolation, and fatigue-
induced early drop-out on the effectiveness of self-isolation
as a non-pharmaceutical intervention. We found that ad-
herence to the prescription to self-isolate once infected
scaled up the epidemic threshold compared to the simple
SIS result, and delay into entering isolation or early re-
lease from it resulted in a reduction of effective adherence
to self-isolation. If the propensity to enter self-isolation
and the time spent isolated decrease with the individual
number of contacts (degree), the low adherence of few
well socially connected individuals may undermine the
effectiveness of the entire non-pharmaceutical measure
against the epidemic. This is a key result as it suggests
that these phenomena, empirically found [6, 41], may
strongly limit the impact of isolation programs on the
pandemic, unless specific measures are implemented to
overcome these barriers [6].
The applicability of this model to real case scenarios

would take advantage from being informed by real data
for both the parameters describing the COVID-19 dy-
namics and behavioral parameters. Whereas the former
can be obtained by fitting case incidence time-series, the
latter rely on a complex interaction between top-down
regulations and behavioral adaptations and are hence
harder to be inferred from data. The behavioral param-
eters are therefore explored rather than fit to data. We
plan to include data from surveys in a future develop-
ment of this study. Also additional ingredients must
be considered in the model to increase the applicability
of the model to more realistic scenarios. First, a more
detailed compartmental structure accounting for the dif-
ferent phases of COVID-19 disease progression, to better
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account for the interplay of different time periods and in-
clude asymptomatic and paucisymptomatic states. These
may also result in different behaviors, reducing adherence
and increasing early drop-outs, compared to symptomatic
cases. Our simplified approach has, however, the advan-
tage of being analytically tractable, therefore providing
an immediate solution under certain approximation and
offering an intuition into the behavior of the system. In
this perspective, the SIS model was preferred to a model
with immunity. Second, transitions were modeled with
Poissonian probability distributions, whereas many of
these processes are generally described by broader dis-
tributions [42, 43] . In this context, we expect that this
approximation may impact the recovery process from the
state F differently than from the state I.

Further directions can be considered to expand this
approach in future work. Here, we assumed that isolation
prevents all contacts. In reality, isolation is never 100%
effective, due both to behavioral aspects, and hard living
constraints (e.g., household crowding [44]). Different
degrees of imperfect isolation can be considered in terms of

approximations altering the contact pattern. We did not
consider in this study the role of quarantine as preventive
isolation of suspect cases or contacts of confirmed cases.
There is now a large body of literature on the role of
contact tracing in combination to isolation and testing in
COVID-19 control [15], and the importance of speeding
up this process through digital tools [24]. Beside contact
tracing, the introduction of a compartment describing
individuals uncertain about their infection status, but still
with recommended self-isolation, constitutes an additional
component in limiting adherence, as motivation to self-
isolate is reduced in absence of symptoms or of a test result
confirmation. These processes are likely to be governed
by different parameters of quarantine probability and
duration. Finally, adherence to self-isolation may be
the result of an individual component, explored here,
along with a population component defined by a level of
awareness and of risk perception that may evolve over
time [45], depending on the evolving epidemic context.
This may be an important component contributing to
the observed relaxation effects after COVID-19 pandemic
wave, possibly resulting in case resurgences [46–48].

[1] T. R. Mercer and M. Salit, Nature Reviews Genetics
(2021), 10.1038/s41576-021-00360-w.

[2] S. K. Brooks, R. K. Webster, L. E. Smith, L. Woodland,
S. Wessely, N. Greenberg, and G. J. Rubin, The Lancet
(2020), 10.1016/S0140-6736(20)30460-8.

[3] C. H. Sudre, B. Murray, T. Varsavsky, M. S. Graham, R. S.
Penfold, R. C. Bowyer, J. C. Pujol, K. Klaser, M. An-
tonelli, L. S. Canas, E. Molteni, M. Modat, M. J. Cardoso,
A. May, S. Ganesh, R. Davies, L. H. Nguyen, D. A. Drew,
C. M. Astley, A. D. Joshi, J. Merino, N. Tsereteli, T. Fall,
M. F. Gomez, E. L. Duncan, C. Menni, F. M. K. Williams,
P. W. Franks, A. T. Chan, J. Wolf, S. Ourselin, T. Spector,
and C. J. Steves, Nat Med 27 (2021), 10.1038/s41591-
021-01292-y.

[4] World Health Organization, “Report of the who-china
joint mission on coronavirus disease 2019 (covid-
19),” https://www.who.int/docs/default-source/
coronaviruse/who-china-joint-mission-on-covid-

19-final-report.pdf (2020).
[5] T. Lucas, E. Davis, D. Ayabina, A. Borlase, T. Crellen,

L. Pi, G. Medley, L. Yardley, P. Klepac, J. Gog, and
T. D. Hollingsworth, Philosophical Transactions of The
Royal Society B Biological Sciences (2020).

[6] L. E. Smith, H. W. W. Potts, R. Amlôt, N. T. Fear,
S. Michie, and G. J. Rubin, The BMJ (2021),
https://doi.org/10.1136/bmj.n608.

[7] A. Steens, B. F. de Blasio, L. Veneti, A. Gimma, W. J.
Edmunds, K. van Zandvoort, C. I. Jarvis, F. Forland, and
B. Robberstad, Eurosurveillance (2020), 10.2807/1560-
7917.es.2020.25.37.2001607.

[8] H.-Y. Cheng, T. Cohen, and H.-H. Lin, The bmj (2021),
10.1136/bmj.n822.

[9] World Health Organization, https://www.who.int/news-
room/commentaries/detail/criteria-for-releasing-

covid-19-patients-from-isolation (2020).

[10] C. Silva and M. Martin, “U.s. surgeon general blames
’pandemic fatigue’ for recent covid-19 surge,” https:

//www.npr.org/sections/coronavirus-live-updates/
2020/11/14/934986232/u-s-surgeon-general-blames-

pandemic-fatigue-for-recent-covid-19-surge?t=

1619011823724 (2020).
[11] H. Rahmandad, T. Y. Lim, and J. Sterman, medRxiv

(2020), 10.1101/2020.06.24.20139451.
[12] The Irish Times, https://www.irishtimes.com/

news/world/europe/coronavirus-germany-debates-

cutting-self-isolation-period-to-five-days-

1.4346952 (2020).
[13] Le Figaro, https://www.lefigaro.fr/sciences/

en-direct-coronavirus-la-france-attend-les-

annonces-du-gouvernement-20200911 (2020).
[14] LCI, https://www.lci.fr/sante/covid-19-

quarantaine-dans-quels-cas-faut-il-desormais-s-

isoler-plus-de-10-jours-2178865.html (2021).
[15] P. Ashcroft, S. Lehtinen, D. C. Angst, N. Low, and

S. Bonhoeffer, Elife (2021), 10.7554/eLife.63704.
[16] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and

A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).
[17] R. M. Anderson, R. M. May, and B. Anderson, Infectious

Diseases of Humans: Dynamics and Control (Oxford
Science Publications, 1991).

[18] H. Hethcote, M. Zhien, and L. Shengbing, Mathematical
Biosciences 180, 141 (2002).

[19] S. Chen, M. Small, and X. Fu, IEEE Transactions on
Network Science and Engineering 7, 1583 (2020).

[20] X.-B. Zhang, H.-F. Huo, H. Xiang, Q. Shi, and D. Li,
Physica A: Statistical Mechanics and its Applications 482,
362 (2017).
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