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Abstract 28 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a family of bacterial 29 

lipids which have emerged over time as robust temperature and pH paleoproxies in continental 30 

settings. Nevertheless, it was previously shown that other parameters than temperature and pH, 31 

such as soil moisture, thermal regime or vegetation can also influence the relative distribution 32 

of brGDGTs in soils and peats. This can explain a large part of the residual scatter in the global 33 

brGDGT calibrations with mean annual air temperature (MAAT) and pH in these settings. 34 

Despite improvements in brGDGT analytical methods and development of refined models, the 35 

root-mean-square error (RMSE) associated with global calibrations between brGDGT 36 

distribution and MAAT in soils and peats remains high (~ 5 °C). The aim of the present study 37 

was to develop a new global terrestrial brGDGT temperature calibration from a worldwide 38 

extended dataset (i.e. 775 soil and peat samples, i.e. 112 samples added to the previously 39 

available global calibration) using a machine learning algorithm. Statistical analyses 40 

highlighted five clusters with different effects of potential confounding factors in addition to 41 

MAAT on the relative abundances of brGDGTs. The results also revealed the limitations of 42 

using a single index and a simple linear regression model to capture the response of brGDGTs 43 

to temperature changes. A new improved calibration based on a random forest algorithm was 44 
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thus proposed, the so-called random Forest Regression for PaleOMAAT using brGDGTs 45 

(FROG). This multi-factorial and non-parametric model allows to overcome the use of a single 46 

index, and to be more representative of the environmental complexity by taking into account 47 

the non-linear relationships between MAAT and the relative abundances of the individual 48 

brGDGTs. The FROG model represents a refined brGDGT temperature calibration (R² = 0.8; 49 

RMSE = 4.01°C) for soils and peats, more robust and accurate than previous global soil 50 

calibrations while being proposed on an extended dataset. This novel improved calibration was 51 

further applied and validated on two paleo archives covering the last 110 kyr and the Pliocene, 52 

respectively.  53 

 54 

Keywords: branched GDGTs; global temperature calibration; soil; peat; machine 55 

learning 56 

  57 
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1. Introduction 58 

 59 

Investigating past climate variations is essential to understand and predict future 60 

environmental changes, especially in the context of global anthropogenic changes. To this aim, 61 

"indirect" indicators of past climates – so-called proxies – have been developed and used 62 

regularly since the last century, including those based on microbial lipids. Microorganisms are 63 

able to modify the lipid composition of their membranes to maintain a functional fluidity and 64 

permeability of the latter. The temperature and pH of the microorganism living environment 65 

are considered to be the predominant factors influencing the membrane lipid distribution 66 

(Lauber et al., 2009; Siles and Margesin, 2016; Hofmann et al., 2016; Shen et al., 2019).  67 

Among microbial lipids, branched glycerol dialkyl glycerol tetraethers (brGDGTs) have 68 

been increasingly used as temperature and pH proxies in continental settings over the last 15 69 

years. These membrane lipids are produced by still unidentified bacteria, although some of them 70 

may belong to the phylum Acidobacteria (Sinninghe Damsté et al., 2011, 2014, 2018). They 71 

are ubiquitous in terrestrial (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014; 72 

Naafs et al., 2017a) and aquatic environments (Blaga et al., 2009; Peterse et al., 2009, 2015; 73 

Damsté et al., 2009; Tierney and Russell, 2009; Loomis et al., 2012; Weber et al., 2015). The 74 

analysis of brGDGTs, based on a large number of soils distributed worldwide showed that the 75 

relative distribution of these compounds is mainly related to mean annual air temperature 76 

(MAAT) and soil pH (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014). The 77 

average number of pentane rings, reflected in the Cyclisation of Branched Tetraethers (CBT) 78 

index (Weijers et al., 2007; Peterse et al., 2012), has been correlated with soil pH, while the 79 

average number of methyl groups, referred to as the Methylation of Branched Tetraethers 80 

(MBT) index, has been initially correlated with mean annual mean air temperature (MAAT) 81 

and, to a lesser extent, soil pH (Weijers et al., 2007 (r²=0.77; RMSE =4.8°C, n=134); Peterse et 82 

al., 2012 (r²=0.59; RMSE=5.0°C; n=176). More recently, new brGDGT isomers have been 83 

detected trough improved analytical methods, with methyl groups being present in either 5th , 84 

6th, 7th or 8th position (De Jonge et al., 2013, 2014; Hopmans et al., 2016; Ding et al., 2016). It 85 

was observed that 6-methyl isomers were strongly and predominantly dependent on soil pH and 86 

5-methyl brGDGTs on temperature (De Jonge et al., 2014). This led to the development of a 87 

new MBT index excluding 6-methyl isomers - the MBT'5Me index - which correlates 88 

preferentially with MAAT (r² = 0,64; RMSE= 4.8°C; n = 231).  89 

Hence, brGDGTs have emerged over time as robust temperature and pH paleoproxies 90 

in multiple types of settings – lakes (Blaga et al., 2009; Powers et al., 2010; Fawcett et al., 2011; 91 
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Harning et al., 2020), peatlands (Weijers et al., 2011b; Coffinet et al., 2018; Wu et al., 2020), 92 

soil/paleosols (Ding et al., 2015 ; Lu et al., 2016 ; Feng et al., 2019 ; Wang et al., 2020) and 93 

speleothems (Baker et al., 2019). Nevertheless, numerous studies showed that additional 94 

parameters other than temperature and pH, such as soil moisture, thermal regime or vegetation 95 

cover, may also influence the relative distribution of brGDGTs in peat and soils (Weijers et al., 96 

2011a ; Dirghangi et al., 2013; Huguet et al., 2010, 2013 ; Menges et al., 2014; Davtian et al., 97 

2016 ; Liang et al., 2019 ). This can explain a large part of the residual scatter in the global 98 

brGDGT soil/peat calibrations with MAAT and pH (De Jonge et al., 2014; Naafs et al., 2017a, 99 

b; Dearing Crampton-Flood et al., 2020).  100 

To overcome these limitations, refinements in the global brGDGT calibrations were 101 

proposed over the years. De Jonge et al (2014) developed a global temperature calibration (R² 102 

= 0.64; RMSE = 4.8°C; n = 231) based on the MBT’5ME index, excluding the 6-methyl 103 

brGDGTs isomers. Naafs et al. (2017a) showed that a stronger correlation between MBT’5Me 104 

and MAAT in soils could be obtained by excluding samples dominated by 6-methyl brGDGTs 105 

(i.e. ratio of 5- vs. 6-methyl brGDGTs (IR6Me) higher than 0.5; n = 177; R² = 0.76; RMSE = 106 

4.1°C). More recently, Dearing Crampton-Flood et al. (2020) used Bayesian statistics instead 107 

of more classically applied single linear regressions to investigate the relationship between 108 

MBT’5Me and MAAT in soils (n = 353; R2 = 0.64; RMSE = 6 °C). Samples with IR6Me>0.5 109 

were included in this calibration, as excluding them did not significantly change the strength of 110 

the correlation with MAAT.  The robustness of the Bayesian approach relies on the fact that (i) 111 

it considers a given index (e.g., the MBT'5Me for brGDGTs) as the variable dependent on 112 

environmental parameters, consistent with the fact that bacterial lipids are produced in response 113 

to the variations of environmental parameters and that (ii) it avoids regression dilution 114 

phenomena, in contrast with most of the models based on linear regressions. 115 

Despite improvements in brGDGT analytical methods and development of refined 116 

models, the RMSE associated with global calibrations between brGDGT distribution and 117 

MAAT in soils and peat remains high (> 4 °C). Part of this uncertainty may be related to our 118 

lack of understanding of the mechanism behind the relationship between MAAT and brGDGT 119 

distribution. This relationship has initially been explained by a biophysiological mechanism, 120 

i.e. the adjustment of the membrane lipid composition by the brGDGT-producing bacteria in 121 

response to changes in environmental conditions (homeoviscous adaptation; Weijers et al., 122 

2007). Nevertheless, changes in bacterial community composition may also explain changes in 123 

brGDGT distribution, as recently shown by the lipid characterization of Acidobacterial cultures 124 

(Sinninghe Damsté et al., 2018) and the concomitant study of brGDGTs and bacterial 125 
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community composition in soils from well-documented experimental sites (De Jonge et al., 126 

2019, 2021).  127 

Moreover, most of the previous global brGDGT calibrations in soils were based on a 128 

correlation between MAAT and a single index (i.e. MBT'5Me; De Jonge et al., 2014; Naafs et 129 

al., 2017a, b; Dearing Crampton-Flood et al., 2020), even though the relative distribution of 130 

brGDGTs is likely to be concomitantly influenced by several environmental parameters. In 131 

contrast, using  relative abundances of bacterial lipids rather than a single index in models 132 

appears more representative of the environmental complexity (Wang et al., 2020; Véquaud et 133 

al., 2020; Dunkley Jones et al., 2020). In this way, multiple regression models were also used 134 

to describe the relationships between brGDGT distribution and given environmental variables 135 

(MAAT, pH) in soils (e.g. Peterse et al., 2012; De Jonge et al., 2014) or lakes (e.g. Pearson et 136 

al., 2011; Russell et al., 2018). It was previously shown that the uncertainty in brGDGT 137 

calibrations can be improved through the use of multiple regression methods vs. single predictor 138 

methods (e.g. Loomis et al., 2012; Wang et al., 2020). Nevertheless, as other linear models, the 139 

multiple regression ones cannot take into account non-linear influences, which may occur in 140 

complex environmental settings. Such a limitation can be overcome using non-parametric 141 

models such as machine-learning algorithms. Machine-learning models were very recently used 142 

to develop global calibrations between the relative abundance of isoprenoid GDGTs and sea 143 

surface temperature (SST) in marine settings (Dunkley Jones et al., 2020) and between the 144 

relative abundance of bacterial 3-hydroxy fatty acids and MAAT in soils (Véquaud et al., 2020; 145 

Wang et al., 2021). These models allow overcoming the use of a single index as they are based 146 

on the whole suite of microbial lipids. They are built on a proportion of the total dataset 147 

(randomly defined) and then tested on the rest of the dataset, considered as independent. Such 148 

an approach improves the robustness of the model and avoids the phenomenon of regression 149 

dilution. As they are non-parametric, they also capture non-linear environmental influences, in 150 

line with the intrinsic complexity of the environmental settings.  151 

In the present study, a machine-learning algorithm (random forest) was developed with 152 

the aim of proposing a new global brGDGT calibration for MAAT reconstruction in soils and 153 

peats with a reduced RMSE. It was based on an extended global dataset comprising 775 peat 154 

and soil samples (with 112 samples added to the previous global brGDGT calibration by 155 

Dearing Crampton-Flood et al., 2020). This dataset was statistically separated into clusters to 156 

better understand the parameters affecting brGDGT distribution in soils at the global scale. The 157 

clusters differed by the influence of environmental parameters ‒ MAAT, mean annual 158 

precipitation (MAP), soil pH and the number of frozen days during the year (FRS) on the 159 
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relative abundance of brGDGTs. This mechanistic approach highlighted the limitations of the 160 

MBT’5Me-MAAT relationship at the global scale and then led to the development of a refined 161 

brGDGT temperature calibration (so-called FROG model) based on a random forest machine-162 

learning algorithm and the whole suite of individual brGDGTs. Alternative models were also 163 

proposed to test the influence of confounding variables on the FROG calibration and potentially 164 

further improve its accuracy. 165 

  166 
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2. Materials and methods 167 

2.1. Global soil dataset and environmental parameters 168 

The dataset of the present study is comprised of the globally distributed surface peat 169 

and soil samples (n=663) used in previous brGDGT global calibrations (Weijers et al., 2007; 170 

Peterse et al., 2012; De Jonge et al., 2014; Yang et al., 2015; Ding et al., 2015; Xiao et al., 2015; 171 

Lei et al., 2016; Wang et al., 2016; Naafs et al., 2017b; Dearing Crampton-Flood et al., 2020). 172 

This dataset was extended with 112 soil samples from 6 altitudinal transects located in France, 173 

Italy, Tibet, Chile and Peru and for which brGDGT data were recently published (Huguet et al., 174 

2019; Véquaud et al., 2020, 2021). The details of the dataset (n=775) are provided in Table 1. 175 

Actual MAAT, pH and MAP values measured from the nearest weather stations, when 176 

available, were used to better determine the environmental reality, diversity and complexity. 177 

Such values were available for most of the samples, i.e. 598 of the 775 samples. Nevertheless, 178 

for the other samples, MAAT and pH values were extracted from the 0.5 gridded CRU TS v. 179 

3.26 dataset (Harris et al., 2014), using the same approach as Dearing-Crampton Flood et al. 180 

(2020). This approach would have been inappropriate for the 6 aforementioned altitudinal 181 

transects, where large temperature variations derive from differences in elevation that can vary 182 

across short distances, as noticed by Pérez-Angel et al. (2020). 183 

To constrain the applicability of the MBT'5Me as a temperature proxy in peat and soils, 184 

Naafs et al. (2017a) used a thermal regime indicator, the Growing Degree Days (GDD). This 185 

index is calculated by summing the daily temperatures above 0 °C over a year within a soil 186 

(Choler 2018) and interpreted as a proxy of heat accumulation within the latter (McMaster and 187 

Wilhelm, 1997; Choler, 2018). The GDD better reflects the growth temperatures encountered 188 

by bacterial communities in soils and peats. Unfortunately, as the daily temperatures were not 189 

available for the whole dataset of the present study, the GDD index could not be calculated. 190 

Instead, another thermal regime indicator was used, the number of frozen days during the year 191 

(FRS) for one location, proposed by Harris et al., (2014). The FRS was obtained for most of the 192 

samples (i.e. those with site coordinates available, Table 1). 193 

The MBT’5Me index, reflecting the methylation level in 5-methyl isomers of GDGTs 194 

and considered as related to MAAT, was calculated according to De Jonge et al. (2014; Eq. 1):  195 

 196 

MBT’5Me =  
[𝐼𝑎+𝐼𝑏+𝐼𝑐]

[𝐼𝑎+𝐼𝑏+𝐼𝑐]+ [𝐼𝐼𝑎+𝐼𝐼𝑏+𝐼𝐼𝑐]+[𝐼𝐼𝐼𝑎] 
  (1) 197 

The CBT’ index was calculated as follows (De Jonge et al., 214; Eq. 2): 198 
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   CBT’= log  ( 
[𝐼𝑐]+[𝐼𝐼𝑎′]+[𝐼𝐼𝑏′]+[𝐼𝐼𝑐′]+[𝐼𝐼𝐼𝑎′]+[𝐼𝐼𝐼𝑏′]+[𝐼𝐼𝐼𝑐′]

[𝐼𝑎]+[𝐼𝐼𝑎+𝐼𝐼𝐼𝑎]
)        (2) 199 

The IR6Me reflects the relative abundance of 6- vs. 5-methyl brGDGTs, as proposed by Dang et 200 

al. (2016; Eq. 3): 201 

IR6Me= log  ( 
[𝐼𝐼𝑎′]+[𝐼𝐼𝑏′]+[𝐼𝐼𝑐′]+[𝐼𝐼𝐼𝑎′]+[𝐼𝐼𝐼𝑏′]+[𝐼𝐼𝐼𝑐′]

[𝐼𝐼𝑎′]+[𝐼𝐼𝑏′+𝐼𝐼𝑐′]+[𝐼𝐼𝐼𝑎′]+[𝐼𝐼𝐼𝑏′]+[𝐼𝐼𝐼𝑐′]+[𝐼𝐼𝑎]+[𝐼𝐼𝑏]+[𝐼𝐼𝑐]+[𝐼𝐼𝐼𝑎]+[𝐼𝐼𝐼𝑏]+[𝐼𝐼𝐼𝑐]
) (3) 202 

 203 

The Roman numerals correspond to the different GDGT structures presented in De 204 

Jonge et al. (2014). The 6-methyl brGDGTs are denoted by an apostrophe after the Roman 205 

numerals for their corresponding 5-methyl isomers. 206 

 207 

2.2. Statistical analyses  208 

A Principal Component Analysis (PCA) was performed on the entire dataset with R 209 

software (version 4.0.3; R Core Team, 2020) to observe the distribution of the different samples 210 

based on their brGDGT relative abundances. A cluster classification of the samples based on 211 

the k-means method was proposed. In order to choose the optimal number of clusters, the ratio 212 

of Within-Cluster-Sum-of-Squares (WCSS) over the total sum of squares was calculated. The 213 

WCSS is the sum of squares of the distances of each data point in all clusters to their respective 214 

centroids. The optimal number of clusters corresponds to the minimum value of the ratio of the 215 

WCSS over the total sum of squares (a WCSS = 0 means one sample corresponds to one 216 

cluster). In order to choose the threshold for the optimal WCSS value, and so the optimal 217 

number of clusters, the elbow method was used. It consists in plotting the WCSS values against 218 

the number of clusters, then allowing to derive the optimal number of clusters. 219 

Redundancy analysis (RDA) was first performed on the global dataset and then carried 220 

out on each cluster derived from the PCA analysis to evaluate and compare the influence of the 221 

environmental parameters on brGDGT distribution (i) at the global scale and (ii) in each cluster. 222 

RDA is a "constrained" analysis, used to directly visualize the variation in the lipid data as a 223 

function of the environmental variables. It allows not only assessing but also quantifying the 224 

influence of each explanatory variable (i.e. environmental variables) on the distribution of 225 

bacterial lipids. RDA yields the influence of each variable, with regard to the statistical 226 

variance, on the pool of bacterial lipids, and allowed a quantification in percent of the influence 227 

of each parameter (i.e. conditional effect). Conditional effects summarize the effects of each 228 

variable taking into account the effect of variables with the greatest influence (Braak and 229 

Smilauer, 2002). RDA analyses were performed on centered and standardized data using the 230 
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CANOCO v. 5.04 software (Braak and Smilauer, 2002). The relationships between each 231 

variable and the dimensions of the RDA were investigated using the corresponding r-values 232 

and the percentages of variance. 233 

In order to refine the threshold of the community index (CI) proposed by De Jonge et 234 

al. (2019), all linear regressions between MAAT and MBT'5Me on the global dataset were tested 235 

by successive iteration of CI values from 0 to 1 (0.001 step) using the R software, version 4.0.3 236 

(R Core Team, 2014). 237 

 238 

2.3. Machine learning: Random forest model  239 

 240 

The random forest algorithm was used to develop a global calibration between 241 

brGDGT relative abundances and MAAT. The random forest algorithm is a supervised learning 242 

method notably used for regressions (e.g. Ho, 1995; Breiman, 2001; Denisko and Hoffman, 243 

2018). This model works by building a multitude of decision trees from a training dataset and 244 

producing the mean prediction of the individual trees. Decision tree learning is one of the 245 

predictive modeling approaches used to move from observations to conclusions about the target 246 

value of an item. 247 

In order to calculate the model based on the random forest algorithm, the global dataset 248 

was divided into two subsets: a training dataset and a test dataset. The training dataset 249 

corresponds to the samples used to fit the model. The test dataset corresponds to the samples 250 

used to provide an unbiased evaluation of the model previously fit on the training dataset. The 251 

training phase required for the random forest regression was performed on 75% of the sample 252 

set (which allow to neglect the overfit of the model), with 500 trees and an iteration of ten-fold 253 

cross-validations per model. The cross validation allows the optimization of the 254 

hyperparameters (number of variables in each node and minimal node size) of the models. Data 255 

selection was performed randomly on the dataset, but with a stratification modality according 256 

to the MAAT to limit the impact of extreme values. Then, the robustness and precision of the 257 

different models, developed from the random forest algorithm, were tested on the remaining 25 258 

% of samples, considered as an independent dataset. Random forest models were performed 259 

with R software, version 4.0.3 (R Core Team, 2014) using the packages tidymodels (version 260 

0.1.02)- ranger (version 0.12.1).  261 

  A R package with a web-application is available on a GITHUB repository (paleoFROG) 262 

for the reconstruction of brGDGT-derived MAAT using the FROG models proposed in the 263 

present study. 264 

https://github.com/AThibault92/paleoFROG
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The performances of the random forest model were compared with those of the 265 

Bayesian models, BayMBT and BayMBT0, proposed by Dearing Crampton-Flood et al. (2020). 266 

The latter were performed with the MATLAB code available from the GITHUB repository of 267 

Jessica Tierney (https://github.com/jesstierney; Dearing Crampton-Flood et al., 2020), using 268 

MATLAB, version 9.8. The prior mean was set to the MAAT mean for all soil samples (10°C), 269 

with a prior standard deviation of 30°C. 270 

 271 

3. Results 272 

3.1. Principal component analysis and clustering on the global dataset 273 

In order to explore the global dataset and understand which samples could explain the 274 

scattering on the global MBT’5Me-MAAT calibration, we performed a statistical clustering of 275 

the extended peat and soil dataset without any a priori assumptions on the basis of their 276 

brGDGT fractional abundances. With this aim, a Principal Component Analysis (PCA) was 277 

performed on the entire brGDGT dataset (Fig. 1). The first 3 axes of the PCA carry most of the 278 

variance (70.3%; Figs. 1a, b, c). Consequently, the description of the analysis will be restricted 279 

to these axes. A cluster classification of the samples based on the k-means method was 280 

performed, yielding 5 clusters (Fig. 1d), based on the Within Cluster Sum of squares and the 281 

elbow method. The distribution of the samples between the different clusters is heterogeneous 282 

(between 76 and 230 samples), with various proportions of soil and peat samples (Table 2). The 283 

clusters are well-differentiated, with different means and amplitudes for MAAT, FRS and pH 284 

(Fig. 2), and also based on their geographical locations (Fig. 3). Clusters B and D contain a 285 

larger proportion of peat samples representative of acidic environments, which can explain the 286 

lower pH values by ca. 1 to 2 units compared to the other clusters (Gorham, 1991; Killops, 287 

2005; Dedysh et al., 2006; Comont et al., 2006) (Table 2, Fig. 2). Cluster A shows samples 288 

mainly distributed over tropical and subtropical latitudes (Fig. 3) associated with high MAAT 289 

(22.4 ± 6.0 °C) and rather high MAP (1069 ± 385 mm/yr; Table 2, Fig. 2). Cluster B samples 290 

are distributed over temperate to subtropical latitudes, with precipitation amounts (1237 ± 643 291 

mm/yr) as high as for samples from cluster A, but lower MAAT (16.0 ± 7.5 °C; Fig. 3; Table 292 

2). Clusters A and B are characterized by comparable and higher MAATs than those from the 293 

other clusters, and conversely lower FRS (Fig. 2, Table 2). Samples of cluster C are mostly 294 

distributed in China and correspond to loess samples (Fig. 3). Within this cluster, MAP (453 ± 295 

643 mm/yr) is the lowest of all clusters and MAAT (6.7 ± 5.1 °C) is on average lower than in 296 

clusters A and B, associated with a higher FRS (Table 2; Fig. 2). The samples from clusters D 297 

https://github.com/jesstierney
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and E show similar geographical distributions, mostly in the northern hemisphere, at temperate 298 

latitudes, and even polar latitudes (Fig. 3). This results in lower MAP and MAAT especially 299 

for cluster D (784 ± 457mm/yr and 3.9 ± 5.9 °C, respectively), and a high FRS, similar to cluster 300 

C (Table 2; Fig. 2). Thus, the statistical differentiation of the brGDGT dataset into different 301 

clusters is reflected through various descriptive environmental parameters.  302 

 303 

 304 

3.2. BrGDGT distribution in the global dataset and associated clusters 305 

 306 

The fractional abundances of the individual brGDGTs were determined in the global 307 

dataset and in the five clusters statistically derived from the latter (Fig. 4). In the global dataset, 308 

the acyclic brGDGTs Ia, IIa and IIa’ were predominant. Distinct brGDGT distributions were 309 

observed in each cluster. In cluster A, the tetra-methylated brGDGTs Ia and Ib as well as penta-310 

methylated brGDGT IIa are the most abundant. Acyclic brGDGT Ia is largely predominant (ca. 311 

75% of total brGDGT relative abundance) in cluster B. In cluster C, 6-methyl acyclic isomers 312 

of the penta- and hexa-methylated brGDGTs (IIa’ and IIIa’) and brGDGT Ia represent 313 

altogether ca. 65% of the total brGDGT relative abundance. The brGDGT distribution of cluster 314 

D is dominated by acyclic compounds Ia and IIa. In cluster E, the 6-methyl brGDGTs are 315 

slightly more abundant than the 5-methyl isomers, with acyclic brGDGTs Ia, IIa, IIa’, IIIa, 316 

IIIa’ and monocyclic brGDGTs Ib, IIb, IIb’ representing each between ca. 10 and 20% of total 317 

brGDGT relative abundance. The obvious differences in brGDGT distribution between the 5 318 

clusters are also reflected in the indices derived from these compounds. Thus, the MBT’5Me is 319 

higher in clusters A and B (mean 0.88 ± 0.09 and 0.82 ± 0.13, respectively) than in clusters C 320 

(0.56 ± 0.14) as well as D and E (0.47 ± 0.09 and 0.49 ± 0.12, respectively, Fig. 5a). Regarding 321 

the CBT’, it is much lower in clusters B and D (mean -1.29 ± 0.55 and -0.95 ± 0.63, 322 

respectively) than in cluster C (0.40 ± 0.24), E (0.13 ± 0.25; Fig. 5b) and A (-0.16 ± 0.33),. 323 

Similarly, the relative abundance of 6-methyl vs. 5-methyl brGDGTs (IR6Me ratio; Eq. 3) is 324 

much lower in clusters B and D (mean ~ 0.2) than in the other three clusters (mean comprised 325 

between 0.62 and 0.80; Fig. 5c).  326 

3.3. Relationships between MBT’5Me and MAAT 327 

A strong and significant correlation between MAAT and MBT'5Me is observed when 328 

considering the total soil dataset (Supp. Fig. 1; Eq. 4): 329 

 330 
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MAAT (°C) = 35.98 × MBT’5Me – 12.74 (n=775; R²= 0.65, RMSE= 5.2°C) (4) 331 

 332 

Nevertheless, this global calibration shows a considerable scatter. The linear 333 

regressions between the MBT'5Me and MAAT were further explored for each cluster derived 334 

from the PCA analysis (Fig. 1). Clusters A and B show strong significant linear relationships 335 

(R2 = 0.61 and 0.77, respectively; p <0.0001) between MAAT and MBT'5Me (Fig. 6a, b;) 336 

associated with improved RMSE (3.8°C and 3.6°C, respectively) compared to the global 337 

calibration (Supp. Fig. 1; Eq. 4). In contrast, for the other clusters (Figs. 4c, d, e), especially D 338 

and C, significant (p < 0.0001) but weak relationships between MBT’5Me and MAAT are 339 

observed (Fig. 6). 340 

To further investigate the influence of the proposed environmental variables (MAAT, 341 

MAP, pH, FRS) on the brGDGT relative abundance in (i) the global dataset and (ii) the different 342 

clusters, RDA was performed (Fig. 7). Regarding clusters A and B, the first two axes explain 343 

63.9% and 74.6% of the total variance of the dataset, with an explained fitted variation of 97.3% 344 

and 99.9%, respectively (i.e. explained fitted variation; relationship between the fractional 345 

abundances of brGDGTs and the selected environmental variables, calculated as the sum of all 346 

constrained eigenvalues) (Fig. 7a, b; Table 3). The first axis of the RDA for clusters A and B is 347 

well correlated with MAAT (r=0.80; r=0.90 respectively), FRS (r=-0.80; r=-0.81), MAP 348 

(r=0.77; r=0.78)  and pH (r=-0.75; r=-0.60) (Fig. 5a, b; Table 3). Axis 2 of cluster A is mainly 349 

correlated with the FRS (r=0.56) and to a lesser extent pH (r=-0.34) and MAAT (r=-0.26), while 350 

axis 2 of cluster B is predominantly negatively correlated with pH (r=-0.76) and to a lesser 351 

extent with MAAT (r=-0.41; Fig. 7a, b; Table 3). The quantification of the combined influence 352 

of the different environmental variables on the brGDGT distribution shows a predominant 353 

effect of the FRS (39.6%) and to a lesser extent pH (18.6%) for cluster A and MAAT (57.3%) 354 

and to a lesser extent pH (16.7%) for cluster B (Table 3). The predominant influence of the 355 

thermal regime (MAAT and FRS) on the relative distribution of brGDGTs in these two clusters, 356 

despite large variation in pH range, especially in cluster B (Fig. 2), explains why the linear 357 

regressions between MBT’5Me and MAAT are stronger (Fig. 6) than that observed for the global 358 

dataset (Supp. Fig. 1; Eq. 4). 359 

The first two axes of the RDAs for clusters C and D explain 34.9% and 53.4% of the 360 

total inertia of the dataset, with an explained fitted variation of 95.7% and 99.4%, respectively 361 

(Fig. 7c, d; Table 3). For these two clusters, axis 1 is strongly negatively correlated with pH 362 

(r=-0.91 and -0.96, respectively) and positively correlated with MAP values (r=0.59 and 0.48, 363 

respectively). Axis 2 is controlled by the thermal regime, being mainly correlated with FRS 364 
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(r=0.74 and -0.68 for clusters C and D, respectively) and MAAT (r=-0.78 and 0.39, 365 

respectively). The quantification of the combined influence of the environmental variables on 366 

brGDGT distribution in clusters C and D shows a predominant effect of soil pH (25.6% and 367 

47.4%, respectively) and, only to a much lesser extent, MAP and MAAT (<6%) (Table 3). This 368 

is consistent with the weak correlation between MBT’5Me and MAAT for cluster C, and absence 369 

of correlation for cluster D as well as the high scattering of the corresponding values (Fig. 6c, 370 

d). 371 

The first two axes of the RDA for cluster E explain 28.4% of the total inertia of the 372 

dataset and the explained fitted variation is 94.40% (Fig. 7e; Table 3). Axis 1 is mainly 373 

correlated with MAAT (r=-0.76), FRS (r=0.87), pH (r=0.71) and to a lesser extent, MAP (r=-374 

0.41; Table 3). Axis 2, on the other hand, is mainly influenced by MAAT (r=0.62), and to a 375 

lesser extent pH (r=0.41; Table 3). When examining the combined effect of the different 376 

environmental variables in this cluster, it appears that brGDGT distribution is mainly and 377 

significantly controlled by FRS (15.2%) and to a lesser extent by MAAT (6.6%) and pH (7.7%; 378 

Table 3). The major influence of the thermal regime (FRS, MAAT) on brGDGT distribution in 379 

cluster E is consistent with the relationship (R2=0.44) observed between MBT’5Me and MAAT 380 

(Fig. 6e). Nevertheless, in contrast with cluster A, the additional influence of pH may explain 381 

the moderate determination coefficient of this correlation. 382 

Regarding the global dataset, the first two axes explain 69.5% of the total variance of 383 

the dataset (Fig. 7f; Table 3) and the selected environmental variables explain 99.0% of the 384 

variance of the brGDGT relative abundances (Table 3). Axis 1 is strongly controlled by pH (r=-385 

0.92) and MAP (r=0.72) and to a lesser extent by FRS (r=-0.54) and MAAT (r=0.48). Axis 2 is 386 

strongly correlated with MAAT (r=0.83), and to a lesser extent FRS (r=-0.58) followed by MAP 387 

(r=0.31) and pH (r=0.34).  The quantification of the combined influence of the environmental 388 

variables on brGDGT distribution in the global dataset shows a predominant effect of soil pH 389 

(51.8%) and to a lesser extent MAAT (15.7%), with only a minor influence of FRS and MAP 390 

(<2%; Table 3). 391 

 392 

  393 
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4. Discussion 394 

4.1. Constraints on the MBT’5Me-MAAT relationship in soils 395 

4.1.1. Global level 396 

The MBT’5Me was shown to be linearly and strongly correlated with MAAT in the 397 

present extended soil dataset (Supp. Fig. 1; Eq. 2), as previously observed at the global level 398 

(e.g., De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020). Nevertheless, in line with 399 

these previous studies, the RMSE remains high (5.2 °C). This scatter may have multiple 400 

sources, such as the fact that the brGDGT calibrations are achieved against MAAT, whereas 401 

brGDGT-producing bacteria live in soils. Soil temperature is not necessarily equivalent to 402 

MAAT and also depends on the vegetation cover (e.g. Wang et al., 2020), which may explain 403 

part of the scatter. Moreover, another source of uncertainty may be related to the fact that 404 

climatic data derived from the nearest weather stations (gridded datasets) are often used to 405 

develop brGDGT calibrations, while they may not appropriately reflect the local air 406 

temperatures nor the soils ones, as recently reported by Pérez-Angel et al. (2020).  Last, part of 407 

the remaining uncertainty in the brGDGT-MAAT calibrations may be due to the influence of 408 

other environmental parameters than MAAT on brGDGT distribution, as discussed below. 409 

The RDA analysis performed on our global dataset showed that soil pH was the main 410 

environmental control on brGDGT distribution besides MAAT (Fig. 7), as also previously 411 

reported (e.g. Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014; Naafs et al., 412 

2017a). As expected, 6-methyl brGDGTs were all located in the left quadrant along axis 2, 413 

mainly controlled by pH, in line with the positive correlations previously observed between 414 

these compounds and pH (De Jonge et al., 2014; Dang et al., 2016). These isomers were 415 

purposefully excluded from the calculation of the MBT so that it is no more related to pH and 416 

only to MAAT (De Jonge et al., 2014). Nevertheless, the relative abundances of two of the main 417 

brGDGTs involved in the MBT’5Me (Ia and IIa) were shown to be significantly correlated with 418 

pH (R = 0.52 and 0.32, respectively; p < 0.001; Sup. Table 1) in the present dataset, as also 419 

previously observed (De Jonge et al., 2014). Such correlations with pH were even higher than 420 

those observed with MAAT (R2 = 0.28 and 0.24 for compounds Ia and IIa, respectively; p < 421 

0.001; Sup. Table 1), which may explain part of the remaining uncertainty in the MBT’5Me 422 

relationship. Very recently, De Jonge et al. (2021) highlighted the importance of taking into 423 

account the effect of soil pH on MBT’5Me values and associated temperature reconstructions, as 424 

soil pH was shown to be the main factor responsible for concomitant changes in brGDGT 425 

distribution and bacterial community composition in mid- and high-latitude experimental sites 426 

and hypothesized that such conclusions were also valid at the global scale.  427 
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Soil moisture has also been suggested to have an effect on the relative abundance of 428 

brGDGT distribution (e.g. Loomis et al., 2010; Dirghanghi et al., 2013; Menges et al., 2014; 429 

Dang et al., 2016; Naafs et al., 2017a), with weak or no linear relationships between 430 

MBT/MBT’5Me and MAAT in arid soils (MAP < 500 mm/yr). The relative soil moisture is 431 

related to pH variations, with arid soils mainly being alkaline (Naafs et al., 2017a). This may 432 

have a role on the diversity of bacterial communities (Lauber et al., 2009; Shen et al., 2019). 433 

Alternatively and/or complementarily, it was suggested that brGDGT producers may change 434 

their membrane composition in response to soil moisture changes (Loomis et al., 2010; Dang 435 

et al., 2016). The relative soil moisture may also impact the capacity of a soil to retain heat 436 

(Idso et al., 1975; Davidson et al., 1998; Balleza et al., 2014; Dang et al., 2016), indirectly 437 

influencing the methylation degree of brGDGTs. Dang et al (2016) and Naafs et al. (2017a) 438 

especially showed that the MBT’5Me was only significantly correlated with MAAT when the 439 

ratio of 5- vs. 6-methyl brGDGTs (IR6Me; Eq. 3) was lower than 0.5. Therefore, to potentially 440 

improve the accuracy of the global MBT’5Me-MAAT calibration (Supp. Fig. 1), the total dataset 441 

was divided into two subgroups based on a threshold value of 0.5 for the IR6Me ratio as proposed 442 

by Dang et al. (2016) and Naafs et al. (2017a). Two subgroups with similar number of samples 443 

(n=389 for IR6Me>0.5; n=384 for IR6Me<0.5) were thus obtained. The linear regressions between 444 

MBT’5Me and MAAT in the two subgroups were statistically similar (Supp. Fig. 2), even though 445 

a slightly higher determination coefficient and lower RMSE were observed when IR6Me<0.5. 446 

Moreover, the regressions obtained for the two subgroups did not show obvious improvements 447 

with the one derived from the total dataset. Therefore, a separation of the present dataset based 448 

on the IR6Me values does not appear necessary, as previously observed by Dearing Crampton-449 

Flood (2020) for their dataset, showing that the relative abundance of 6- vs. 5-methyl brGDGTs 450 

only has a limited influence on the MBT’5Me-MAAT relationship at the global scale.  451 

More recently, De Jonge et al. (2019) suggested that the response of brGDGTs to 452 

temperature changes is strongly dependent on the nature of bacterial communities present in 453 

soils. These authors initially showed that the distribution of brGDGTs in a set of geothermally 454 

warmed soils from Iceland changed when the average annual soil temperature was above 14°C. 455 

This sudden change in brGDGT distribution coincided with an abrupt shift in the bacterial 456 

community composition. A relative increase in brGDGT Ia vs. homologues IIa and IIIa was 457 

observed in the soils with annual soil temperature > 14 °C (warm soil cluster). This was 458 

reflected in a change in the community index (CI) proposed by De Jonge et al. (2019; Eq. 5): 459 

CI =  [𝐼𝑎]/([𝐼𝑎] + [𝐼𝐼𝑎] + [𝐼𝐼𝐼𝑎]) (5) 460 

 461 



16 

 

The CI index is similar to the MBT'5Me (Eq. 1), except that it excludes the compounds 462 

containing cyclopentyl moieties, i.e. those suspected to be pH-sensitive compounds. De Jonge 463 

et al. (2019) proposed a CI threshold of 0.64 to separate the geothermal soils with an annual 464 

soil temperature higher than 14°C (CI >0.64) and those with a lower temperature (CI 465 

<0.64).This observation was extended to the global scale, revealing two distinct clusters over 466 

the entire peat and soil dataset compiled by De Jonge et al. (2019) ‒ one considered as a “cold” 467 

subgroup (n=251 soils and peats; MAAT between -8.3°C and 18.2°C) and another one as a 468 

“warm” subgroup (n= 195 soils and peats; MAAT between 0.4°C and 27.1°C) ‒ with different 469 

responses to temperature and pH.  The slopes and determination coefficients of the MBT’5Me-470 

MAAT relationship were significantly different in the two subgroups, which may explain part 471 

of the uncertainty in the MBT’5Me-MAAT correlation at the global scale. The extended dataset 472 

proposed in the present study (n=775) was thus divided into two subgroups based on the CI 473 

threshold of 0.64 proposed by De Jonge et al. (2019). A strong linear relationship between 474 

MBT'5Me and MAAT was observed for the warm cluster (R²=0.71), while it was much weaker 475 

for the cold subgroup (R²=0.20; Fig. 8), as previously observed by De Jonge et al. (2019) on 476 

their global dataset. The discrimination of samples in clusters based on their different brGDGT 477 

signature and response to environmental changes allows better understanding the MBT’5Me-478 

MAAT relationship.  479 

The CI threshold (0.64) defined by De Jonge et al. (2019) was based on a smaller 480 

number of soils (n=446) than available in the present study. To refine this value based on the 481 

present extended sample set (n=775), all linear regressions between MAAT and MBT'5Me were 482 

tested by successive iteration for CI values from 0 to 1 (0.001 step: Supp. Fig. 3a). The refined 483 

threshold is 0.69 (corresponding to the best adjusted R²), still in agreement with the clusters 484 

presented in this study (Fig. 5d) and those of De Jonge et al. (2019). It leads to only limited 485 

changes in the slopes and intercepts of the MBT’5Me-MAAT relationships in the warm and cold 486 

clusters (Sup. Fig.3b) in comparison with those obtained for the previously defined threshold 487 

of 0.64 (Fig. 8). The CI might be considered first and foremost in any use of the MBT'5Me index 488 

to reconstruct paleo-MAATs, as proposed by De Jonge et al. (2019).  489 

  490 
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4.1.2. Sample clustering 491 

Complementarily to the empirical approach of De Jonge et al. (2019) described above, 492 

we used statistical tools to (i) classify the samples of the present peat and soil dataset based on 493 

their brGDGT distribution and (ii) investigate and compare the influence of the environmental 494 

factors on the brGDGT distribution in each cluster (Fig. 1).  495 

Clusters A and B, which encompassed soils from temperate and (sub)tropical areas, 496 

were characterized by similarly high MBT’5Me values (mean > 0.8; Fig. 5a) and CI > 0.64 (Fig. 497 

5d) and can be related to “warm” groups as defined by De Jonge et al. (2019). These two clusters 498 

differed by the more acidic nature of samples from cluster B than from cluster A, reflected in 499 

the much lower CBT’ values in cluster B, consistent with the positive relationship usually 500 

observed between CBT’ and pH (De Jonge et al., 2014). In line with the increase in the 501 

fractional abundance of 6-methyl brGDGTs with pH previously observed in soils (De Jonge et 502 

al., 2014), the samples from cluster A were also characterized by higher IR6Me ratio than those 503 

from cluster B. Despite these differences related to pH, the brGDGT distributions of these 504 

clusters were mainly impacted by the thermal regime (Table 3). Thus, moderate (R2 > 0.25) to 505 

strong correlations (R2 > 0.50, p < 0.001) between acyclic 5-methyl brGDGTs (Ia, IIa and IIIa) 506 

and MAAT were obtained in clusters A and B, respectively, as previously observed at the global 507 

level (De Jonge et al., 2014; Naafs et al., 2017a). This was reflected in the strong positive 508 

correlations observed between MBT’5Me and MAAT in clusters A and B (Fig. 6a,b), with non-509 

significant differences between slopes, intercepts and RMSE, highlighting the overall similar 510 

response of brGDGT source microorganisms to temperature changes in soil and peat samples 511 

from the two “warm” subgroups.  512 

In contrast with clusters A and B, the three other clusters were characterized by CI < 513 

0.64 (Fig. 5d), corresponding to “cold” groups (De Jonge et al., 2019). They encompassed soil 514 

and peat samples from cold to (sub)temperate zones (Fig. 3), with similar range of MBT’5Me 515 

values, which were much lower than those of clusters A and B, consistent with the increase of 516 

the methylation degree of brGDGTs at lower temperatures (Weijers et al., 2007). Samples from 517 

cluster D were more acidic than those from cluster C and E, leading to distinct brGDGT 518 

distributions, and especially lower average CBT’ values in cluster D. The differences in 519 

brGDGT distribution between the three “cold” clusters were also reflected in the IR6Me ratio, 520 

the highest values of the latter in cluster C being consistent with the higher relative abundance 521 

of 6-methyl vs. 5-methyl brGDGTs generally observed in arid/alkaline soils (e.g. De Jonge et 522 

al., 2014; Naafs et al., 2017a), as those from cluster C (Table 2). In addition, the three clusters 523 

largely differed in their dependence to environmental parameters. Thus, brGDGT distributions 524 
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in clusters C and D were predominantly influenced by pH and to a lesser extent by the thermal 525 

regime (Table 3). This led to weak (or no) correlations (R2 < 0.1) between individual brGDGTs 526 

and MAAT (or FRS) (Supp. Tables 4, 5), explaining in turn the weak relationships between the 527 

MBT’5Me and MAAT in these two clusters (Fig. 6c, d). In contrast with clusters C and D, the 528 

influence of the thermal regime (MAAT/FRS) on brGDGT distribution in samples from cluster 529 

E was higher than the one of pH, with weak to moderate correlations (R2 0.2-0.45) only between 530 

the relative abundance of tetramethylated brGDGTs Ib and Ic and hexamethylated brGDGT 531 

IIIa and MAAT (Sup. Table 6; Fig. 7e), as also observed at the global level (De Jonge et al., 532 

2014). Nevertheless, no correlations between brGDGTs Ia/IIa and MAAT were observed in 533 

cluster E. This contrasts with observations made at the global level in the previous (De Jonge 534 

et al., 2014; Naafs et al., 2017a) or present soil datasets (Sup. Table 1), where these compounds 535 

were considered as temperature-sensitive. This explains the more moderate correlation between 536 

the MBT’5Me and MAAT in cluster E (R2 0.44) than in clusters A and B or the total dataset (R2 537 

> 0.6; Fig. 6). It should be noted that in the cold soil cluster of De Jonge et al. (2019), the MAAT 538 

was similarly only correlated with the relative abundances of brGDGTs Ia and IIIc, leading to 539 

a weak correlation between MBT’5Me and MAAT (R2 0.28). Nevertheless, in the global cluster 540 

cold defined by De Jonge et al. (2019), brGDGT Ia was significantly negatively correlated with 541 

pH (R2 0.69; p< 0.001), in contrast with cluster E (R2 0.16; p = 0.0003). Such a difference may 542 

be related to the smaller size (n = 77) and different samples constituting cluster E vs. the global 543 

cold cluster (n = 251) of De Jonge et al. (2019). 544 

Overall, the brGDGT distribution was differently impacted by environmental variables 545 

in each of the clusters of the present study (Fig. 7; Table 3), the effect of the thermal regime 546 

being predominant only in the two warm clusters (A and B) and to a lesser extent cold cluster 547 

E. We also observed a different dependency of the brGDGT distribution to temperature in the 548 

two warm clusters vs. cold cluster E, leading to distinct correlations between MBT’5Me and 549 

MAAT for the two types of clusters, consistent with previous observations by de Jonge et al. 550 

(2019). Despite the smaller size of the cold cluster E (n =77) vs. the two warm clusters A (n=76) 551 

and B (n =174) altogether, the relationship between MBT’5Me and MAAT for the global dataset 552 

(n = 775) was observed to be driven by the one of cluster E, as revealed by the similar slopes 553 

and intercepts (Fig. 6). This implies that the MBT’5Me proxy is much more influenced by the 554 

temperature changes encountered in cold cluster E than in the other warm clusters. Such a 555 

difference in sensitivity between warm and cold groups has also been previously reported by 556 

De Jonge et al. (2019), who suggested that different bacterial communities, with different 557 

brGDGT fingerprints, may be associated with the warm and cold groups. Similarly, this shift 558 
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in bacterial communities could at least partly explain the different MBT’5Me-MAAT 559 

relationships in clusters A/B vs. E. Additionally, the thermal regime may influence the activity 560 

of brGDGT-producing microorganisms and associated biosynthesis, as several previous studies 561 

suggested that brGDGTs may be preferentially produced during warm seasons (Weijers et al., 562 

2011b; Huguet et al., 2013; Deng et al., 2016). As the thermal regime is much higher in the cold 563 

clusters (C, D and E), they should be the most impacted by the seasonal production of 564 

brGDGTs, thus weakening the relationships between MAAT and brGDGT distribution. Raberg 565 

et al. (2021) very recently proposed to replace MAAT by a warm season index (mean 566 

temperature of months above freezing) to take into account the thermal regime effect (especially 567 

large at high-latitude), thus improving brGDGT calibrations in lake sediments. Similarly, 568 

Dearing Crampton-Flood et al. (2020) showed that the MBT’5Me in soils and peats was better 569 

correlated with the average temperature of months above 0 °C (BayMBT0 model, R2 0.70) than 570 

with MAAT (BayMBT, R2 0.64), with a reduced RMSE (3.8 vs. 6.0 °C for the BayMBT0 and 571 

BayMBT, respectively). 572 

In any case, the fact that (i)  a strong relationship between MBT’5Me and MAAT is only 573 

observed for the warmer clusters (Fig. 6), (ii) the MBT’5Me-MAAT relationship at the global 574 

level is driven by the moderate correlation of cold subgroup E containing only ca. 10% of the 575 

samples from the total dataset and (iii) weak correlations between MBT’5Me and MAAT are 576 

observed for ca. 55% of the dataset (clusters C and D) highlights the limitations of using a single 577 

index and a simple linear regression model to capture the response of brGDGTs to MAAT 578 

changes. Thus, very recently, Pérez-Angel et al. (2020) showed that the fractional abundance 579 

of brGDGT Ia was non-linearly related to MAAT in a dataset comprised of tropical soils 580 

(n=175). Other models taking into account such non-linear trends should be complementarily 581 

developed to better reflect this complex response to MAAT changes. Machine-learning models 582 

can be used to this aim and will be tested in the following.  583 

  584 
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4.2. A novel global calibration between MAAT and brGDGT distribution using the 585 

random forest algorithm 586 

4.2.1. Model development 587 

A machine-learning model – the random forest algorithm – was tested to potentially 588 

derive stronger and more accurate global MAAT calibration from brGDGT distributions than 589 

single linear regressions based on the MBT’5Me index.  590 

The random forest algorithm was first "trained" during the learning phase to estimate 591 

MAAT from brGDGT relative abundances. During this phase, the model produces decision 592 

trees that will automatically discriminate the compounds whose relative abundances are not 593 

influenced by temperature, and thus selects those to be used to estimate MAAT, while taking 594 

in account the interdependency of environmental parameters. The developed model was called 595 

“random Forest Regression for PaleOMAAT using brGDGTs” (FROG). 596 

As the 5-methyl brGDGTs are considered to be mainly correlated with MAAT in 597 

contrast with 6-methyl isomers (De Jonge et al., 2014), the random forest model was initially 598 

applied to the fractional abundances of the 5-methyl brGDGTs only (FROG5Me). After training 599 

on the sampling dataset (75% of the global dataset; n=583), a strong (R² = 0.80) global 600 

calibration between 5-methyl brGDGT relative abundance and MAAT was obtained (Fig. 9a), 601 

with a RMSE of 4.12 °C. The random forest algorithm was then separately trained and tested 602 

using the relative abundances of all brGDGTs including the 6-methyl isomers (FROG). This 603 

"alternative" global calibration (R²=0.81 and RMSE =4.09 °C; Fig. 9b) appeared similar to the 604 

FROG5Me model (Fig. 9a). The RMSE of both random forest calibrations (FROG5Me and 605 

FROG) are lower than those of the simple linear regression between MBT’5Me and MAAT (Fig. 606 

9c, d; Table 4), with no clear trends in the residuals of the models.  As observed by Naafs et al. 607 

(2017a) and Dearing Crampton-Flood et al. (2020) in their global MBT’5Me-MAAT calibration, 608 

a major part of the uncertainty in the FROG model is likely due to the wide dispersion of 609 

predicted temperatures for MAAT < 10°C (Fig. 9c, d), corresponding to samples from high 610 

latitudes and/or high elevations. The characteristics of the FROG and FROG5Me model for the 611 

whole dataset and test dataset (R2, RMSE, variance in residuals) were provided in Table 4 and 612 

are comparable, which shows that the FROG models do not overfit the data or, if so, to an 613 

extremely moderate extent. 614 

Even though the random forest algorithm agnostically selected the set of brGDGTs 615 

which best describes the variability of MAAT, it presents the advantage of not being a blackbox, 616 

as the mechanism behind it can be described. First, the independent variations in the individual 617 
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brGDGT variations with estimated MAAT for the FROG model can be compared, with non-618 

linear trends for all the compounds (Sup. Fig. 4), showing the interest of using a non-linear 619 

model to describe the relationship between brGDGT distribution and MAAT. For example, the 620 

relative abundance of tetramethylated brGDGT Ia was observed to non-linearly increase with 621 

predicted MAAT, in contrast with compounds IIa and IIIa (Sup. Fig. 4). This is consistent with 622 

the trends obtained from the linear regression models both on the present extended dataset (Sup. 623 

Table 1) and on previous soil datasets (e.g. De Jonge et al., 2014; Naafs et al., 2017a), reflecting 624 

the decrease in the methylation degree and thus increase in the MBT’5Me with MAAT (Supp. 625 

Fig. 1; Eq. 2).  626 

Second, the weight of the different variables used to define the random forest model 627 

with MAAT could be quantified using the permutation importance method (Fig 9e, f; Breiman, 628 

2001). This method consists in considering each compound separately and determining how 629 

much model performance decreases if this compound is removed from the model. The 630 

brGDGTs Ia, IIa, IIIa were the homologues predominantly used by the FROG5Me model (Fig. 631 

9e), consistent with the major influence of these compounds in the MBT’5Me (De Jonge et al., 632 

2014) and the existing linear relationship between this index and MAAT (Sup. Fig. 1).  Other 633 

brGDGT homologues, considered as being less temperature sensitive than the aforementioned 634 

acyclic brGDGTs (e.g. De Jonge et al., 2014), were also taken into account by the FROG5Me 635 

model, especially compounds Ib and IIb, which contain one cyclopentyl moiety. These 636 

compounds were similarly selected by a stepwise forward selection method to develop brGDGT 637 

calibration with MAAT, e.g. for East African lacustrine sediments (Russell et al., 2018) or 638 

Chinese soils (Wang et al., 2020). Therefore, different statistical models suggest that 639 

homologues Ib and IIb can improve the brGDGT-MAAT relationship in various environments, 640 

as it might take into account the covariations between MAAT and other environmental 641 

parameters. In contrast, brGDGTs Ic and IIc, which are low-abundant in the peat and soil 642 

dataset, have only a minor weight in the FROG5Me model (Fig. 9e). 643 

Regarding the random forest model established with all brGDGTs (FROG model), the 644 

predominant homologues were also the acyclic brGDGTs Ia, IIa, and IIIa, and to a lesser extent, 645 

compound Ib as well as compounds IIIa', IIa', i.e. 6-methyl isomers, pointing to their 646 

contribution to MAAT reconstruction. 6-methyl brGDGTs were usually considered as being 647 

predominantly influenced by pH variations (De Jonge et al., 2014b). Nevertheless, they were 648 

also included in some recent local soil calibrations between brGDGT fractional abundances and 649 

MAAT in China (Wang et al., 2020) and Mongolia (Dugerdil et al., 2021) and in a regional 650 

calibration based on tropical soils (n=175; Pérez-Angel et al., 2020). These compounds were 651 
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shown to be part of those sensitive to temperature and improved the correlation with MAAT 652 

(R2 and RMSE) in comparison with linear MBT’5Me-MAAT regression.  It should also be noted 653 

that both linear and non-linear regression models were tested for the development of the 654 

aforementioned pan-tropical soil brGDGT calibration with MAAT (Pérez-Angel et al., 2020). 655 

The non-linear multiple regression showed slight improvements over the linear multiple 656 

regression based on brGDGT fractional abundances, which was interpreted as showing the 657 

importance of taking into account non-linear influences when establishing brGDGT 658 

calibrations in warm environments. In agreement with these recent results, the FROG model 659 

integrates both types of brGDGT isomers, including 6-methyl ones, thus reflecting the 660 

environmental reality, as the whole distribution of brGDGTs, and not only 5-methyl ones, can 661 

be concomitantly and non-linearly influenced by environmental parameters including MAAT 662 

(Sup. Fig. 4).  663 

The respective weights of the different brGDGTs were observed to differ between the 664 

FROG and FROG5Me calibrations (Fig. 9). Nevertheless, the comparison of the statistical 665 

characteristics of these models do not allow favoring one vs. another, as both of them showed 666 

similar determination coefficients, RMSE and estimation ranges (Table 4). Therefore, both 667 

models will be tested on modern soil samples and sedimentary archives and compared in section 668 

4.4.   669 

4.2.2. Comparison of the FROG model with previous global soil calibrations 670 

The FROG/FROG5Me model were compared with previously published global soil/peat 671 

linear calibrations based on Ordinary Least Square (De Jonge et al., 2014), Deming (Naafs et 672 

al., 2017a) and Bayesian (Dearing Crampton-Flood et al., 2020) regressions. The FROG and 673 

FROG5Me models are characterized by a higher determination coefficient and lower RMSE (Fig. 674 

9; R2=0.81 vs. 0.8 and RMSE=4.09 °C vs. 4.12 °C, respectively) than available calibrations (De 675 

Jonge et al., 2014: R²=0.61, RMSE=4.8°C; n =231; Naafs et al., 2017a: R²= 0.71, RMSE= 676 

4.1°C, n=177; Dearing Crampton-Flood et al., 2020: R2=0.64, RMSE=6.0 °C, n=343; Table 4), 677 

while being obtained from a larger dataset (n=775).  678 

In order to make a direct statistical comparison of the different models, the calibrations 679 

by De Jonge et al. (2014), Naafs et al. (2017a) and Dearing Crampton-Flood et al. (2020; 680 

BayMBT model) were applied to the same dataset as the one used for the random forest model 681 

(Fig. 10; Table 4). This confirms that the FROG model performs better in terms of robustness 682 

and accuracy than the previously published global soil and peat calibrations (De Jonge et al., 683 

2014; Naafs et al., 2017a; Dearing-Crampton Flood et al., 2020). The FROG model and the 684 

BayMBT both increases the upper limit of MAAT estimation by > 3 °C and 5 °C, respectively, 685 
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in comparison with the calibrations by De Jonge et al. (2014) and Naafs et al. (2017a; Table 4). 686 

In contrast, the lower limit of MAAT estimates for the random forest model is higher than that 687 

of the other linear calibrations by De Jonge et al. (2014), Naafs et al. (2017a) and especially 688 

Dearing Crampton-Flood et al. (2020). This difference is related to the fact that the extended 689 

peat and soil dataset contains a lower number of samples collected under cold climates (12% 690 

with MAAT < 0°C). The low representation of such type of samples is a limitation for the 691 

training phase of the random forest model. In contrast, by definition, the linear models are able 692 

to reach higher or lower limits, even without the presence of « extreme » samples in the dataset. 693 

Nevertheless, machine-learning algorithms are flexible and the lower limit of temperature 694 

prediction of the FROG model could be decreased by analyzing brGDGTs in a larger number 695 

of soil/peat samples from cold settings and adding them to the model. 696 

The higher robustness and accuracy of the FROG model compared to those based on 697 

the MBT’
5Me (Table 4) could be explained by its non-parametric nature and the fact that it takes 698 

into account non-linear influences on the brGDGT distribution (Supp. Fig. 4), unlike the linear 699 

models (De Jonge et al., 2014; Naafs et al., 2017a; Dearing Crampton-Flood et al., 2020). In 700 

addition, one of the prerequisites of the Bayesian model, as recently proposed by Dearing 701 

Crampton-Flood et al. (2020), is to determine a prior, before analysis. Nevertheless, as shown 702 

in this study, the influence of environmental parameters on brGDGT distribution in soils/peat 703 

is sample-dependent (e.g. Fig. 7; Table 3). Therefore, it seems difficult to determine a prior 704 

adapted to all the samples in such a large dataset. Bayesian models could be more efficient 705 

when applied to local/regional calibrations, where the prior can be determined more precisely. 706 

In any case, this study shows that efficient statistical approaches are useful to improve brGDGT 707 

calibrations.  708 

 709 

4.3. Development of alternative MAAT calibrations 710 

Although the FROG MAAT calibration presents a strong determination coefficient, 711 

the associated RMSE is still ca. 4 °C (Table 4). To test the influence of the thermal regime and 712 

MAP on the FROG model and potentially improve its accuracy, alternative submodels based 713 

on different subsets of the extended dataset were developed.  714 

 715 

4.3.1. Alternative model considering the influence of thermal regime  716 

The FRS was shown to have a significant impact on the brGDGT distribution of the 717 

extended soil dataset based on RDA analyses, especially on the 5-methyl isomers (Fig. 7; Table 718 
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3). The FRS can be considered as an indirect indicator of the thermal regime which may 719 

influence the growth of brGDGT source microorganisms and the production of these lipids. 720 

Nevertheless, the impact of the thermal regime on brGDGT distribution and concentration was 721 

the object of contrasting observations. The latter was not observed to be affected by seasonal 722 

temperature variations in mid-latitude soils (Weijers et al., 2011b; Lei et al., 2016). In contrast, 723 

several studies suggested that brGDGTs may be preferentially produced during summer in mid- 724 

to high latitude peats (Weijers et al., 2011a; Huguet et al., 2013) or soils (e.g. Deng et al., 2016), 725 

reflecting an effect of the seasonality on the brGDGT production, with an enhancement of the 726 

latter during the seasonal optimum, for example at the warm season when the soil is not frozen. 727 

An increase in the microbial biomass production was reported in unfrozen soils (Schimel and 728 

Clein, 1996; Nedwell, 1999; Schimel et al., 2007). 729 

To take into account the potential influence of the thermal regime on brGDGT 730 

distribution, an alternative Bayesian calibration was proposed by Dearing Crampton-Flood et 731 

al. (2020). This model (BayMBT0) estimates the average temperature of all months that have 732 

an average temperature above 0 °C using the MBT’5Me index. The BayMBT0 model (R²= 0.70; 733 

RMSE = 3.8°C; lower limit = 0.9°C, upper limit = 27.1°C; Dearing Crampton-Flood et al., 734 

2020) improves the strength and accuracy of the BayMBT model but does not allow 735 

reconstructing negative temperatures. To evaluate the influence of the thermal regime on the 736 

FROG model, the same approach as that proposed by Dearing Crampton-Flood et al. (2020) 737 

was applied.  738 

In the present extended dataset, monthly temperatures are available for 661 out of the 739 

775 soil samples. This excludes some of the samples, collected in the French Alps, Peruvian 740 

Andes, Mts Pollino, Shegyla and Italy (Véquaud et al., 2020). The alternative calibration based 741 

on the average temperature of all months that have a temperature above 0 °C (FROG0) is as 742 

strong as the global random forest calibration (FROG; Fig. 11), with an R²= 0.84, and is more 743 

accurate (RMSE = 2.5 °C) than the latter (Table 4, Supp. Fig. 6), even though it is based on a 744 

slightly reduced dataset (n=661). The FROG0 calibration also performs better than the 745 

BayMBT0 model (R² = 0.56; RMSE = 4.1°C), with a higher R2, lower RMSE but with a slightly 746 

lower range of MAAT estimation (Table 4). Overall, the present study, through RDA analyses 747 

(Fig. 7) and the FROG0 model, highlights the effect of the thermal regime on brGDGT 748 

distribution. In particular, it can be assumed that the activity of brGDGT source organisms will 749 

be reduced within frozen soils. In addition, snowfall can isolate the soil from the atmospheric 750 

compartment, decoupling atmospheric temperatures from soil temperatures during the cold 751 

season.  This confirms the interest of using alternative models including this effect to improve 752 
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the accuracy of MAAT reconstruction, as also suggested by Dearing Crampton-Flood et al. 753 

(2020).  754 

 755 

4.3.2. Alternative model considering the influence of MAP  756 

As previously discussed, the brGDGT distribution may be largely impacted by soil 757 

moisture (e.g., Dirghangi et al., 2013; Naafs et al., 2017a). In the present study, MAP was used 758 

as a proxy of the soil water content (SWC), which varies as a first approximation according to 759 

the precipitation regime, although other factors can play a role, such as relief (topography), 760 

evapotranspiration, grain size or vegetation cover (Crave and Gascuel-Odoux, 1997; Gómez-761 

Plaza et al., 2001).  762 

The influence of MAP was tested with the FROG500 random forest model. This  763 

alternative to the FROG model excludes all the samples with MAP < 500 mm/year, 764 

corresponding to soils previously defined as dry, and generally described as alkaline soils from 765 

arid regions, poor in organic matter (Peterse et al., 2012; Naafs et al., 2017a; Dearing Crampton-766 

Flood et al., 2020). The FROG500 model contains 442 samples and only shows a slight 767 

improvement in MAAT reconstruction in comparison with the FROG calibration, with a 768 

slightly higher determination coefficient (R2 =0.85) and lower RMSE (3.5°C; Table 4). The 769 

slight decrease in the RMSE of the FROG500 vs. the FROG model (by ca. 0.5 °C) is likely 770 

related to the large reduction of the dataset size by more than 300 samples. Therefore, the use 771 

of the FROG500 model, as the BayMBT500 proposed by Dearing Crampton-Flood et al. (2020), 772 

does not seem preferable, as its performance is only slightly better than the original FROG 773 

calibration, even though it contains a much lower number of samples. 774 

 775 

4.4. Paleo application of the FROG global calibration 776 

The statistical characteristics including determination coefficients and RMSE are not 777 

sufficient enough to discriminate between calibrations for paleotemperature reconstructions, as 778 

recently noticed by Dugerdil et al. (2021). Therefore, the performance and validity of the FROG 779 

models were tested and compared with the temperature record from Pliocene sediments from 780 

the North Sea basin (Dearing Crampton-Flood et al., 2018, 2020) and from a Chinese loess-781 

paleosol sequence covering the last 110 kyr (Gao et al., 2012; Lu et al., 2016; Wang et al., 782 

2020). These archives were the object of previous paleostudies, providing a context for the 783 

interpretation of the MAAT data from the FROG models. 784 

 785 
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4.4.1. Application of the FROG models to sediments from the Pliocene 786 

The performance and reliability of the FROG models were tested using a paleorecord 787 

based on Pliocene sediments from the North Sea basin (Dearing Crampton-Flood et al., 2018, 788 

2020). BrGDGTs were previously analyzed in this archive, with subsequent reconstruction of 789 

past temperature variations during the Pliocene using the MBT’5Me (Dearing Crampton-Flood 790 

et al., 2018). More recently, the validity of the BayMBT0 model proposed by Dearing 791 

Crampton-Flood et al. (2020) was tested on this archive and compared with the MAAT records 792 

derived from the soil brGDGT calibrations by De Jonge et al. (2014) and Naafs et al. (2017a).  793 

The aforementioned calibrations, as well as the FROG/FROG5Me models (Fig.11a), 794 

showed an overall decrease in MAAT during the Pliocene, consistent with the global cooling 795 

that is documented in the literature (Lisiecki and Raymo, 2005; Dearing Crampton-Flood et al., 796 

2018, 2020). The MAAT records derived from the different models showed similar qualitative 797 

trends over the reconstructed period, even though the range of variation appeared slightly 798 

smaller (3-4°C) for the FROG model than for the other calibrations (Fig. 11a). The FROG and 799 

FROG5Me calibrations provided similar results, implying that the inclusion of the 6-methyl 800 

isomers in the models did not significantly change the paleotemperature reconstructions in the 801 

present case. 802 

The absolute temperatures reconstructed by the different brGDGT models (Fig. 11a) 803 

were generally lower than those expected in NW Europe (13-14 °C) over the Pliocene and 804 

derived from pollen assemblages and model outputs (Dearing Crampton-Flood et al., 2020 and 805 

references therein). The BayMBT record showed the lowest MAAT estimates, with very large 806 

oscillations and negative temperatures during the late Pliocene, in contrast with the other global 807 

calibrations (Fig. 11a). Nevertheless, it is unlikely that temperatures went below 0°C during the 808 

Pliocene based on the presence of pollen assemblage of warm-adapted species found in Dutch 809 

sediments of this period, as specified by Dearing Crampton-Flood et al. (2020). That is why 810 

Dearing Crampton-Flood et al. (2020) favored the use of the BayMBT0 model, based on the 811 

mean temperature of all months above 0 °C, for MAAT reconstruction, as it is more accurate 812 

(RMSE = 3.8°C) than the BayMBT model (RMSE = 6°C). The BayMBT0 model indeed 813 

provided higher absolute MAAT estimates than the BayMBT and much more consistent with 814 

temperatures estimated from other proxies (i.e. 13-14°C; Fig. 11b). 815 

Although the FROG model did not result in such negative reconstructed MAAT, the 816 

FROG0 model was also applied to the Pliocene archive to compare with the BayMBT0 record 817 

(Fig. 11b). Both models showed a decreasing trend in temperature over the Pliocene, although 818 

the BayMBT0 model displayed larger oscillations (between 3.5 °C and 16.2°C; mean 10.7°C) 819 
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than the FROG0 one (between 10 °C and 13.1°C; mean 11.7°C). As the MAAT estimates from 820 

the FROG0 model are associated with a smaller error (2.5 °C; Table 4) than the other global 821 

brGDGT calibrations including the BayMBT0 one (3.8 °C; Dearing Crampton-Flood et al., 822 

2020), an improvement in the accuracy of the paleoreconstruction over this period can be 823 

anticipated when using the FROG0 model. This model, unlike the FROG model, estimates the 824 

mean temperature of all months above 0°C, which can be considered as more reflecting warm 825 

season temperature. Unlike the FROG model, the FROG0 model can neglect the thermal and 826 

nival influences on the samples, and so on the source organisms of brGDGTs. We suggest that 827 

the FROG0 model should be used in addition to the FROG model rather than alone, in order to 828 

obtain complementary information on annual and seasonal temperatures dynamics in 829 

paleoclimate studies. 830 

 831 

4.4.2. Application of the FROG model to a Chinese loess-paleosol sequence 832 

The FROG calibration was also applied to the Lantian loess-paleosol sequence (LPS), 833 

located in the southern Chinese Loess Plateau (Fig. 1 in Gao et al., 2012) and covering the last 834 

110 kyr (Gao et al., 2012). BrGDGT data from this 8.5 m sequence and associated 835 

paleotemperature reconstructions were previously published (Gao et al., 2012; Lu et al., 2016; 836 

Wang et al., 2020). Recently, Wang et al. (2020) analysed brGDGTs in 149 modern soils 837 

covering a large climate gradient in China and calibrated brGDGT distribution against both 838 

mean annual soil temperature (MAST) and MAAT. They applied these local MAST and MAAT 839 

brGDGT calibrations as well as the global MAAT calibration (MATmr) by De Jonge et al. 840 

(2014) to the LPS sequence over the last 60 kyr and showed that the local MAST calibration 841 

provided more reasonable variations in the past continental temperatures than the local (Wang 842 

et al., 2020) and global (Peterse et al., 2012; De Jonge et al., 2014) MAAT calibrations. This 843 

was notably related to past changes in vegetation coverage which may affect the relationship 844 

between MAST and MAAT.  845 

Regarding the modern period, Wang et al. (2020) collected six surface soil samples 846 

adjacent to the Lantian LPS to serve as a reference for the present time. The reconstructed 847 

MAAT based on the FROG (11.9 ± 0.8 °C) and FROG5Me (11.9 ± 0.9 °C) for these soils are in 848 

agreement with the recorded MAAT at this site (12.6 °C; Wang et al., 2020), suggesting that 849 

these calibrations can at least be applied for modern MAAT reconstruction in the region. At 850 

this site, MAAT0 can be considered as close to MAAT, as a winter (December; January; 851 

February) mean air temperature of ~1 °C was reported (Gao et al., 2012). The FROG0 model 852 

provided temperature estimates (14.3 ± 0.3 °C) consistent with the expected one. In contrast 853 
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with the different FROG calibrations, the temperature estimates derived from the BayMBT0 854 

model (16.8 ± 2.0 °C) were much higher than expected, with a large variability between the 6 855 

soil samples. As for the local MAST calibration by Wang et al. (2020), it provided temperatures 856 

(12.8 ± 1.4°C) consistent with those measured in soils nearby as previously reported (Wang et 857 

al., 2020) (Fig. 12a).  858 

So as to assess the reliability of the calibration, the local MAST calibration by Wang 859 

et al. (2020) was applied to the whole LPS covering the last 110 kyr and compared with the 860 

MAAT records derived from the different FROG models (FROG, FROG5Me and FROG0) as 861 

well as the BayMBT0 (Dearing-Crampton Flood et al., 2020). The BayMBT0 model was chosen 862 

rather than the BayMBT one, as it provides most accurate temperature reconstructions, as 863 

reported by Dearing Crampton-Flood et al. (2020) and specified above. Nevertheless, it should 864 

be noted that the BayMBT0 model, as the FROG0 ones, allow the reconstruction of the mean 865 

temperature of all months > 0 °C (MAAT0) instead of the MAAT. 866 

When applied to the Lantian LPS, the different calibrations showed the same 867 

qualitative trends (Fig. 12b). Thus, the temperature oscillated between 110 and 60 kyr (with 868 

different amplitudes depending on the calibration) and then showed a continuous cooling trend 869 

between 60 kyr and 30 kyr, the lowest values being reached between ca. 22 and 27 kyr BP, 870 

corresponding to the local Last Glacial Maximum (LGM), as previously observed by Gao et al. 871 

(2012) and Lu et al. (2016). Then, the temperature increased rapidly and peaked at the Early 872 

Holocene before decreasing toward the present-day values. Such general trends are similar to 873 

those previously reported for the Lantian LPS (Gao et al., 2012; Lu et al., 2016; Wang et al., 874 

2020). Local insolation (35 °N) was previously shown to be the dominant factor impacting the 875 

temperature records of this site, as similarly observed in other LPSs of the southern plateau 876 

(Peterse et al., 2011, 2014; Jia et al., 2013). Thus, the temperature maxima at ca. 12-15  kyr, 63 877 

kyr and 82 kyr BP were consistent with insolation maxima, while the low temperature observed 878 

at ca. 90 kyr, 75 kyr, 25 kyr and the late Holocene coincided with insolation minima (Wang et 879 

al., 2008, Fig. 1; Gao et al., 2012, Fig. 3; Lu et al., 2016). The brGDGT-derived temperature 880 

records and the δ18O record from Chinese speleothems (Wang et al., 2008), related to monsoon 881 

intensity, displayed roughly similar patterns (Fig. 12b), showing the relationship existing 882 

between the temperature and precipitation intensity, even though the temperature record was 883 

generally observed to precede the δ18O record, as already noticed in the Lantian  LPS (Gao et 884 

al., 2012; Wang et al., 2020) and other sites of the southern plateau (Peterse et al., 2011, 2014; 885 

Jia et al., 2013).  The FROG, FROG5Me and FROG0 calibrations showed especially well-defined 886 

peaks over the period between 75 kyr and 110 kyr BP, corresponding to the glacial and 887 
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interglacial substages of Marine Isotope Stage 5. These extrema, also apparent when using the 888 

local MAST calibration by Wang et al. (2020) and, with a more reduced amplitude, the 889 

BayMBT0 model, were similarly observed in the Chinese speleothem δ18O record (Wang et al., 890 

2008; Fig. 12b), although the exact timing differed probably in relation to age modelling 891 

uncertainties (Wang et al., 2008).  892 

The results derived from the brGDGT calibrations were in general agreement with the 893 

previously published records and climate models. Thus, the temperature estimates for the LGM 894 

derived from the FROG/FROG5Me/FROG0 and local MAST (Wang et al., 2020) calibrations 895 

were, respectively, ca. 2 °C and 4 °C lower than those of the present-day surficial sediments 896 

(Fig. 12a), consistent with the difference of ca. 2-4 °C derived from East Asian climate models 897 

(Ju et al., 2007). As for the BayMBT0 calibration, the difference in temperature estimates 898 

between LGM and present-day (ca. 3 °C, respectively) should be interpreted with care, as the 899 

temperature derived from the top-core sediment (ca. 17 °C) is abnormally high compared to the 900 

recorded MAAT (ca. 12 °C), as discussed above for soils surrounding the Lantian LPS, hence 901 

BayMBT0 seems to be less relevant than FROG models. 902 

After the local LGM (at ca. 21-24 kyr BP), the temperature was shown to increase by 903 

ca. 8 to 11°C (depending on the calibration) between the LGM and the peak at the Early 904 

Holocene (Fig. 12b), consistent with the increase of ca. 10 °C observed during this deglaciation 905 

based on lacustrine records from central eastern Europe (Sanchi et al., 2014) and western North 906 

America (Feakins et al., 2019). The FROG model showed a higher warming trend (by ca. 3 °C) 907 

than the FROG5Me one. Such a difference is likely related to the inclusion of the 6-methyl 908 

isomers in the FROG model. Loess deposits are developed under arid conditions, which favors 909 

the domination of 6-methyl vs. 5-methyl brGDGTs (De Jonge et al., 2014; Naafs et al., 2017a), 910 

as it is the case in the Lantian LPS (average IR6Me over the whole sequence: 0.58 ± 0.07). The 911 

high abundance of 6-methyl brGDGTs in arid/alkaline soils (i.e. IR6Me > 0.5) was shown to 912 

make complex the applicability of the MBT’5Me (Naafs et al., 2017a). In the Lantian LPS, this 913 

led to the development of specific local calibrations, such as the one proposed by Wang et al. 914 

(2020) to reconstruct MAST, based on stepwise regression method and including several 6-915 

methyl brGDGTs (IIa’, IIb’, IIIa’) to improve temperature reconstruction. Similarly, it may not 916 

be excluded that the presence of 6-methyl brGDGTs in the FROG model could help in 917 

improving paleotemperature reconstructions in comparison with the FROG5Me calibration 918 

containing only 5-methyl brGDGTs. Nevertheless, except in the early Holocene, the difference 919 

in temperature estimates between the FROG and FROG5Me models was generally <1.5 °C, 920 

which is much lower than the RMSE of these calibrations (ca. 4 °C; Table 4). As both of them 921 
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provided similar qualitative trends, this does not favor one calibration vs. another for 922 

paleotemperature reconstruction of this archive.  923 

To conclude, the FROG, FROG5Me and FROG0 calibrations were able to accurately 924 

reconstruct present-day temperatures at the Lantian LPS, in contrast with the BayMBT0 model. 925 

The reliability of the FROG model was further demonstrated when applied to the whole 926 

sedimentary record. It showed documented climatic variations, with a reduced error (4°C) 927 

compared to previous global soil calibrations (Peterse et a., 2012; De Jonge et al., 2014), and 928 

consistent with the trends derived from a local MAST calibration (Wang et al., 2020). 929 

 930 

5. Conclusions 931 

Several global brGDGT calibrations for MAAT reconstruction in soils and peats have 932 

been proposed over the last years. Nevertheless, the uncertainty in brGDGT-based temperature 933 

estimates is still substantial, largely due to the influence of the various environmental variables 934 

in addition to MAAT on brGDGT distribution. A statistical clustering and analysis of the 935 

globally distributed brGDGT dataset allowed hierarchizing the parameters affecting brGDGT 936 

distribution in soils and thus the MBT’5Me-MAAT relationship at the global scale. pH was 937 

shown to be the main environmental control on brGDGT distribution, followed by MAAT, over 938 

the whole dataset. The five statistical clusters were well-differentiated based on environmental 939 

parameters (MAAT, FRS, MAP, pH) and geographical locations and were characterized by 940 

distinct brGDGT distributions. A strong relationship between MBT’5Me and MAAT was only 941 

observed for the warmer clusters while the MBT’5Me-MAAT relationship at the global level 942 

was shown to be driven by the moderate correlation corresponding to a cold subgroup 943 

containing only ca. 10% of the samples from the total dataset. This highlighted the limitations 944 

of using a single index and a simple linear regression model to capture the response of brGDGTs 945 

to temperature changes. 946 

A new improved MAAT calibration based on random forest algorithm was then 947 

proposed, the so-called Random Forest Regression for PaleOMAAT using brGDGTs (FROG). 948 

The FROG model, which is multi-factorial and non-parametric, appears to be more robust and 949 

accurate than previous global calibrations while being proposed on an extended soil and peat 950 

dataset. This is related to the fact that it takes into account the non-linear influences on the 951 

relationships between MAAT and the relative abundances of individual brGDGTs. Finally, the 952 

FROG model was applied to two existing paleorecords and compared with available 953 

calibrations, showing its suitability for paleoreconstructions. Application of this new model 954 
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should improve the accuracy of brGDGT-based MAAT reconstructions in soils and peats, 955 

especially in environments where the MBT’5Me shows some limitations because of potential 956 

confounding factors. As the random forest algorithm is adaptative and flexible, the FROG 957 

model, freely available to the community through an R package, could be easily further 958 

improved by the implementation of additional samples in the dataset. The machine-learning 959 

approach proposed in this study for calibrating the brGDGT-MAAT relationship could be 960 

applied to other settings, such as lacustrine ones. 961 

 962 

Research data. FROG models presented in this study are freely available using a R package 963 

with a web-application on a GITHUB repository (paleoFROG). The soil dataset used in this 964 

study will be added on Pangaea. 965 
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Figure and table captions 

 

Figure 1. Principal Component Analysis performed on the global dataset (n=767) with the k-

means clustering. (a) PC2 vs PC1, (b) PC3 vs PC1, (c) Variance explained (%) for each 

component, (d) Optimal number of clusters according to the elbow method, based on the 

observation of the Within Cluster Sum of Squares (WCSS). 

Figure 2. Boxplot showing the distribution of the 4 environmental variables considered: (a) 

pH, (b) MAAT (°C), (c) MAP (mm/year), (d) FRS. Interquartile range (IQR) = Q3 – Q1 where 

Q3 is the 75th percentile and Q1 is the 25th percentile.  Outliers are defined with a 1.5 coefficient 

on the IQR. Letters on the panel show the differences between each cluster according to 

Kruskall-Wallis and Dunn post-hoc tests. 

Figure 3. Spatial distribution of samples in the global dataset. The colors correspond to the 

different clusters. 

Figure 4. Fractional abundances of the individual brGDGTs determined in the (a) Cluster A, 

(b) Cluster B, (c) Cluster C, (d) Cluster D, (e) Cluster E and (f) in the global dataset. 

Figure 5.  Boxplot showing the distribution of the (a) MBT’5Me, (b) CBT’, (c) IR6ME, (d) 

Community Index (CI; Eq. 5; defined by De Jonge et al. (2019) for the 5 clusters defined after 

PCA analysis (Fig. 2). The CI thresholds of 0.64 and 0.69 separating “warm” and “cold” groups 

as proposed by De Jonge et al. (2019) and in the present study, respectively, are represented in 

panel (d). Letters on the panels show the differences between each cluster according to 

Kruskall-Wallis and Dunn post-hoc tests. 

Figure 6.  Linear regressions between MBT’5Me and MAAT (°C)  for (a) cluster A, (b) cluster 

B, (c) cluster C, (d) cluster D, (e) cluster E, (f) the whole dataset. Grey dots correspond to soils 

and green dots to peats samples. 

Figure 7. Redundancy analysis between brGDGT distribution and environmental variables for 

(a) cluster A, (b) cluster B, (c) cluster C, (d) cluster D and (e) cluster E. 

Figure 8. Comparison of the linear regressions between MBT’5Me and MAAT (°C)  in the two 

subgroups derived from the extended dataset: “cold” cluster (CI < 0.64) and “warm” cluster (CI 

> 0.64). The community index (CI; Eq. 3) was defined by De Jonge et al. (2019). The dashed 

line corresponds to the linear relationship between MAAT (°C) and MBT’5Me in the global 

dataset used in this study (n=775). 

Figure 9. MAAT predicted by the random forest models using the relative abundances of (a) 

5-methyl brGDGTs (FROG5Me) and (b) all brGDGTs (FROG model). Residuals of the (c) 

FROG5Me model and (d) FROG model with all brGDGTs plotted against predicted MAAT. 

Importance of the individual brGDGTs in (e) the FROG5Me and (f) FROG model with all 

brGDGTs, according to the permutation importance method (Breiman, 2001). These results 

were obtained from the test dataset. Grey dots correspond to soils and green dots to peats. 

Figure 10. Comparison of the global MBT’5Me calibration proposed by (a) De Jonge et al. 

(2014), (b) Naafs et al. (2017a) and (c) Dearing Crampton-Flood et al. (2020; BayMBT model) 

using the same dataset as the FROG model (n = 192). Grey dots correspond to soils and green 

dots to peats. 
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Figure 11. Reconstructed MAAT for the Pliocene marine sediment sequence from the Hank 

core located in the Netherlands (Dearing Crampton-Flood et al., 2018, 2020) (a) derived from 

the calibrations by De Jonge et al. (2014), Naafs et al. (2017a), Dearing Crampton-Flood et al. 

(2020; BayMBT) and from the FROG/FROG5Me models and (b) derived from the calibrations 

by Dearing Crampton-Flood et al. (2020; BayMBT0) and from the FROG0 model. Grey zones 

are the 95% intervals for the FROG and FROG0 models 

Figure 12. (a) Estimated temperatures from the 6 surface soils collected adjacent to the Lantian 

LPS, serving as a reference for the present time (Wang et al., 2020), derived from the BayMBT0 

model (Dearing Crampton-Flood et al. 2020) and FROG/FROG5Me/FROG0 models (this study).  

(b) Comparison of the MAAT estimates from the Lantian LPS sequence covering the last 110 

kyr, derived from local MAST calibration (Wang et al., 2020) the BayMBT0 model (Dearing 

Crampton-Flood et al. 2020) and FROG/FROG5Me/FROG0 models (this study), with a δ18O 

record from a Chinese speleothem (in green; Wang et al., 2008). 

 

Table 1. Location, number, and references for soils and peat samples used to establish the new 

global brGDGT calibration proposed in this study. Available parameters for the different 

sampling sites are shown: MAAT (Mean Annual Air Temperature (°C), pH, MAP (Mean 

Annual Precipitation (mm/yr), FRS (Number of frost days per year). Asterisks represent the 

new samples added to the global dataset. 

Table 2. Quantitative description of the 5 clusters obtained after k-means on PCA on the 

brGDGT distribution of the total dataset. 

Table 3. RDA correlation coefficients of the selected environmental variables along axes 1 and 

2 for each cluster, and quantification of the influence of the different environmental variables 

on brGDGT relative abundances. Statistical significance (p<0.05) is shown with an asterisk. 

Table 4. Characteristics of the different brGDGT models compared in this study to estimate 

MAAT in terrestrial settings: R², RMSE (or RMSEP; i.e. Root Mean Square Error of Prediction, 

for the results on the test dataset), variance of the residuals and the upper and lower limits of 

estimation. The "training" samples (75%) were used to develop the different machine learning 

models, which were then tested on the remaining sample set. Characteristics are presented for 

the test dataset and all the dataset (under brackets, in italics). Previous calibrations from De 

Jonge et al. (2014), Naafs et al. (2017a) and Dearing Crampton-Flood et al. (2020) are indicated 

with asterisks.  

 

Supplementary figure 1 Linear relationship between MBT’5Me and MAAT (°C)  in the global 

dataset used in this study (n=775). 

Supplementary figure 2 Comparison of the linear regressions between MBT’5Me and MAAT 

(°C)  in the global dataset for samples with IR6Me >0.5 and IR6Me <0.5. 

Supplementary figure 3 (a) Estimation of the community index thresholds, for each linear 

regression between MAAT and MBT’5Me; (b) Comparison of the linear regressions between 

MBT’5Me and MAAT (°C)  in the two subgroups derived from the extended dataset: “cold” 

cluster (CI < 0.69) and “warm” cluster (CI > 0.69). The dashed line corresponds to the linear 

relationship between MAAT (°C) and MBT’5Me in the global dataset used in this study (n=775) 



Supplementary figure 4. Partial plots of the individual brGDGT variations in the FROG model 

proposed to estimate MAAT. 

Supplementary figure 5. Partial plots of the individual brGDGT variations in the FROG5Me 

model proposed to estimate MAAT. 

Supplementary figure 6. (a) MAAT predicted by the FROG0 model using the relative 

abundances of all brGDGTs. (b) Residuals of the FROG0 model. (c) Importance  of the 

individual brGDGTs in the FROG0 model, according to the permutation importance method 

(Breiman, 2001). These results were obtained from the test dataset. 

 

 

Supplementary Table 1. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and 

the IR6Me in the global dataset presented in this study (n=775). The values given are the R². (b)  

p-values of the correlations shown in the supplementary table 1a. 

Supplementary Table 2. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and the 

IR6Me in the Cluster A. The values given are the R². (b) p-values of the correlations shown in 

supplementary table 2a. 

Supplementary Table 3. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and the 

IR6Me in the Cluster B. The values given are the R². (b) p-values of the correlations shown in 

supplementary table 3a. 

Supplementary Table 4. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and the 

IR6Me in the Cluster C. The values given are the R². (b) p-values of the correlations shown in 

the supplementary table 4a 

Supplementary Table 5. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and the 

IR6Me in the Cluster D. The values given are the R². (b) p-values of the correlations shown in 

the supplementary table 5a. 

Supplementary Table 6. (a) Correlation matrix between the fractional abundances of the 

brGDGTs, and the MAAT, MAP, pH, FRS, CBT', MBT'5Me, the community index (CI) and the 

IR6Me in the Cluster E. The values given are the R². (b) p-values of the correlations shown in 

the supplementary table 6a.  
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