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Vitamin C improves microvascular reactivity 
and peripheral tissue perfusion in septic shock 
patients
Jean‑Rémi Lavillegrand1,2, Lisa Raia1, Tomas Urbina1,2, Geoffroy Hariri1,2, Paul Gabarre1,2, Vincent Bonny1, 
Naïke Bigé1, Jean‑Luc Baudel1, Arnaud Bruneel3, Thierry Dupre3, Bertrand Guidet1,2,4, Eric Maury1,2,4 and 
Hafid Ait‑Oufella1,2,5*   

Abstract 

Background:  Vitamin C has potential protective effects through antioxidant and anti-inflammatory properties. How‑
ever, the effect of vitamin C supplementation on microvascular function and peripheral tissue perfusion in human 
sepsis remains unknown. We aimed to determine vitamin C effect on microvascular endothelial dysfunction and 
peripheral tissue perfusion in septic shock patients.

Methods:  Patients with septic shock were prospectively included after initial resuscitation. Bedside peripheral tissue 
perfusion and skin microvascular reactivity in response to acetylcholine iontophoresis in the forearm area were meas‑
ured before and 1 h after intravenous vitamin C supplementation (40 mg/kg). Norepinephrine dose was not modified 
during the studied period.

Results:  We included 30 patients with septic shock. SOFA score was 11 [8–14], SAPS II was 66 [54–79], and in-hospital 
mortality was 33%. Half of these patients had vitamin C deficiency at inclusion. Vitamin C supplementation strongly 
improved microvascular reactivity (AUC 2263 [430–4246] vs 5362 [1744–10585] UI, p = 0.0004). In addition, vitamin C 
supplementation improved mottling score (p = 0.06), finger-tip (p = 0.0003) and knee capillary refill time (3.7 [2.6–5.5] 
vs 2.9 [1.9–4.7] s, p < 0.0001), as well as and central-to-periphery temperature gradient (6.1 [4.9–7.4] vs 4.6 [3.4–7.0] °C, 
p < 0.0001). The beneficial effects of vitamin C were observed both in patients with or without vitamin C deficiency.

Conclusion:  In septic shock patients being resuscitated, vitamin C supplementation improved peripheral tissue 
perfusion and microvascular reactivity whatever plasma levels of vitamin C.

ClinicalTrials.gov Identifier: NCT04778605 registered 26 January 2021.
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Introduction
Sepsis is a common and life-threatening condition that 
develops in response to bacterial injury. Around 50 
millions of incident cases of sepsis are recorded world-
wide every year. In the USA, around 535 cases of sepsis 
occur annually per 100,000 people, accounting for more 
than USD 23 billion in annual US hospital expenditures 
[1]. Despite improvement in early resuscitation, sepsis-
related disability and mortality remain unacceptably 
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high [2]. Therefore, in association with symptomatic cor-
rection of acute circulatory failure and infection source 
control, there is urgent need for novel therapies to limit 
sepsis-induced tissue damage and organ failure.

Sepsis pathophysiology is complex, with immune 
response dysregulation, coagulation activation and oxida-
tive burst affecting cardiac and endothelial cell function, 
resulting in impaired microvascular blood flow, tissue 
hypoperfusion and ultimately life-threatening organ 
failure [3]. Several studies have reported that the sever-
ity [4] and persistence [5] of microvascular blood flow 
alterations are closely correlated with patient prognosis. 
At bedside, impaired peripheral tissue perfusion evalu-
ated using mottling score [6], capillary refill time [7] or 
temperature gradient [8] has been associated with poor 
outcome.

Recently, vitamin C supplementation (Ascorbic acid) 
has been proposed as a potential “pleiotropic” form of 
therapy, interacting with multiple pathologic pathways 
in sepsis. Several potential beneficial effects of vitamin 
C have been reported in both animal [9, 10] and human 
studies [11], including (1) antioxidant properties (scav-
enging of reactive oxygen species) [12, 13], (2) downregu-
lation of pro-inflammatory gene expression (cytokines, 
chemokines), (3) restoration of immune cell activity 
[14–16], (4) downregulation of coagulation gene expres-
sion [17]. Experimental studies have also reported that 
vitamin C could modulate endothelial function [18, 19]. 
However, the in vivo effect of vitamin C on microvascu-
lar blood flow and tissue perfusion in sepsis patients with 
severe infections has never been investigated before.

In this study, we aimed to prospectively explore the 
effects of vitamin C supplementation on both endothe-
lial-dependent microvascular reactivity and bedside 
peripheral tissue perfusion in septic shock patients.

Materiel and methods
Included patients
We conducted a prospective study in an 18-bed intensive 
care unit (ICU) in a tertiary teaching hospital. During 
a 6-month period, patients older than 18  years admit-
ted for septic shock were included. Septic shock was 
defined according to the Third International Consensus 
Definitions for Sepsis and Septic Shock [20]. We included 
resuscitated patients within the first 24 h of vasopressor 
initiation. Exclusion criteria were pregnancy, forearm 
skin lesions, important soft tissue edema and agitation.

After initial therapeutic management, includ-
ing antibiotic administration, fluid infusion (30  mL/
kg) and norepinephrine infusion to maintain a 
MAP > 65  mmHg, as well as infection focus control 
when available, patients received intravenous (IV) 

vitamin C (40 mg/kg) over 30 min [21]. We compared 
global hemodynamic and tissue perfusion parameters 
before and 1 h after vitamin C supplementation, as well 
as skin microvascular endothelial reactivity (see below). 
No intervention was done during microvascular explo-
ration (Unchanged vasopressor dose, no injection of 
fluid, steroid or inodilator).

Assessment of skin microcirculation reactivity
The skin microvascular reactivity was measured in the 
forearm area by transdermal iontophoresis of acetyl-
choline (Ach) [22]. This non-invasive technique allows 
local transfer of Ach across the skin, which produces 
vasomotor action on subcutaneous capillaries [23, 24]. 
Ach solution and a weak electrical current are applied 
onto the skin, creating local differences in electrical 
potential and active migration of ions and molecules 
bearing a net electrical charge through epithelial layers. 
The direction and speed of migration can be adjusted 
using polarity and the current’s magnitude. The total 
amount of Ach delivered into the skin is related to 
the current and duration of application (i.e., electrical 
charge). Acetylcholine acts as an endothelium-depend-
ent vasodilator [25], which induces the production 
of nitric oxide (NO) after stimulation of the endothe-
lial NO-Synthase. Next, NO induces smooth muscle 
cells relaxation by activating guanylate cyclase that is 
responsible for vasodilation and increased blood flow.

The iontophoresis drug delivery chamber was 
attached to the flexor surface of the non-dominant 
forearm. The negative lead of the current source was 
attached to the drug delivery chamber, and the positive 
lead (i.e., reference electrode) to a conductive hydrogel 
pad fixed onto the wrist. After measurement of baseline 
blood flow for 60 s, three successive applications of Ach 
were made, every 60 s, using anodal current (0.12 mA 
for 12  s each). The drug delivery chamber was loaded 
with 80 μL of Ach (Miochol®). Variations of blood flow 
in the skin were assessed by Laser-Doppler Flowmetry 
technique. A Laser-Doppler Flowmeter probe (Perif-
lux 5000, Perimed), embedded within a heating drug 
delivery chamber, was used in combination with a 
current-controlled delivery device (PeriIont, Perimed). 
Laser-Doppler Flowmeter signals were recorded con-
tinuously using an interfaced computer with acquisi-
tion software (Perisoft, Perimed).

Baseline blood flow (BF) and area-under-the-curve 
(AUC) of BF recorded during a standardized 10-min 
period were recorded (Additional file  1). Skin blood 
flow monitoring and analysis were performed by an 
independent physician who did not participate in 
patient care.
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Data collection
Patients’ characteristics were prospectively collected: 
age, sex, previous chronic illness, severity of illness 
evaluated by the Sequential Organ Failure Assessment 
score (SOFA score) at inclusion [26], source of sepsis, 
mode of mechanical ventilation, and vasopressor dose. 
Biological parameters, global hemodynamic param-
eters [mean arterial pressure (MAP), heart rate (HR)] 
and cardiac output measured using echocardiography 
were recorded at 2 time points. In addition, several tis-
sue perfusion parameters were collected at baseline and 
1  h after vitamin C supplementation: arterial lactate 
level, index and knee capillary refill time and mottling 
score, skin temperature and central-skin temperature 
gradient.

Plasma levels of vitamin C
Vitamin C plasma levels were measured by a high-
performance liquid chromatography (HPLC) method 
adapted from Speek et  al. [27]. Briefly, heparinized 
plasma is stabilized by diluting samples (1/10; v/v) with 
5% (w/v) metaphosphoric acid solution. The samples 
remain frozen at − 80 °C until assayed. After alcaliniza-
tion of samples with sodium acetate 4.5  mM (respec-
tively 1 mL and 0.2 mL) and action of ascorbate oxidase 
(25 µL solution 62 U/mL in Na H2PO4 4  mM pH 5.6; 
5  min at 37  °C), the total vitamin C of the sample is 
converted into acid l-dehydroascorbate. This com-
pound is derivatized with ortho-phenylenediamine 
(300 µL OPDA 100 mM-water solution, 30 min 37  °C) 
giving a fluorescent quinoxaline. The vitamin C assay 
is performed by HPLC in reverse phase with fluori-
metric detection. The column is an Intersil C18 ODS2 
5 µM 4.6 × 150 mm. The mobile phase (H2PO4 50 mM/
methanol (500/214; v/v) pH 7.4) flow is 1.15  mL/min 
and the injection volume 20 µL. The excitation is done 
at 346 nm and emission at 424 nm. All the reagents are 
from Sigma-Aldrich, the column is from Interchim, and 
the HPLC system is a Summit Dionex-Thermo.

Statistics
Continuous variables were presented as median and 
25th–75th interquartile ranges (IQRs). Discrete vari-
ables were presented as percentages. Comparisons 
before and after vitamin C injection were made with 
a paired non-parametric test. Statistical analysis and 
graphical representations were performed using Graph-
Pad Prism 8.4.1 software (Graph Pad Software Inc., La 
Jolla, CA). A two-sided p value of less than 0.05 was 
considered statistically significant.

Ethics
The protocol was approved by an institution’s ethical 
committee—Comité de Protection des Personnes (CPP 
Ile de France France, 2019-A03199-48). All patients or 
their families gave their consent for the study (Clinical-
Trials.gov Identifier: NCT04778605).

Result
Characteristics of included patients
During the study period, 30 septic shock patients 
were included. Median age was 67 [57–74] years with 
a higher proportion of men (70%). The main sources 
of infection were respiratory (43%) and abdominal 
(33%). Included patients had severe disease with high 
SOFA scores (11 [8–14]), high SAPS II (66 [54–79]) 
and frequent organ support therapy such as inva-
sive mechanical ventilation (67%). In-ICU mortality 
was 33% (N = 10/30) (Table  1). Global hemodynamic 
and tissue perfusion parameters were measured after 
initial resuscitation. All patients received crystal-
loids (2.5 [2.1, 3.2] L) and norepinephrine to maintain 
MAP > 65 mmHg (dose 0.6 [0.3–1.2] µg/kg/min).

Biological parameters of included patients are 
depicted in Table 1.

Microvascular blood flow parameters
Endothelial-dependent microvascular reactivity was 
measured in the forearm area after acetylcholine chal-
lenge before and 1 h after vitamin C administration. We 
observed that skin microvascular reactivity, evaluated 
using the area under the curve (AUC) during a 10-min 
monitoring period, strongly increased after vitamin 
C supplementation (AUC 2263 [430–4246] vs 5362 
[1744–10585] UI, p = 0.0004) (Fig.  1A, B). Vitamin C 
improved microvascular reactivity in patients with and 
without peripheral tissue hypoperfusion (Additional 
file 2).

Global hemodynamic and tissue perfusion parameters
Parameters were recorded after initial resuscitation, 
before and 1  h after vitamin C supplementation. Fol-
lowing vitamin C infusion, cardiac output signifi-
cantly decreased (4.1 (3.3–4.5) vs 4 (3.1–4.3)  L/min, 
p = 0.0376) and MAP tended to increase (71 (66–75) vs 
72 (66–77) mmHg; p = 0.07) despite no change in vaso-
pressor dose (0.60 [0.30–1.10] vs 0.60 [0.30–1.20]  µg/
kg/min; p = 0.46) (Table  2). Interestingly, we observed 
that vitamin C supplementation quickly improved 
peripheral tissue perfusion with a trend to a decrease of 
mottling score (p = 0.06), and a significant decrease in 
finger-tip CRT (2.1 (1.7–3.5) vs 2 (1.2–3) s, p = 0.0003), 
Knee CRT (3.7 (2.6–5.5) vs 2.9 (1.9–4.7)  s, p < 0.0001), 
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skin temperature and central-to-skin temperature 
gradient (6.1 (4.9–7.4) vs 4.6 (3.4–7.0) °C, p < 0.0001) 
(Fig. 2C, Table 2).

Tissue perfusion parameters and microvascular 
parameters according to plasma levels of vitamin C
Plasma levels of vitamin C were measured in 24/30 sep-
tic shock patients at admission. Half of them (N = 12/24) 
had vitamin C deficiency (< 5  mg/L, [28]) (Fig.  2A). We 
did not observe any difference between no-deficiency 
and deficiency groups in terms of age, gender and co-
morbidity, but time between hospital admission and 
ICU admission was longer in deficiency group patients 

(2 [1–5] vs 18 [2–39] days, p = 0.03). SOFA and SAPS II 
were not different between groups, but vasopressor doses 
trended to be lower in the vitamin C-deficient group (0.6 
[0.2–0.7] µg/kg/min) vs 1.1 [0.4–1.4] µg/kg/min, p = 0.06) 
(Additional file 3).

We found that vitamin C supplementation significantly 
improved microvascular reactivity in patients with and 
without vitamin C deficiency (Fig.  2B), as well as bed-
side evaluated peripheral tissue perfusion (Table  3). 
Unexpectedly, we observed a significant positive corre-
lation between baseline vitamin C levels and variations 
of endothelial response after supplementation (r = 0.64, 
p = 0.009); in other words, the higher the baseline vita-
min C level, the higher the increase in blood flow after 
vitamin C supplementation (Additional file 4).

Discussion
Our study prospectively investigated the impact of vita-
min C infusion on microvascular function in septic shock 
patients. We found that vitamin C supplementation 
quickly improved microvascular reactivity and peripheral 
tissue perfusion, a benefit observed in patients with or 
without vitamin C deficiency.

Vitamin C supplementation was performed after ini-
tial resuscitation within the first 24 h of ICU admission. 
First, we observed that vitamin C trended to increase 
mean arterial pressure. Such effect may be due to the 
pleiotropic activity of vitamin C which promotes both 
the transformation of dopamine into norepinephrine 
and the endogenous catecholamine synthesis [29]. We 
found that vitamin C strongly increased skin microvas-
cular blood flow after acetylcholine challenge, supporting 
an improvement in endothelial-dependent microvas-
cular function. This finding is of great interest because 
microvascular reactivity is highly correlated with both 
septic shock severity and outcome: The lower the reac-
tivity, the higher the mortality [30]. Acetylcholine specifi-
cally targets endothelial cells and promotes NO release, 
inducing vascular smooth muscle relaxation and in fine 
vasodilatation [22]. The beneficial effects of vitamin 
C on endothelial and nitric oxide dependent vasodila-
tion have also been previously observed in patients with 
chronic endothelial dysfunction due to atherosclero-
sis [31], hypertension [31] or diabetes [32]. Such rapid 
effect observed one hour after vitamin C injection may 
be mediated by increased NO availability, either through 
enhanced synthesis mediated by BH4 recycling, direct 
reduction of nitrite to NO, release of NO from nitro-
sothiols, or by scavenging superoxide that would other-
wise react with NO to form peroxynitrite [33]. Vitamin 
C may also limit BH4 oxidation, a key endothelial NOS 
cofactor [34]. Other protective effects of vitamin C on 
endothelial cell biology have been reported but these take 

Table 1  General characteristics of included patients

Patients’ characteristics n (%) or Med. [IQR]

Age 67 [57–74]

Body mass index (kg/m2) 22 [20-26]

Male gender 21 (70)

Simplified Acute Physiology Score 2 66 [54–79]

Sequential Organ Failure Assessment 11 [8–14]

Comorbidities

Diabetes 7 (23)

Hypertension 14 (46)

Cardiovascular disease 10 (33)

Tobacco use 6 (20)

Cirrhosis 3 (10)

Cancer/hematologic malignancies 5 (17)

Septic shock sources

Lung 13 (43)

Abdomen 10 (33)

Urinary tract 3 (10)

Catheter 2 (7)

Others 2 (7)

Organ support therapy

Invasive mechanical ventilation 20 (67)

Norepinephrine dose (µg/kg/min) 0.6 [0.3–1.2]

Crystalloid infusion prior vitamin C (L) 2.50 [2.10–3.20]

Hydrocortisone 12 (40)

Biological parameters at inclusion

Leucocytes (Giga/L) 11 (1.5–24)

Hemoglobin (g/dL) 10.6 (8.3–15.2)

Platelets (Giga/L) 132 (50–208)

Serum creatinine (µmol/L) 119 (83–182)

Procalcitonin (ng/mL) 12 (2.7–30)

Bicarbonate (mmol/L) 21 (17–24)

Arterial lactate (mmol/L) 3.9 (2.8–5.1)

Protidemia (g/L) 57 (46–63)

Serum albumin (g/L) 25 (22–31)

Vitamin C (µmol/L) 5.3 (2–17)
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Fig. 1  A Changes of forearm skin microcirculatory reactivity in response to acetylcholine challenge before and after vitamin C supplementation in 
patients with septic shock. B Example of skin microcirculatory blood flow change in response to acetylcholine iontophoresis before (blue) and after 
(orange) vitamin C injection. C Central-to-knee skin temperature gradient before and after vitamin C infusion. PU Perfusion units

Table 2  Global hemodynamic and tissue perfusion parameters before and 1 h after vitamin C infusion

Bold was used when p value was ≤ 0.05

Parameters, median (IQR) H0 H1 p value

Blood pressure (mmHg)

Systolic 107 (100–120) 111 (102–121) 0.43

Diastolic 54 (51–61) 58 (53–62) 0.18

Mean 71 (66–75) 72 (66–77) 0.07

Heart rate (/min) 107 (101–111) 107 (101–110) 0.67

Mottling score 1 (0–3) 1 (0–2) 0.06

Capillary refill time (s)

Index 2.1 (1.7–3.5) 2 (1.2–3) 0.0003
Knee 3.7 (2.6–5.5) 2.9 (1.9–4.7) < 0.0001
Cardiac output (L/min) 4.1 (3.3–4.5) 4 (3.1–4.3) 0.0376
Skin temperature 31.2 (30.2–32.3) 32.2 (31–33.7) < 0.0001
Central-to-skin gradient temperature 6.1 (4.9–7.4) 4.6 (3.4–7.0) < 0.0001
Norepinephrine dose (µg/kg min) 0.6 (0.3–1.2) 0.6 (0.3–1.1) 0.46

Fig. 2  A plasma levels of vitamin C in patients with and without deficiency in patients with septic shock. B Changes of microcirculatory reactivity 
before and after vitamin C supplementation in septic shock patients with and without vitamin C deficiency
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longer time to develop. For instance, vitamin C promotes 
endothelial cell proliferation, capillary-like structures for-
mation [35, 36] and prevents apoptosis both in vitro [37] 
and in  vivo [38]. Vitamin C treatment limits Intercellu-
lar Adhesion Molecule (ICAM)-1 production by human 
umbilical endothelial cell line [39] and also decreases 
endothelial glycocalyx shedding in  vivo, as assessed by 
plasma Syndecan-1 levels [40].

In our study, the beneficial effect of vitamin C sup-
plementation was also observed clinically at the bedside 
with a decrease in mottling score, capillary refill time and 
temperature gradient, all markers of peripheral tissue 
perfusion. Mottling extension, which reflects impaired 
skin microvascular blood flow [41], has been identified 
as a strong independent predictive factor of mortality in 
sepsis [42] and septic shock patients [6]. Prolonged CRT 
measured either on the finger-tip or on the knee area is 
also associated with poor outcome in studies performed 
in the emergency ward [43] and the ICU [7]. Some criti-
cisms have been raised about the reproducibility of 
these bedside parameters, but intra-rater concordance 
is excellent after standardization and training [44]. Skin 
temperature (and gradient) changes [8, 45], which were 
quantified with an accurate and reliable probe, also sup-
port the beneficial effect of vitamin C supplementation 
on peripheral perfusion.

In our cohort, around half of included patients had 
vitamin C deficiency, which is in line with previous works 
reporting that low plasma vitamin C concentrations 
are common in critically ill patients, and in particular 

in patients with sepsis [46, 47]. Vitamin C levels might 
be correlated with higher incidence of organ failure in 
septic patients [48], but in our study, SOFA score was 
not different patients with and without vitamin C defi-
ciency. Several combined mechanisms may be responsi-
ble for vitamin C deficiency, such as pro-inflammatory 
cytokines regulating endothelial sodium-dependent vita-
min C transporters activity [49] and increased vitamin 
C consumption by leukocyte turnover in the context of 
sepsis [50]. In our study, vitamin C-deficient group was 
characterized by longer in-hospital length of stay before 
ICU admission, with potential decreased vitamin C 
intake during hospital stay and also prolonged vitamin C 
consumption because of subacute sepsis. The beneficial 
effects of vitamin C were not restricted to vitamin C-defi-
cient patients, since supplementation was also beneficial 
in septic shock patients without deficiency. The correla-
tion between baseline vitamin C levels and variations of 
endothelial responses after supplementation was unex-
pected. Several potential explanations could be proposed: 
(1) We measured total vitamin C levels but not the oxi-
dized and reduced forms which may have different vas-
cular activity. (2) Recovery of impaired microvascular 
reactivity in Deficiency group after supplementation may 
require longer time and/or larger doses. (3) Some con-
founders between deficiency and no deficiency groups 
have not been identified.

Overall, the beneficial impact of vitamin C in sepsis 
patients is still into debate [51]. In a recent meta-anal-
ysis including eleven randomized controlled trials and 

Table 3  Clinical and hemodynamic parameters at admission and 1  h after vitamin C infusion of included patients according to 
vitamin C deficiency

Bold was used when p value was ≤ 0.05

Variables, median (IQR) H0 H1 p value (H1 vs H0)

Vitamin C (µmol/L) < 5 µmol/L ≥ 5 µmol/L < 5 µmol/L ≥ 5 µmol/L < 5 µmol/L ≥ 5 µmol/L

Blood pressure (mmHg)

Systolic 103 [100–115] 108 [101–122] 109 [96–124] 110 [101–120] 0.26 0.8

Diastolic 56 [53–64] 53 [45–59] 58 [52–63] 56 [51–62] 0.9 0.11

Mean 71 [66–77] 67 [61–71] 74 [67–79] 68 [64–75] 0.29 0.05
Heart rate (/min) 105 [100–111] 107 [101–124] 105 [100–110] 107 [100–124] 0.8 0.9

Mottling score 1 [0–3] 2 [0–3] 1 [0–2] 2 [0–3] 0.6 0.9

Capillary refill time (s)

Index 1.8 [1.6–3.9] 2.2 [1.6–3.1] 1.7 [1.2–3.5] 1.9 [1.1–2.7] 0.04 0.02
Knee 3.8 [2.5–5.8] 4.1 [3.4–6] 2.7 [1.9–4.7] 3.5 [2.3–5.6] 0.001 0.005
Cardiac output (L/min) 3.3 [3–4.2] 4.3 [3.8–5.2] 3.5 [3.1–4.2] 4.3 [3–4.7] 0.5 0.04
Temperature (°C)

Skin 31.7 [30.2–32.7] 31.2 [30.5–32.8] 32 [31.1–34.3] 32.2 [31.2–33.6] 0.06 0.008
Central-to-skin gradient 6.5 [4.8–7.3] 5.3 [4.7–6.8] 4.9 [3.5–6.9] 4.5 [3.3–6.6] 0.06 0.001
Norepinephrine infusion (µg/kg min) 0.6 [0.2–0.7] 1.1 [0.4–1.4] 0.6 [0.2–0.7] 1.0 [0.4–1.4] 0.9 0.5
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more than 1700 patients, high-dose IV vitamin C did not 
improve short-term survival, but was associated with a 
significantly shorter duration of vasopressor use, as well 
as a significantly greater decline in the SOFA score at day 
3 [52]. Based on our results, we believe that future trial 
testing high-dose IV vitamin C treatment should be pro-
posed in selected septic shock patients with peripheral 
tissue hypoperfusion, a subset of patients with very poor 
outcome [53].

Finally, we did not observe any adverse effect after vita-
min C injection, confirming previous work showing that 
pharmacologic ascorbic acid administration is safe. It is 
noteworthy that Sartor et al. reported that point-of-care 
blood glucose measurements may become inaccurate 
after ascorbate injection, since the molecular structures 
of vitamin C and glucose are somewhat similar [54]

Our study has several limitations. It is a monocentric 
study, and the results need to be confirmed in a larger 
population. Nevertheless, we found significative differ-
ence despite limited number of patients. Here, we did not 
include a control group and the improvement of periph-
eral tissue hypoperfusion could be, at least in part, related 
to initial resuscitation. However, rapid improvement 
of endothelial reactivity was unlikely due to fluid alone 
because in a previous work, we have shown in septic 
shock patients that saline infusion had no acute impact 
on endothelial dysfunction [55]. Vitamin C improved 
vascular parameters in septic shock patients under vaso-
pressor support, but we cannot affirm that the protective 
effect would be still observed in sepsis patients without 
vasopressor. Finally, we observed beneficial effect of vita-
min C early after infusion but we did not analyze micro-
vascular function and peripheral tissue perfusion at later 
stages.

Conclusion
In septic shock patients being resuscitated, vitamin C 
supplementation improved microvascular reactivity and 
peripheral tissue perfusion whatever plasma levels of 
vitamin C.
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