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Abstract 15 

Candida auris has been described as an emerging yeast species during the last decade. As many as 16 

25% of its strains may naturally exhibit multi-drug resistance to the currently available antifungal 17 

drugs. Probably due to its ability to survive more than two weeks on inert surfaces, several large 18 

outbreaks have been reported, primarily due to nosocomial transmissions. In addition, due to a 19 

rapid worldwide spreading, C. auris is now considered as a major public health threat. This review 20 

aims at describing the current knowledge about C. auris, with specific focuses on its global 21 

epidemiology, virulence features, most reliable diagnostic approaches, and the current and future 22 

therapeutic options.  23 
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Introduction  32 

First described in 2009, Candida auris has rapidly been placed in the spotlight, not only of medical 33 

journals, but also making the headlines of mass media (1,2) (Figure 1). Indeed, this yeast species 34 

causing large hospital outbreaks and characterized by a high level of antifungal resistance has 35 

emerged as a major threat for the public health over the last ten years (3,4). Candida auris cases 36 

have now been reported over all the continents (Figure 2) (5–8). However, the true prevalence of 37 

C. auris over the world remains partly unknown as the species identification can be challenging, 38 

notably in low-income countries. Yet, it is critical that all microbiology laboratories are able to 39 

rapidly recognize the species and test the in vitro susceptibility for every C. auris isolates (9). 40 

Indeed, a rapid and reliable detection is of utmost importance to limit the nosocomial transmission. 41 

Controlling and preventing the spread of C. auris requires the isolation of any colonized/infected 42 

individual and the screening of any contact cases. Sampling the medical environment for detecting 43 

a source of contamination can complete the investigation. The reinforcement of standard hygiene 44 

measures remains also a key-feature to limit outbreaks expansion. 45 

This brief review focuses on the latest scientific data published on C. auris, regarding its 46 

epidemiology and virulence, the diagnostic approaches, and the preventive and curative strategies.  47 

 48 

Epidemiology: history and current trends 49 

The origins of Candida auris and its initial ecological niche(s) are still largely unknown to date. 50 

The emergence of very different clades in different places of the world in a very short period of 51 

time is particularly intriguing. Some have suggested the global warming may have played a role in 52 

the selection of this organism (10,11). It is then assumed that spreading may have been ensured 53 
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thanks to animals with high body temperature, e.g. birds, that would have been responsible for 54 

distributing the fungus into urban areas where it could subsequently infect humans (10).  55 

Soon after the species was first described from an isolate collected from the external ear canal of a 56 

Japanese patient in 2009 (1), several clusters of cases were reported from India in 2009-11 (n=12 57 

patients) and 2010-14 (n=90) (12,13). However, it was a posteriori shown that C. auris had been 58 

introduced in some countries, notably France, before the original description of the species (14). 59 

Similar conclusions arose from Asia, where retrospective analysis of stored strains have detected 60 

the presence of C. auris before 2009 in South Korea (15,16). So far, Portugal, Ireland Republic, 61 

and Scandinavian countries (except Norway) are the only western European nations having not 62 

declared any case (17,18). 63 

It clearly appears that C. auris has a noticeable propensity to generate outbreaks. Some of the 64 

largest ones are summarized in Table 1. However outbreak spreading is not systematic as shown 65 

with a single case of colonization reported in France (Tours) in 2020, in a Lebanese patient who 66 

visited Iran and India before arriving in Europe (9). To date, the United States of America has been 67 

the country with the highest number of cases declared: 1,157 cases of proven or probable infection 68 

notified to the Center for Diseases Control (CDC) and more than 3,043 cases of colonization were 69 

reported (https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html). However, it is 70 

noteworthy that the incidence of C. auris infection in the US is actually greatly heterogeneous 71 

depending on the geographic areas: more than 285, 242 and 245 deep-seated infections have been 72 

reported in the state of New York, Illinois and California, respectively (19,20), while some 73 

neighbor states, such as Vermont, Wisconsin or Oregon, are free of C. auris detection to date. A 4-74 

cases cluster has also been reported from Canada (Greater Vancouver area) in 2018 (21). More 75 

recently, several South American countries have reported C. auris outbreaks for the first time in 76 

the context of COVID-19 pandemic (22). Similarly, in India, C. auris was responsible for 60% 77 
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cases of candidemia in a single COVID-19 ward (23). Considering the length of stay of such 78 

infected patients in ICU, the viral infection may represent an indirect predisposing factor for the 79 

(re)emergence of C. auris (9,22,23). 80 

In the more advanced countries, after the occurrence of large outbreaks, cases became more 81 

sporadic and C. auris only represent a minority of candidiasis cases, sometimes grouped in small 82 

clusters (4,24). In contrast, in some low-income countries such as South Africa, C. auris may 83 

represent as much as 14% of the causative species for candidemia (25) and has become the fifth 84 

most common cause of fungal bloodstream infection in children (26).  85 

Thanks to whole genome sequencing (WGS) population genetic studies revealed that C. auris 86 

species is split into four major clades (27). Genetic distribution follows the geographic origin of 87 

the strains with clade I, so-called the South Asian clade, made of strains of Indo-Pakistani origin, 88 

clade II, referred to as the East clade, made of Korean and Japanese strains, clade III is the South 89 

African clade, and clade IV referenced as the South American clade composed of Colombian and 90 

Venezuelan strains. In the USA, the clade I is largely predominant, except in Illinois and Indiana 91 

where clades III and IV are the most prevalent (19), suggesting different timing for the introduction 92 

of those strains. In Europe, most C. auris isolates belong to the clade I (7), although the strains of 93 

the Valencia hospital (Spain) were slightly genotypically-distinct from all those previously 94 

reported (24). Noteworthy, a strain of the clade II was also found in Austria (28). In 2019, some 95 

Iranian authors suggested the existence of a potential fifth clade, separated from the other clades 96 

by >200,000 single-nucleotide polymorphisms (SNP), in a patient who had never traveled outside 97 

the country (29).  98 

 99 

Virulence: is something different from other Candida species? 100 
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Virulence of C. auris is more and more investigated using a wide variety of models, either in vitro 101 

(30), in vivo - mouse (31,32), or invertebrate nematodes like Caenorhabditis elegans (33,34), or 102 

the wax moth Galleria mellonella (34–36) -, or ex vivo – oral (31) and skin models (37). As 103 

commonly seen with opportunistic fungal pathogens, results greatly vary according to the model, 104 

but some results also support difference in virulence according to the tested strains.  105 

By studying more than 100 C. auris isolates , Carvajal et al. looking at the mortality at day-5 post 106 

infection, in a G. mellonella model, were able distinguish between a highly pathogenic population 107 

(35.5% of the isolates) and a moderately pathogenic one  (36). In a mouse model undergoing 108 

cortisone acetate-induced immunosuppression, Abe et al. reported that the capability of 109 

colonization and dissemination from gastro-intestinal tracts was higher for four strains isolated 110 

from pathogenic condition (bloodstream infections) than for two non-invasive strains (isolated 111 

from chronic otitis media) (32). The virulence of C. auris was also compared to other Candida 112 

species. Using the G. mellonella model, Romera et al. concluded on a higher pathogenicity of C. 113 

albicans clinical strains, when considering the larva death rate as primary outcome (35). However, 114 

other authors observed that the pathogenicity pattern of a C. albicans reference strain (SC5314) 115 

was somewhat comparable to that of 38% of their 107 C. auris isolates (36).  116 

Understanding how C. auris invade the epithelial layer, while it does not form hyphae, remains a 117 

challenge. Indeed, Ben-Ami et al. reported considerable virulence of C. auris in mice, more than 118 

what could be expected for a Candida species that produces no – or only rudimentary, after 119 

experimental passages through mammalian hosts (38) – hyphae. Depending on isolates from 120 

certain clades, the formation of large yeast cell aggregating in infected tissue, a phenomenon also 121 

found in Galleria larvae infected (39,40) and in a model of neutropenic mice, may play a role in 122 

the virulence (41). Actually, the capacity to form aggregates, referred to as the aggregative 123 
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phenotype, is a unique pathogenic feature displayed by some isolates of C. auris (30). Recent 124 

results suggested that the non-aggregative phenotype of C. auris isolates may exhibit some level 125 

of immune evasion (30). For instance, Hernando-Ortiz et al. recently concluded that the 126 

pathogenicity of 11 non-aggregative clinical isolates was higher than that of an aggregative strain 127 

in a nematode and the wax moth host models. (34). In contrast, Carvajal et al. observed no 128 

significant difference in G. mellonella mortality induced by either aggregative (n=35) or non-129 

aggregative C. auris strains (n=72) (36), which was consistent with some previous findings (35).  130 

Recent data also showed the ability of C. auris to adhere and to form biofilm. Highlighting the 131 

importance of the model, Vila et al showed that C. auris avidly adhere to an ex-vivo oral tissue 132 

(tongue epithelium), but failed in vivo to colonize the oral cavity (31). Through in vitro tests, Vila 133 

et al. observed that C. auris formed less biofilm than C. albicans, despite some substantial 134 

variability for the former (31). Using scanning electron microscopy, they also demonstrated the 135 

formation in 72 hours of biofilm within catheter lumens implanted subcutaneously in mouse, C. 136 

auris and C. albicans producing comparable levels of biofilm. The influence of the environmental 137 

conditions was also highlighted by Horton et al. who compared biofilm produced by C. auris and 138 

C. albicans strains in a synthetic sweat medium mimicking axillary skin conditions and in RPMI 139 

culture medium (37). Interestingly, C. auris produced a significantly denser biofilm than 140 

C. albicans in the mimicked skin medium, whereas the almost contrary was observed in RPMI 141 

medium (32,33). Using an immunosuppressed mouse model, Abe et al. found that invasive strains 142 

of C. auris form more biofilm than non-invasive ones (32). They correlated this difference to the 143 

higher capability of the formers to colonize the gastrointestinal tract (32). Hernando-Ortiz et al. 144 

also suggested that the biofilm formation could be related to the aggregative phenotype, as the 145 

strains exhibiting this trait produced more biofilm than the non-aggregative ones (34), a result 146 



8 
 

inconsistent with others previously published (42). Recent analyses suggested that, irrespective of 147 

the ability to produce biofilm, the transcriptome of aggregative cells was significantly different 148 

from that of non-aggregative ones during the biofilm formation (30). Of note, these data have to be 149 

interpreted with caution, because of the low number of strains that were studied and the great 150 

variability of their capacity to form biofilm independently of their aggregative/non aggregative 151 

phenotype.  152 

Despite a dramatic increase in our knowledge in the biology of C. auris, altogether, these results 153 

highlight how parceled is our understanding of the pathogenicity that is obviously a multifactorial 154 

phenomenon. Further studies comparing large groups of strains belonging to the different clades in 155 

different models are thus warranted. 156 

 157 

Diagnosis: steps to reach a reliable identification 158 

Identification of C. auris is crucial to initiate adequate treatment and contain hospital outbreaks. 159 

As a member of the Candida/Clavispora clade, C. auris does not have different requirements for 160 

growth from other Candida species (43). Colonies can be easily obtained after 24 hours incubation 161 

at 30-35°C on conventional media, such as Sabouraud dextrose agar or malt extract agar. Of note, 162 

C. auris is tolerant to temperature up to 42°C (9), which is not the case of many other Candida 163 

species. On the conventional CHROMagar Candida® chromogenic media (Becton-Dickinson, 164 

Rungis, France), C. auris colonies appear white, pink, or purple (9). On the CAN2® plates 165 

(bioMérieux, Capronne, France), colonies are initially whitish, and then display a light reddish-166 

pink color, very close to that of Candida kefyr or Candida tropicalis (9). Two specific chromogenic 167 

media, so called CHROMagar Candida Plus® (Becton-Dickinson, Rungis, France)  and HiCrome 168 

C. auris MDR® selective agar (HiMedia, Mumbai, India), have been recently set-up to isolate and 169 
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presumptively identify C. auris with an almost 100% sensitivity and specificity rates after 36-48 h 170 

of incubation (44–46). C. auris can also grow in blood culture vial, in aerobic flasks or using Fungal 171 

IC/F® bottles (Becton-Dickinson, Rungis, France) (personal data). At direct examination, the 172 

yeasts appear ovoid and budding without pseudo-hyphae.  173 

When using auxanogram, C. auris can be recognized through its capability of assimilation of N-174 

acetylglucosamine, succinic acid and gluconic acid. However, the species is not referenced in most 175 

of the databases of former handbooks, thus leading to false negative results or misidentifications 176 

(47), notably with strains of the Candida haemulonii clade (13). 177 

Nowadays, definitive identification of C. auris species can be achieved by the mean of mass 178 

spectrometry MALDI-TOF combined with an up-to-date spectra database. This is the case for the 179 

Bruker Biotyper® (Palaiseau, France) and the bioMérieux Vitek® systems (Capronne, France), as 180 

well as the independent user-made MSI® library (Paris, France).  181 

Several molecular tools have also been developed for the identification and/or detection of C. auris. 182 

Once colonies are isolated onto agar plates, they can be confidently identified by sequencing either 183 

the D1/D2 region of the large subunit (LSU) or the internal transcribed spacer (ITS) of the 184 

ribosomal DNA. Interestingly, combining the analysis of these tow loci allows the assignation of 185 

strains to one of the four major clades without recourse to WGS approaches (48). Otherwise, a few 186 

molecular protocols have been proposed to detect C. auris directly from swabs (49,50), allowing 187 

thus rapid screening of asymptomatic patients. Recently, two commercial kits have been evaluated 188 

with noticeable differences in terms of sensitivity and specificity (51).  189 

 190 

Therapeutic options: multi-resistance and current limits  191 
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Almost all C. auris strains exhibit in vitro resistance to fluconazole, with strains from certain clades 192 

also showing elevated minimum inhibitory concentrations (MICs) to the other azole antifungal 193 

agents higher than those of other Candida species, especially C. albicans and even C. glabrata (52) 194 

(53). Some resistance profiles were found to be clade-dependant (54): for example, fluconazole 195 

and voriconazole exhibited significantly higher MICs against isolates of the South African lineage 196 

than against isolates of the Southern Asian lineage. In addition, lesser susceptibility to amphotericin 197 

B and to echinocandins has been reported in some isolates, and rapid emergence of multidrug 198 

resistance (defined by resistance against at least two antifungal classes) has been documented to 199 

occur during antifungal treatment. Clinical breakpoints were recently proposed for echinocandins 200 

with values set at 2, 4, and 4 µg/mL, for caspofungin, anidulafungin, and micafungin, respectively, 201 

at 2 for amphotericin B and at 32 for fluconazole (no data are available for other azole drugs) (55). 202 

Using these values, Chowdary et al. showed that 90% of 350 Indian strains were resistant to 203 

fluconazole, 8% to amphotericin B, and 2% to echinocandins, with 25% of the strains exhibiting a 204 

multidrug profile. (56). These data were used to propose therapeutic recommendations, suggesting 205 

an echinocandin as first line therapy in the case of proven or probable diagnosis of C. auris invasive 206 

infection (57). 207 

The investigation of molecular mechanisms underlying the phenotype of azole resistance in C. 208 

auris first allowed the demonstration of homologues of genes involved directly or not in the 209 

ergosterol biosynthesis pathway in C. albicans. A limited number of non-synonymous point 210 

mutations (F126, Y132, K143 and F444 (3)) were found the ERG11 homologue that correlates with 211 

an increase in azoles MICs (56,58). Moreover, two homologues of the C. albicans TAC1 gene, so 212 

called TAC1a and TAC1b, have also been described. In C. albicans, Tac1 is a transcription factor 213 

regulating the ABC transporters Cdr1 and Cdr2, two efflux pumps, which overexpression due to 214 

Commenté [CA1]: Ici il y a un probleme avec les ref…. 

Commenté [CH2]: Manque la ref 54 non ? 
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Tac1 gain of function mutation is responsible for azoles resistance. However, only TAC1b 215 

displayed a (moderate) role in azole susceptibility of C. auris (59–61): Li et al. and Ryback et al. 216 

specified the role of two gain-of-function mutations in TAC1b, at position S611P and A640V, 217 

respectively (59,61). Thus, some authors clearly pointed out the importance of the Cdr1 protein in 218 

the azole resistance of C. auris (61,62), whereas others evidenced a Cdr1-independent pathway of 219 

action for Tac1b, which remains to be elucidated (59–61). Mrr1 is another transcription factor that 220 

regulates the expression of the Major facilitator transporter Mdr1 which overexpression due to 221 

Mrr1 gain of function mutation is responsible for fluconazole resistance.. However, up-to-now, no 222 

clear role of theRecent data suggest a role of C. auris homologue of MRR1, has been 223 

demonstratedin azole susceptibility. Indeed, deletion of MRR1a in clade III strains  (60), and N647T mutation 224 

(Dr F. Lamoth, personal communication) were shown to be responsible for azoles decrease 225 

susceptibility. Regarding the resistance to echinocandins, the role of the S639F mutation in FKS1 226 

hot-spot 1 has been highlighted (56). Some strains were shown to exhibit an eagle effect in presence 227 

of high concentration of caspofungin in vitro, but with no apparent impact on the in vivo efficacy 228 

at human dosage in a murine model of infection (63). 229 

A very recent in vitro study demonstrated by WGS the high potential of C. auris to rapidly adapt 230 

to drug pressure whatever the antifungal drug (64). The elevation of MIC resulted from acquisition 231 

of different point mutations in genes already known to be associated with antifungal resistance 232 

(64,65), but also by duplicating part of the genome carrying those genes to further increase MIC, 233 

as previously shown in C. albicans (66,67). This was further supported by karyotyping experiments 234 

described by Bravo Ruiz et al. (68) who showed how extreme the genomic plasticity of C. auris is 235 

when the yeast is confronted to a large range of stresses. It is thus crucial to explore in the near 236 

future innovative therapeutic options. New triazoles or tetrazoles (VT-1598) appeared to be 237 

Commenté [DIH4]: Je pense que tu peux écrire une phrase à ce 
sujet, Alix. Le temps que l’article soit revu et publié, peut-être que le 
tien sera accepté avant (sinon, on mettra unpublished data) 
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efficient on azole-resistant C. auris strains (69). The new echinocandin, referred as rezafungin, was 238 

also found to be as or more active than other echinocandin drugs both in vitro (70–72) and in mouse 239 

models (73,74). More interestingly, new antifungals currently under development, such as 240 

ibrexafungrep, the first drug of the triterpenoid class, and the fosmanogepix could be available 241 

soon. The latter, first member of a new therapeutic class targetting the Gwt1 protein (involved in 242 

GPI anchor biosynthesis pathway), exhibits interesting results, including on strains that are multi-243 

resistant to current treatments (69,75). 244 

Prevention: which prophylactic means in healthcare facilities? 245 

While modes of acquisition remain uncertain, the ability to form biofilms and to acquire antifungal 246 

resistance points out the need to rapidly implement appropriate prevention measures to limit the 247 

spread of C. auris in healthcare facilities. In a recent study carried out in a Chicago hospital, 31 248 

colonized residents were found to have high C. auris burden on their skin, estimated at 1.22 x 105 249 

cells/swabbing by culture. This was positively correlated with contamination of their surrounding 250 

environment with the demonstration of C. auris on all handrails of beds, on doorknobs and 251 

windowsills (76). Therefore, every patient suspected to host C. auris either because of a history of 252 

contact-case or a recent stay in an endemic country should be systematically screened. Serial 253 

sampling sessions have to be repeated weekly until hospital discharge (77). All cases of C. auris 254 

colonization or infection should be clearly identified and notified to a multi-disciplinary staff 255 

specialized in hygiene issues and nosocomial infection (4,78). Deployment of subsequent 256 

containment measures should expectedly lead to a gradual decline in the incidence of positive cases 257 

and prevent further emergence of cluster. Thus, strict isolation of concerned subjects, similar to 258 

that set up for patients harboring multi-drug resistant bacteria, is highly recommended. 259 
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It is considered that C. auris can be transmitted either by direct or indirect contact (79). For instance 260 

contaminated reusable skin/surface temperature probes have been clearly demonstrated the source 261 

of infection in an English hospital outbreak (80). It is thus crucial to recall healthcare givers the 262 

importance to thoroughly wash their hands when moving from one patient to another. Gloves, lab-263 

coat must also be changed, and all and medical instruments, like stethoscopes, ultrasound devices, 264 

or thermometers, carefully cleaned. For cleaning inert material, quaternary ammonium 265 

disinfectants should be avoided because they have been shown to be ineffective against C. auris 266 

(81). In contrast, sodium hypochlorite, peracetic acid, and hydrogen peroxide have been 267 

experimentally proven to reduce the fungal load as measured by CFU counting by 5.0 to 6.0 Log10 268 

(81,82). Disposable wipes soaked with sodium hypochlorite must be preferred for cleaning 269 

surfaces. Recent reports suggested chlorhexidine- or iodine-povidone-based products to be greatly 270 

efficient to reducing the fungal burden on the skin (83–85). Those skin antiseptics should be used 271 

for cleaning localized wound or to reduce the cutaneous burden before surgery for example. 272 

National guidelines regarding prevention meseasuresmeasures and the optimal care of patients 273 

infected or colonized with C. auris have been recently published (78,86).  274 

Beside the human impact, controlling C. auris in healthcare facilities leads to a huge overcosts. In 275 

a tertiary care center in London, the cost for implementing specific measures were assessed at £1 276 

million (1.332 M€, 1.176 M$), followed by £58,000/month during the subsequent year (87).  277 

 278 

Conclusion 279 

In less than 15 years, C. auris became of major fungal pathogen, both because of its capability to 280 

generate large outbreaks and the possible therapeutic dead-end it represents. Critical advances in 281 
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the knowledge of this species have been obtained, but mycologists have to keep staying vigilant 282 

for reliably diagnosing the cases during possible advent of outbreaks in their healthcare facilities. 283 
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Figure legends 724 

Figure 1: Number of publications per year retrieved about “Candida auris” in the PubMed 725 

database as of August 10th 2021 (including original articles and reviews). 726 
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 727 

Figure 2: Countries from which Candida auris cases have been reported, as of February 15, 728 

2021 729 

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html#historical. 730 

 731 

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html#historical
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Table 1 : Listing of the major outbreaks of Candida auris cases reported so far. Were only considered the available articles written 732 

in English and those that mentioned original description of ≥2 clustered cases. 733 

Reference Country (city) Period 

Number of 

cases of 

colonization or 

infection (Nb of 

centers) 

Genotypic 

analysis (clade) 

Arensman et al. 2020 (88) USA (Chicago, IL) 
Jan. 2008 – 

April 2019 
28 (8 centers) NA 

Chowdhari et al. 2013 (12) India (Dehli) 2009-2011 12 (2 centers) AFLP: 1 clone (I) 

Kathuria et al. 2015 (13) India (Dehli) 2010-2014 90 (5 centers) NA 

Adam et al. 2019 (89) Kenya (Nairobi) 
Sept. 2010 – 

Dec. 2016 
77* (1 center) PFGE: 1 clone 

Chakrabarti et al. 2020 (90) India (multiple sites) 
April 2011 – 

Sept.  2012 
22 (27 centers) NA 

Chakrabarti et al. 2015 (90) India (multiple places) 
April 2011 – 

Sept. 2012 
48* (27 centers) NA 

Rudramurthy et al. 2017 (91) India (multiple places) 
April 2011 – 

Sept. 2012 
74 (19 centers) 

AFLP: 88% with 

similar profiles (I) 

Chowdhary et al. 2014 (92) India (Kochi) 
Nov. 2011 - 

June 2013 
7 (1 center) AFLP: 1 clone (I) 

Sarma et al. 2013 India (Gurgaon) 2011 2 (1 center) NA 

Calvo et al. 2016 (93) Venezuela (Maracaibo) 
March 2012 - 

July 2013 
18 (1 center) AFLP: 1 clone (IV) 
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Magobo et al. 2014 (94) 
Republic of South 

Africa (Johannesburg) 

Oct. 2012 – 

Oct. 2013 
4 (1 center) NA 

Govender et al. (95) 
Republic of South 

Africa (multiple places) 

Oct. 2012 – 

Nov. 2016 

1692 (≥94 

centers) 

including 1087 

cases in 20 

centers 

NA 

Chatterjee et al. 2015 (96) India (Bengaluru) 2012-14 34* (1 center) PFGE: 1 clone 

Adams et al. 2018 (20), Ostrowsky et 

al. 2020 (97) and Zhu et al. 2020 (98) 
USA (New York, NY) 

May 2013 - 

April 2017 
112 (19 centers) WGS: 2 clones (I) 

Chow et al. 2018 (19) USA (multiple places) 
May 2013 – 

Aug. 2017 

133 (not 

specified) 
WGS (mostly I)   

Parra-Giraldo et al. 2015 (47) 
Colombia (Bogotá) 

Nov. 2013 – 

Feb. 2015 
3 (1 center) 

MALDI-TOF: 2 

clones 

Borman et al. 2016 (39) 
United Kingdom 

(multiple places) 
2013 12* (6 centers) NA 

Lockhart et al. 2017 (3) Pakistan (not specified) 2014-2015 18 (2 centers) WGS: 1 clone (I) 

Ben-Ami et al. 2017 (99) Israel (Tel Aviv) 
May 2014 - 

April 2015 
6 (2 centers) NA 

Khan et al. 2018 (100)  Kuweit (not specified) 
May 2014 – 

Sept. 2017 

56 (not 

specified) 

PCR fingerprinting  

1 clone (6 strains 

only) 

Berrio et al. 2020 (101) 
Colombia (Barranquilla 

and Cartagena) 

July 2014 – 

Oct. 
34 (2 centers) 

Not specified: 2 

clones 

Sayeed et al. 2019 and 2020 

(102,103) 
Pakistan (Karachi) 

Sept. 2014 – 

March 2017 
92 (1 center) WGS: 1 clone (I) 
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Ahmad et al. 2020 (104) 
Kuwait (multiple 

places) 
2014-2018 126 (8 centers) ITS sequencing (I) 

Caceres et al. 2020 (105) 
Colombia (multiple 

places) 

Jan. 2015 – 

Sept. 2016 
40 (4 centers) NA 

Eyre et al. 2019 (80) 
United Kingdom 

(Oxford) 

Feb. 2015 - 

August 2017 
60 (1 center)  WGS (mostly III) 

Farooqi et al. 2020 (106) Pakistan (Karachi) 
April 2015 – 

Jan. 2016 
30 (1 center) NA 

Escandón et al. 2018  (107,108) 
Colombia (multiple 

places) 

Feb. 2015 - July 

2016 
45* (6 centers) NA 

Sept. 2016 - 

May 2017 
78* (24 centers) NA 

Schelenz et al. 2016 (4) 
United Kingdom 

(London) 

April 2015 - 

July 2016 
50 (1 center) AFLP: 1 clone 

Ruiz-Gaitán et al. 2017-19 (24,109–

111) 
Spain (Valencia) 

April 2016 - 

January 2017 
140 (1 center) AFLP: 1 clone (I) 

Shastri et al. 2020 (112)  India (Dehli) 
April 2016 – 

Sept. 2017 
42 (1 center) 

AFLP and ITS/28S 

rDNA sequencing: 

1 clone (I) 

Vallabhaneni et al. 2017 (113) USA (multiple places) 
May 2016 – 

Aug. 2016 
7 (6 centers) NA 

Belkin et al. 2018 (114) Israel (Tel Hashomer) 
July 2016 – Jan. 

2017  
2 (1 center) WGS (III) 

Taori et al. 2019 (87) 
United Kingdom 

(London) 

July 2016 – 

Feb. 2017 
34 (1 center) WGS (I)   

Tian et al. 2021 (115) China (Shenyang) 
April 2016 – 

March 2018 
93* (1 center) WGS (III) 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Escand%C3%B3n+P&cauthor_id=29788045
https://www.tandfonline.com/author/Ruiz-Gait%C3%A1n%2C+Alba
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Pacilli et al. 2020 (116) USA (Chicago, IL) 
Aug. 2016 – 

Dec. 2018 
490 (4 centers) NA 

Mohsin et al. 2017 (117) Oman (Muscat) 
Aug. 2016 – 

Jan. 2017 
2 (1 center) AFLP: 2 clones 

Al-Siyabi et al. 2017 (118)  Oman (Muscat) 
Dec. 2016 – 

Feb. 2017 
5 (1 center) NA 

Park et al. 2019 (119) USA (New York, NY) 2016-2018 9 (1 center) NA 

Morales-López et al. 2017 (120) 
Colombia (multiple 

places) 

Feb. 2017 – 

July 2017 
17 (6 centers) NA 

Theodoropoulos et al. 2020 (121) USA (Worcester, MA) 
May 2017 – 

Oct. 2017 
5 (1 center) WGS: 1 clone (I) 

Abdalhamid et al. 2018 (122) and 

Almaghrabi et al. 2020 (123)   

Kingdom of Saudi 

Arabia (Dammam and 

Riyadh)  

June 2017 – 

Oct. 2018 
10 (2 center) WGS: 2 clones (I) 

Sathyapalan et al. 2021 (124) India (Kochi) 
Sept. 2017 - 

2019 
15 (1 center) NA 

Barantsevith et al. 2019 (125,126) 

Russian federation 

(Moskow and Siberian 

region)  

Oct. 2017 – 

Dec. 2017 

49 (1 center) and 

38 (2 centers) 

ITS and D1/D2 

sequencing (I) 

Bajpai et al. 2020 (127) India (Dehli) NA 5 (1 center) NA 

Mulet Bayona et al. 2020 (128,129) Spain (Valencia) 
Nov. 2017 – 

May 2020 
334 (1 center) Not specified (III) 

Alobaid et al. 2021 (130) 
Kuweit (multiple 

places) 

Jan. 2018 – 

Dec. 2018 
33 (12 centers) NA 
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Alfouzan et al. 2020 (131) Kuweit (Farwaniya) 
Jan. 2018 - 

June 2019 
71 (1 center) 

ITS sequencing 

and microsatellite 

typing (I) 

Alshamrani et al. 2020 (132)   
Kingdom of Saudi 

Arabia (Riyadh) 

March 2018 – 

June 2019 
23 (1 center) NA 

Salah et al. 2021 (133) Qatar (Doha) 
April 2018 – 

Nov. 2020 
40 (2 centers) WGS: 2 clones (I) 

Eckbo et al. (21) 
Canada (Vancouver, 

BC) 
Spring 2018 4 (1 center) WGS: 1 clone (I) 

Lane et al. 2020 (134) Australia (Melbourne) 
July 2018 – 

Dec. 2018 
4 (1 center) Not specified (I) 

Sexton et al. 2021 (76) USA (Chicago) 
December 

2018 
31 (1 center) NA 

O’Connor et al. 2019 (135) 
United Kingdom 

(London) 

Dec. 2018 – 

Jan. 2019 
4 (1 center) NA 

Umamaheshwari et al. 2021 (5) India (Karnataka) 
Dec. 2018–

March 2019 
8 (1 center) 

ITS and 26S 

sequencing (I) 

Di Pilato et al. (136) Italy (Genoa) 
July 2019 – 

May 2020 
10 (1 center) 

WGS: 1 clone for 

9 isolates (I) 

Price et al. 2021 (137) 
USA (Los Angeles, 

CA) 

Sept. 2019–

Sept. 2020 
6 (2 centers) 

WGS: 3 clones 

(mostly III) 

Alvarado-Socarras et al. 2021 (138)  
Colombia 

(Bucaramanga) 
NA 8 (1 center) NA 

https://pubmed.ncbi.nlm.nih.gov/32880247/#affiliation-1
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Tse et al. 2021 (139) Hong Kong 2019 15 (1 center) WGS: 1 clone (I) 

     

Patterson et al. 2020 (140) 
United Kingdom 

(London) 

April 2020 – 

Sept. 2020 
7 (2 centers) MALDI-TOF (I) 

Moin et al. 2021 (141) Pakistan (Karachi) 
April 2020 – 

Dec. 2020 
6 (1 center) NA 

Chowdhary et al. 2020 (23) India (Dehli) 
April–July 

2020 
10 (1 center) NA 

Piatti G et al. 2021 Italy (Genoa) 
June 2020 – 

Jan. 2021 
77 (1 center) NA 

Prestel et al. 2021 (142) USA (FL) 
July 2020 – 

Aug. 2020 
6 (1 center) NA 

Hanson et al. 2021 (143) USA (Miami, FL) Summer 2020 15 (1 center) WGS: 1 clone (III) 

Allaw et al. 2021 (144) Lebanon (Beirut) 
Oct. 2020 – 

Dec. 2020 
14 (1 center) NA 

Nobrega de Almedia et al. 2021 

(145) 

Brazil (Savaldor de 

Bahia) 

December 

2020 
7 (1 center) 

Microsatellite 

typing (I) 

Bacchani et al. 2021 (146) India (Jaipur) NA 24 (1 center) NA 

Lyman et al. 2021 (147) 
USA (TX and 

Washington, DC) 

Jan. 2021 – 

April 2021 

22 (not 

specified) 
NA 



33 
 

Abbreviations: *number of isolates (not specified whether each one corresponded to a distinct patient); AFLP amplified fragment length 734 

polymorphism; BC British Columbia; CA California; DC district of Columbia; Dec. December; Feb. February; FL Florida; IL Illinois; 735 

Jan. January; MA Massachusetts; MALDI-TOF matrix-associated LASER desorption ionization – time of flight; NA not available; Oct. 736 

October; PFGE pulsed-filed gel electrophoresis; Sept. September; Nov. November; NY New York; TX Texas; USA United States of 737 

America; WGS whole genome sequencing 738 


