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The inviscid limit for the 2d Navier-Stokes equations in bounded

domains

Claude Bardos∗ Trinh T. Nguyen† Toan T. Nguyen‡ Edriss S. Titi§

November 30, 2021

In memory of Robert T. Glassey

Abstract

We prove the inviscid limit for the incompressible Navier-Stokes equations for data that are
analytic only near the boundary in a general two-dimensional bounded domain. Our proof is
direct, using the vorticity formulation with a nonlocal boundary condition, the explicit semi-
group of the linear Stokes problem near the flatten boundary, and the standard wellposedness
theory of Navier-Stokes equations in Sobolev spaces away from the boundary.
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1 Introduction

We are interested in the inviscid limit of solutions to the incompressible Navier-Stokes equations
(NSE)

∂tu+ u · ∇u+∇p = ν∆u,

∇ · u = 0,
(1.1)

in a bounded domain Ω ⊂ R
2, with initial data u|t=0

= u0(x) and with the no-slip boundary
condition

u|∂Ω = 0. (1.2)

In the inviscid limit: ν → 0, one would intuitively expect that the solutions uν , of problem (1.1)-
(1.2), converge to the corresponding solutions of the Euler equations of ideal incompressible fluids

∂tu+ u · ∇u+∇p = 0, in Ω,

∇ · u = 0, in Ω,

u · n = 0, on ∂Ω,

(1.3)

where n denotes the unit normal vector to the boundary pointing inward. However, the inviscid
limit for problem (1.1)-(1.2) is strenuous and remains open due to the appearance of boundary
layers and strong shear near the boundary that triggers the shedding of unbounded vorticity by
the boundary. In their celebrated work [22], Caflisch and Sammartino establish the boundary layer
expansion and the inviscid limit for analytic data on the half-plane. Maekawa [20] proved a similar
result that allows Sobolev data whose vorticity is supported away from the boundary. The result
and its proof was recently simplified [21] and extended in [19, 18], which allow data that are only
analytic near the boundary.

In this paper, we prove the inviscid limit of (1.1)-(1.2) for data that are only analytic near the
boundary of a general bounded analytic domain in R

2, thus further extending [22, 20, 21, 19] from
the case of half-plane to bounded domains with analytic boundaries. Precisely, we assume that
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• Ω is a simply-connected bounded domain in R
2 whose boundary ∂Ω is an analytic curve,

defined by an analytic map: θ ∈ T = R/(ZL) 7→ x(θ) = (x1(θ), x2(θ)) ∈ ∂Ω .

The analyticity of the boundary naturally extends to an analytic map which maps the near-
boundary part of the domain {x ∈ Ω : d(x, ∂Ω) < δ} to the case of half-plane (z, θ) ∈ (0, δ) × T,
where z is the distance function from the boundary. Here, for sake of presentation, we have chosen
to consider the case of simply-connected domain Ω. The results of this paper apply to the general
setting of multi-connected bounded domains whose boundaries consist of closed analytic curves,
i.e., including domains with holes. Our analysis near each of the boundaries is close to that on the
half-plane. A crucial assumption, however, lies on the analyticity of initial data near the boundary,
which appears to be sharp.

The work is dedicated to the memory of Professor Robert T. Glassey, who was a great mathe-
matician, a close friend, and an inspiring teacher.

1.1 Boundary vorticity formulation

We shall work with the boundary vorticity formulation [1, 20, 21]. Precisely, let u = (u1, u2) be
the velocity vector field and ω = ∇⊥ · u = ∂x2u1 − ∂x1u2 be the corresponding vorticity. Then, the
vorticity equation reads

∂tω + u · ∇ω = ν∆ω,

u = ∇⊥∆−1ω, (the Biot-Savart law).
(1.4)

Here and throughout the paper, ∆−1 denotes the inverse of the Laplacian operator in Ω subject to
the zero Dirichlet boundary condition. Evidently, this, together with the Biot-Savart law, imply the
impermeability boundary condition u ·n = 0 on ∂Ω. To ensure the full no-slip boundary condition,
i.e., that u · τ = 0 on the boundary ∂Ω, where τ in the unit tangent vector to the boundary, we
first require that the initial data satisfy the no-slip boundary condition (1.2), and then we impose
in addition that ∂tu · τ = 0 on the boundary, ∂Ω, for all positive time. This leads to the boundary
condition

0 = τ · ∂tu = τ · ∇⊥∆−1∂tω = ∂n[∆
−1(ν∆ω − u · ∇ω)] (1.5)

on the boundary. Introduce ω∗ to be the solution of the nonhomogeneous Dirichlet boundary-value
problem {

∆ω∗ = 0, in Ω

ω∗ = ω, on ∂Ω.
(1.6)

and define the Dirichlet-Neumann operator by

DNω = −∂nω
∗, on ∂Ω, (1.7)

where ω∗ solves (1.6). Observe that ∂n[∆
−1∆ω] = ∂n[∆

−1∆(ω − ω∗)] = (∂n + DN)ω. Thus, by
virtue of the boundary condition (1.5) the boundary condition on vorticity reads

ν(∂n +DN)ω|∂Ω = [∂n∆
−1(u · ∇ω)]|∂Ω , (1.8)
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together with the Biot-Savart law (1.4).
Throughout this paper, we shall deal with the Navier-Stokes solutions that solve (1.4)-(1.7),

or equivalently (1.4) and (1.8). Such a solution will be constructed via the Duhamel’s integral
representation, treating the nonlinearity as a source term. As we observed earlier the boundary
condition u · n = 0 on ∂Ω follows from the Biot-Savart law and the definition of ∆−1 with the zero
Dirichlet boundary condition.

1.2 Main results

Our main result reads as follows.

Theorem 1.1. Let u0 ∈ H5(Ω) be an initial data that vanishes on the boundary. We assume that
the initial vorticity ω0 is analytic near the boundary ∂Ω (see Section 3). Then, there is a positive
time T , independent of ν, so that the unique solution uν(t) to the Navier-Stokes problem (1.1)-(1.2),
for every ν > 0, with initial data u0, exists on [0, T ] and has vorticity ων = ∇⊥ · uν that remains
analytic near the boundary, and satisfies

lim
ν→0

√
ν‖ων‖L∞([0,T ]×∂Ω)) < ∞. (1.9)

Moreover, in the inviscid limit as ν → 0, uν converges strongly in L∞([0, T ];Lp(Ω)), for any
2 ≤ p < ∞, to the corresponding solution u of the Euler equations (1.3) with the same initial data
u0.

The fact that Euler solutions remain analytic near the boundary is a classical result [3, 17],
which is a direct consequence of the main theorem. The main difficulty in establishing the inviscid
limit is to control the vorticity on the boundary and derive uniform estimates such as (1.9), which
is the main contribution of this paper. The inviscid limit then follows easily. In fact, a much weaker
bound than (1.9) is sufficient to guarantee the convergence of solutions to the Navier-Stokes to a
corresponding solution of the Euler equations. Precisely, we have the following simple Kato’s type
theorem.

Theorem 1.2. Let T > 0 and u be a weak solution to the Euler equations (1.3) in [0, T ] × Ω
satisfying ‖∇u‖L∞([0,T ]×Ω) < ∞. Suppose that, for every ν > 0, uν are Leray weak solutions to the
Navier-Stokes problem (1.1)-(1.2) on [0, T ]× Ω, satisfying

sup
0<t<T

‖uν(t)‖2L2(Ω) + ν

∫ T

0
‖∇xuν(t)‖L2(Ω)dt ≤ C0, (1.10)

uniformly in ν → 0. Assume that the vorticity ων = ∇⊥ · uν satisfies

lim sup
ν→0

(
−
∫ T

0

∫

∂Ω
νων(t, σ)u(t, σ) · τ(σ)dσdt

)
= 0, (1.11)

then any uν, which is a weak−∗ limit in L∞([0, T ];L2(Ω)) of a subsequence uνj of the Leray weak
solutions, as νj → 0, satisfies the stability estimate:

‖uν(t)− u(t)‖2L2(Ω) ≤ e2t‖∇u‖L∞([0,T ]×Ω)‖uν(0)− u(0)‖2L2(Ω). (1.12)

In particular, if uν(0) → u(0) in L2(Ω), as ν → 0, then uν converges strongly to u in L∞([0, T ];L2(Ω)).
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Proof. An elementary manipulation (e.g., [4]) yields the following energy inequality

‖uν(t)− u(t)‖2L2(Ω) + ν

∫ t

0
‖∇uν(s)‖2L2(Ω)ds

≤ ‖uν(0)− u(0)‖2L2(Ω) + ν

∫ t

0
‖∇u(s)‖2L2(Ω)ds−

∫ t

0

∫

∂Ω
ν(∂nuν(s, σ)) · u(s, σ) dσds

+

∫ t

0

∫

Ω
|
(
(∇u+∇⊥u)(uν − u)

)
· (uν − u))|dxds

≤ ‖uν(0)− u(0)‖2L2(Ω) + ν

∫ t

0
‖∇u(s)‖2L2(Ω)ds−

∫ t

0

∫

∂Ω
νων(s, σ)(u(s, σ) · τ(σ)) dσds

+ 2‖∇u‖L∞([0,T ]×Ω)

∫ t

0
‖uν(s)− u(s)‖2L2(Ω) ds,

(1.13)

where in the third term in the right-hand side of the last inequality we used the fact that (∂nuν)·u =
ων(u · τ) on the boundary. Let uνj be a subsequence which converges weak−∗ in L∞([0, T ];L2(Ω)),
as νj → 0. We apply the above energy inequality to uνj and invoke Gronwall’s Lemma. Observe
that since the Leray weak solutions belong to C([0, T ];L2(Ω)) then ‖uν(0)‖2L2(Ω) ≤ C0 by virtue of

(1.10). Thanks to the Banach-Alaoglu Theorem and assumption (1.11) we conclude (1.12). The
last part of the theorem is an immediate consquence of (1.12).

1.3 Remarks

As mentioned in the introduction, our main results extend the previous works [22, 20, 21, 19] from
the case of the half-plane to bounded domains. The analyticity near the boundary is required to
control the unbounded vorticity in the inviscid limit. It may be possible to extend the present
analysis to include the propagation of boundary layers and the classical Prandtl’s boundary layer
expansions, whose validity near general boundary layers again requires analyticity.

The first such a result was due to the celebrated work by Asano [2] and Sammartino-Caflisch
[22], where the boundary layer expansion was established for data on the half-plane that are analytic
in both horizontal and vertical variables. When constructing solutions to the Prandtl equation,
the analyticity in the vertical variable can be dropped [15]. It is not known however if such an
assumption can be dropped at the level of Navier-Stokes equations. Maekawa [20] established
the Prandtl’s expansion for data whose vorticity is compactly supported away from the boundary,
while recently Kukavica, Nguyen, Vicol and Wang [18] extended the result to include data that are
analytic only near the boundary, building upon the vorticity formulation revived by Maekawa [20],
the direct proof of the inviscid limit for analytic data developed in Nguyen and Nguyen [21], and
the Sobolev-analytic norm developed in Kukavica, Vicol and Wang [19]. All these aforementioned
works are on the half-plane. We mention a recent result [23], which to the best of our knowledge
was the first to establish a Prandtl asymptotic expansion in a curved domain.

When background boundary layers have no inflection point, the analyticity can be relaxed to
include perturbations in Gevrey-32 spaces [7, 8], which is sharp in view of the Kelvin-Helmholtz type
of instability of generic boundary layers and shear flows [10, 11]. When Sobolev data is allowed,
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the Prandtl’s asymptotic expansion is false due to counter-examples given in [9, 12, 13], where the
failure of the convergence from Navier-Stokes to Euler solutions, plus a Prandtl corrector, is due
to an emergence of viscous boundary sublayers that reach to order one, independent of viscosity,
in L∞ norm for velocity [12].

2 Navier-Stokes equations near the boundary

2.1 Global geodesic coordinates

Following a construction done in [5] we introduce a well adapted representation of ∂Ω ,

θ ∈ T = R/(ZL) 7→ x(θ) = (x1(θ), x2(θ)) ∈ ∂Ω

which, being global, preserves the analyticity hypothesis. Let ~τ(θ) and ~n(θ) be the unit tangent
and interior normal vectors at the boundary:

~τ(θ) = ~τ(x(θ) = (x′1(θ), x
′
2(θ)), and ~n(θ) = ~n(x(θ)) = (−x′2(θ), x

′
1(θ))

with |x′(θ)|2 = (x′1(θ))
2 + (x′1(θ))

2 = 1.
(2.1)

Let d(x, ∂Ω) denotes the distance of any point x ∈ R
2 to ∂Ω . Then we have the following classical

result.

Proposition 2.1. There exists a δ > 0 such that for each x on the open set

Vδ = {x ∈ R
2 with d(x, ∂Ω) < δ} (2.2)

there is a unique point x̂(θ) ∈ ∂Ω with d(x, ∂Ω) = |x− x̂(θ)|. The mapping x 7→ x̂(θ) is an analytic
map from Vδ with value in ∂Ω. In addition, for x ∈ Vδ , one has the formula

∇xd(x, ∂Ω) = ~n(x(θ)). (2.3)

When no confusion is possible, for x ∈ Vδ the notations ~n(x) and ~τ (x) will be used for ~n(x(θ))
and ~τ(x(θ)) respectively. Observe that

~τ ′(θ) ∧ ~n(θ) = x′1(θ)x
′′
1(θ) + x′2(θ)x

′′
2(θ) =

d

dθ
|x′(θ)|2 = 0 , (2.4)

which implies the relation

~n′(θ) = γ(θ)~τ(θ) and ~τ ′(θ) = γ(θ)~n(θ) , (2.5)

with
γ(θ) = x′′1(θ)x

′
2(θ)− x′1(θ)x

′′
2(θ), (2.6)

being the curvature of the boundary ∂Ω . Therefore the mapping:

(z, θ) 7→ X(z, θ) = x(θ) + z~n(x(θ)), (2.7)
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defines au global C2 diffeomorphisme of [−δ, δ] × (R/(LZ)) on Vδ . Moreover, for any vector field
x ∈ Ω 7→ v(x) , as soon as x ∈ V δ , using the above notations, one has:

v(x) = (v(x) · ~τ(x))~τ (x) + (v(x) · ~n(x))~n(x) . (2.8)

Below, for sake of clarity, the symbol X is used for any x = X(z, θ). There hold

∂zX(z, θ) = ~n(θ) , ∂θX(z, θ) = J(z, θ)~τ (θ) ,

and J(z, θ) = 1 + zγ(θ) > 0 for |z| < δ ,
(2.9)

provided δ > 0 is chosen to be small enough. From the relation
(
∂zX1 ∂θX1

∂zX2 ∂θX2

)(
∂X1z ∂X2z
∂X1θ ∂X2θ

)
=

(
1 0
0 1

)
, (2.10)

one deduces the formula:

∇Xθ =
~τ(z, θ))

J(z, θ)
and ∇Xz = ~n(θ) . (2.11)

We collect the following useful relations whose derivations are classical. For any vector field u, we
have

∇ · u =
1

J
(∂z(J(u · ~n)) + ∂θ(u · ~τ)) = ∂z(u · ~n) + 1

J
∂θ(u · ~τ)) + γ

J
u · ~n ,

∇∧ u =
1

J
(∂z(Ju · ~τ)− ∂θ(u · ~τ)) = ∂z(u · ~τ)− 1

J
∂θ(u · ~τ)) + γ

J
(u · ~τ) .

(2.12)

For any scalar function Ψ, we have

∇∧Ψ =
1

J

(
∂z(JΨ)

− ∂θΨ

)
=

(
∂zΨ

− 1

J
∂θΨ

)
+

(γ

J
Ψ

0

)
, (2.13)

and

∆Ψ =
1

J
∂z(J∂zΨ) +

1

J
∂θ(

1

J
∂θΨ) = ∆z,θΨ+R∆Ψ , (2.14)

in which we denote

∆z,θ = (∂2
z + ∂2

θ ), R∆ = m(z, θ)∂2
θ +

γ

1 + zγ
∂z −

zγ′

(1 + zγ)3
∂θ and m(z, θ) = −2zγ + (zγ)2

(1 + zγ)2
.

2.2 Scaled coordinates

In view of (2.14), we observe that the Laplacian ∆ is nearly the flat Laplacian ∆z,θ, in the (z, θ)
coordinates, near the boundary. To make use of this fact, we introduce the following scaled variables

(z̃, θ̃) = (λz, λθ) (2.15)

for sufficiently small λ ∈ (0, 1). By construction, we compute

∆ = λ2
(
∆

z̃,θ̃
+ λ2R̃∆

)
, (2.16)
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in which ∆
z̃,θ̃

= (∂2
z̃ + ∂2

θ̃
) and

R̃∆ = m̃(z̃, θ̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂
θ̃

and m̃(z̃, θ̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
, (2.17)

where γ = λ3γ̃(θ̃). In the analysis, λ will be taken sufficiently small, and so ∆ is indeed approxi-
mated by λ2∆

z̃,θ̃
, treating λ2R̃∆ as a perturbation.

2.3 Vorticity equations near the boundary

In this section, we derive vorticity equations in the geodesic coordinates near the boundary in the
region Vδ defined as in Proposition 2.1. Introduce a smooth cutoff function φb(x) so that

φb(x) =

{
1, if λd(x, ∂Ω) ≤ δ0 + ρ0

0, if λd(x, ∂Ω) ≥ δ0 + 2ρ0
(2.18)

for small positive constants δ0, ρ0 so that δ0 + 2ρ0 < λδ to guarantee that supp(φb) ⊂ Vδ as in
Proposition 2.1. Define

ωb = φb(x)ω(t, x). (2.19)

It follows from (1.4) that
∂tω

b − ν∆ωb = N b, (2.20)

where
N b := −u · ∇ωb + (u · ∇φb)ω − ν(∆φb)ω − 2ν∇φb · ∇ω.

Observe that N b(u, ω) = 0 on {λd(x, ∂Ω) ≥ δ0 + 2ρ0} where the cutoff function φb vanishes. We
then introduce the following scaled vorticity

ωb(t, x) = ω̃(λ2t, λθ, λz), (t̃, z̃, θ̃) = (λ2t, λz, λθ), (2.21)

for small λ > 0. Using (2.16), we rewrite the vorticity equation as

(
∂t̃ − ν∆

z̃,θ̃

)
ω̃ = −νλ2R̃∆ω̃ + λ−2N b. (2.22)

Equation (2.22) is defined on (z̃, θ̃) ∈ R+ × T (in fact, the equation vanishes for z̃ ≥ δ0 + 2ρ0). We
shall solve (2.22) together with the boundary condition (1.8), which now reads

ν(∂z̃ + D̃N)ω̃|z̃=0
= λ−1[∂n∆

−1(u · ∇ω)]|∂Ω . (2.23)

System (2.22)-(2.23) will be our main equation for the scaled vorticity near the boundary. Away
from the boundary, we construct vorticity using the original system as derived in Section 1.1.
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2.4 Dirichlet-Neumann operator

Let us precise the Dirichlet-Neumann operator defined as in (1.6)-(1.7).

Lemma 2.2. For ω ∈ H1/2(∂Ω), let DNω be the Dirichlet-Neumann operator defined as in (1.6)-
(1.7). In the scaled variables, there holds

D̃Nω̃ = |∂
θ̃
|ω̃ + B̃ω̃ (2.24)

for some linear bounded operator B̃ from L2(∂Ω) to itself: namely,

‖B̃ω̃‖L2(∂Ω) ≤ C0‖ω̃‖L2(∂Ω)

for some positive constant C0.

Proof. Let φb be the cutoff function defined as in (2.18), and set ω∗b = φbω∗, where φ∗ solves (1.6).
It follows that {

∆ω∗b = (∆φb)ω∗ − 2∇φb · ∇ω∗, in Ω

ω∗b = ω, on ∂Ω.
(2.25)

Since φp vanishes away from the boundary, we can work in the scaled variables, which reads
D̃Nω̃ = −∂z̃ω̃

∗
|z̃=0

. Recalling (2.16), the scaled function ω̃∗(t̃, z̃, θ̃) of ω∗b solves

∆
z̃,θ̃

ω̃∗ = −λ2R̃∆ω̃
∗ + λ−2[(∆φb)ω∗ − 2∇φb · ∇ω∗], ω̃∗|z̃=0 = ω̃|z̃=0 ,

on R+ × T, which can be solved explicitly. Indeed, let ω̃α be the Fourier coefficient of ω̃(z̃, θ̃) in
variable θ̃. Note that ω̃α vanishes for α = 0, and thus we focus on the case when α 6= 0. Let
Kα(ỹ, z̃) = 1

2|α|(e
−|α(ỹ−z̃)| − e−|α(ỹ+z̃)|) be the Green function of the Laplacian ∂2

z̃ − α2 with the
Dirichlet boundary condition. It follows that

ω̃∗
α(z̃) = e−|α|z̃ω̃α(0) + λ2

∫ ∞

0
Kα(ỹ, z̃)(R̃∆ω̃

∗)α(ỹ) dỹ

+λ−2

∫ ∞

0
Kα(ỹ, z̃)

[
(∆φb)ω∗ − 2∇φb · ∇ω∗

]
α
(ỹ) dỹ

(2.26)

for z̃ ≥ 0. The Dirichlet-Neumann operator is thus computed by

(D̃Nω̃)α = −∂z̃ω̃
∗
α(0)

= |α|ω̃α(0) +

∫ ∞

0
e−|α|ỹ

[
λ2(R̃∆ω̃

∗)α + λ−2((∆φb)ω∗ − 2∇φb · ∇ω∗)α
]
(ỹ) dỹ.

The decomposition (2.24) thus follows, upon defining B̃ as the integral term

(B̃ω̃)α :=

∫ ∞

0
e−|α|ỹ

[
λ2(R̃∆ω̃

∗)α + λ−2((∆φb)ω∗ − 2∇φb · ∇ω∗)α
]
(ỹ) dỹ , (2.27)
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for each Fourier variable α ∈ Z. It remains to prove the boundedness of B̃. Note that by definition,
the last two terms are defined on the region ỹ ≥ δ0+ρ0 where the cutoff function φb = 1. Therefore,

∣∣∣
∫ ∞

0
e−|α|ỹ((∆φb)ω∗ − 2∇φb · ∇ω∗)α(ỹ) dỹ

∣∣∣ . ‖ω⋆‖H1(λd(x,∂Ω)≥δ0+ρ0).

It remains to bound the first integral term in (2.27). In view of (2.17), we write

R̃∆ω̃
∗ = ∂2

θ̃
[m̃ω̃∗]− ∂

θ̃

[
2∂

θ̃
m̃ω̃∗ +

z̃γ̃′

(1 + λ2z̃γ̃)3
ω̃∗
]
+ ∂z̃

( γ̃

1 + λ2z̃γ̃
ω̃∗
)

+
[
(∂2

θ̃
m̃)− ∂z̃

( γ̃

1 + λ2z̃γ̃

)
+ ∂

θ̃

( z̃γ̃′

(1 + λ2z̃γ̃)3

)]
ω̃∗,

noting the coefficients are analytic near the boundary. We note in particular that there is no growth
in large z̃: for instance, m(z̃, θ̃) . λ−2 uniformly in large z̃. In addition, we note that m̃ = z̃m̃1 for

some bounded function m̃1. Thus, using the fact that |α|ỹe− 1
2
|α|ỹ . 1, the second-order derivative

term ∂2
θ̃
[m̃ω̃∗] thus can be treated as the first order derivative term. Precisely, we can treat the

first integral in (2.27) systematically as follows: for some smooth and bounded coefficients b(z̃, θ̃),

λ2

∫ ∞

0
e−

1
2
|α|ỹ|(α, ∂ỹ)(bω̃∗)α|(ỹ) dỹ . λ2|α|−1/2‖(α, ∂ỹ)(bω̃∗)α‖L2

ỹ
.

This yields

|(B̃ω̃)α| . λ2|α|−1/2‖(α, ∂ỹ)(bω̃∗)α‖L2
ỹ
+ ‖ω⋆‖H1(λd(x,∂Ω)≥δ0+ρ0) .

Taking L2
α, we thus obtain

∑

α

|(B̃ω̃)α|2 . λ2
∑

α

|α|−1‖(α, ∂ỹ)ω̃∗
α‖2L2

ỹ
, (2.28)

upon noting that the coefficients b(z̃, θ̃), which in particular have ‖bα(z̃)‖L1
αL

∞
z̃

< ∞. It remains to

bound the right-hand side of (2.28). Directly from (2.26), we compute

|(α, ∂z̃)ω̃∗
α(z̃)| . |α|e−|α|z̃ |ω̃α(0)| + λ2

∫ ∞

0
e−|α(z̃−z̃′)||(R̃∆ω̃

∗)α(z̃
′)| dz̃′ + |α|−1/2‖ω⋆‖H1(λd(x,∂Ω)≥δ0+ρ0).

Therefore, together with the standard Hausdorff-Young’s inequality, we bound

‖(α, ∂z̃)ω̃∗
α‖L2

z̃
. |α|1/2|ω̃α(0)| + λ2|α|−1‖(R̃∆ω̃

∗)α‖L2
z̃
+ |α|−1/2‖ω⋆‖H1(λd(x,∂Ω)≥δ0+ρ0)

which yields
∑

α

|α|−1‖(α, ∂z̃)ω̃∗
α‖2L2

z̃
.
∑

α

|ω̃α(0)|2 + λ2
∑

α

|α|−3‖(R̃∆ω̃
∗)α‖2L2

z̃
+ ‖ω⋆‖2H1(λd(x,∂Ω)≥δ0+ρ0)

.
∑

α

|ω̃α(0)|2 + λ2
∑

α

|α|−1‖(α, ∂z̃)ω̃∗
α‖2L2

z̃

+
∑

α

|α|−1‖(α, ∂z̃)ω̃∗
α‖2L2

{z̃≥δ0+ρ0}
+ ‖ω⋆‖H1(λd(x,∂Ω)≥δ0+ρ0).
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Taking λ sufficiently small so that the second term on the right can be absorbed into the left. On
the other hand, using the standard elliptic theory, the last term is bounded by

∑

α

|α|−1‖(α, ∂z̃)ω̃⋆
α‖2L2

{z̃≥δ0+ρ0}
. ‖ω⋆‖2H1(λd(x,∂Ω)≥δ0)

. ‖ω‖2L2(∂Ω).

Putting these back into (2.28), we obtain the lemma.

3 Near boundary analytic spaces

In this section, we introduce the near boundary analytic norm used to control the vorticity that
is analytic near the boundary, but however only has Sobolev regularity away from the boundary.
We then derive sufficient elliptic estimates, bilinear estimates, as well as the semigroup estimates
in these analytic spaces.

3.1 Analytic norms

Let δ > 0 be small and so that Proposition 2.1 applies for V̄δ = {d(x, ∂Ω) ≤ δ}. In particular, δ is
small so that the statement of 2.1 still holds for V2δ. Now for any constant λ ∈ (0, 1), we have

λd(x, ∂Ω) ≤ λδ

for all x ∈ V̄δ. Let δ0 = λδ, which will the size of the analytic domain for our solution near the
boundary. We fix ρ0 ∈ (0, 1/10), and assume that ρ ∈ (0, ρ0). Then

Ωρ = {z̃ ∈ C : 0 ≤ ℜz̃ ≤ δ0, |ℑz̃| ≤ ρℜz̃} ∪ {z̃ ∈ C : δ0 ≤ ℜz̃ ≤ δ0 + ρ, |ℑz̃| ≤ δ0 + ρ−ℜz̃} (3.1)

denotes the complex domain for functions of the z̃ variable. We note that the domain Ωρ only
contains z̃ with 0 ≤ ℜz̃ ≤ δ0 + ρ. For a complex valued function f defined on Ωρ, let

‖f‖L1
ρ
= sup

0≤η<ρ
‖f‖L1(∂Ωη), ‖f‖L∞

ρ
= sup

0≤η<ρ
‖f‖L∞(∂Ωη)

where the integration is taken over the two directed paths along the boundary of the domain Ωη.

Now for an analytic function f(θ̃, z̃) defined on (θ̃, z̃) ∈ T×Ωρ, we define

‖f‖L1
ρ
=
∑

α∈Z
‖eε0(δ0+ρ−ℜz̃)|α|fα‖L1

ρ
,

‖f‖L∞
ρ

=
∑

α∈Z
‖eε0(δ0+ρ−ℜz̃)|α|fα‖L∞

ρ
,

(3.2)

where fα denotes the Fourier transform of f with respect to variable θ̃. The function spaces L1
ρ

and L∞
ρ are to control the scaled vorticity and velocity, respectively. We stress that the analyticity

weight vanishes on ℜz̃ ≥ δ0 + ρ. For convenience, we also introduce the following analytic norms

‖f‖Wk,p
ρ

=
∑

i+j≤k

‖∂i
θ̃
(z̃∂z̃)

jf‖Lp
ρ

(3.3)

for k ≥ 0 and p = 1,∞. We observe the following simple algebra.
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Lemma 3.1. There hold
‖fg‖L1

ρ
≤ ‖f‖L∞

ρ
‖g‖L1

ρ
(3.4)

and for any 0 < ρ′ < ρ,

‖∂
θ̃
f‖L1

ρ′
+ ‖z̃∂z̃f‖L1

ρ′
.

1

ρ− ρ′
‖f‖L1

ρ
. (3.5)

Proof. By definition, we compute

eε0(δ0+ρ−ℜz̃)|α||(fg)α(z̃)| ≤
∑

α′

|fα−α′(z̃)gα′(z̃)|eε0(δ0+ρ−ℜz̃)|α|

≤
∑

α′

|eε0(δ0+ρ−ℜz̃)|α−α′|fα−α′(z̃)eε0(δ0+ρ−ℜz̃)|α′|gα′(z̃)|

which gives

‖eε0(δ0+ρ−ℜz̃)|α|(fg)α(z̃)‖L1
ρ
≤
∑

α′

‖eε0(δ0+ρ−ℜz̃)|α−α′|fα−α′‖L∞
ρ
‖eε0(δ0+ρ−ℜz̃)|α′|gα′‖L1

ρ
.

The estimate (3.4) follows from taking the summation in α over Z. The stated bounds on derivatives
are classical (e.g., [22, 21]), making use of the fact that (ρ− ρ′)|α|e(ρ′−ρ)|α| is bounded.

3.2 Elliptic estimates in the half-plane

In this section, we derive some basic elliptic estimates in the analytic spaces Wk,p
ρ . Precisely, we

consider {
∆z,θφ = f, in R+ × T

φ|z=0
= 0

(3.6)

in which we drop titles for sake of presentation. The Wk,p
ρ analytic norm is defined on ℜz ≤ δ0 + ρ

as introduced in the previous section. We obtain the following proposition.

Proposition 3.2. Let φ be the solution of (3.6). Then, the velocity field u = ∇⊥φ satisfies

‖u‖Wk,∞
ρ

. ‖f‖Wk,1
ρ

+ ‖f‖Hk+1({z≥δ0+ρ})

‖(1
z
∂θφ)‖Wk,∞

ρ
. ‖f‖Wk,1

ρ
+ ‖∂θf‖Wk,1

ρ
+ ‖f‖Hk+1({z≥δ0+ρ})

‖∇z,θu‖Wk,∞
ρ

. ‖f‖Wk,∞
ρ

+ ‖f‖Hk+2({z≥δ0+ρ})

(3.7)

for k ≥ 0.

Proof. The elliptic problem (3.6) can be solved explicitly in Fourier space. Indeed, taking the
Fourier transform in θ, we get the elliptic equation

(∂2
z − α2)φα = fα
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for the Fourier transform φα. We focus on the case α > 0; the other case is similar. The solution
is given by

φα(z) =

∫ z

0
K−(y, z)fα(y)dy +

∫ ∞

z
K+(y, z)fα(y)dy

with the Green function defined by

K±(y, z) = − 1

2α

(
e±α(z−y) − e−α(y+z)

)
.

This expression may be extended to complex values of z. Indeed, for z ∈ Ωσ, there is a positive
θ so that z ∈ ∂Ωθ. We then write ∂Ωθ = γ−(z) ∪ γ+(z), consisting of complex numbers y ∈ ∂Ωθ

so that ℜy < ℜz and ℜy > ℜz, respectively. Then, the integral is taken over γ−(z) and γ+(z),
respectively. We note in particular that for y ∈ γ±(z), there hold the same bounds on the Green
function

|K±(y, z)| ≤ α−1e−α|y−z|.

This proves that

|φα(z)| ≤
∫

∂Ωθ

α−1e−α|y−z||fα(y)||dy|. (3.8)

By definition of L1
ρ norm, we only need to consider the case when 0 ≤ ℜz ≤ δ0 + ρ. Now, for

0 ≤ ℜy ≤ δ0 + ρ, we bound

e−α|ℜy−ℜz|e−ε0(δ0+ρ−ℜy)α ≤ e−ε0(δ0+ρ−ℜz)αe−(1−ǫ0)α|ℜy−ℜz|

noting ǫ0 ≤ 1/2. On the other hand, for ℜy ≥ δ0 + ρ (recalling δ0 + ρ ≥ ℜz), we bound

e−α|ℜy−ℜz| ≤ e−ǫ0(δ0+ρ−ℜz)αe−(1−ǫ0)α|ℜy−ℜz|.

Therefore, we bound
∫

ℜy≤δ0+ρ
α−1e−α|y−z||fα(y)||dy| . α−1e−ε0(δ0+ρ−ℜz)α‖eε0(δ0+ρ−ℜy)αfα‖L1

ρ
,

∫

ℜy≥δ0+ρ
α−1e−α|y−z||fα(y)||dy| . α−3/2e−ε0(δ0+ρ−ℜz)α‖fα‖L2(y≥δ0+ρ).

Similarly, we also have
∫

ℜy≤δ0+ρ
α−1e−α|y−z||fα(y)||dy| . α−2e−ε0(δ0+ρ−ℜz)α‖eε0(δ0+ρ−ℜy)αfα‖L∞

ρ
,

which gains an extra factor of α. This proves

‖eε0(δ0+ρ−ℜz)α(α, ∂z)φα‖L∞
ρ

≤ ‖eε0(δ0+ρ−ℜy)αfα‖L1
ρ
+ α−1/2‖fα‖L2(y≥δ0+ρ)

‖eε0(δ0+ρ−ℜz)α(α, ∂z)
2φα‖L∞

ρ
≤ ‖eε0(δ0+ρ−ℜy)αfα‖L∞

ρ
+ α1/2‖fα‖L2(y≥δ0+ρ).

Taking the summation in α ∈ Z yields the first and last estimates in (3.7) for k = 0. For k ≥ 0,
the estimates follow similarly. For the estimates involving the weight z−1, we use the fact that the
Green function vanishes on the boundary z = 0, and so |G±(y, z)| ≤ ze−α|y−z|.
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3.3 Biot-Savart law in Ω

In this section, we bound the velocity through the Biot-Savart law: namely, u = ∇⊥φ, where
{
∆φ = ω, in Ω

φ = 0, on ∂Ω.
(3.9)

Without loss of generality, we will work with the cut-off vorticity ωb (see Section 4.1) near the
boundary where the rescaled coordinates introduced in Section 2.3 apply. We obtain the following
proposition.

Proposition 3.3. Let φ be the solution of (3.9). Then, the velocity field u = ∇⊥φ satisfies

‖u‖Wk,∞
ρ

. ‖ω‖Wk,1
ρ

+ ‖ω‖Hk+1({λd(x,∂Ω)≥δ0/2})

‖(1
z̃
∂
θ̃
φ)‖Wk,∞

ρ
. ‖ω‖Wk,1

ρ
+ ‖∂

θ̃
ω‖Wk,1

ρ
+ ‖ω‖Hk+1({λd(x,∂Ω)≥δ0/2})

(3.10)

for k ≥ 0.

Proof. Using (2.16) and (3.9), the scaled stream function φ̃(t̃, z̃, θ̃) solves

∆
z̃,θ̃

φ̃ = λ−2ω̃ − λ2R̃∆φ̃, φ̃|z̃=0
= 0

on T × R+, and so the elliptic theory, Proposition 3.2, developed in the previous section can be
applied, yielding

‖u‖Wk,∞
ρ

. ‖ω‖Wk,1
ρ

+ ‖ω‖Hk+1({λd(x,∂Ω)≥δ0+ρ})

+ λ2‖∂−1

θ̃
R̃∆φ̃‖Wk,∞

ρ
+ λ2‖R̃∆φ̃‖Hk+1({z̃≥δ0+ρ}).

(3.11)

It thus remains to bound R̃∆φ̃. Recall from (2.17) that

R̃∆ = m̃(z̃, θ̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂
θ̃
, m̃(z̃, θ̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
.

Thanks to the analyticity of the boundary, the coefficients are clearly bounded in Wk,∞
ρ . Therefore,

using a similar algebra as in (3.4), we bound

λ2‖∂−1

θ̃
R̃∆φ̃‖Wk,∞

ρ
. λ2‖∂

θ̃
φ̃‖Wk,∞

ρ
+ λ2‖∂z̃φ̃‖Wk,∞

ρ
(3.12)

That is, this term can be absorbed into the left hand side of (3.11), upon taking λ sufficiently small.
As for the last term in (3.11), we note that for large z̃, |m̃(z̃, θ̃)| . λ−2, which in particular proves
that there is no growth in z̃. This gives

λ2‖R̃∆φ̃‖Hk+1({z̃≥δ0+ρ}) . ‖φ‖Hk+3({λd(x,∂Ω)≥δ0+ρ})

. λ2‖φ̃‖Wk,∞
ρ

+ ‖ω‖Hk+1({λd(x,∂Ω)≥δ0/2}),
(3.13)

in which the last estimate follows from the standard elliptic theory in Sobolev spaces. The propo-
sition follows.
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3.4 Bilinear estimates

In this section, we show that the Sobolev-analytic norm is well adapted to treat the nonlinear
u · ∇ω. We have the following lemma.

Lemma 3.4. For any ω and ω′, denoting by u the velocity related to ω, we have

‖u · ∇ω′‖L1
ρ
≤ C

(
‖ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖∂

θ̃
ω′‖L1

ρ

+C
(
‖ω‖L1

ρ
+ ‖∂

θ̃
ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖z̃∂z̃ω′‖L1

ρ
.

Proof. By definition, the L1
ρ norm is defined near the boundary {λd(x, ∂Ω) ≤ δ0 + ρ}, on which we

can write

u · ∇ω′ =
1

1 + zγ(θ)
∂θφ∂zω

′ − 1

(1 + zγ(θ))2
∂zφ∂θω

′

with ∆φ = ω. In the rescaled variable (z̃, θ̃), we get

u · ∇ω′ =
λ2

1 + λ2z̃γ̃(θ̃)
(∂

θ̃
φ̃)(∂z̃ω̃

′)− λ2

(1 + λ2z̃γ̃(θ̃))2
(∂z̃φ̃)(∂θ̃ω̃

′)

Note that thanks to the analyticity of ∂Ω, the coefficient (1+λ2z̃γ̃(θ̃))−1 is bounded in L∞
ρ . Using

(3.4) and Proposition 3.3, we bound

‖(∂z̃ φ̃)(∂θ̃ω̃
′)‖L1

ρ
. ‖∂z̃ φ̃‖L∞

ρ
‖∂

θ̃
ω̃′‖L1

ρ

.
(
‖ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖∂

θ̃
ω′‖L1

ρ

‖(∂
θ̃
φ̃)(∂z̃ω̃

′)‖L1
ρ
. ‖1

z̃
∂
θ̃
φ̃‖L∞

ρ
‖z̃∂z̃ω̃′‖L1

ρ

.
(
‖ω‖L1

ρ
+ ‖∂

θ̃
ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖z̃∂z̃ω′‖L1

ρ

giving the lemma.

3.5 Semigroup estimates in the half-plane

In this section, we give bounds on the Stokes semigroup eνtS in the analytic spaces Wk,1
ρ on the

half-plane R+ × T. We also denote by Γ(νt) = eνtS(H1
{z̃=0}×T

) the trace of the semigroup on the

boundary, with H1
{z̃=0}×T

being the one-dimensional Hausdorff measure restricted on the boundary.

The results in this section are an easy adaptation from those obtained in [21], where the analytic
spaces contained no cutoff in z. Precisely, we consider

(∂t − ν∆z,θ)ω = 0

ν(∂z + |∂θ|)ω|z=0
= 0

(3.14)

on R+ × T (where we drop titles for sake of presentation). We obtain the following proposition.
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Proposition 3.5. Let eνtS be the semigroup of the linear Stokes problem (3.14), and let Γ(νt)g be
its trace on the boundary. Then, for any t ≥ 0, ρ > 0, and k ≥ 0, there hold

‖eνtSf‖Wk,1
ρ

≤ C0‖f‖Wk,1
ρ

+ ‖zf‖Hk+1(z≥δ0+ρ)

‖Γ(νt)g‖Wk,1
ρ

≤ C0

∑

α∈Z
|αkgα|eǫ0(δ0+ρ)|α| (3.15)

uniformly in the inviscid limit.

Proof. The proof follows closely from that in [21]. Indeed, taking the Fourier transform of the
semigroup eνtS in variable θ, we obtain

(eνtSf)α(z) =

∫ ∞

0
Gα(t, y; z)fα(y) dy, (Γ(νt)g)α(z) = Gα(t, 0; z)gα, (3.16)

for each Fourier variable α ∈ Z, where Gα(t, y; z) is the corresponding Green function. We recall
the following result of Proposition 3.3 from [21] that

Gα(t, y; z) = Hα(t, y; z) +Rα(t, y; z), (3.17)

where

Hα(t, y; z) =
1√
νt

(
e−

|y−z|2

4νt + e−
|y+z|2

4νt

)
e−α2νt,

|∂k
zRα(t, y; z)| . µk+1

f e−θ0µf |y+z| + (νt)−
k+1
2 e−θ0

|y+z|2

νt e−
1
8
α2νt,

for y, z ≥ 0, k ≥ 0, and for some θ0 > 0 and for µf = |α| + 1√
ν
. In particular, ‖Gα(t, y; ·)‖L1

ρ
. 1,

for each fixed y, t.
Now, for z, y ≤ δ0 + ρ, we note that

e−a|y±z|e−ǫ0(δ0+ρ−y)|α| = e−a|y±z|+ǫ0|α|(y−z)e−ǫ0(δ0+ρ−z)|α|

≤ e−(a−ǫ0|α|)|y±z|e−ǫ0(δ0+ρ−z)|α| (3.18)

for any real number a and for ǫ0 sufficiently small. Taking a = 1
2θ0µf , we have a ≥ ǫ0|α| and so

e−θ0µf |y+z|e−ǫ0(δ0+ρ−y)|α| ≤ e−ǫ0(δ0+ρ−z)|α|e−
1
2
θ0µf |y+z|

On the other hand, taking a = 1
2θ0

|y±z|
νt in (3.18), we have either a ≥ ǫ0|α| or 1

2θ0α
2νt ≥ ǫ0|α||y±z|.

Therefore, we have

e−θ0
|y+z|2

νt e−θ0α2νte−ǫ0(δ0+ρ−y)|α| ≤ e−
1
2
θ0

|y+z|2

νt e−ǫ0(δ0+ρ−z)|α|.

This proves that for z ≤ δ0 + ρ,

eǫ0(δ0+ρ−z)|α|
∫ δ0+ρ

0
|Gα(t, y; z)fα(y)| dy

≤
∫ δ0+ρ

0

[
(νt)−

1
2 e−

1
2
θ0

|y±z|2

νt + µfe
− 1

2
θ0µf |y+z|

]
|eǫ0(δ0+ρ−y)|α|fα(y)| dy.
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Since the term in the bracket is bounded in L1
z norm, we have

∥∥∥eǫ0(δ0+ρ−z)|α|
∫ δ0+ρ

0
Gα(t, y; z)fα(y) dy

∥∥∥
L1
ρ

. ‖eǫ0(δ0+ρ−y)|α|fα‖L1
ρ
.

Taking the summation in α yields the stated bounds for this term.
Next, consider the case when y ≥ δ0 + ρ ≥ z. In this case, we simply use

e−ǫ0|α||y−z| ≤ e−ǫ0|α|(δ0+ρ−z),

giving the right analyticity weight in z. The control of the weight eǫ0|α||y−z| is done exactly as
above, yielding

eǫ0(δ0+ρ−z)|α|
∫ ∞

δ0+ρ
|Gα(t, y; z)fα(y)| dy

≤
∫ ∞

δ0+ρ

[
(νt)−

1
2 e−

1
2
θ0

|y±z|2

νt + µfe
− 1

2
θ0µf |y+z|

]
|fα(y)| dy.

Therefore, ∑

α

‖eǫ0(δ0+ρ−z)|α|
∫ ∞

δ0+ρ
|Gα(t, y; z)fα(y)| dy‖L1

ρ
.
∑

α

‖fα‖L1(z≥δ0+ρ)

. ‖zf‖H1(z≥δ0+ρ).

Similarly, from (3.16), the Fourier transform of the trace operator Γ(νt)g is estimated by

|(Γ(νt)g)α(z)| ≤ |Gα(t, 0; z)gα|

≤
[
µfe

−θ0µf |z| + (νt)−
1
2 e−θ0

|z|2

νt e−
1
8
α2νt

]
|gα|

≤
[
µfe

− 1
2
θ0µf |z| + (νt)−

1
2 e−

1
2
θ0

|z|2

νt

]
e−ǫ0(δ0+ρ−z)|α||gα|eǫ0(δ0+ρ)|α|

in which the last inequality is a special case of the previous calculations for y = 0 and z ≤ δ0 + ρ.
The bounds Γ(νt)g are thus direct. Finally, the bounds on derivatives follow from the similar
adaptation of derivatives bounds provided in [21]. We skip repeating the details.

3.6 Semigroup estimates near ∂Ω

In this section, we provide bounds on the Stokes semigroup eνtS , which will be used to estimate the
vorticity ωb (see Section 4.1) near the boundary in the analytic spaces Wk,1

ρ . Precisely, we consider

{
∂tω − ν∆ω = 0

ν(∂n +DN)ω|∂Ω = 0
(3.19)

in Ω. We obtain the following proposition.
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Proposition 3.6. Let eνtS be the semigroup of the linear Stokes problem (3.19), and let Γ(νt)
be its trace on the boundary. Fix any finite time T . Then, for sufficiently small λ, and for any
0 ≤ t ≤ T , ρ > 0, and k ≥ 0, there hold

‖eνtSf‖Wk,1
ρ

≤ C0‖f‖Wk,1
ρ

+ ‖f‖Hk+1(λd(x,∂Ω)≥δ0/2)

‖Γ(νt)g‖Wk,1
ρ

≤ C0

∑

α∈Z
|αkgα|eǫ0(δ0+ρ)|α| (3.20)

uniformly in the inviscid limit.

Proof. In the scaled variables, the Stokes problem for near boundary vorticity ω becomes

{
(∂t̃ − ν∆

z̃,θ̃
)ω̃ = −λ2νR̃∆ω̃

ν(∂z̃ + |∂
θ̃
|)ω̃|s̃=0 = −νB̃ω̃

where R̃∆ and B̃ are defined as in (2.17) and (2.27). Using the Duhamel, the solution with initial
data ω0 can be written as

ω̃(t̃) = eνt̃Sω̃0 − νλ2

∫ t̃

0
eν(t̃−t̃′)SR̃∆ω̃(t̃

′) dt̃′ − ν

∫ t̃

0
Γ(ν(t̃− t̃′))B̃ω̃(t̃′) dt̃′. (3.21)

We shall bound the integral terms on the right in term of the initial data. Recall from (2.17) that

R̃∆ = m̃(z̃, θ̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂
θ̃
, m̃(z̃, θ̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
.

We rewrite the operator in the following form

R̃∆ω̃ = ∂2
θ̃
[m̃ω̃]− ∂

θ̃

[
2∂

θ̃
m̃ω̃ +

z̃γ̃′

(1 + λ2z̃γ̃)3
ω̃
]
+ ∂z̃

( γ̃

1 + λ2z̃γ̃
ω̃
)

+
[
(∂2

θ̃
m̃)− ∂z̃

( γ̃

1 + λ2z̃γ̃

)
+ ∂

θ̃

( z̃γ̃′

(1 + λ2z̃γ̃)3

)]
ω̃.

We now bound each term appearing in the Duhamel formula (3.21). Thanks to the analyticity

of the boundary, the coefficients are bounded in Wk,∞
ρ . Now, recall from (3.17) that the Green

function has two components:

eνt̃S = eνt̃SH + eνt̃SR

which corresponds to the Green kernel Hα (i.e., the heat kernel) and the other from the stationary
Stokes kernel Rα.

We first claim that

∥∥∥νλ2

∫ t̃

0
eν(t̃−t̃′)SH R̃∆ω̃(t̃

′) dt̃′
∥∥∥
Wk,1

ρ

. λ2 sup
0≤t̃′≤t̃

‖ω‖Wk,1
ρ

+ ‖ω‖Hk+1(λd(x,∂Ω)≥δ0+δ). (3.22)
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For the heat semigroup, we may integrate by parts in θ̃ or z̃. It follows directly from the represen-
tation of the Green function that derivatives of the semigroup ∇

θ̃,z̃
eνt̃SH are of order (νt̃)−1/2 of

the semigroup itself. Therefore, the first-order derivative term in R̃∆ can be treated systematically
as follows:

νλ2
∥∥∥
∫ t̃

0
eν(t̃−t̃′)SH∇

θ̃,z̃
h(t̃′) dt̃′

∥∥∥
Wk,1

ρ

. νλ2

∫ t̃

0
(ν(t̃− t̃′))−1/2‖h(t̃′)‖Wk,1

ρ
dt̃′

.
√
νλ2 sup

0≤t̃′≤t̃

‖h‖Wk,1
ρ

.

The zero-order term is treated similarly. The analysis doesn’t apply directly to the second-order
derivative term ∂2

θ̃
[m̃ω̃] due to the singularity in time (νt)−1, if integration by parts was to perform

twice. However, in the Fourier variable α, we compute

νλ2

∫ t̃

0
(eν(t̃−t̃′)SH∂2

θ̃
[m̃ω̃])α(t̃

′) dt̃′ = να2λ2

∫ t̃

0

∫ ∞

0
Hα(t, ỹ; z̃)[m̃ω̃]α(t̃

′) dỹdt̃′.

Observe that the Green kernel Hα has the diffusion term e−να2 t̃, for which we use

να2λ2

∫ t̃

0
e−να2(t̃−t̃′)dt̃′ . λ2

yielding the claim (3.22).
Next, we claim that

∥∥∥νλ2

∫ t̃

0
eν(t̃−t̃′)SRR̃∆ω̃(t̃

′) dt̃′
∥∥∥
Wk,1

ρ

. νλ2

∫ t̃

0
‖∂

θ̃
ω(t̃)‖Wk,1

ρ
dt̃+ ‖ω‖Hk+1(λd(x,∂Ω)≥δ0+δ). (3.23)

It suffices to check for the stationary Green kernel µfe
−θ0µf (ỹ+z̃) and for the second-order derivative

term ∂2
θ̃
[m̃ω̃] appearing in R̃∆ω̃(t̃

′). For this term, we make use of the fact that m̃ vanishes at z̃ = 0;

namely, we can write m̃ = z̃m̃1 and use µfe
−θ0µf z̃ z̃ . 1, which controls one spatial derivative, since

µf = |α| + ν−1/2. This proves the claim (3.23).
Finally, putting the previous bounds together into the Duhamel representation (3.21), we have

obtained
‖ω(t̃)‖Wk,1

ρ
. ‖ω0‖Wk,1

ρ
+ ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0+δ)

+ λ2 sup
0≤t̃′≤t̃

‖ω(t̃′)‖Wk,1
ρ

+ νλ2

∫ t̃

0
‖∂

θ̃
ω(t̃)‖Wk,1

ρ
dt̃

+ ‖ω‖Hk+1(λd(x,∂Ω)≥δ0+δ)

(3.24)

for any k ≥ 0. The standard energy estimates for the heat equation (away from the boundary)
yield

‖ω‖Hk+1(λd(x,∂Ω)≥δ0+δ) . ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0/2). (3.25)

19



It remains to treat the third and forth terms on the right hand side of (3.24). We bound these
terms by iteration, introducing

A0(β) := sup
0≤k≤4

(
sup

0<βt̃<ρ0

sup
0<ρ<ρ0−βt̃

{
‖ω(t̃)‖Wk,1

ρ
+ ‖∂

θ̃
ω(t̃)‖Wk,1

ρ
(ρ0 − ρ− βt̃)ζ

})

for some ζ ∈ (0, 1). We bound

νλ2

∫ t̃

0
‖∂

θ̃
ω(t̃)‖Wk,1

ρ
dt̃ ≤ C0νλ

2A0(β)

∫ t̃

0
(ρ0 − ρ− βs̃)−ζ ds̃

≤ C0νλ
2β−1A0(β).

Next, we check the bound on ‖∂
θ̃
ω(t̃)‖Wk,1

ρ
. We focus only the worst term as in (3.23). Note that

ρ < ρ0 − βt̃ ≤ ρ0 − βs̃. Thus, we take ρ′ = ρ+ρ0−βs
2 and bound

∥∥∥νλ2∂
θ̃

∫ t̃

0
eν(t̃−t̃′)SRR̃∆ω̃(t̃

′) dt̃′
∥∥∥
Wk,1

ρ

. νλ2

∫ t̃

0

1

ρ′ − ρ
‖∂

θ̃
ω(t̃)‖Wk,1

ρ′
dt̃+ ‖ω‖Hk+1(λd(x,∂Ω)≥δ0+δ)

≤ C0νλ
2

∫ t̃

0
(ρ0 − ρ− βs)−1−ζ ds+ ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0/2)

≤ C0νλ
2β−1A0(β)(ρ0 − ρ− βt̃)−ζ + ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0/2).

This proves that

A0(β) . ‖ω0‖Wk,1
ρ

+ ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0/2) +
(
λ2 + νλ2β−1

)
A0(β).

Taking λ and ν small, the last term can be absorbed into the left hand side, completing the bounds
on A0(β) or the Wk,1

ρ norm for the vorticity. Note that we do not require β to be sufficiently
large (compared with the nonlinear iteration provided in the next section). As a consequence, the
proposition holds for any given finite time.

4 Nonlinear analysis

As already mentioned in the introduction, we construct the solutions to the Navier-Stokes equation
via the vorticity formulation

∂tω + u · ∇ω = ν∆ω (4.1)

together with the nonlocal boundary condition (1.8) and with initial data ω|t=0
= ω0 satisfying

‖ω0‖W2,1
ρ

+ ‖ω0‖H4({λd(x,∂Ω)≥δ0/2}) < ∞. (4.2)
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Introduce the smooth cutoff function φb as in (2.18), and write

ω = ωb + ωi, ωb = φbω, ωi = (1− φb)ω. (4.3)

We also define the corresponding velocity field through the Biot-Savart law

u = ub + ui, ub = ∇⊥∆−1ωb, ui = ∇⊥∆−1ωi. (4.4)

This yields {
∂tω

b + u · ∇ωb = ν∆ωb

ν(∂n +DN)ωb
|∂Ω = [∂n∆

−1(u · ∇ω)]|∂Ω
(4.5)

for the vorticity near the boundary, and
{
∂tω

i + u · ∇ωi = ν∆ωi

ωi
|∂Ω = 0

(4.6)

for the vorticity away from the boundary. Here, we note that the boundary condition on ωi follows
directly from the definition (4.3), while the boundary condition on ωb was due to the fact that
DNωi = 0 by Lemma 2.2. We also note that the velocity field u that appears in both the systems
is the full velocity, which is the summation of ub and ui generated by ωb and ωi, respectively.

We shall construct the near boundary vorticity solving (4.5) through the semigroup of the Stokes
problem. Indeed, we have the following standard Duhamel’s integral representation, written in the
scaled variables,

ω̃(t̃) = eνt̃Sω̃0 +

∫ t̃

0
eν(t̃−t̃′)Sf(t̃′) dt̃′ +

∫ t̃

0
Γ(ν(t̃− t̃′))g(t̃′) dt̃′ (4.7)

where

f(t̃) = −λ−2u · ∇ωb, g(t̃) = λ−1[∂n∆
−1(u · ∇ω)]|∂Ω . (4.8)

Here, eνt̃S denotes the semigroup of the corresponding Stokes problem and Γ(νt̃) being its trace on
the boundary; see Section 3.6.

4.1 Global Sobolev-analytic norm

We now introduce Sobolev-analytic norms to control global vorticity. Let us fix positive numbers
ρ0, δ0, and ζ ∈ (0, 1). Introduce the following family of nonlinear iterative norms for vorticity:

A(β) := sup
0<λ2βt<ρ0

[
sup

0<ρ<ρ0−βλ2t

{
‖ω(t)‖W1,1

ρ
+ ‖ω(t)‖W2,1

ρ
(ρ0 − ρ− λ2βt)ζ

}

+ ‖ω(t)‖H4({λd(x,∂Ω)≥δ0/2})
] (4.9)

for a parameter β > 0, with recalling

‖ω(t)‖Wk,1
ρ

=
∑

j+ℓ≤k

‖∂j

θ̃
(z̃∂z̃)

ℓω(t)‖L1
ρ
.
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Note that by definition the norm ‖·‖Wk,1
ρ

controls the analyticity of the vorticity near the boundary,

precisely in the region λd(x, ∂Ω) ≤ δ0 + ρ, while the H4 norm is to control the Sobolev regularity
away from the boundary. We shall show that the vorticity norm remains finite for sufficiently large
β. The weight (ρ0 − ρ − λ2βt)ζ , with a small ζ > 0, is standard in the literature to avoid time
singularity when recovering the loss of derivatives ([2, 6]). See also [14] for an alternative framework
to construct analytic solutions through generator functions.

Our goal is to prove the following key proposition.

Proposition 4.1. For β > 0, there holds

A(β) ≤ C0‖ω0‖W2,1
ρ

+C0‖ω0‖H4({λd(x,∂Ω)≥δ0/2}) + C0β
−1A(β)2.

In Section 4.4, we will show that our main theorem, Theorem 1.1, follows straightforwardly
from Proposition 4.1.

4.2 Analytic bounds near the boundary

In this section, we bound the vorticity near the boundary λd(x, ∂Ω) ≤ δ0+ρ0, on which by definition
ω = ωb and therefore the Duhamel representation (4.7) holds. Let ρ < ρ0 − λ2βt. Recalling the
notation t̃ = λ2t and using (4.7), we bound

‖ω̃(t̃)‖Wk,1
ρ

≤ ‖eνt̃Sω̃0‖Wk,1
ρ

+

∫ t̃

0
‖eν(t̃−t̃′)Sf(t̃′)‖Wk,1

ρ
dt̃′ +

∫ t̃

0
‖Γ(ν(t̃− t̃′))g(t̃′)‖Wk,1

ρ
dt̃′ (4.10)

for 0 < k ≤ 4 and for f, g defined as in (4.8). Let us bound each term on the right. Using the
semigroup estimates, Proposition 3.5, we have

‖eνt̃Sω̃0‖Wk,1
ρ

≤ C0‖ω̃0‖Wk,1
ρ

+ ‖z̃ω̃0‖Hk+1(z̃≥δ0+ρ)

≤ C0‖ω̃0‖Wk,1
ρ

+ ‖ω0‖Hk+1(λd(x,∂Ω)≥δ0+ρ).

While for the second integral term in (4.10), we have

∫ t̃

0
‖eν(t̃−t̃′)Sf(t̃′)‖Wk,1

ρ
dt̃′ .

∫ t̃

0

[
‖f(t̃′)‖Wk,1

ρ
+ ‖z̃f(t̃′)‖Hk+1(z̃≥δ0+ρ)

]
dt̃′.

Then, we use (4.8), in the above formula with f(t̃) replaced by −λ−2u · ∇ωb. First, using the
standard elliptic theory for k = 0, 1, 2, we bound

‖z̃(u · ∇ωb)(t̃′)‖Hk+1(z̃≥δ0+ρ) . ‖ω‖2H4({λd(x,∂Ω)≥δ0/2}) . A(β)2.
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Next, for the analytic norm, with the bilinear estimates from Lemma 3.4, we have:

‖u · ∇ωb‖L1
ρ
≤ C

(
‖ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖∂

θ̃
ωb‖L1

ρ

+ C
(
‖ω‖L1

ρ
+ ‖∂

θ̃
ω‖L1

ρ
+ ‖ω‖H1({λd(x,∂Ω)≥δ0})

)
‖z̃∂z̃ωb‖L1

ρ

. ‖ω‖2W1,1
ρ

+ ‖ω‖2H1({λd(x,∂Ω)≥δ0})

. A(β)2

‖u · ∇ωb‖W1,1
ρ

. ‖ω‖W1,1
ρ

‖ω‖W1,2
ρ

+ ‖ω‖2H2({λd(x,∂Ω)≥δ0})

. A(β)2(ρ0 − ρ− βt̃)−ζ .

Therefore, ∫ t̃

0
‖u · ∇ωb‖W1,1

ρ
ds̃ ≤ C0A(β)

2

∫ t̃

0
(ρ0 − ρ− βs̃)−ζ ds̃

≤ C0β
−1A(β)2.

Similarly, we consider the case when k = 2. Noting ρ < ρ0 − βt ≤ ρ0 − βs, we take ρ′ = ρ+ρ0−βs
2

and compute ∫ t

0
‖u · ∇ωb‖W2,1

ρ
ds ≤ C0

∫ t

0

1

ρ′ − ρ
‖u · ∇ωb‖W1,1

ρ′
ds

≤ C0A(β)
2

∫ t

0
(ρ0 − ρ− βs)−1−ζ ds

≤ C0β
−1A(β)2(ρ0 − ρ− βt)−ζ .

Finally, we treat the last integral term in (4.10). Precisely, we will show that, for k ≤ 2:

‖Γ(ν(t̃− t̃′))g(t̃′)‖Wk,1
ρ

≤ C0‖u · ∇ωb(t̃′)‖Wk,1
ρ

+ C0‖ω(t̃′)‖2H4(λd(x,∂Ω)≥δ0/2)

+ C0‖ω(t̃′)‖Wk,1
ρ

‖ω(t̃′)‖H4(λd(x,∂Ω)≥δ0/2)

(4.11)

which would then imply

∫ t̃

0
‖Γ(ν(t̃− t̃′))g(t̃′)‖W2,1

ρ
dt̃′ ≤ C0

(
A(β)2 + β−1A(β)2(ρ0 − ρ− βt)−ζ

)
.

Here the constant C0 may change from line to line. It remains to give the proof for the inequality
(4.11). First, by Proposition 3.5, we have

‖Γ(ν(t̃− t̃′))g(t̃′)‖Wk,1
ρ

≤ C0

∑

α

|α|k|gα|eε0(δ0+ρ)|α|,

where gα is given by
gα = λ−1∂n∆

−1(u · ∇ω)α|∂Ω.
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Let Φ = ∆−1(u · ∇ω). By definition, Φ solves
{

∆Φ = u · ∇ω, x ∈ Ω

Φ|∂Ω = 0.

In the rescaled geodesic coordinates, we have gα = ∂z̃Φα(0). Let Φ
b = Φ(x)φb(x), we have

{
∆Φb = 2∇xφ

b · ∇xΦ
b +∆φbΦ+ φbu · ∇ω

Φb|z=0 = 0.

By a direct calculation, we have

eε0(δ0+ρ)|α|gα(t̃
′) = ∂zΦ

b
α|z̃=0

=

∫ ∞

0
e|α|(ε0(δ0+ρ)−z̃)

{
λ2
(
R̃∆Φ̃b

)
α
(z̃)− λ−2

(
2∇xφ

b · ∇xΦ
b − Φ∆φb − φbu · ∇ω

)
α

}
dz̃

= I1,α + I2,α + I3,α + I4,α.

Treating I1,α. As in the proof of Proposition 3.20 for R̃∆, we have

|I1,α| ≤C0|α|2λ2

∫ ∞

0
e|α|(ε0(δ0+ρ)−z̃)|z̃Φb

α(z̃)|dz̃

+ C0λ
2

∫ ∞

0
e|α|(ε0(δ0+ρ)−z̃)

(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃.

First, we use the inequality z̃|α|e−|α|z̃ ≤ e−
1
2
|α|z̃ to get

|I1,α| ≤ C0λ
2

∫ ∞

0
e|α|(ε0(δ0+ρ)− 1

2
z̃)
(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

≤ C0λ
2

∫ δ0+ρ

0
e|α|ε0(δ0+ρ−z̃)

(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

+ C0λ
2

∫ ∞

δ0+ρ

(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃.

For the first term, we use the L1
µ elliptic estimate for the velocity (since the kernel Kα ∈ L1), to

get
∑

α

|α|k
∫ δ0+ρ

0
e|α|ε0(δ0+ρ−z̃)

(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

≤ C‖φbu · ∇ω‖Wk,1
ρ

+ C‖Φ‖Hk+2(λd(x,∂Ω)≥δ0+ρ0).

(4.12)

Now we have

‖φbu · ∇ω‖Wk,1
ρ

= ‖u · ∇ωb − (u · ∇φb)ω‖Wk,1
ρ

≤ C
(
‖u · ∇ωb‖Wk,1

ρ
+ ‖uω‖Hk(λd(x,∂Ω)≥δ0)

)

≤ C‖u · ∇ωb‖Wk,1
ρ

+ C‖ω‖H4(λd(x,∂Ω)≥δ0/2)

(
‖ω‖H4(λd(x,∂Ω)≥δ0/2) + ‖ω‖Wk,1

ρ

)
.

(4.13)
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By standard elliptic estimate, we have

‖Φ‖Hk+2(λd(x,∂Ω)≥δ0+ρ0) ≤C‖φbu · ∇ω‖Wk,1
ρ

+ C‖u · ∇ω‖Hk(λd(x,∂Ω)≥δ0)

≤C‖u · ∇ωb‖Wk,1
ρ

+ ‖ω‖2H4(λd(x,∂Ω)≥δ0/2)
+ ‖ω‖H4(λd(x,∂Ω)≥δ0/2)‖ω‖Wk,1

ρ
.

(4.14)
Combining (4.12),(4.14) and (4.13), we have
∑

α

|α|k|I1,α| ≤ C0

(
‖u · ∇ωb(t̃′)‖Wk,1

ρ
+ ‖ω‖2H4(λd(x,∂Ω)≥δ0/2)

+ ‖ω‖H4(λd(x,∂Ω)≥δ0/2)‖ω‖Wk,1
ρ

)

as claimed in (4.11). The proof for I1,α is complete.

Treating I2,α. For I2,α, we note that the domain of integration is z̃ ≥ δ0 + ρ0 > δ0 + ρ, we have

|α|ke|α|(ε0(δ0+ρ)−z̃) ≤ C.

Thus we have
∑

α

|α|k|I2,α| ≤ C
∑

α

‖∇xΦ
b
α‖L1(z̃≥δ0+ρ0) ≤ C‖d(x, ∂Ω)∇xΦ‖H1(λd(x,∂Ω)≥δ0+ρ0)

≤ C‖d(x, ∂Ω)Φ‖H2(λd(x,∂Ω)≥δ0+ρ0)

≤ C‖φbu · ∇ω‖Wk,1
ρ

+ C‖u · ∇ω‖L2(λd(x,∂Ω)≥δ0),

which is bounded by the right hand side of (4.11). The proof for I2,α is complete.

Treating I3,α. Similarly, for I3,α, we get
∑

α

|α|k|I3,α| ≤ C‖d(x, ∂Ω)Φ‖H1(λd(x,∂Ω)≥δ0+ρ0)

≤ C‖φbu · ∇ω‖Wk,1
ρ

+ C‖u · ∇ω‖L2(λd(x,∂Ω)≥δ0).

This is also bounded by the right hand side of (4.11). The proof for I3,α is complete.

Treating I4,α. For I4,α we have
∑

α

|α|k|I4,α| ≤ ‖φbu · ∇ω‖Wk,1
ρ

.

We rewrite φbu · ∇ω = u · ∇(φbω)− u · ∇φbω = u · ∇ωb − (u · ∇φb)ω. Hence we obtain
∑

α

|α|k|I4,α| ≤ C
(
‖u · ∇ωb‖Wk,1

ρ
+ ‖uω‖Hk+1(λd(x,∂Ω)≥δ0+ρ0)

)

≤ C‖u · ∇ωb‖Wk,1
ρ

+ C‖ω‖2H4(λd(x,∂Ω)≥δ0/2)
+ C‖ω‖Wk,1

ρ
‖ω‖H4(λd(x,∂Ω)≥δ0/2).

This completes the bound for I4,α.

Combining all of the above, we obtain bounds on A(β) in the analytic norm.
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4.3 Sobolev bounds away from the boundary

Finally, we bound the vorticity away from the boundary. Recall that

{
∂tω

i + u · ∇ωi = ν∆ωi

ωi
|∂Ω = 0

(4.15)

Note that by definition, ωi vanishes in the region when λd(x, ∂Ω) ≤ δ0. We perform the standard
energy estimates, for k ≥ 3 so that the standard Sobolev embedding applies, yielding

d

dt
‖ωi‖2Hk + ν‖∇ωi‖2Hk . ‖u‖Hk‖ωi‖2Hk

. ‖ωi‖3Hk + ‖ub‖3Hk(λd(x,∂Ω)≥δ0)
.

Using the elliptic theory for the Biot-Savart law ub = ∇⊥∆−1ωb, we have

‖ub‖Hk(λd(x,∂Ω)≥δ0) . ‖ωb‖Wk,1
ρ

+ ‖ωb‖Hk(λd(x,∂Ω)≥δ0).

This proves that
d

dt
‖ωi‖2Hk . ‖ωb‖3Wk,1

ρ
+ ‖ωb‖3Hk(λd(x,∂Ω)≥δ0)

.

Integrating in time and recalling the iterative norm A(β), we arrive at

‖ωi‖2H4 . ‖ω0‖2H4 + TA(β)2.

This bounds the Sobolev norm in A(β), completing the proof of Proposition 4.1.

4.4 Proof of Theorem 1.1

Finally, we show that our main theorem, Theorem 1.1, follows from Proposition 4.1. Indeed, taking
β sufficiently large in Proposition 4.1, we obtain uniform bounds on the iterative norm (4.9) in
term of initial data, which gives the local solution in W1,1

ρ +H4({λd(x, ∂Ω) ≥ δ0/2}) for t ∈ [0, T ],
with T = β−1λ−2ρ0. In particular, by definition of the iterative norm A(β), we have

‖ω(t)‖W1,1
ρ

+ ‖ω(t)‖H4({λd(x,∂Ω)≥δ0/2}) ≤ C0

for t ∈ [0, T ]. To prove the stated bound (1.9) on vorticity, we note that

‖ω‖L∞(∂Ω) . ‖∂z̃ω‖L1
ρ
+ ‖ω(t)‖H2({λd(x,∂Ω)≥δ0/2}).

It thus suffices to prove that ‖∂z̃ω‖L1
ρ
. ν−1/2. Indeed, similar to (4.10), we bound

‖∂z̃ω(t̃)‖L1
ρ
≤ ‖∂z̃eνt̃Sω0‖L1

ρ
+

∫ t̃

0
‖∂z̃eν(t̃−t̃′)Sf(t̃′)‖L1

ρ
dt̃′ +

∫ t̃

0
‖∂z̃Γ(ν(t̃− t̃′))g(t̃′)‖L1

ρ
dt̃′
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for the same f, g defined as in (4.8). It follows directly from the construction, see Section 3.6, that

the z̃-derivative of the semigroup ∂z̃e
νt̃S satisfies the same bounds as does eνt̃S, up to an extra

factor of (νt̃)−1/2 or |∂
θ̃
|+ ν−1/2. Therefore, using the previous bounds on f(t̃), we have

∫ t̃

0
‖∂z̃eν(t̃−t̃′)Sf(t̃′)‖L1

ρ
dt̃′ .

∫ t̃

0
(ν(t̃− t̃′))−1/2

[
‖f(t̃′)‖W1,1

ρ
+ ‖z̃f(t̃′)‖H1(z̃≥δ0+ρ)

]
dt̃′

.

∫ t̃

0
(ν(t̃− t̃′))−1/2 dt̃′

. ν−1/2.

Other terms are estimated similarly, giving ‖∂z̃ω‖L1
ρ
. ν−1/2 as claimed.
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