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Abstract

The ancestral sequence reconstruction problem is the inference, back in time, of the properties

of common sequence ancestors from measured properties of contemporary populations. Standard

algorithms for this problem assume independent (factorized) evolution of the characters of the

sequences, which is generally wrong (e.g. proteins and genome sequences). In this work, we have

studied this problem for sequences described by global co-evolutionary models, which reproduce

the global pattern of cooperative interactions between the elements that compose it. For this,

we first modeled the temporal evolution of correlated real valued characters by a multivariate

Ornstein-Uhlenbeck process on a finite tree. This represents sequences as Gaussian vectors evolving

in a quadratic potential, who describe the selection forces acting on the evolving entities. Under a

Bayesian framework, we developed a reconstruction algorithm for these sequences and obtained an

analytical expression to quantify the quality of our estimation. We extend this formalism to discrete

valued sequences by applying our method to a Potts model. We showed that for both continuous

and discrete configurations, there is a wide range of parameters where, to properly reconstruct the

ancestral sequences, intra-species correlations must be taken into account. We also demonstrated

that, for sequences with discrete elements, our reconstruction algorithm outperforms traditional

schemes based on independent site approximations.
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I. INTRODUCTION

The ancestral reconstruction (AR) problem is the inference, back in time, of the properties

of common ancestors using as data set the measured properties of contemporary populations

[1]. Ancestral reconstruction rests in a phylogeny, a tree that orders the populations. The

leaves of the tree form the contemporary populations (the observed elements). They are

connected to common ancestors at branching points, or nodes. The goal of AR is to estimate

the internal characteristics of these nodes. Notice that although the construction of this tree

(the phylogeny) is a problem itself [2], for many applications of AR this tree is assumed as

known, and we follow this approach here.

Ancestral reconstruction relies also on a model of evolution. But, since the actual

evolutionary process is rarely known, the proper selection of the model is fundamental for

the outcome. In general, the use of simple models deteriorates the inference faster with

increasing evolutionary time, but more realistic models are more difficult to calculate. It is

in the researcher’s ability to properly fine tune the complexity of the model for a specific

application.

Ancestral sequence reconstruction (ASR) ([3, 4]) is a sub-problem of AR in which the

characteristics of the system under study are described by a sequence of elements. These

elements are encoded by character states (residues). In biological applications, these characters

are usually defined within a finite set, such as nucleotides for genome sequences or amino-acids

for proteins. In this case, the main goal is to infer each of these characters for each of the

sequences that conform to the ancient populations.

Modern methods for ASR are based on the Maximum Likelihood (ML) framework [5, 6].

In this context the elements of the sequences are chosen, given the model of evolution and

a phylogenetic tree, maximizing the probability of occurrence of the data (sequences) at

the bottom of the tree. However, even in systems of moderate sizes, the huge number of

possible configurations makes the problem intractable in general and one must introduce

extra assumptions to approach real problems. A widely used hypothesis considers the

evolution of the sequences as single site independent processes [3]. This simplification reduces

the computational cost of the inference, and is at the basis of every advanced algorithm

currently in use ([6, 7]). These algorithms may vary by type of biological information, i.e.

the evolutionary model and the tree used, and on the strategy to reach the globally optimal
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solution of the problem. For example, marginal and joint reconstruction or empirical and

hierarchical Bayesian method [8]. The assumption of single site evolution, however, has been

unavoidable, and its effect on the ASR remains unclear.

We know that in many biological scenarios this assumption is not correct. For amino acids

sequences of proteins there is an abundant evidence of epistasis [9, 10], due to structural

constrains imposed by the three-dimensional fold of the protein [11, 12]. In the case of

genome sequences, epistasis is reflected in the distribution over genotypes in a population

evolving with sufficient amount of exchange of genetic material (recombination, or any form

of sex), a phenomenon called Quasi-Linkage Equilibrium and discovered by M. Kimura

[13, 14]. Then, it is already well accepted that global co-evolutionary models are necessary to

correctly represent relevant statistical features of biological sequences ([15–17]). They have

been fundamental in the prediction of non-trivial structural contacts in the protein fold [18],

designing novel functional protein sequences[19] and the inference of gene interactions [20].

Of course the use of the single-site approximation is not exclusive of the ASR methods. It

has been identified as a limitation in other important inference problems in biology. This

simplification has been shown to decrease the accuracy of the inferred phylogenetic trees in

the presence of non-independent sites [21, 22]. However, data sets with strong functional

or structural constraints are often analyzed within phylogenetic frameworks that assume

independence among sites. Moreover, one of the most important computational problems

in biology: the construction of sequence alignments is typically addressed through profile

models, which capture position specificities like conservation in sequences but assume an

independent evolution of different positions. A recent attempt to overcome the limitations of

profile models and to include co-evolution among positions was carried out by Muntoni et al

in [23]. The search for fast statistical tools, able to improve over the single site approximation

is a research line that is still in its infancy.

In this contribution, we assess the impact of intra-species traits correlations on the

performance of ancestral reconstruction. We first study the ASR problem for sequences

whose elements are continuous characters co-evolving through an Ornstein-Uhlenbeck (OU)

process on a phylogenetic tree. Although, at first, this model may seem distant from

realistic biological applications, it has been used in the field of phylogenetic comparative

methods (PCM) [24, 25] and, in a recent contribution [26], to extract intrinsic signals from

hierarchically correlated data. At the same time it opens the way for algorithmic solutions
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as well as analytical calculations clarifying the relevance of the parameters of the model

and the affordability of the technique. With this understanding, we extend the approach

to the more biologically relevant case of sequences defined on discrete values. We will show

that the main picture devised for the OU process continues to be valid, and also that our

reconstruction process outperforms standard methods that assume single site evolutionary

processes. Notice that, as far as we know, a study about the robustness of current ASR

methods to the violation of the hypothesis of independent substitutions has not been carried

out. However a similar study exists for the phylogenetic inference problem [22] where the

authors found that, for all the methods studied, even small amounts of dependencies can

lead to significant errors in estimating the actual topologies. Then, it is very plausible that

ASR methods present similar robustness problem. As we will see below our results point

into this direction.

The rest of the document is organized as follows. In section II we define mathematically

the problem. Then, in III we show how this formalism translates into a Bayesian framework

assuming a co-evolutionary model with an Ornstein-Uhlenbeck dynamics. This section

includes an analytical expression for the error in the inference that successfully compares

with results from numerical simulations. Next we show how to exploit the mapping from

discrete to continuous variables proposed in [27] to use the results from the previous sections

to recover sequences on a finite alphabet subject to a stochastic dynamics. Finally we present

the conclusions of our work.

II. STATEMENT OF THE PROBLEM

Let us consider a set of observed sequences {Xm}m=1,...,M phylogenetically related by

an evolutionary process on a tree T that we will always assume known. Each sequence

X = (X1, . . . , XL) has length L and character states Xi take values on a discrete alphabet

X with size q = |X|. For genome or protein sequences, the alphabet would be that of the 4

bases of DNA or the 20 amino acids respectively. We assume the sequences to be aligned,

conforming a matrix of dimensions M × L called multiple sequences alignment (MSA).

These contemporary sequences correspond to the terminal nodes of the tree (see Fig.

1) and are assumed to be the result of an evolutionary process initialized from a common

ancestor at root X 0. The evolution is mathematically defined by a propagator P (Xj|X i,∆tij)
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representing the probability of observing sequence Xj as the result of the evolution from X i

in a time ∆tij. The precise form of the evolutionary propagator, as well as the inference of

the phylogenetic tree are problems themselves, but to the purpose of this research, they are

considered known.

Our goal is to infer the set of ancestral sequences at the internal nodes of the tree {Am}

from which the observed contemporary sequences {Xm} evolved. Bayesian methods use to

compute the maximum-a-posteriori (MAP) estimate, by maximizing the joint probability of

ancestral configurations given the contemporary sequences and the details of the evolution

(tree and propagator), which could be evaluated via Bayes rule :

P ({Am}|{Xn}) ∝ P ({Xn}|{Am}) ∗ P ({Am}) (1)

Furthermore, it is common to assume an uninformative prior distribution for sequences

{Am} by taking P ({Am}) uniform, and the inference becomes the calculation of the Maximum

Likelihood Estimate (MLE) given by

{Am}∗ = max
{Am}
{P ({Xm}|{Am})} (2)

Most efficient methods to compute the likelihood function on a tree are based on a

dynamic programming algorithm called Felsenstein’s pruning algorithm [2], which exploits

the recursion equation

P n({Xm}|An) =
∏

m∈C(n)

∑
Am

Pm({Xm}|Am) P (Am|An)

 (3)

where P n represent the conditional probability of observing all existing data sequences that

share node n as an ancestor given that the sequence of this ancestor is An. The term C(n)

denotes all children nodes of node n, and P (Am|An) is the evolutionary propagator. Then, to

compute the likelihood of the observed data, as a function of the sequence configuration at each

internal node, the expression (3) is evaluated starting from the leaves, where P n(An) = δAn,Xn ,

to the root of the tree.

Since, for systems of realistic sizes, the number of possible sequences at the internal

nodes of the tree is huge, the evaluation of the likelihood via the recursion relation (3) is

intractable, and therefore the solution sought through an optimization scheme impossible.

To reduce the phase space, the standard assumption is to consider an independent-site
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approximation, where each site of the sequences evolves independently of all others. This

allows to write equation (3) for each sequence site, being the observed data at leaves of

the tree a single column of the aligned sequences. Therefore, P (Aj|Ai,∆tij) is factorized

leading to a probabilistic reversible model given by character states frequencies Pa(Aa) and

propagator Pa(A
i
a|Aja,∆tij) which describe the replacement of character in the a position

of the sequence at node j, Aja, by a character in the same position in the sequence at node

i, Aia, after an evolutionary time ∆tij. The selection of the Pa(A
i
a|Aja,∆tij) depends on the

nature of the problem, and may reflect extra biological information introduced in the model.

However, as we mentioned in the introduction, co-evolutionary processes could be relevant

both in proteins families and in genome sequences. In this work we are going to avoid the

assumption of independent-site evolution, and use a Bayesian formalism, considering instead

that each sequence is better described by a pairwise Potts model :

P (X) =
1

Z
exp

{ ∑
1≤i<j≤L

λij(Xi, Xj)

}
(4)

where statistical couplings λij between sites encode the epistatics signal of the system. This

model has been widely used in biological systems [15], and it is the least biased statistical

model that reproduces the empirical frequencies of characters by site and by site pairs, which

are the most common statistical observables for biological data.

III. MULTIVARIATE ORNSTEIN-UHLENBECK DYNAMICS

All phylogeny based method assume that a single evolutionary history underlies the

sample of the sequences under study, then recombination and gene flow are ignored because

these may give rise to graphs that are no longer trees but networks. Therefore the forces of

evolution consistent with our framework are those that act on the single genotype level as

selection, mutations and genetic drift. In this context we propose to use a multivariate OU

dynamics, which can take into account selection when the potential is considered to be a

fitness proxy, but not changes in selection rules on time, because this would invalidate the

assumption of stationary evolution. However, it may consider changes in the mutation rate

when times are measured in terms of a molecular clock rather than in physical time.

Although the discrete nature of biological evolution is an admitted fact since the discovery

of the genetic code, there are good reasons to study AR problems in continuous variable
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models as the multivariate OU dynamics. First, correlation between traits could be present

also at the phenotypic level, where characters are real valued quantities, as body mass.

Second, even at the gene level, there are some tricks that help to turn discrete into continuous

variables [27], thus rendering the continuous approach applicable to the discrete case. And,

finally, continuous variables may simplify the problem enough to allow for a precise analytical

description, which can illustrate the relevance of the parameters of the problem.

A. Formalism

We will first study a model of phylogenetic tree; one in which each specie is described by

a continuous vector ~x ∈ RL in L dimensions. Furthermore, we assume that the evolution of

these characters follow an OU process (see details in A 1) . For this, continuous degrees of

freedom evolves under a potential V (~x) = 1
2
~xTC−1~x leading to the stationary distribution:

P 0(~x) ∝ exp−1

2

{
~xTC−1~x

}
(5)

For and OU process like this the corresponding propagator, i.e. the solution of the

Fokker-Planck equation, is given by :

P 0(~xj|~xi; ∆tij) ∝ exp−1

2

{
~xTj Σ−1

ij ~xj + ~xTi Λ2
ijΣ

−1
ij ~xi − 2~xTi ΛijΣ

−1
ij ~xj

}
(6)

where

Σij = C −ΛijCΛij, Λij = e−C
−1γ∆tij

and where C is the correlation matrix, ∆tij is the time distance between sequences ~xi and

~xj and γ is the characteristic time-scale governing the dynamics.

The evolution model is schematized in Figure 1. It is worth clarifying the conventions

used for the notation. We will denote by:

• lowercase vector variables (i.e. ~x, ~xi, ~xj, ~x
h
1 , . . .), the real valued vector of dimension L

defining the state of the given species.

• uppercase vector variables (i.e. ~X, ~A, ~D, . . .), the concatenation of many state vectors,

for instance as the collection of all sequences ~X = (~x1, . . . , ~xN).

• bold uppercase (i.e. Σij ,C,Λij) L× L matrices matrices acting at species level, i.e.

over variables ~xi.
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A

D xi

H

xo

x1
x2

xi =

h

...

FIG. 1. Schematic representation of the evolutionary process in a binary and balanced tree T with

height h. The process starts at the root node 0 with a configuration ~x0 sampled from P 0(~x0). The

dynamic consists in independent realizations of the OU process on all branches from ancestral

nodes to its descendant over times corresponding to the branch length. The observable data only

consist of configurations of the leaf nodes ( ~D), while configurations of ancestral nodes ( ~A), remain

unknown and must be inferred.

• uppercase blackboard bold matrices (i.e. K,G, . . .) as block matrices at tree level, made

of the composition of many species level matrices.

• indices i, j to run over the tree nodes, i.e. over the species.

• indices a, b to run over entries of the state vector or concatenated vectors.

With these assumptions, the probability of a configuration ~X of the full system (internal

nodes configurations and leaves) can be constructed by using the stationary distribution (5)

and the propagator (6). For instance, for the case of a tree with binary topology,

P 0( ~X) = P 0(~x0)P 0(~x1|~x0)P 0(~x2|~x0)P 0(~x3|~x1)P 0(~x4|~x1) . . .
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For an arbitrary tree, the probability P 0( ~X) can be shaped as

P 0( ~X) =
e−H

0( ~X)

Z0
(7)

invoking the Boltzmann distribution of a system with a pairwise Hamiltonian

H0 = −
∑
i<j

~xTi Jij~xj −
N∑
i=1

~xTi Hi~xi. (8)

The interaction terms are L× L matrices

Jij =

ΛijΣ
−1
ij if i and j are in contact,

0 otherwise.
(9)

and there is a Gaussian local interaction given by

Hi = −1

2
·


C−1

[
1 +

∑
j∈c(0)

Λ2
0j

1−Λ2
0j

]
if i = 0,

Σ−1
a(i)i if i is a leaf,

C−1

[
1

1−Λ2
a(i)i

+
∑

j∈c(i)
Λ2

ij

1−Λ2
ij

]
otherwise.

(10)

where c(i) and a(i) refers to child and ancestral nodes of nodes i.

Not surprisingly, the Gaussian nature of the Ornstein-Uhlenbeck survives for the whole

tree, and the equilibrium distribution of the concatenated variables ~X is also a Gaussian

P 0( ~X) ∝ exp(−1
2
~XTH ~X), with inverse covariance matrix

H = 2


H1

1
2
J12 . . . 1

2
J1N

1
2
J21 H2 . . . 1

2
J2N

. . . . . .

1
2
JN1

1
2
JN2 . . . HN

 (11)

A Gaussian distribution could be considered all bout non-problematic, at this point. However,

there are a couple of good reasons to keep the system as an additive pairwise interaction

model. First, although treatable, the matrix H could run uncomfortably large, since its size

is (L × N)2, L being the size of the sequences, and N the number of species in the tree.

Notice that for discrete models L could be particularly large, since a 21 one hot encoding is

normally used to codify discrete amino acid alphabet into continuous variables, implying that

L is 21 times larger than the real amino acid sequence. The second reason is that dealing

with a pairwise model brings to bear the statistical mechanics toolbox to compute exactly or

approximate the inference problem.
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B. Inference problem

In the context of ASR, tree-nodes are decomposed in two groups, leaves and internal

nodes: ~X = { ~A, ~D}, with ~A being the internal (ancestral) nodes configurations and ~D being

the leaves (data) configurations (see Fig. 1). The MAP estimate of ancestral sequences

configurations can be computed by maximizing the posterior distribution

P ( ~A| ~D) =
P 0( ~X)

P ( ~D)
∝ P 0( ~A, ~D) ∝ exp

{
−Hd( ~A)

}
(12)

over internal sequences ~A, where P 0( ~A, ~D) from eq. (7) is the equilibrium distribution for

the whole system, but with the leaves evaluated at the observed values ~D.

The term in the exponent, therefore, is

Hd( ~A) = −
∑

1≤i<j≤Nh

~xTi Jij~xj −
Nh∑
i=1

(
~xTi Hi~xi + ~hi~xi

)
, (13)

and the fields and couplings {Jij,Hi} are equal to those of H0, and

~hi =


∑

j∈c(i) ΛijΣ
−1
ij ~xj if i is in contact with leaf ~xj,

~0 otherwise.
(14)

To maximize the posterior distribution over hidden sequences is equivalent to finding the

mode of the distribution P ( ~A| ~D). The posterior (12) can be rewritten as:

P ( ~A| ~D) ∝ exp
{
~ATK ~A+ ~ST ~A

}
(15)

where K is a block matrix, corresponding to the part of the matrix H (eq. (11)) that acts

over the hidden nodes, with elements

Kij =


1
2
Jij if i 6= j,

Hi if i = j.
(16)

and ~S is a concatenation of vectors ~hi defined in (14).

As (15) is a Gaussian distribution it’s mode match with its mean and is given by:

µ̂ = −K−1~ST

2
(17)
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i.e., the mode of the posterior distribution can be computed directly from the expression

(17). Unfortunately, for practical applications it implies the inversion of a matrix K of very

high dimensions dim(K) = L×Nh, with L the length of the sequences and Nh the number

of internal nodes. Gaussian message-passing algorithm (GaMP) [29–31] could be adapted to

overcome this issue, which correctly solves the problem on trees, reducing optimization to

compute max-marginals

Mi(~µ
i) = max

~A

{
P d( ~A) : ~xi = ~µi

}
(18)

Then, the set of ancestral configurations that jointly maximizes the posterior distribution

(15) is given by
{
~µ1, ~µ2, . . . , ~µNh

}
. Adaptation of GaMP update rules to compute of max-

marginals yields to max-product update rules [31], details of the algorithm obtained are

shown in appendix (A 2). In what follows, we use equation (17) to compute the accuracy of

this estimator analytically, and (18) through the GaMP algorithm, to efficiently evaluate

(17) without inverting the K matrix.

C. Evaluating estimator accuracy via mean square error

It is important to check whether the inference process defined above provides a solution

that does not only maximize the posterior distribution, but that actually defines a set of

inferred sequences which are similar to the actual one. We measure this similarity by the

distance

d̂(C,C0) =
〈
|| ~M − ~A||2

〉
~M, ~A

=

〈
L×Nh∑
b

(Mb − Ab)2

〉
~M, ~A

(19)

where C encodes the information about the actual co-evolutionary process, and therefore the

joint statistics of the real ancestral sequences ~A and the observed ones ~D defined by equation

(7) while C0 has a structure that is defined by the researcher before the start of the inference

and is not necessarily equal to C as schematized in Figure 2. ~A =
[
~x h1 , . . . , ~x

h
Nh

]
is the

concatenated vector of true ancestral sequences and ~M = [~µ1 . . . ~µNh ] are the concatenated

inferred configurations at internal nodes, for a realization of the data ~D.

The estimator (17) can be rewritten as

11



µ̂0(C0, ~D) = −K−1
0 ∗ A0

~DT

2

to make explicit it’s dependence on the data ~D and where A0 is a block matrix dependent of

the correlation matrix C0 and the tree topology

A0
i,j =

Λij(C0) ∗ Σ−1
ij (C0) if i is an external hidden node in contact with leaves node j .

0 otherwise

(20)

We exploit different C0 to analyze the effect on the estimator accuracy when, for instance,

a diagonal approximation of C is used for the reconstruction, as is the case of the independent

site evolutionary models used by Pupko’s algorithm [6]. In what follows, the block matrices

with subscript 0 indicate that they are a function of the correlation matrix C0.

A D

Ao

Dl

Dm

Dn

P(A,D)

M o

μ(Co,D)

Co

Co

Co

C

C

C

Inference with Co

Ai

Aj

Ak k

M i

OU process with C

M

Proceso de OU con Inferencia con 

..
.

OU process with Inference with

FIG. 2. Schematic representation of the inference process. On the left, ancestral sequences are

generated by an Ornstein-Uhlenbeck process with equilibrium covariance C. On the right, the

reconstruction of the tree is obtained by maximizing the likelihood of a similar process, albeit with

a potentially different covariance C0. For a perfect reconstruction ~M = ~A.

In equation (19) the sum goes over each of the L×Nh elements of the concatenated vector

and the average is done by the joint distribution P ( ~A, ~M) :
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d̂(C,C0) =
∑
b

∫
(Mb − Ab)2P ( ~A, ~M)d ~Ad ~M

The joint distribution P ( ~A, ~M) can be obtained from:

P ( ~A, ~M) =

∫
d ~Dδ[µ̂0( ~D)− ~M ]P ( ~A, ~D) (21)

with P ( ~A, ~D) as the full probability of all sequences: ancestral ( ~A) and leaves ( ~D) concate-

nated vectors. P ( ~A, ~D) was defined in (7) and can be rewritten as

P 0( ~X) = P
(
~A, ~D

)
∝ exp

{
~AK ~AT + ~A ∗ ~ST − 1

2
~DG ~DT

}
(22)

where the block matrix K is defined in (16) and vector ~S is a concatenation of vectors ~hi

defined in (14). Finally, the elements of the block matrix G are given by

Gi,j =

Σ−1
a(i),i if i = j.

0 otherwise
(23)

Then, to evaluate equation (21) we use expression (22) and the exponential representation

of Dirac’s delta function:

P ( ~A, ~M) =

∫
d ~Dδ[µ̂0( ~D)− ~M ]P ( ~A, ~D)

=

∫
d ~D

∫
d~q exp

{
i ∗ ~q ∗ (µ̂0( ~D)− ~M)T

}
∗ P ( ~A, ~D)

= exp
{
~AK ~AT

}∫
d~q exp

{
−i ∗ ~q ∗ ~MT

}∫
d ~D exp

{
−1

2
~DG ~DT + ~DAT ~AT − i

2
~q ∗ K−1

0 A0
~DT

}
(24)

such that (see details in A 3):

P ( ~A, ~M) ∝ exp

{
−1

2

[
−2 ~AK ~AT + 4 ~AQT

1 Q−1
0 K0

~MT + 4 ∗ ~MK0Q
−1
0 K0

~MT
]}

(25)

where Q = AG−1AT , Q0 = A0G−1AT0 and Q1 = A0G−1AT .

The equation (25) can be resumed as

P ( ~A, ~M) ∝ exp

{
−1

2
~ZV−1 ~ZT

}
(26)
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with ~Z =
[
~A, ~M

]
and

V−1 =


−2K 2QT

1 Q−1
0 K0

2K0Q
−1
0 Q1 4K0Q

−1
0 K0

 (27)

Equation (26) can be seen as a bivariate normal distribution where the variables are given

by the pair of concatenated vectors
[
~A, ~M

]
. The covariance matrix for this distribution

Vij =
〈
~Zi, ~Zj

〉
allow us to compute terms in the mean square error defined by the equation

(19) if we know V11 =
〈
~A · ~AT

〉
, V22 =

〈
~M · ~MT

〉
and V12 =

〈
~A · ~MT

〉
. For this we invert

V−1 obtaining:

V =


−[2K + Q]−1 1

2
[2K + Q]−1 ∗ QT

1 K−1
0

1
2
K−1

0 Q1[2K + Q]−1 1
4
K−1

0

[
Q0 − Q1[2K + Q]−1QT

1

]
K−1

0

 (28)

Then, we simply evaluate the expression

d̂(C,C0) =

L×Nh∑
b

([V11]bb − 2 ∗ [V12]bb + [V22]bb) (29)

Notice that, the mean square error from equation (29) is a function of both, the correlation

matrix C that defines the potential in the direct OU process and the matrix C0 which

represents the approximate correlation matrix used for the inference. If C0 is diagonal, we

have an independent site approximation. On the other hand, if C0 ≡ C we are inferring

with the actual correlation for the evolutionary process.

IV. COMPARISON WITH NUMERICAL EXPERIMENTS

In order to test our results, we extract the direct process correlation C randomly from a

Wishart distribution:

CL×L ∼ W (k,P ) ∝ |C|(k−L−1)/2 exp

{
−1

2
Tr(P−1C)

}
where parameters k > L − 1 and P stand for the number of degrees of freedom and the

scale matrix respectively. The expected value for C is E(C) = k ∗ P and the variance of its
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elements is given by

V ar(Cij) = k ∗ (p2
ij + pii ∗ pjj)

If we set P = I, where I is the identity matrix, then C/k → I for k � L. This makes it

possible to sample correlation matrices with different levels of covariance by tuning the ratio

k/L, which allows us to understand when it becomes relevant to go beyond the independent

site approximation (zero off-diagonal correlation matrix).

In order to assess the relevance of neglecting the covariance of the characters in the

ancestral reconstruction process, we will evaluate d̂(C,C0) at two extreme cases:

d̂1 = d̂(C,C) d̂0 = d̂(C,C0 = diag(C))

where in the second case the inference process is carried out with a factorized assumption on

the distribution of the characters, and therefore with a diagonal C0. For a fixed C, both d̂1

and d̂0 are monotonically increasing functions of the speed of the evolutionary process γ (not

shown in figures), starting from d̂ = 0 when γ = 0 up to the average distance between two

uncorrelated equilibrium configurations when γ =∞, with d̂0 > d̂1 at every γ, as expected.

In Figure 3 is shown the ratio between d̂0 = d̂(C,C0 = diag(C)) and d̂1 = d̂(C,C0 = C)

as function of the time-scale parameter γ for a binary tree with height h = 7 and for a direct

potential C sampled from a Wishart distributions where k = L = 10. The plot was also

reproduced numerically using GaMP from 100 simulations of the evolution-inference process

for each γ value.

Not surprisingly, extreme cases for the typical time-scale γ = 0 and γ =∞ produce no

difference (d̂1 = d̂0) in the accuracy of the estimator using either C or C0. One of the cases

γ → 0 means that the process is too slow to produce any changes in the sequences along the

tree, and all observed leaves and all hidden nodes have the same value and can be equally

(trivially and perfectly) reconstructed independently of the covariance assumed. The other

case, γ →∞ corresponds to an extremely fast evolutionary process, such that all nodes are

equilibrium samples, and there is no information whatsoever in the observed data. In this

limit both methods are equally bad.

We can find effective values for the parameter γ where the two regimes described above

start to be noticeable. We know that the correlation between two sequences linked by an

OU process is given by:
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Λ∆tC =
L∑
a

ρ−1
a e−ρa∆t∗γ|sa〉〈sa| =

L∑
a

ρ−1
a e−∆t/τa|sa〉〈sa|

with {ρa, 〈sa|} eigenstates of C−1 and τa = (γ ∗ ρa)−1, then we can consider that two

configurations are uncorrelated when ∆t � max(τa) = 1
γ∗ρmin

or γ � 1
∆tρmin

. Inversely an

strongly correlated regime occur when ∆t� min(τa) = 1
γ∗ρmax

or γ � 1
∆tρmax

. These criteria

could be generalized for a tree if we set ∆t = ∆tav where ∆tav is the average time between

connected nodes in the tree. Then we have γ � 1
∆tavρmin

= γd for uncorrelated regime and

γ � 1
∆tavρmax

= γc for the strongly correlated regime.

The interval where phylogenetic-based inference methods are relevant is

1

∆tavρmax
≡ γc � γ � γd ≡

1

∆tavρmin

In this regime, the data is neither too correlated (strongly correlated regime) around the

tree as to make inference unnecessary or too uncorrelated, making the phylogeny irrelevant

(uncorrelated regime). In Figure 3 this interval is signaled with vertical lines, and it coincides

with the region where the full correlated nature of the process more significantly outperforms

the factorized inference d̂0
d̂1
> 1.

Notice that the ratio has two maximums that are originated by different mechanisms. The

first one reflects the value of γ at which the system instantly recognizes de difference between

the two matrices in the expressions pre-multiplied by the factor γ as Λ = exp−γC−1 and

Λ0 = exp−γC−1
0 . This effect has different proportions at each level in the tree as is shown

in Figure 4 where we plot the ratio between the inference errors but for different levels of the

tree d̂l0 y d̂l1. These errors are computed as in equation (29), but using in place of V a matrix

formed only by the blocks associated with the corresponding level l. For internal nodes, the

effective value of γ is higher as soon as the node is more distant from the leaves.

At larger values of γ, the fraction d̂0
d̂1

starts to grow with γ because the differences between

Λ and Λ0 becomes more important. This growth saturates at the second peak of the plot,

from this point the system moves toward the uncorrelated regime and Λ ≈ Λ0 → 0. Again,

this exponential decay from the maximum emerges first for more internal levels of the tree.
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FIG. 3. Ratio between d̂0 and d̂1 as function of the parameter γ for a binary tree and homogeneous

topology with ∆t = 1.0 and height h = 7. The OU potential C is sampled from a Wishart

distribution with P = I and k = L = 10. Solid line corresponds to the evaluation of the equation

(29), whereas points are the result of averaging 100 numerical simulations of the evolution and

inference (using GaMP) for each vale of γ. The verticals dashed lines represent the borders of the

interval for time-scale parameter where the inference results non-trivial.

V. SEQUENCES WITH DISCRETE CHARACTERS

Unfortunately, when dealing with sequences with discrete characters, we don’t have

a global co-evolutionary propagator for the statistical model of equation (4). Then, it’s

impossible to derive and explicit form of the joint probability of ancestral configurations given

the contemporary sequences of equation (12). However, instead of the common factorization

of the propagator, we may keep the global nature and tractability of the problem transforming

the Potts model over discrete variables (4) into a Gaussian distribution, and to assume an

OU dynamics as an approach to the evolutionary process. In this way, we may exploit the

same inference scheme described for continuous traits in III B. In what follows, we expand

on this idea.

We know that it is possible to represent a Potts model (4) unambiguously in the space

of the frequencies from the correlation matrix {C}. In this space we can also define a

multivariate Gaussian model that describes the same statistics of the discrete model but for

continuous variables [27]. In practice, from a set of M sequences sampled by the pairwise
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Potts model, we first transform each sequence of length L and alphabet {1, ...q} toward

an array of length q ∗ L where each element take values on binary alphabet {0, 1}. Then,

each original sequence site is mapped to q binary variables, taking value 1 if the position

corresponds with the original state of the residue and 0 for the rest of the positions. The result

is a new alignment with ones and zeros keeping the same structure from the original alignment

but now with dimensions M × (q ∗ L). These binary variables could be approximated by

real valued variables, which allow the computation of the covariance matrix C needed to

parametrize the multivariate Gaussian distribution by

P 0(~x) ∝ exp−1

2

{
~xTC−1~x

}
(30)

The Gaussian distribution obtained can be easily propagated using an Ornstein-Uhlenbeck

process. That is, we can build from the potential C, the propagator P 0(~xj|~xi; ∆tij) given by

the equation (6), and use it as the propagator of the Potts model. This propagated statistics

is expected to be comparable to the one obtained from simulating the original Potts model

with a Monte Carlo (MCMC) procedure.
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FIG. 4. Ratio between d̂l0 and d̂l1 as function of the parameter γ for different levels l, for a tree

with binary and homogeneous topology with ∆t = 1.0 and height h = 7. The OU potential C is

sampled from a Wishart distribution with P = I and k = L = 10. Solid line correspond to the

evaluation of the equation (29) but using in place of V a matrix formed only by blocks associated

with the level l. Points are the result of averaging 100 numerical simulations of the evolution and

inference (using GaMP) for each vale of γ.
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Then, we could ask whether it is possible to reconstruct the discrete configurations of

the internal nodes of the tree if the direct evolutionary process is carried out by a Monte

Carlo dynamics for a Potts’ model (4). Pott’s parameters λ, for sequences with length L

and alphabet size q, are chosen randomly from a Gaussian distribution with mean µλ > 0

and standard deviation σλ � µλ. The connectivity c between sites of the sequences could

take different values in order to simulate regimes with different covariance relevance.

Given a tree structure, the direct evolutionary process starts sampling the root con-

figuration from (4) via MCMC. Then, each bifurcation event in the tree starts from the

configuration at the ancient node and on average ∆t ∗ L ∗ δ MCMC changes are proposed

with Metropolis acceptance rate, leading to a new configuration at the child node. Here ∆t is

the tree branch length between two nodes and δ is the time-scale for the MCMC simulation

from which we regulate the phylogeny. From sampling tree-nodes via MCMC we obtain

at leaves the discrete data configurations {Xm} and as internal nodes sequences which we

would like to predict {Am}.

As we already discussed in the introduction, most ASR algorithms of the literature assume

that sequences follow a single-site evolutionary model. Within this class, we will use an

efficient dynamic programming algorithm developed by Pupko et al.[6] (included in FastML

program) as a benchmark to compare our results. For this, we use the independent site

model of evolution, introduced by Felsenstein [2], with constant mutation rate µ given by

Pi(A1|A2,∆t) = e−µ∆tδA1,A2 +
(
1− e−µ∆t

)
Pi(A1) (31)

This model describes, in a time interval ∆t, no mutations with probability e−µ∆t and

one or more mutations with probability 1 − e−µ∆t. In this last case, a specific character

states is selected according Pi(A1). Details of our implementation of the algorithm appear in

appendix (A 4 a). In the next section, we are going to show results for the reconstruction

process carried out with both, the FastML algorithm and the continuous OU approximation

discussed above.

Notice that the OU propagator needs both C and γ. C is obtained from an i.i.d sample

of the Potts model, which is transformed to its continuous version as described above. On

the other hand, the time-scale parameter γ is inferred by maximizing the likelihood of the

data points at leaves of the tree as is described in appendix (A 4 b).
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A. Numerical Results

We generate data via MCMC simulations, as was described in the previous section. For

this, we consider a tree of binary and homogeneous topology with h = 9 bifurcations events.

For a system with L = 10 and q = 2, a Potts model of connectivity c = 3 is designed with

ferromagnetic couplings Gaussian distributed with mean µJ = 0.8 and standard deviation

σJ = 0.2. For simulations, we use different time-scale δ in the range [0.2, 11.2], which

allows us to explore different regimes of correlation between nodes configurations. To avoid

statistical noise, we repeat the sampling procedure 100 times for each value of δ. Then we

applied two different reconstructions strategies: continuous OU approximation with either

the full covariance matrix C (MP1) or with a matrix resulting of neglect sites covariance

diag(C) (MP0) and Pupko’s ML strategy with Felsenstein evolutionary model of equation

(31) (FastML).

In Figure 5 we present results of the different strategies. We use the hamming distance

between real and inferred ancestral sequences to evaluate the performance of the predictions.

As can be seen, the performance between the different no-correlated approximations (MP0

and FastML) almost coincide, while MP1 is consistently better than both approximations.

The ratios between the hamming distances obtained from methods MP0 or FastML with

hamming distances from MP1 are shown in the inset plot. This illustrates that the major

gain in the prediction came from using MP1 instead of FastML and at intermediate values of

δ where node configurations have enough divergence but are still correlated.
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FIG. 5. Mean hamming distance between all true sequences and those obtained after the inference

method. Each point correspond to 100 sampling-inference process averaged. The length of the

sequence vectors was L = 10 and the alphabet size q = 2, the average site connectivity is c = 3, the

number of ancestral sequences M = 511 as consequence of a binary non-homogeneous tree with

K = 9 bifurcations processes. Label MP0 correspond to the case when inference is carried out

using continuous approximation neglecting covariance between sites, MP1 to the case when the

inference is done using the full correlation matrix C and FastML is the reference algorithm for

maximum-likelihood reconstruction developed by Pupko [6]. The inserted plot indicates the ratio

between hamming distances from MP0 or FastML with hamming distances from MP1 approach.

VI. CONCLUSIONS

In this work, we have studied the reconstruction of ancestral sequences described by

global co-evolutionary models and study the impact of the intra-species correlations in

the performance of the inference process. We studied two types of sequences. Sequences

of continuous variables that evolved according to an Ornstein-Uhlenbeck dynamics on a

finite tree, and sequences of discrete variables defined by a Potts model and sampled on

trees via Monte Carlo simulations. Exploiting the Gaussian character of the Ornstein-

Uhlenbeck process, we were able to design a fast algorithm that provides a MAP estimate

of the ancestral sequences and takes into account the covariance between variables, i.e. our
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algorithm goes beyond the standard independent site approximation. We were also able

to analytically quantify the precision of our reconstruction and showed that this analytical

computation describes correctly the results from the algorithm in artificial data sets. Then,

exploiting a known projection of the Potts model on a multivariate Gaussian distribution,

we tested our algorithm in artificial discrete data sets. Also, for this kind of models, our

results support the idea that there is a wide range of parameters for which the intra-species

correlation significantly affect the inference process. We finally show that in this regime, our

algorithm outperforms a traditional reconstruction method based on the independent site

approximation.

A different, but connected issue, is the ability to distinguish, from a sequence alignment,

which correlations are originated by phylogeny and which ones are originated by epistasis. In

the context of Inverse Statistical Physics of biological sequences, global co-evolutionary models

are used to describe sequence variability in ensembles of homologous sequences. This allows

to unveil statistical constraints acting on this variability and relate them to biological features.

Potts models in Direct Coupling Analysis (DCA) have found widespread application in protein-

structure prediction from sequences [32, 33]. However, one of the basic assumptions of this

global statistical modeling is that sequences form an, at least, approximately independent

sample of an unknown probability distribution, which is to be learned from data. In the case

of protein families, this assumption is obviously violated by phylogenetic relations between

protein sequences. In [28] it was shown that phylogenetic correlations between sequences lead

to a changed residue-residue correlation structure, represented by a fat tail in the eigenvalue

spectrum of the data covariance matrix. Furthermore, the phylogeny has a global influence

on all the parameters of the model and it could impact in those applications that use DCA

as a sequence model.

Notice that, the equilibrium distribution reached by the OU process is the Gaussian

version of the DCA model, where the covariance matrix C is a quadratic potential that

represents selection forces. Then, in the light of results of [28], we must consider that when

we model biological sequences, the phylogenetic correlations interfere in the covariance signal

empirically estimated from data and this not properly represent the phenotipic constrains

resulting from natural selection. It is therefore necessary to disentangle covariances in

the data corresponding to their multivariate Gaussian equilibrium distribution from those

resulting from the historical correlations. To solve this problem [26] developed a methodology
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which leads to a clear gain in accuracy in the inferred equilibrium distribution. However, in

our ancestral reconstruction method, we assume that this covariance matrix between residues

is known. A future step is to couple both inference methods.
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Appendix A: Description of technical details

1. Ornstein-Uhlenbeck dynamics

Let us consider a system characterized by L continuous degrees of freedom and whose

state is fully described by an L-dimensional vector ~x ∈ RL. We suppose that this system

evolves under the potential V (~x) = 1
2

{
~xTJ~x

}
being J a symmetric and positive definite

coupling matrix, and according to the Langevin equation

γ−1 d~x

dt
= −J~x+ ~ξ(t) (A1)

which represents a multivariate Ornstein-Uhlenbeck process, where ~ξ(t) is an stochastic term,

and γ−1 is the characteristic timescale governing the dynamics. Modeling the stochastic term

~ξ(t) as a uncorrelated white noise, we obtain the Ito stochastic differential equation for a

multivariate OU process [34, 35]:

dxi = −
L∑
j=1

(
γJijxjdt+

(√
2D
)
ij
dWj

)
(A2)

where:

• dWj = ξj(t)dt represent a stochastic Wiener process.

• Dij = γδij is a matrix of diffusions coefficients.

It can be shown that the corresponding Fokker-Planck equation is

∂tP1|1 = L̂P1|1 (A3)

where P1|1 ≡ P (~x, t|~x0, t0) is the probability density of displacement from ~x0 at time t0 to ~x

at time t, and L̂ is the Fokker-Planck operator given by:

L̂(~x) = −γ

(
L∑

i,j=1

∂

∂xi
Jijxj +

L∑
i=1

∂2

∂x2
i

)
(A4)

The stationary solution for the Fokker-Planck equation L̂P 0(~x) = 0 is:

P 0(~x) =
1√

(2π)L|C|
exp

{
−1

2
~xTC−1~x

}
(A5)
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which is a zero mean Gaussian distribution with C =
〈
~x~xT

〉
as the covariance matrix. If

from the beginning we add to the potential V (~x) a linear term ~h · ~x with ~h a local field, we

would obtain a Gaussian distribution with mean value shift from zero and covariance matrix

C =
〈
~x~xT

〉
− 〈~x〉〈~x〉.

The solution of the Fokker-Planck equation is a multivariate normal distribution

P (~x|~x0,∆t) =
[
(2π)L det Σ

]−1/2
exp

{
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

}
(A6)

where

Λ = e−γJ , ~µ = Λ∆t~x0, Σ = C −ΛCΛ, ∆t = t− t0

Matrices J , C and D are not independent as they are related by Liapunov stationary

condition :

JC + (CJ)T = 2D

from which we get

J = C−1 (A7)

Then we can conclude that the system evolves under a quadratic potential V (~x) =

1
2
~xTC−1~x = 1

2

∑
i,j Jijxixj and the evolutionary process leads to stationary distribution A5

when γ∆t >> 1.

Another important property of the Ornstein-Uhlenbeck process is that the times correlation

function obeys the linear regression theorem

G(t1 − t2) ≡ 〈~x1(t1)~x2(t2)〉 = Λ∆tC (A8)

describing the covariance of configurations ~x1 and ~x2 separated in time by ∆t = t1 − t2.

2. Message passing for continuous variables

Posterior probability distribution (12) can be written from the following pairwise factor-

ization

P d( ~A| ~D) ∝
Nh∏
i=1

φi(~xi)
∏

1≤i<j≤Nh

ψij(~xi, ~xj) (A9)
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where ψij = exp(~xiJij~xj) and φi(~xi) = exp(~xiHi~xi + hi~xi) are edge potentials and self

potential which define the tree-graph.

Message from i to j over their shared edge on the tree is given by,

mij(~xj) ∝
∫

d~xiψij(~xi, ~xj)φi(~xi)
∏
k∈∂i\j

mki(~xi) (A10)

and marginals

Mi(~xi) ∝ φi(~xi)
∏
k∈∂i

mki(~xi) (A11)

a. Gaussian message passing algorithm [31]

From previous expressions, we note that both binary and unary potentials are Gaussian :

φi(~xi) ∝ N(~µi =
−~hi

2 ∗Hi

,σi = − 1

2 ∗Hi

) (A12)

Since Gaussian densities’ product over a common variable is, up to a constant factor, also a

Gaussian density, we can write messages in the following way

mij(~xj) ∝ N(~µij,σ
−1
ij ) (A13)

and the product

φi(~xi)
∏
k∈∂i\j

mki(~xi) ∝ N(~µi\j,σ
−1
i\j) (A14)

is also Gaussian with

σ−1
i\j = σ−1

i +
∑
k∈∂i\j

σ−1
ki

~µi\j = σi\j

σ−1
i ~µi +

∑
k∈∂i\j

σ−1
ki ~µki

 (A15)

Plugging this into the message defining equation A10, we obtain
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mij(~xj) ∝
∫

d~xiψij(~xi, ~xj)φi(~xi)
∏
k∈∂i\j

mki(~xi)

∝
∫

d~xi exp(~xiJij~xj) exp(−1

2
~xiσ

−1
i\j~xi + σ−1

i\j~µi\j~xi)

=

∫
d~xi exp(−1

2
~xiσ

−1
i\j~xi + (σ−1

i\j~µi\j + Jij~xj)~xi)

∝ exp((σ−1
i\j~µi\j + Jij~xj)

2/(2 ∗ σ−1
i\j))

∝ N(~µij = σijJij~µi\j,σij = −σ−1
i\j/(Jij)

2)

(A16)

leading to the update rules for Gaussian parameters:

σ−1
ij =− J2

ij/(σ
−1
i +

∑
k∈∂i\j

σ−1
ki )

~µij =− (~µiσ
−1
i +

∑
k∈∂i\j

σ−1
ki ~µki)/Jij

(A17)

substituting A12 and A16 in A11 we obtain the marginals as a Gaussian density Mi(~xi) ∝

N(~ηi,κi) with

~ηi =(σ−1
i ~µi +

∑
k∈∂i

σ−1
ki ~µki)/(σ

−1
i +

∑
k∈∂i

σ−1
ki )

κ−1
i =σ−1

i +
∑
k∈∂i

σ−1
ki

(A18)

Update rules equation in A18 match with ones associated to the max-product algorithm,

as we will show below. This means that our solution in (18) can be obtained as

~x∗i = ~ηi

b. Max-Product rule

A continuous version of max-product algorithm could be obtained, replacing the integral-

product rule by

mij(~xj) ∝ arg max
~xi

ψij(~xi, ~xj)φi(~xi)
∏
k∈∂i\j

mki(~xi) (A19)

similar to A16 we get
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mij(~xj) ∝ arg max
~xi

exp(~xiJij~xj) exp(−1

2
~xiσ

−1
i\j~xi + σ−1

i\j~µi\j~xi)

= arg max
~xi

exp(−1

2
~xiσ

−1
i\j~xi + (σ−1

i\j~µi\j + Jij~xj)~xi)
(A20)

deriving and equating to zero the exponential term, we find

~xmaxi =
σ−1
i\j~µi\j + Jij~xj

σ−1
i\j

(A21)

substituting ~xmaxi back in A20 we get,

mij(~xj) ∝ exp((σ−1
i\j~µi\j + Jij~xj)

2/(2 ∗ σ−1
i\j))

∝ N(~µij = σijJij~µi\j,σij = −σ−1
i\j/(Jij)

2)
(A22)

which is identical to the messages derived for the sum-product case, then as intuitively we

could guess the rules obtained to find the marginals (A17 andA18) leads to max marginals for

the Gaussian version of Message Passing and then as marginals are Gaussian the maximum

value correspond to the mean.
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3. Integration of equation 24

We must first evaluate:

I3 =

∫
d ~D exp

{
−1

2
~DG ~DT + ~DAT ~AT − i

2
~q ∗ K−1

0 A0
~DT

}
=cte ∗ exp

{
1

2

(
~AA− i ∗ ~qK−1

0 A0

2

)
G−1

(
~AA− i ∗ ~qK−1

0 A0

2

)T} (A23)

defining Q = AG−1AT , Q0 = A0G−1AT0 and Q1 = A0G−1AT we obtain:

I3 = cte ∗ exp

{
1

2

[
~AQ ~AT − i ∗ ~A(QT

1 K−1
0 )~qT − 1

4
~qK−1

0 Q0K
−1
0 ~qT

]}
(A24)

Substituting I3 in 24 we get:

P ( ~A, ~M) ∝ exp

{
1

2

[
~AQ ~AT + 2 ~AK ~AT

]}
∗ I4 (A25)

where

I4 =

∫
d~q exp

{
−1

2
~q

K−1
0 Q0K

−1
0

4
~qT − i

2

(
~AQT

1 K−1
0 + 2 ~M

)
∗ ~qT

}
=cte ∗ exp

{
−1

2

(
~AQT

1 K−1
0 + 2 ~M

)
K0Q

−1
0 K0

(
~AQT

1 K−1
0 + 2 ~M

)T} (A26)

and replacing I4 in A25 we finally get:

P ( ~A, ~M) ∝ exp

{
−1

2

[
−2 ~AK ~AT + 4 ~AQT

1 Q−1
0 K0

~MT + 4 ∗ ~MK0Q
−1
0 K0

~MT
]}

∝ exp

{
−1

2
~zV−1~zT

} (A27)

with ~z =
[
~A, ~M

]
and

V−1 =


−2K 2QT

1 Q−1
0 K0

2K0Q
−1
0 Q1 4K0Q

−1
0 K0

 (A28)

32



inverting V−1 we get:

V =


−[2K + Q]−1 1

2
[2K + Q]−1 ∗ QT

1 K−1
0

1
2
K−1

0 Q1[2K + Q]−1 1
4
K−1

0

[
Q0 − Q1[2K + Q]−1QT

1

]
K−1

0

 (A29)

which allows to compute the error as:

d̂(C,C0) =
∑
i

([V11]ii − 2 ∗ [V12]ii + [V22]ii) (A30)

4. Initializing parameters

a. Time scale parameter µ for FastML inference

The mutation rate parameter µ in the Felsenstein model 31 is typically unknown, then it

must be inferred from the data. Note that under model 31 the average Hamming distance

between two equilibrium sequences at evolutionary time distance ∆t can be computed as

d̄H(∆t) =
(
1− e−µ∆t

)
d̄H(∞) (A31)

where average d̄H(∞) is the Hamming distance between two independent equilibrium

sequences in the independent-site model. Therefore, we can take any two sequences at leaves

of the tree, calculate their Hamming distance together with their time separation on the

phylogenetic tree by adding all branch lengths along their connecting path, and use the

result as an instance of dH(∆t). Taking all pairs of sequences from the alignment, we can

bin the observed times, calculate average Hamming distances for each time bin, and fit the

functional form of equation A31 to obtain the desired value of µ.

As proof of concept, we show our implementation of this algorithm for data generated

with single site model 31 on a homogeneous and binary tree with H = 9 bifurcation events.

Figure 6 show results of fitting equation A31 and Figure 7 show the distance between inferred

and true ancestral sequences for different values of the mutation rates. From figures, it is

possible to note that reconstruction get worse for higher mutations rate and for deepest

internal nodes, an expected feature for this problem.
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FIG. 6. Fitting µ
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FIG. 7. Ancestral reconstruction via our implementation of FastML algorithm. left: Distance

between inferred and true full set of ancestral sequences. right: Distance between inferred and

true sequences at different internal nodes in the tree.

b. Time scale parameter γ

The timescale parameter γ is a priori unknown and must be inferred from data as an initial

step before the ancestral reconstruction algorithm. Since the process is always Gaussian, the

distribution of the leaves has to be Gaussian itself. Furthermore, we know the covariance

between any two elements. Within one leaf, the covariance is the equilibrium covariance C,

and among leaves it has to be Λ∆tijC with Λ = exp(−C−1 ∗ γ) and ∆tij is the path time

between nodes i and j along the branches of the tree.
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Then the leaves distribution is given by

P ( ~D =
[
~x1
l , . . . , ~x

Nl
l

]
) =

1√
2πNl∗L det G

× exp

(
−1

2
~DG−1 ~DT

)
where G is a block matrix whose structure is induced by the phylogenetic tree and its elements

are given by:

Gi,j =

C i = j.

Λ∆tijC otherwise
(A32)

Then the likelihood is given by

L( ~D|C, γ) =
1

2
log det G−1 − 1

2
~DG−1 ~DT (A33)

depending only on the tree as well as on C and γ. As we know the tree and the covariance

matrix C we can obtain the γ parameter by maximizing the likelihood function.
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