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GRADED QUIVER VARIETIES AND SINGULARITIES OF

NORMALIZED R-MATRICES FOR FUNDAMENTAL MODULES

RYO FUJITA

Abstract. We present a simple unified formula expressing the denominators

of the normalized R-matrices between the fundamental modules over the quan-
tum loop algebras of type ADE. It has an interpretation in terms of represen-

tations of Dynkin quivers and can be proved in a unified way using geometry

of the graded quiver varieties. As a by-product, we obtain a geometric in-
terpretation of Kang-Kashiwara-Kim’s generalized quantum affine Schur-Weyl

duality functor when it arises from a family of the fundamental modules. We

also study several cases when the graded quiver varieties are isomorphic to
unions of the graded nilpotent orbits of type A.
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1. Introduction

1.1. For a complex finite-dimensional simple Lie algebra g, we can consider its (un-
twisted) quantum loop algebra Uq(Lg) as a certain quantum affinization of the uni-

versal enveloping algebra U(g). It is a Hopf algebra defined over the field k = Q(q),
where q is the generic quantum parameter. The structure of the monoidal abelian
category C of finite-dimensional Uq(Lg)-modules is much more complicated than
that of U(g). Indeed, the category C is neither semisimple as an abelian category,
nor braided as a monoidal category. It has been studied by many researchers in
connection with various research topics such as quantum integrable systems, com-
binatorics and cluster algebras.

The normalized R-matrices are constructed as intertwining operators between
tensor products of (relatively generic) simple objects of the category C, satisfying
the quantum Yang-Baxter equation. They can be seen as matrix-valued rational
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functions in the spectral parameters, whose singularities strongly reflect the struc-
ture of tensor product modules (cf. [1, 24]). Thus, the singularities of normalized
R-matrices carry some important information on the monoidal structure of C.

1.2. A unified denominator formula. In this paper, we focus on the normalized
R-matrices between the fundamental modules over Uq(Lg) associated with g of type
ADE. Note that every simple object of C is obtained as a head of a suitably ordered
tensor product of the fundamental modules. Thus, studying tensor products of the
fundamental modules can be thought of a first step toward a better understanding
of the monoidal structure of the whole category C.

From now on, we assume that g is of type ADE. Let I be the set of Dynkin
indices and (cij)i,j∈I the Cartan matrix of g. For each i ∈ I, the i-th fundamental
module Vi(a) is a simple object of C, which has a canonical highest weight vector vi
and depends on a non-zero scalar a ∈ k× called the spectral parameter. Making the
spectral parameters formal, for each (i, j) ∈ I2, the normalized R-matrix Rij(z2/z1)
is defined to be the unique Uq(Lg)⊗ k(z1, z2)-linear isomorphism

Rij(z2/z1) : Vi(z1)⊗ Vj(z2)→ Vj(z2)⊗ Vi(z1)

satisfying the condition Rij(z2/z1)(vi ⊗ vj) = vj ⊗ vi. Since the normalized R-
matrix Rij(z2/z1) only rationally depends on the ratio u = z2/z1 of the spectral
parameters, one can consider its denominator dij(u) ∈ k[u]. Explicit computations
of these denominators dij(u) have been accomplished in the separate works by
Date-Okado [8] for type A, by Kang-Kashiwara-Kim [19] for type D, and by Oh-
Scrimshaw [36, 37] for type E. Note that these computations relied on case-by-case
arguments, which also required a use of computer particularly for type E.

The main theorem of this paper asserts that these denominators dij(u) can be
expressed in a simple unified formula.

Theorem 1.1 (= Theorem 2.10). For each (i, j) ∈ I2, we have

dij(u) =

h−1∏
ℓ=1

(u− qℓ+1)c̃ij(ℓ),

where h is the Coxeter number of g and c̃ij(`) is the coefficient of zℓ in the formal
expansion at z = 0 of the (i, j)-entry of the inverse of the quantum Cartan matrix(

zcij−z−cij

z−z−1

)
i,j∈I

.

Note that the quantum Cartan matrix has appeared several times as a key combi-
natorial ingredient in the study of the category C. For example, it already appeared
in the work of Frenkel-Reshetikhin [10], which introduced the notion of q-characters
for finite-dimensional Uq(Lg)-modules.

1.3. An interpretation by quiver representations. An advantage of our de-
nominator formula is that it admits an interpretation in terms of representations
of a Dynkin quiver Q of type g. To describe it, we need additional notation. Let
us choose an I-tuple (εi)i∈I ∈ {0, 1}I such that εi 6= εj whenever cij = −1. Then
we define an infinite quiver ∆ = (∆0,∆1) by

∆0 := {(i, p) ∈ I × Z | p− εi ∈ 2Z},
∆1 := {(i, p)→ (j, p+ 1) | (i, p), (j, p+ 1) ∈ ∆0, cij = −1}.
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For instance, when g is of type D5, the quiver ∆ looks like:
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It was shown by Happel [16, 17] that the quiver ∆ is isomorphic to the Auslander-
Reiten quiver of the bounded derived category DQ := Db(CQ-mod) of representa-
tions of the Dynkin quiver Q. In particular, there is a nice bijection HQ from the
vertex set ∆0 to the set of isomorphism classes of indecomposable objects of DQ.

An intimate connection between the Auslander-Reiten quiver of DQ and the
category C was originally observed by Hernandez-Leclerc [18]. In that paper, it was
shown that the integers c̃ij(`) can be expressed as Euler-Poincaré characteristics of
suitable pairs of indecomposable objects of DQ. Using this interpretation, one can
see that the following assertion is equivalent to Theorem 1.1.

Theorem 1.2 (= Theorem 3.9). For any (i, p), (j, r) ∈ ∆0, the pole order of the
normalized R-matrix Rij(u) at u = qr/qp is equal to dimExt1DQ

(HQ(j, r), HQ(i, p)).

This yields the following interesting corollary.

Corollary 1.3 (= Corollary 3.10). For any (i, p), (j, r) ∈ ∆0, the following condi-
tions are mutually equivalent:

• The tensor product Vi(q
p)⊗ Vj(qr) is irreducible;

• Vi(qp)⊗ Vj(qr) ∼= Vj(q
r)⊗ Vi(qp) as Uq(Lg)-modules;

• Ext1DQ
(HQ(i, p), HQ(j, r)) = 0 and Ext1DQ

(HQ(j, r), HQ(i, p)) = 0.

1.4. Graded quiver varieties. In this paper, we give a unified proof of The-
orem 1.2 (and hence Theorem 1.1) without using a computer. Instead, we use
geometry of the graded quiver varieties.

The graded quiver varieties were originally defined by Nakajima [32] as suitable
torus fixed loci of the usual Nakajima quiver varieties, which provide a useful geo-
metric setting to study finite-dimensional Uq(Lg)-modules when g is of type ADE.
Given a finite-dimensional ∆0-graded C-vector space W =

⊕
x∈∆0

Wx, one can

associate the graded quiver variety M•
0(W ), which is an affine complex algebraic

variety equipped with an action of the group GW =
∏

x∈∆0
GL(Wx).

Our proof of Theorem 1.2 is based on the following beautiful result obtained
by Keller-Scherotzke [29] in their categorical study of the graded quiver varieties.
It also generalizes an important result by Hernandez-Leclerc [18, Section 9]. Let
Γ = (Γ0,Γ1) be another infinite quiver with the vertex set Γ0 := ∆0, whose arrow set
Γ1 is given by the following condition: for each x, y ∈ ∆0 the number of arrows from
x to y is equal to dimExt1DQ

(HQ(x), HQ(y)). With this notation, Keller-Scherotzke’s
theorem tells us that, for each ∆0-graded vector space W , there exists a GW -
equivariant closed embedding of varieties

(1.1) M•
0(W ) ↪→ repW (Γ),

where repW (Γ) denotes the affine space parametrizing representations of the quiver
Γ realized on W .

In the special case when W = W(i,p) ⊕W(j,r) for some (i, p), (j, r) ∈ ∆0 with
p ≤ r and dimW(i,p) = dimW(j,r) = 1, the above embedding (1.1) becomes an
isomorphism. Namely, the graded quiver variety M•

0(W ) in this case is just an
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affine space whose dimension is equal to dimExt1DQ
(HQ(j, r), HQ(i, p)). This simple

situation enables us to prove Theorem 1.2 by using Nakajima’s theory [32] and a
standard technique in geometric representation theory.

1.5. Generalized quantum affine Schur-Weyl duality. In the paper [20], Kang-
Kashiwara-Kim gave a general construction of a monoidal functor FJ , called the
generalized quantum affine Schur-Weyl duality functor, associated with a given
family {Vj}j∈J of real simple objects of C. It connects the category C with a cat-
egory of modules over the symmetric quiver Hecke algebra HJ associated with a
quiver ΓJ determined by the singularities of normalized R-matrices between the
simple objects in {Vj}j∈J . The quiver Hecke algebras are Z-graded algebras intro-
duced by Khovanov-Lauda [30] and by Rouquier [38] independently to establish a
categorification of the half of the quantized enveloping algebra associated with a
general symmetrizable Kac-Moody algebra. In this sense, the quiver Hecke algebra
HJ is a generalization of the affine Hecke algebra of type A, and Kang-Kashiwara-
Kim’s construction can be thought of a generalization of the usual quantum affine
Schur-Weyl duality between Uq(Lsln) and the affine Hecke algebra of type A.

In the subsequent works by Kang, Kashiwara, Kim, Oh, Park and Scrimshaw
[19, 21, 22, 25, 27, 36, 26], many interesting examples of the functor FJ are
constructed. In these nice examples, the functor FJ induces an isomorphism of
Grothendieck rings between a category of finite-dimensional HJ -modules (or its
suitable modification), and a certain monoidal subcategory CJ of C.

In this paper, we give a geometric interpretation of the functor FJ whenever it
arises from a family {Vj}j∈J of fundamental modules of type ADE. More precisely,
we realize the bimodule corresponding to the functor FJ via the equivariant K-
theory of the graded quiver varieties, mimicking Ginzburg-Reshetikhin-Vasserot’s
geometric realization of the usual quantum affine Schur-Weyl duality [15]. This is
a generalization of the author’s previous result [12]. A key fact in our construction
is that the quiver ΓJ defining the quiver Hecke algebra HJ is identical to a full
subquiver of the quiver Γ that appeared in Keller-Scherotzke’s theorem above. This
is a direct consequence of Theorem 1.2 and explains the appearance of the quiver
Hecke algebra HJ from a geometric point of view.

1.6. Type A subquivers and graded nilpotent orbits. As an example of the
above construction, with a given subquiver Q′ of a Dynkin quiver Q which is iso-
morphic to a quiver of type A with monotone orientation, we associate a specific
family {Vj}j∈Z of fundamental modules labeled by the set of integers Z. We prove
that the associated quiver ΓJ is of type A∞ with monotone orientation, and the
corresponding graded quiver varieties are isomorphic to unions of graded nilpotent
orbits of type A. Moreover, we show that the associated functor FJ induces an
isomorphism of Grothendieck rings between a certain localization TN of the module
category of HJ constructed in [20] and the monoidal full subcategory CDQ′ of C gen-
erated by the fundamental modules Vi(q

p) such that HQ(i, p) ∈ DQ′ ⊂ DQ. In some
special cases of type AD, the associated functors FJ coincide with the ones studied
in [20, 25, 26]. Recently, Kashiwara-Kim-Oh-Park [26] proved that the localized
category TN gives a monoidal categorification of a certain cluster algebra of infinite
rank. Therefore, we conclude that our monoidal category CDQ′ always inherits the
same cluster structure from the category TN via the monoidal functor FJ .
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1.7. Remark. Note that explicit computations of the denominators dij(u) for the
other non-symmetric affine types have been also accomplished in the separate works
by Akasaka-Kashiwara [1] for type C, by Oh [35] for type B and for doubly-twisted
type AD, and by Oh-Scrimshaw [36, 37] for all the remaining cases. Unfortunately,
our geometric approach using the graded quiver varieties is applicable only to the
cases of untwisted type ADE (i.e. symmetric affine types). At this moment, it is
unclear whether there is an analogous geometric approach to compute the denom-
inators dij(u) for the non-symmetric types.

1.8. Organization. This paper is organized as follows. In Section 2, we recall some
known facts about the representation theory of the quantum loop algebras Uq(Lg)
of type ADE and state our main theorem. In Section 3, we present an interpretation
of our denominator formula in terms of representations of Dynkin quivers. After
reviewing the graded quiver varieties in Section 4, we give a geometric proof of
our denominator formula in Section 5.1. In Section 5.2, we add a remark on the
case when the normalized R-matrix has a simple pole. Section 6 is devoted to a
study of the generalized quantum affine Schur-Weyl duality. In Section 6.2, we
give a geometric interpretation of the functor FJ when it arises from a family of
fundamental modules. Finally, we study some examples where the graded quiver
varieties are isomorphic to unions of graded nilpotent orbits of type A in Section 6.3.

1.9. Acknowledgments. The author is grateful to Se-jin Oh for his interest in
this paper and for answering the author’s questions on his papers. The author was
supported by Grant-in-Aid for JSPS Research Fellow (No. 18J10669), and by JSPS
Overseas Research Fellowships during the revision.

1.10. Overall convention. Working over a base field F, we often write⊗ (resp. Hom,
dim) instead of ⊗F (resp. HomF, dimF) suppressing the symbol F for simplicity. For
an algebra A over a field F, we denote by A-mod the category of left A-modules
which are finite-dimensional over F. We denote by Aop (resp. A×) the opposite
algebra (resp. the multiplicative group of invertible elements) of A.

2. A unified denominator formula

In this section, we recall some known facts on representation theory of the quan-
tum loop algebras of type ADE and state our main theorem.

2.1. Notation. Throughout this paper, we fix a finite-dimensional complex simple
Lie algebra g of type An (n ∈ Z≥1), Dn (n ∈ Z≥4), or En (n = 6, 7, 8). Let I :=
{1, 2, . . . , n} be the set of Dynkin indices. The Cartan matrix of g is denoted by
(cij)i,j∈I . We write i ∼ j if cij = −1.

Let P∨ =
⊕

i∈I Zhi be the coroot lattice of g. The fundamental weights {$i}i∈I

form a basis of the weight lattice P = HomZ(P
∨,Z) which is dual to {hi}i∈I . Let

αi =
∑

j∈I cij$j be the i-th simple root and Q =
⊕

i∈I Zαi ⊂ P be the root lattice.

We put P+ =
∑

i∈I Z≥0$i and Q+ =
∑

i∈I Z≥0αi. Denote by (−,−) the symmetric
bilinear form on P⊗ZQ given by (αi, $j) = δij , or equivalently (αi, αj) = cij . LetW
be the Weyl group of g. It is a finite group of linear transformations on P generated
by the simple reflections {ri}i∈I defined by ri(λ) := λ− λ(hi)αi for λ ∈ P. The set
R+ of positive roots is defined by R+ = (W{αi}i∈I)∩Q+. Let h := 2|R+|/n be the
Coxeter number of g.
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We fix an I-tuple ε = (εi)i∈I ∈ {0, 1}I such that εi 6= εj whenever i ∼ j. We
refer to such an ε as a parity function. Note that we have only two possible choices
of ε and the difference does not affect the main results of this paper.

2.2. Quantum loop algebra. Let q be an indeterminate and k := Q(q) be the
algebraic closure of the field Q(q) of rational functions in q with rational coefficients
inside the ambient field

⋃
m∈Z>0

Q(q1/m).

Definition 2.1. The quantum loop algebra Uq(Lg) associated with g is defined as
a k-algebra with the generators:{

x+i,r, x
−
i,r | i ∈ I, r ∈ Z

}
∪ {qy | y ∈ P∨} ∪ {hi,m | i ∈ I,m ∈ Z \ {0}}

satisfying the following relations:

q0 = 1, qyqy
′
= qy+y′

, [qy, hi,m] = [hi,m, hj,l] = 0, qyx±i,rq
−y = q±αi(y)x±i,r,

(z − q±cijw)φεi (z)x
±
j (w) = (q±cijz − w)x±j (z)φ

ε
i (w),

(z − q±cijw)x±i (z)x
±
j (w) = (q±cijz − w)x±j (w)x

±
i (z),

[x+i (z), x
−
j (w)] =

δij
q − q−1

(
δ
(w
z

)
φ+i (w)− δ

( z
w

)
φ−i (z)

)
,

{
x±i (z1)x

±
i (z2)x

±
j (w)− (q + q−1)x±i (z1)x

±
j (w)x

±
i (z2) + x±j (w)x

±
i (z1)x

±
i (z2)

}
+ {z1 ↔ z2} = 0 if i ∼ j,

where ε ∈ {+,−} and δ(z), x±i (z), φ
±
i (z) are the formal series defined as follows:

δ(z) :=

∞∑
r=−∞

zr, x±i (z) :=

∞∑
r=−∞

x±i,rz
−r,

φ±i (z) := q±hi exp

(
±(q − q−1)

∞∑
m=1

hi,±mz
∓m

)
.

In the last relation, the second term {z1 ↔ z2} means the exchange of z1 with z2
in the first term.

Let ĝ be the (untwisted) affine Lie algebra associated with g. It is realized as

ĝ = Lg⊕ Cc⊕ Cd
with a suitable Lie algebra structure, where Lg := g⊗C[z±1] is the loop algebra of g,
c is a central element and d := z d

dz is the degree operator. The derived subalgebra
ĝ′ = [ĝ, ĝ] = Lg ⊕ Cc is a central extension of the loop algebra Lg. Let Uq(ĝ) be
the quantized enveloping algebra of ĝ. This is a Hopf algebra over k presented by
the Chevalley type generators {ei, fi | i ∈ I ∪ {0}} ∪ {qy | y ∈ P∨ ⊕ Zc ⊕ Zd} and
the well-known relations. The coproduct 4 : Uq(ĝ)→ Uq(ĝ)⊗ Uq(ĝ) is given by:

4(ei) = ei ⊗ q−hi + 1⊗ ei, 4(fi) = fi ⊗ 1 + qhi ⊗ fi, 4(qy) = qy ⊗ qy

for i ∈ I∪{0}, y ∈ P∨⊕Zc⊕Zd. The subalgebra U ′
q(ĝ) generated by the generators

{ei, fi, q±hi | i ∈ I ∪ {0}} is a Hopf subalgebra of Uq(ĝ), which is regarded as a
q-deformation of the universal enveloping algebra of ĝ′. By Beck [3], we have a k-
algebra isomorphism Uq(Lg) ∼= U ′

q(ĝ)/〈qc−1〉, via which the quantum loop algebra
Uq(Lg) inherits a structure of Hopf algebra. Actually this isomorphism depends on
the choice of a function o : I → {±1} satisfying o(i) = −o(j) if i ∼ j. In this paper,
we set o(i) := (−1)ϵi by using the parity function ε we fixed in the last subsection.
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2.3. Simple and fundamental modules. A Uq(Lg)-module is said to be of type
1 if, for each i ∈ I, the element qhi acts on it as a semisimple linear operator
whose eigenvalues belong to qZ. Let C denote the category of finite-dimensional
Uq(Lg)-modules of type 1. The category C is a k-linear abelian monoidal category.

It is well-known that the simple modules of the category C are parametrized by
so-called Drinfeld polynomials [5], or equivalently by the dominant monomials [10],
which we recall here. LetM be the abelian (multiplicative) group freely generated
by the symbols {Yi,a}(i,a)∈I×k× and M+ be the submonoid of M generated by

{Yi,a}(i,a)∈I×k× . We refer to an element ofM+ as a dominant monomial.

Theorem 2.2 (Chari-Pressley [5, Theorem 3.3]). For each dominant monomial
m =

∏
(i,a) Y

mi,a

i,a , there exists a simple module L(m) ∈ C with a non-zero vector

vm ∈ L(m) satisfying

x+i (z)vm = 0, φ±i (z)vm =

( ∏
a∈k×

(
q − q−1az−1

1− az−1

)mi,a
)±

vm

for each i ∈ I, where (−)± denotes the formal expansion at z∓1 = 0. Such a vector
vm ∈ L(m) is unique up to k×. Moreover, the correspondence m 7→ L(m) gives a
bijection between the set M+ of dominant monomials and the set of isomorphism
classes of simple modules of C.

For each (i, a) ∈ I × k×, we define an element Ai,a ∈M by

Ai,a := Yi,qaYi,q−1a ·
∏
j∼i

Y −1
j,a .

For m,m′ ∈M, we write m ≤ m′ if m′m−1 is a monomial in {Ai,a}(i,a)∈I×k× . This

defines a partial ordering on the setM+ of dominant monomials.
The simple modules L(Yi,a) corresponding to the degree 1 dominant monomials

Yi,a ∈M+, (i, a) ∈ I × k×, are called the fundamental modules. The next theorem
shows their importance in the monoidal category C.

Theorem 2.3 (Frenkel-Reshetikhin [10], Frenkel-Mukhin [9], Nakajima [32]). Let
K(C) denote the Grothendieck ring of the monoidal abelian category C.

(1) The ring K(C) is isomorphic to the polynomial ring Z[ti,a | (i, a) ∈ I × k×]
in infinitely many variables, where the variable ti,a corresponds to the class
of the fundamental module L(Yi,a). In particular, K(C) is commutative;

(2) For each dominant monomial m =
∏

i,a Y
mi,a

i,a ∈M+, we have∏
i,a

[L(Yi,a)]
mi,a = [L(m)] +

∑
m′∈M+,m′⪇m

c(m,m′)[L(m′)]

in the Grothendieck ring K(C), where c(m,m′) ∈ Z≥0.

Proof. (1) is [10, Corollary 2]. (2) was originally conjectured by [10] and proved by
[9, Theorem 4.1] and [32, Proposition 5.2] independently. □

2.4. Normalized R-matrices and their denominators.

Definition 2.4. Let M be a Uq(Lg)-module and z be a formal parameter. We
equip the free k[z±1]-module M [z±1] := M ⊗k k[z±1] with a left Uq(Lg)-module
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structure by

x±i,r · (v ⊗ f(z)) := x±i,rv ⊗ z
rf(z),

qy · (v ⊗ f(z)) := qyv ⊗ f(z),
hi,m · (v ⊗ f(z)) := hi,mv ⊗ zmf(z),

where v ∈ M,f(z) ∈ k[z±1]. We refer to the resulting U(Lg) ⊗k k[z±1]-module
M [z±1] as the affinization of M .1

To simplify the notation, we denote the affinized fundamental module and its
generating vector by

Vi[z
±1] := L(Yi,1)[z

±1], vi := (vYi,1)⊗ 1

for each i ∈ I. In addition, for any non-zero scalar a ∈ k×, we set

Vi(a) := Vi[z
±1]/(z − a)Vi[z±1]

and denote by vi(a) the image of the vector vi under the canonical quotient map
Vi[z

±1] → Vi(a). With this notation, we have an isomorphism Vi(a) ∼= L(Yi,a) of
Uq(Lg)-modules via which the vector vi(a) corresponds to the vector vYi,a

.

Remark 2.5. The affinized fundamental module Vi[z
±1] is known to be isomorphic

to the following modules:

• the level zero extremal weight module of extremal weight $i introduced by
Kashiwara [23, 24];
• the global Weyl module of highest weight$i introduced by Chari-Pressley [6];
• the standard module associated with $i, realized via the equivariant K-
theory of quiver varieties by Nakajima [32] (see Section 4.5 below).

For a proof, see [24, Section 5] and [34, Remark 2.15].

For each pair (i, j) ∈ I2, there is a unique Uq(Lg)⊗k k[z±1
1 , z±1

2 ]-homomorphism
called the normalized R-matrix

Rij : Vi[z
±1
1 ]⊗ Vj [z±1

2 ]→ k(z2/z1)⊗k[(z2/z1)±1]

(
Vj [z

±1
2 ]⊗ Vi[z±1

1 ]
)
,

satisfying the condition Rij(vi ⊗ vj) = vj ⊗ vi (see [1, Appendix A] or [24, Section
8]). The denominator of the normalized R-matrix Rij is a unique monic polynomial
dij(u) ∈ k[u] of the smallest degree among polynomials satisfying

dij(z2/z1)Rij

(
Vi[z

±1
1 ]⊗ Vj [z±1

2 ]
)
⊂ 1⊗

(
Vj [z

±1
2 ]⊗ Vi[z±1

1 ]
)
.

Remark 2.6. In the same way, we can define the normalized R-matrix

RM,M ′ : M [z±1
1 ]⊗M ′[z±1

2 ]→ k(z2/z1)⊗k[(z2/z1)±1]

(
M ′[z±1

2 ]⊗M [z±1
1 ]
)

and its denominator dM,M ′(u) ∈ k[u] for any simple modules M,M ′ ∈ C.

In the rest of this subsection, we recall some properties of the normalized R-
matrices Rij and their denominators dij(u) for future use. Let a, b ∈ k× be non-zero
scalars such that dij(b/a) 6= 0. Then the normalizedR-matrixRij can be specialized
to yield a non-zero Uq(Lg)-homomorphism Rij(b/a) : Vi(a)⊗ Vj(b)→ Vj(b)⊗ Vi(a)
which sends the vector vi(a)⊗ vj(b) to the vector vj(b)⊗ vi(a).

1In [24], the affinization is defined in terms of the Chevalley type generators of the algebra

U ′
q(ĝ). One can easily see that it coincides with our affinization in Definition 2.4 under the

isomorphism Uq(Lg) ∼= U ′
q(ĝ)/⟨qc − 1⟩ in [3].
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Theorem 2.7 ([1, 4, 9, 24, 39]). Let i, j ∈ I and a, b ∈ k×.
(1) As a Uq(Lg)-module, Vi(a)⊗ Vj(b) is generated by the vector vi(a)⊗ vj(b)

if and only if dij(b/a) 6= 0. If this is the case, the module Vi(a)⊗ Vj(b) has
a simple head Im(Rij(b/a)).

(2) Any non-zero Uq(Lg)-submodule of Vi(a)⊗Vj(b) contains the vector vi(a)⊗
vj(b) if and only if dji(a/b) 6= 0. If this is the case, the module Vi(b)⊗Vi(a)
has a simple socle Im(Rji(a/b)).

In particular, the following conditions are mutually equivalent:

• The tensor product Vi(a)⊗ Vj(b) is irreducible;
• Vi(a)⊗ Vj(b) ∼= Vj(b)⊗ Vi(a) as Uq(Lg)-modules;
• dij(b/a) 6= 0 and dji(a/b) 6= 0.

Proof. This is a special case of Akasaka-Kashiwara’s conjecture [1], which was
proved by Chari [4], Kashiwara [24] and Varagnolo-Vasserot [39] independently.
The irreducibility of Im(Rij(b/a)) and Im(Rji(a/b)) was proved in [1, Corollary
2.3]. Note that Frenkel-Mukhin [9] also proved the last assertion. □

Theorem 2.8 (Chari [4], Kashiwara [24]). Let i, j ∈ I and a ∈ k. If dij(a) = 0,
we have a ∈ {qk ∈ k× | k + εi + εj ∈ 2Z, k > 0}.

Proof. Assume that dij(a) = 0. By [4, Theorem 4.4] and Theorem 2.7 (1) above,
we see that a = qk for some integer k satisfying k+εi+εj ∈ 2Z. On the other hand,

[24, Proposition 9.3] implies that a ∈
⋃

m∈Z>0
q1/mQ[[q1/m]]. Therefore k should be

positive. □

Remark 2.9. In [4, Section 6], Chari further computed all the zeros of dij(u) by
a type-by-type argument. However, we do not use this fact in this paper.

2.5. Main theorem. Let z be a formal parameter. The quantum Cartan matrix
C(z) = (Cij(z))i,j∈I of g is defined by

Cij(z) :=

{
z + z−1 (i = j);

cij (i 6= j).

We regard C(z) as an element of the group GLn(Z((z))) and denote its inverse by

C̃(z) = (C̃ij(z))i,j∈I . The (i, j)-entry C̃ij(z) ∈ Z((z)) can be written as

C̃ij(z) =

∞∑
ℓ=1

c̃ij(`)z
ℓ.

In this way, we get a collection of integers {c̃ij(`)}i,j∈I,ℓ≥1.
Now we can state the main theorem of this paper.

Theorem 2.10. For each pair (i, j) ∈ I2, the denominator dij(u) ∈ k[u] of the
normalized R-matrix Rij is given by the following formula:

(2.1) dij(u) =

h−1∏
ℓ=1

(u− qℓ+1)c̃ij(ℓ),

where h is the Coxeter number of g.

Theorem 2.10 is equivalent to Theorem 3.9 below, whose proof is given later in
Section 5.1 using geometry of the graded quiver varieties.
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Remark 2.11. The RHS of the formula (2.1) is actually a polynomial because we
have c̃ij(`) ∈ Z≥0 for 1 ≤ ` ≤ h− 1 by Lemma 3.7 (7) below.

Remark 2.12. Note that our denominator dij(u) is different from the denominator
dV (ϖi),V (ϖj)(u), which has been written by the same symbol dij(u) in the works
of Kashiwara and his collaborators (e.g. [1, 24, 20]). Here V ($i) denotes the i-th
fundamental module in the sense of Kashiwara [23], which has a global crystal basis.
It was shown by Nakajima [34] that Kashiwara’s fundamental module V ($i) is
isomorphic to our fundamental module Vi(ai) with ai := (−1)ϵi(−q)1−h. Moreover,
we see in Proposition 3.5 below that c̃ij(`) 6= 0 only if `+εi+εj+1 ∈ 2Z. Therefore,
our denominator formula (2.1) is equivalent to the formula

(2.2) dV (ϖi),V (ϖj)(u) =

h−1∏
ℓ=1

(u− (−q)ℓ+1)c̃ij(ℓ).

By making the values c̃ij(`) explicit, we can check that the formula (2.2) certainly
recovers the known type-by-type denominator formulas obtained in [8, 20, 36, 37].
However we do not use this fact in this paper.

3. An interpretation by quiver representations

In this section, we give an interpretation of our denominator formula (2.1) in
terms of homological properties of representations of a Dynkin quiver of type g.
We keep the notation from the previous section.

3.1. Convention. First, we fix our convention on quivers and their representa-
tions. A quiver Q = (Q0, Q1) is an oriented graph, consisting of the set Q0 of
vertices and the set Q1 of arrows. Here the sets Q0 and Q1 can be infinite. For an
arrow a ∈ Q1, let a

′, a′′ ∈ Q0 denote its origin and goal respectively. We always
assume that the set {a ∈ Q1 | a′ = x, a′′ = y} is finite for each x, y ∈ Q0.

We equip the vector space CQ0 :=
⊕

x∈Q0
Cex with a structure of C-algebra

by ex · ey = δxyex. This is non-unital if Q0 is infinite. We equip the vector space
CQ1 :=

⊕
a∈Q1

Ca with a structure of CQ0-bimodule by setting a · ex = δa′,xa and
ex · a = δx,a′′a for x ∈ Q0, a ∈ Q1. The path algebra CQ of Q is defined to be
the tensor algebra TCQ0(CQ1) :=

⊕
d≥0(CQ1)

⊗d, where tensor products are taken

over CQ0. Given a quotient algebra A = CQ/I by an ideal I ⊂
⊕

d≥1(CQ1)
⊗d,

we denote by A-mod the C-linear abelian category of finite-dimensional left A-
modules M satisfying M =

⊕
x∈Q0

exM . For each vertex x ∈ Q0, we denote by

Sx the simple object of A-mod associated with x, i.e. satisfying dim(eySx) = δxy.
For a finite-dimensional Q0-graded C-vector space V =

⊕
x∈Q0

Vx, we denote by

repV (A) the variety of representations of the algebra A realized on V . By definition,
this is the closed subvariety of the affine space repV (Q) :=

∏
a∈Q1

HomC(Va′ , Va′′)

consisting of points (fa)a∈Q1
such that all the polynomials in the linear maps fa

corresponding to elements in I vanish.

3.2. Dynkin quiver. In this subsection, we fix a Dynkin quiver Q = (Q0, Q1)
of type g, i.e. Q0 := I = {1, . . . n} and the arrow set Q1 satisfies the condition
cij = 2δij − #{a ∈ Q1 | {a′, a′′} = {i, j}} for each i, j ∈ I. We write i → j if
there is an arrow a ∈ Q1 such that a′ = i, a′′ = j. For M ∈ CQ-mod, we define its
dimension vector by dim (M) :=

∑
i∈I dim(eiM)αi ∈ Q+.
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By Gabriel’s theorem [13], for each α ∈ R+, there exists an indecomposable
object Mα ∈ CQ-mod such that dim (Mα) = α uniquely up to isomorphism. The
correspondence α 7→Mα gives a bijection between the set R+ of positive roots and
the set of isomorphism classes of indecomposable objects of CQ-mod. In particular,
we have Si =Mαi

for each i ∈ I.
Let DQ denote the bounded derived category Db(CQ-mod) of the abelian cat-

egory CQ-mod. The category DQ is a C-linear triangulated category with Krull-
Schmidt property. The category CQ-mod is naturally identified with a full subcat-
egory of DQ consisting of complexes concentrated on the cohomological degree 0.
We denote by X[k] the cohomological degree shift of X ∈ DQ by k ∈ Z. Then the
set {Mα[k] | α ∈ R+, k ∈ Z} forms a complete collection of indecomposable objects
of DQ (see [16, Lemma 4.1]). Extending the definition of dim , for each X ∈ DQ,
we define its dimension vector dim (X) ∈ Q by

dim (X) :=
∑
k∈Z

(−1)kdimHk(X),

where Hk(X) ∈ CQ-mod denotes the k-th cohomology of X. For X,Y ∈ DQ, we
define the Euler-Poincaré characteristic 〈X,Y 〉 ∈ Z by

〈X,Y 〉 :=
∑
k∈Z

(−1)k dimExtkDQ
(X,Y ),

where ExtkDQ
(X,Y ) := HomDQ

(X,Y [k]).

3.3. Happel’s equivalence. Let Q be a Dynkin quiver of type g. In this subsec-
tion, we recall the description of the full subcategory ind(DQ) ⊂ DQ consisting of
indecomposable objects in DQ due to Happel [16, 17] .

Let ξ = (ξi)i∈I ∈ ZI be an I-tuple of integers such that ξi − εi ∈ 2Z and
ξi = ξj + 1 if i → j. Such an I-tuple ξ is called a height function of Q and
determined up to a simultaneous shift by an even integer. Choose a total ordering
I = {i1, i2, . . . , in} satisfying ξi1 ≥ ξi2 ≥ · · · ≥ ξin and consider the Coxeter element
τ := ri1ri2 · · · rin ∈ W. The element τ depends only on Q (independent from the
choice of the above total ordering of I). By an abuse of notation, we use the same
symbol τ for the corresponding Coxeter functor, which is an auto-equivalence of
DQ. Under this convention, we have dim (τX) = τdim (X) for any X ∈ DQ. For
an indecomposable object X ∈ ind(DQ), its Coxeter transformation τX coincides
with the Auslander-Reiten translation of X (see [2, Lemma VII.5.8] for example).

For each i ∈ I, we define a positive root γi to be the sum of simple roots αj labeled
by the vertices j such that there exists an oriented path in Q from j to i. Then the
corresponding indecomposable representation Ii := Mγi

is an injective hull of the
simple representation Si in CQ-mod. Note that we have 〈X, Ii〉 = (dim (X), $i)
for any X ∈ DQ and i ∈ I.

Definition 3.1. We define an infinite quiver ∆ = (∆0,∆1) by

∆0 := {(i, p) ∈ I × Z | p− εi ∈ 2Z},
∆1 := {(i, p)→ (j, p+ 1) | (i, p), (j, p+ 1) ∈ ∆0, i ∼ j}.

Let C(∆) denote the C-linear category whose set of objects is ∆0 and whose
morphisms are generated by ∆1 satisfying the so-called mesh relations, i.e. the sum
of all paths from (i, p) to (i, p + 2) vanishes for each (i, p) ∈ ∆0. Note that the
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quiver ∆ and the category C(∆) are independent from the choice of the Dynkin
quiver Q (depends only on g).

Theorem 3.2 (Happel [16, 17]). For a Dynkin quiver Q of type g with a height
function ξ, there is an equivalence of C-linear categories

HQ : C(∆) ' ind(DQ)

satisfying HQ(i, p) = τ (ξi−p)/2(Ii) for each (i, p) ∈ ∆0.

Proof. See [16, Proposition 4.6] or [17, Theorem 5.6]. □

Remark 3.3. Although the equivalence HQ depends on the choice of the height
function ξ, this choice does not affect on the results in the present paper essentially
and hence we suppress it from the notation. In addition, the Euler-Poincaré char-
acteristic 〈HQ(i, p), HQ(j, r)〉 does not depend on the choice of the Dynkin quiver
Q because, for any two Dynkin quivers Q and Q′ of type g, we have a natural
isomorphism

(3.1) ExtkDQ
(HQ(i, p), HQ(j, r)) ∼= ExtkDQ′ (HQ′(i, p), HQ′(j, r))

for any (i, p), (j, r) ∈ ∆0 and k ∈ Z.

Remark 3.4. As explained in [14, Section 6.5], we have

(3.2) HQ(i, p)[1] = HQ(i
∗, p+ h)

for any (i, p) ∈ ∆0. Here i 7→ i∗ is the involution on I given by w0(αi) = −αi∗ ,
where w0 denotes the longest element of the Weyl group W.

3.4. Quiver interpretation of quantum Cartan matrix. In this subsection,
we give an interpretation of the integers {c̃ij(`)}i,j∈I,ℓ≥1 defined in Section 2.5
in terms of representations of a Dynkin quiver. Our discussion is based on the
following observation due to Hernandez-Leclerc.

Proposition 3.5 (Hernandez-Leclerc [18]). Take a Dynkin quiver Q of type g
together with a height function ξ as in the previous subsection. Then, for any
i, j ∈ I and ` ∈ Z≥1, we have

c̃ij(`) =

{(
τ (ℓ+ξi−ξj−1)/2(γi), $j

)
if `+ εi + εj + 1 ∈ 2Z;

0 otherwise.

Proof. This is [18, Proposition 2.1]. Note that the condition ` + εi + εj + 1 ∈ 2Z
here is equivalent to the condition `+ ξi − ξj − 1 ∈ 2Z therein. □

Thanks to Proposition 3.5, once we depict the Auslander-Reiten quiver of DQ,
we can easily compute the explicit values of the integers {c̃ij(`)}i,j∈I,ℓ≥1. See [18,
Example 2.2] for an example of such a computation.

Corollary 3.6. For (i, p), (j, r) ∈ ∆0 with r ≥ p, we have

〈HQ(i, p), HQ(j, r)〉 = c̃ij(r − p+ 1)

for any Dynkin quiver Q of type g.
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Proof. We compute as:

〈HQ(i, p), HQ(j, r)〉 =
〈
τ (ξi−p)/2(Ii), τ

(ξj−r)/2(Ij)
〉

=
〈
τ ((r−p+1)+ξi−ξj−1)/2(Ii), Ij

〉
=
(
τ ((r−p+1)+ξi−ξj−1)/2(γi), $j

)
.

Since r − p+ 1 ≥ 1 by assumption, the RHS is equal to c̃ij(r − p+ 1) by Proposi-
tion 3.5. □

Here we record some basic properties of the integers {c̃ij(`)}i,j∈I,ℓ≥1.

Lemma 3.7. The integers {c̃ij(`)}i,j∈I,ℓ≥1 satisfy the following properties:

(1) c̃ij(`) = c̃ji(`);
(2) c̃ij(`) = c̃σ(i),σ(j)(`) for any automorphism σ of the Dynkin diagram;
(3) c̃ij(`) = c̃ij(`+ 2h);
(4) c̃ij(`) = −c̃ij(2h− `) for 1 ≤ ` ≤ 2h− 1;
(5) c̃ij(`) = c̃ji∗(h− `) for 1 ≤ ` ≤ h− 1;
(6) c̃ij(kh) = 0 for any k ∈ Z≥1;
(7) c̃ij(`) ≥ 0 if 1 ≤ ` ≤ h− 1;
(8) c̃ij(`) ≤ 0 if h+ 1 ≤ ` ≤ 2h− 1.

Proof. (1) and (2) are immediate from the definition.
Let us take Q and ξ as in Proposition 3.5. (3) is a direct consequence of Propo-

sition 3.5 and the well-known fact τh = 1.
To prove (4), we may assume `+εi+εj+1 ∈ 2Z. Then we can pick (i, p), (j, r) ∈

∆0 such that ` = r − p+ 1. By Corollary 3.6 and (3.2), we have

c̃ij(`) = 〈HQ(i, p), HQ(j, r)〉 = 〈HQ(i, p), HQ(j, r − 2h)〉

for any Dynkin quiver Q. Using the Auslander-Reiten duality 〈X,Y 〉 = −〈Y, τX〉,
X,Y ∈ DQ, the RHS is further computed as:

〈HQ(i, p), HQ(j, r − 2h)〉 = −〈HQ(j, r − 2h), τHQ(i, p)〉
= −〈HQ(j, r − 2h), HQ(i, p− 2)〉.

Since (p−2)−(r−2h) = 2h−1−` ≥ 0 by assumption, the RHS of the last equation
is equal to −c̃ij(2h− `) again by Corollary 3.6. This proves (4).

Let us prove (5). As before, we may assume `+ εi + εj + 1 ∈ 2Z. For a Dynkin
quiver Q and (i, p), (j, r) ∈ ∆0 with r−p+1 = `, we have c̃ij(`) = 〈HQ(i, p), HQ(j, r)〉
by Corollary 3.6. Using 〈X,Y 〉 = −〈Y, τX〉 = 〈Y, τX[1]〉 and (3.2), we further
compute as:

〈HQ(i, p), HQ(j, r)〉 = 〈HQ(j, r), τHQ(i, p)[1]〉 = 〈HQ(j, r), HQ(i∗, p+ h− 2)〉.

Since (p+ h− 2)− r = (h− 1)− ` ≥ 0 by assumption, we get 〈HQ(j, r), HQ(i∗, p+
h− 2)〉 = c̃ji∗(h− `) again by Corollary 3.6. This proves (5).

To prove (6), it suffices to check that c̃ij(h) = c̃ij(2h) = 0 thanks to (3). Spe-
cializing ` = h in (4), we get c̃ij(h) = −c̃ij(h) and hence c̃ij(h) = 0. Let us verify
c̃ij(2h) = 0. When εi = εj , the number 2h + εi + εj + 1 is always odd. Therefore
we have c̃ij(2h) = 0 by Proposition 3.5. When εi 6= εj , let us choose Q with the
sink-source orientation such that i is a source and j is a sink. Namely, we choose Q
and its height function ξ so that we have ξi = ξj + 1, and ξk = ξi (resp. ξk = ξj) if
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εk = εi (resp. εk = εj). With such a choice, we have γi = αi and 2h+ξi−ξj−1 = 2h.
Therefore, by Proposition 3.5, we get

c̃ij(2h) = (τ2h/2(γi), $j) = (αi, $j) = 0.

Let us prove (7). Assume c̃ij(`) 6= 0. First we consider the case εi = εj . In this
case, Proposition 3.5 implies that ` is odd. Let us take a Dynkin quiver Q with a
sink-source orientation. In particular, we have ξi = ξj . By the description of the
Auslander-Reiten quiver of DQ in [14, Proposition 6.5], we see that the set

{τ (ℓ−1)/2(γi) | 1 ≤ ` ≤ h− 1, ` is odd} = {γi, τ(γi), . . . , τ ⌊(h−2)/2⌋(γi)}
consists of positive roots. Therefore we have c̃ij(`) =

(
τ (ℓ−1)/2(γi), $j

)
≥ 0 for any

1 ≤ ` ≤ h − 1. For the other case εi 6= εj , Proposition 3.5 implies that ` is even.
Let us take Q with a sink-source orientation with i being a sink. Then j is a source
and hence `+ ξi − ξj − 1 = `− 2. Again we can see that the set

{τ (ℓ−2)/2(γi) | 1 ≤ ` ≤ h− 1, ` is even} = {γi, τ(γi), . . . , τ ⌊(h−3)/2⌋(γi)}
consists of positive roots. Therefore we get c̃ij(`) =

(
τ (ℓ−2)/2(γi), $j

)
≥ 0.

The last item (8) follows from (4) and (7). □
Thanks to the above lemma, we can recover all the integers {c̃ij(`) | ` ≥ 1} for

each (i, j) ∈ I2 from the first h − 1 integers {c̃ij(`) | 1 ≤ ` ≤ h − 1}, for which we
have the following simple representation-theoretic interpretation.

Proposition 3.8. Let Q be a Dynkin quiver of type g. For any (j, r), (i, p) ∈ ∆0,
we have

dimExt1DQ
(HQ(j, r), HQ(i, p)) =

{
c̃ij(r − p− 1) if 1 ≤ r − p− 1 ≤ h− 1;

0 otherwise.

Proof. Using (3.2), we have

dimExt1DQ
(HQ(j, r), HQ(i, p)) = dimHomDQ

(HQ(j, r), HQ(i, p)[1])(3.3)

= dimHomDQ
(HQ(j, r), HQ(i

∗, p+ h)).

On the other hand, using the Auslander-Reiten duality, we have

dimExt1DQ
(HQ(j, r), HQ(i, p)) = dimHomDQ

(HQ(i, p), τHQ(j, r))(3.4)

= dimHomDQ
(HQ(i, p), HQ(j, r − 2)).

Now we assume that Ext1DQ
(HQ(j, r), HQ(i, p)) 6= 0. Then we have

HomDQ
(HQ(j, r), HQ(i

∗, p+ h)) 6= 0, HomDQ
(HQ(i, p), HQ(j, r − 2)) 6= 0

by the above equations (3.3) and (3.4) respectively. In view of Theorem 3.2, they
imply that r ≤ p+ h and p ≤ r − 2, or equivalently 1 ≤ r − p− 1 ≤ h− 1.

Conversely, let us assume 1 ≤ r − p− 1 ≤ h− 1. We continue (3.4) as:

dimHomDQ
(HQ(i, p), HQ(j, r − 2)) = dimHomDQ

(τ (ξi−p)/2(Ii), τ
(ξj−r+2)/2(Ij))

= dimHomDQ
(τ ((r−p−1)+ξi−ξj−1)/2(Ii), Ij).

Because of (3.1), we may assume that our Dynkin quiver Q has the sink-source ori-
entation with the vertex i being a source. Then the object τ ((r−p−1)+ξi−ξj−1)/2(Ii)
remains inside CQ-mod ⊂ DQ. Therefore we have

dimHomDQ
(τ ((r−p−1)+ξi−ξj−1)/2(Ii), Ij) =

〈
τ ((r−p−1)+ξi−ξj−1)/2(Ii), Ij

〉
.
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The RHS is equal to c̃ij(r − p− 1) by Corollary 3.6. □

3.5. Quiver interpretation of the denominator formula. Thanks to Theo-
rem 2.8 and Proposition 3.8, we see that the following assertion is equivalent to our
main theorem (=Theorem 2.10).

Theorem 3.9. Let Q be a Dynkin quiver of type g. For any (i, p), (j, r) ∈ ∆0, the
pole order of the normalized R-matrix Rij at z2/z1 = qr/qp (i.e. the zero order of

dij(u) at u = qr/qp) is equal to dimExt1DQ
(HQ(j, r), HQ(i, p)).

A proof of Theorem 3.9 is given in Section 5.1 below.
In what follows, for each (i, p) ∈ I × Z, we simplify the notation by setting

Y(i,p) := Yi,qp .

Recall that we have an identification L(Y(i,p)) = Vi(q
p) for each (i, p) ∈ I × Z.

Corollary 3.10. Let Q be a Dynkin quiver of type g. For any x, y ∈ ∆0, the
following conditions are mutually equivalent:

• The tensor product L(Yx)⊗ L(Yy) is irreducible;
• L(Yx)⊗ L(Yy) ∼= L(Yy)⊗ L(Yx) as Uq(Lg)-modules;

• Ext1DQ
(HQ(x), HQ(y)) = 0 and Ext1DQ

(HQ(y), HQ(x)) = 0.

Proof. This follows from Theorem 2.7 and Theorem 3.9. □

4. Graded quiver varieties

In this section, we collect some known facts about the graded quiver varieties
which we need in this paper. We keep the notation from the previous sections.

4.1. Notation on the equivariant K-theory. Let G be a complex linear alge-
braic group. In the present paper, a G-variety X always means a quasi-projective
complex algebraic variety equipped with an algebraic action of the group G. We set
pt := SpecC with the trivial G-action. The equivariant K-group KG(X) is defined
to be the Grothendieck group of the abelian category of G-equivariant coherent
sheaves on X, which is a module over the representation ring R(G) = KG(pt).

Let F be a field of characteristic zero. We put

KG(X)F := KG(X)⊗Z F, R(G)F := R(G)⊗Z F.

Let a ⊂ R(G)F be the augmentation ideal, i.e. the ideal consisting of virtual repre-
sentations of dimension 0. We define the a-adic completions by

K̂G(X)F := lim←−
k

KG(X)F/a
kKG(X)F, R̂(G)F := lim←−

k

R(G)F/a
k.

The completed K-group K̂G(X)F is a module over the algebra R̂(G)F.

4.2. Convolution product. We recall the definition of the convolution product for
the equivariant K-groups (see [7, Chapter 5] and [32, Section 6, 8] for details). Let
Mi be a non-singular G-variety for i = 1, 2, 3. We denote by pij : M1×M2×M3 →
Mi ×Mj the natural projection for (i, j) = (1, 2), (2, 3), (1, 3). Let Z12 ⊂ M1 ×
M2 and Z23 ⊂ M2 ×M3 be G-stable closed subvarieties such that the morphism
p13 : p

−1
12 (Z12) ∩ p−1

23 (Z23) → Z13 := p13(p
−1
12 (Z12) ∩ p−1

23 (Z23)) is proper. Then we



16 RYO FUJITA

define the convolution product ∗ : KG(Z12)⊗R(G)K
G(Z23)→ KG(Z13) relative to

M1,M2,M3 by

(4.1) ζ ∗ η := p13∗(p
∗
12ζ ⊗L

M1×M2×M3
p∗23η),

where ζ ∈ KG(Z12), η ∈ KG(Z23). This naturally induces the convolution product

on the completedG-equivariantK-groups K̂G(Z12)F⊗R̂(G)F
K̂G(Z23)F → K̂G(Z13)F.

Note that the convolution product ∗ depends on the ambient smooth spacesM1,M2,M3.

4.3. Quiver varieties. In this subsection, we recall the definition of the (usual)
Nakajima quiver varieties. A basic reference is [32].

We fix I-graded finite-dimensional complex vector spaces V̄ =
⊕

i∈I V̄i, W̄ =⊕
i∈I W̄i and consider the following space of linear maps:

M(V̄ , W̄ ) :=

⊕
i∼j

Hom(V̄i, V̄j)

⊕(⊕
i∈I

Hom(W̄i, V̄i)

)
⊕

(⊕
i∈I

Hom(V̄i, W̄i)

)

On the C-vector spaceM(V̄ , W̄ ), the groupsGV̄ :=
∏

i∈I GL(V̄i), GW̄ :=
∏

i∈I GL(W̄i)
act by conjugation and the 1-dimensional torus C× acts by the scalar multiplication.
We write an element of M(V̄ , W̄ ) as a triple (B, a, b) of linear maps B =

⊕
Bij ,

a =
⊕
ai and b =

⊕
bi. Let µ =

⊕
i∈I µi : M(V̄ , W̄ ) →

⊕
i∈I gl(V̄i) be the map

given by

µi(B, a, b) = aibi +
∑
j∼i

BijBji.

A point (B, a, b) ∈ µ−1(0) is said to be stable if there exists no non-zero I-graded
subspace V̄ ′ ⊂ V̄ such that B(V̄ ′) ⊂ V̄ ′ and V̄ ′ ⊂ Ker b. Let µ−1(0)st be the set of
stable points, on which GV̄ acts freely. Then we consider a set-theoretic quotient

M(V̄ , W̄ ) := µ−1(0)st/GV̄ .

It is known that this quotient has a structure of a non-singular quasi-projective
variety which is isomorphic to a quotient in the geometric invariant theory. We
also consider the categorical quotient

M0(V̄ , W̄ ) := µ−1(0)//GV̄ = SpecC[µ−1(0)]GV̄ ,

together with a canonical projective morphism M(V̄ , W̄ ) → M0(V̄ , W̄ ). These
quotients M(V̄ , W̄ ), M0(V̄ , W̄ ) naturally inherit the actions of the group GW̄ :=
GW̄ × C×, which makes the canonical projective morphism GW̄ -equivariant.

For any two I-graded vector spaces V̄ , V̄ ′ such that dim V̄i ≤ dim V̄ ′
i for each

i ∈ I, there is a natural closed embedding M0(V̄ , W̄ ) ↪→M0(V̄
′, W̄ ). With respect

to these embeddings, the family {M0(V̄ , W̄ )}V̄ forms an inductive system, which
stabilizes at some large V̄ . We consider the union (inductive limit) and obtain the
following combined GW̄ -equivariant morphism:

π : M(W̄ ) :=
⊔
V̄

M(V̄ , W̄ )→M0(W̄ ) :=
⋃
V̄

M0(V̄ , W̄ ).

We refer to these varieties M(W̄ ),M0(W̄ ) as the quiver varieties. Note that the

component M(0, W̄ ) consists of a single point, which we denote by 0̂. We call its

image π(0̂) = 0 the origin of M0(W̄ ).
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4.4. Graded quiver varieties. Next we define the graded quiver varieties. Recall
the infinite set ∆0 = {(i, p) ∈ I × Z | p − εi ∈ 2Z} in Definition 3.1. We fix
a ∆0-graded finite-dimensional complex vector space W =

⊕
(i,p)∈∆0

W(i,p). Let

W̄ =
⊕

i∈I W̄i be the underlying I-graded vector space of W , i.e. W̄i :=
⊕

pW(i,p)

for each i ∈ I. We define a 1-dimensional algebraic subtorus TW ⊂ GW̄ by

(4.2) TW :=

{(
⊕

(i,p)∈∆0

tpidW(i,p)
, t

)
∈ GW̄

∣∣∣∣ t ∈ C×
}
.

Note that the centralizer of TW inside GW̄ is GW := GW × C×, where GW :=∏
(i,p)∈∆0

GL(W(i,p)) ⊂ GW̄ . We consider the TW -fixed loci:

π• := πTW : M•(W ) := M(W̄ )TW →M•
0(W ) := M0(W̄ )TW ,

and refer to these varieties M•(W ),M•
0(W ) as the graded quiver varieties. The

centralizer GW naturally acts on the varieties M•(W ), M•
0(W ) and the proper

morphism π• is GW -equivariant.

4.5. Nakajima’s homomorphism. Take a finite-dimensional I-graded C-vector
space W̄ and consider the quiver varieties π : M(W̄ )→M0(W̄ ). We define

Z(W̄ ) := M(W̄ )×M0(W̄ ) M(W̄ ), L(W̄ ) := π−1(0) = M(W̄ )×M0(W̄ ) {0}.

Applying the convolution construction in Section 4.2, we obtain an R(GW̄ )-algebra
KGW̄ (Z(W̄ )) and a left module KGW̄ (L(W̄ )) over it.

We set A := R(C×) and regard KGW̄(−) as an A-module via the inclusion
A = R(C×) ↪→ R(GW̄ ) arising from the second projection GW̄ = GW̄ × C× →
C×. Also, we regard the field k = Q(q) as an A-algebra via the homomorphism
A = R(C×) → k sending the class of the 1-dimensional natural C×-module to the
parameter q. After the base change, we obtain the k-algebra KGW̄ (Z(W̄ )) ⊗A k
and the left module KGW̄ (L(W̄ ))⊗A k over it.

Theorem 4.1 (Nakajima [32]). There exists a k-algebra homomorphism

ΨW̄ : Uq(Lg)→ KGW̄ (Z(W̄ ))⊗A k

via which the KGW̄ (Z(W̄ ))⊗Ak-module KG(W̄ )(L(W̄ ))⊗Ak is regarded as a Uq(Lg)-
module and isomorphic to the level-zero extremal weight module of extremal weight∑

i∈I(dim W̄i)$i in the sense of Kashiwara [23].

Proof. See [32, Section 9] and [34, Theorem 2]. □

Let us describe some more details in the special case when W̄ = W̄i and dim W̄i =
1 for some i ∈ I. In this case, the extremal weight module of extremal weight $i is
isomorphic to the affinized fundamental module Vi[z

±1]. By Theorem 4.1, we have
a Uq(Lg)-isomorphism

(4.3) KGW̄ (L(W̄ ))⊗A k ∼= Vi[z
±1].

Under this isomorphism, the vector vi ∈ Vi[z
±1] corresponds to the class [O{0̂}]

of the structure sheaf of M(0, W̄ ) = {0̂}. The action of R(GW̄ )k on the LHS is
identified with the action of k[z±1] on the RHS via the isomorphism ψi : R(GW̄ )⊗A

k → k[z±1] which sends the class [W̄i] of the natural representation given by the
first projection GW̄ = GL(W̄i)× C× → GL(W̄i) to the formal parameter z.
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4.6. Completion. As in Section 4.4, we fix a finite-dimensional ∆0-graded vector
spaceW =

⊕
x∈∆0

Wx and denote by W̄ =
⊕

i∈I W̄i its underlying I-graded vector
space. Recall the 1-dimensional subtorus TW ⊂ GW̄ and its centralizer GW =
GW × C× ⊂ GW̄ . Note that the multiplication induces a group isomorphism

(4.4) GW × TW ∼= GW , (g, t) 7→ gt.

Let rW be the kernel of the restriction R(GW )⊗A k→ R(TW )⊗A k = k. Note that
the decomposition (4.4) yields an isomorphism

KGW (X)⊗A k ∼= KGW (X)k

for any GW -variety X with a trivial TW -action. In particular, we have an iso-
morphism R(GW ) ⊗A k ∼= R(GW )k of k-algebras, via which the maximal ideal
rW ⊂ R(GW )⊗A k corresponds to the augmentation ideal a ⊂ R(GW )k. Therefore
we have an isomorphism

(4.5)
[
KGW (X)⊗A k

]∧
rW
∼= K̂GW (X)k,

where [−]∧rW denotes the rW -adic completion.
We consider the fiber product

Z•(W ) := M•(W )×M•
0(W ) M

•(W ) = Z(W̄ )TW .

The completed equivariant K-group K̂GW (Z•(W ))k becomes a k-algebra via the

convolution product. We define the k-algebra homomorphism Ψ̂W : Uq(Lg) →
K̂GW (Z•(W ))k to be the following composition:

Uq(Lg)→ KGW̄ (Z(W̄ ))⊗A k (Nakajima’s homomorphism ΨW̄ )

→ KGW (Z(W̄ ))⊗A k (restriction to GW ⊂ GW̄ )

→
[
KGW (Z(W̄ ))⊗A k

]∧
rW

(rW -adic completion)

∼=
[
KGW (Z•(W ))⊗A k

]∧
rW

(localization theorem)

∼= K̂GW (Z•(W ))k. (isomorphism (4.5))

We refer to the homomorphism Ψ̂W as the completed Nakajima homomorphism.
Let us describe the special case when W = Wx and dimWx = 1 for some

x = (i, p) ∈ ∆0. In this case, we have M•
0(W ) = {0} and hence M•(W ) = L(W̄ )TW .

Note that the composition of R(GW )k ∼= R(GW )⊗A k = R(GW̄ )⊗A k arising from
(4.4) and ψi in the previous subsection yields an isomorphism ψx : R(GW )k ∼=
k[z±1]. Since the group homomorphism GW

∼= GW × TW → GW obtained by
composing the inverse of (4.4) and the natural projection is given by (g, t) 7→
gt−p for (g, t) ∈ GW = (C×)2, the isomorphism ψx sends the class [Wx] of the
natural representation of GW to the element q−pz. After the completion, we get

an isomorphism ψ̂x : R̂(GW )k ∼= k[[z − qp]]. In the sequel, we identify them via ψ̂x.
By completing the isomorphism (4.3) rW -adically, we obtain the following.

Lemma 4.2. We have an isomorphism of Uq(Lg)⊗k k[[z − qp]]-modules

K̂GW (M•(W ))k ∼= Vi[z
±1]⊗k[z±1] k[[z − qp]],

under which the vector vi ⊗ 1 in the RHS corresponds to the class [O{0̂}] of the

structure sheaf of {0̂} in the LHS.



GRADED QUIVER VARIETIES AND NORMALIZED R-MATRICES 19

4.7. Keller-Scherotzke’s theorem. In this subsection, we recall a description of
the affine graded quiver variety M•

0(W ) due to Keller-Scherotzke [29], which plays
a crucial role in this paper. Recall the notation on quivers in Section 3.1.

Definition 4.3. We define an infinite quiver ∆̃ = (∆̃0, ∆̃1) whose set of vertex is

∆̃0 := I × Z. Let ∆+
0 denote the complement of the subset ∆0 of ∆̃0:

∆̃0 = ∆0 t∆0
+, ∆+

0 = {(i, p+ 1) ∈ I × Z | (i, p) ∈ ∆0}.

The arrow set ∆̃1 consists of the following three kinds of arrows:

• ai(p) : (i, p)→ (i, p− 1) for each (i, p) ∈ ∆0;
• bi(p) : (i, p)→ (i, p− 1) for each (i, p) ∈ ∆+

0 ;
• Bji(p) : (i, p)→ (j, p− 1) for each (i, p) ∈ ∆+

0 and j ∈ I with j ∼ i.
Let I be a two sided ideal of the path algebra C∆̃ generated by the elements

ai(p− 1)bi(p) +
∑
j∼i

Bij(p− 1)Bji(p)

for (i, p) ∈ ∆+
0 . Then, we define the (non-unital) C-algebras Λ̃ and Λ by

Λ̃ := C∆̃/I, Λ :=
⊕

x,y∈∆0

exΛ̃ey.

For a ∆0-graded finite-dimensional C-vector space W =
⊕

x∈∆0
Wx, we can

consider the variety repW (Λ) of representations of the algebra Λ realized onW . We
have the natural conjugation action of the group GW on the variety repW (Λ).

Proposition 4.4 (Leclerc-Plamondon [31]). There is an isomorphism of GW -
varieties:

M•
0(W ) ∼= repW (Λ).

Proof. This is [31, Theorem 2.4]. Note that the graded quiver variety M•
0(W )

defined therein is naturally isomorphic to our graded quiver variety defined as the
TW -fixed locus of M0(W̄ ) (see [32, Section 4.1] for details). □

Let C be a subset of the vertex set ∆0. We denote by ΛC the quotient of the
algebra Λ by the ideal generated by all the idempotents ex with x 6∈ C. We consider
the following condition (R) on the subset C:

(R) For each vertex x ∈ ∆0, there is a vertex c ∈ C such that the space
HomC(∆)(x, c) of morphisms in the category C(∆) does not vanish.

Theorem 4.5 (Keller-Scherotzke [29, Corollary 3.10]). Assume that our subset
C ⊂ ∆0 satisfies the above condition (R). Then we have a canonical isomorphism

ExtkΛC
(Sx, Sy) ∼= ExtkDQ

(HQ(x), HQ(y))

for any Dynkin quiver Q of type g, vertices x, y ∈ C and k ∈ Z≥1.

Remark 4.6. The condition (R) is obviously satisfied when C = ∆0.

Definition 4.7. We define an infinite quiver Γ with Γ0 = ∆0 whose arrow set Γ1

is determined by the following condition:

#{a ∈ Γ1 | a′ = x, a′′ = y} = dimExt1DQ
(HQ(x), HQ(y)) for each x, y ∈ ∆0,

where Q is a Dynkin quiver of type g.
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Note that, by Proposition 3.8, there is no arrow from (i, p) to (j, r) in the quiver
Γ unless p > r. In particular, the quiver Γ has neither loops nor oriented cycles.

Corollary 4.8. For any ∆0-graded finite-dimensional complex vector space W ,
there is a GW -equivariant closed embedding

M•
0(W ) ↪→ repW (Γ).

Moreover, ifW is supported on just two vertices (i, p), (j, r) ∈ ∆0, i.e.W =W(i,p)⊕
W(j,r) with r ≥ p, the graded quiver variety M•

0(W ) is GW -equivariantly isomorphic
to the affine space

HomC(W(j,r),W(i,p))⊗ Ext1DQ
(HQ(j, r), HQ(i, p)),

where GW acts trivially on the second tensor factor.

Proof. By a general theory (see [2, Theorem 3.7] for example), the algebra Λ can
be written as a quotient of the path algebra of a quiver QΛ by an admissible ideal
J ⊂ CQΛ. By Theorem 4.5 (in the case C = ∆0), we have QΛ = Γ and hence the
variety repW (Λ) is a closed subvariety of the affine space

repW (Γ) =
∏
a∈Γ1

HomC(Wa′ ,Wa′′)

=
∏

(i,p),(j,r)∈∆0,r>p

HomC(W(j,r),W(i,p))⊗C Ext1DQ
(HQ(j, r), HQ(i, p))

Combining with Proposition 4.4, we obtain a GW -equivariant closed embedding
M•

0(W ) = repW (Λ) ↪→ repW (Γ).
If W =W(i,p) ⊕W(j,r) with r ≥ p, we have

repW (Γ) = HomC(W(j,r),W(i,p))⊗ Ext1DQ
(HQ(j, r), HQ(i, p)).

In addition, all the polynomials corresponding to elements of J vanish because
J ⊂

⊕
d≥2(CΓ1)

⊗d ⊂ CΓ. Therefore the closed embedding is an isomorphism in
this case. □

Remark 4.9. By the same argument, we can show the following more general as-
sertion. If a ∆0-graded vector space W is supported on a subset C ⊂ ∆0 satisfying
the condition (R), the graded quiver variety M•

0(W ) is identical to the space of rep-
resentations of the full subquiver Γ|C ⊂ Γ satisfying some relations corresponding
to elements of an admissible ideal JC of the path algebra CΓ|C .

4.8. Stratification. Let W be a ∆0-graded vector space as above and V be a
∆+

0 -graded vector space. We set

YW :=
∏

x∈∆0

Y dimWx
x , A−V :=

∏
y∈∆+

0

A− dimVy
y ,

where Y(i,p) := Yi,qp , A(i,p) := Ai,qp ∈M for (i, p) ∈ I × Z.
Let repW⊕V (Λ̃) be the space of representations of the algebra Λ̃ on the ∆̃0-

graded vector spaceW ⊕V . We have a natural GW -equivariant forgetful morphism

repW⊕V (Λ̃) → repW (Λ) = M•
0(W ). We consider the subvariety of repW⊕V (Λ̃)

consisting of modules M whose stabilizer in the group GV is trivial, and denote
its image under the forgetful morphism by M•reg

0 (V,W ) ⊂ M•
0(W ). Note that

M•reg
0 (V,W ) can be empty.
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Theorem 4.10 (Nakajima [32]). The collection {M•reg
0 (V,W )}V of locally closed

smooth GW -subvarieties gives a stratification of the variety M•
0(W ) with finitely

many (non-empty) strata, satisfying the following properties:

(1) M•reg
0 (V,W ) 6= ∅ if and only if YWA−V ∈ M+ and c(YW , YWA−V ) 6= 0

(see Theorem 2.3 (2) for the notation). If this is the case, we have

c(YW , YWA−V ) = dim ι!IC(M•reg
0 (V,W ),k),

where IC(M•reg
0 (V,W ),k) denotes the intersection cohomology complex as-

sociated with the constant k-sheaf on M•reg
0 (V,W ) and ι : {0} ↪→ M•

0(W )
denotes the inclusion of the origin;

(2) Let LW be the (derived) push-forward of the constant sheaf kM•(W ) along

the proper morphism π• : M•(W )→M•
0(W ). Then it has a decomposition:

LW
∼=
⊕
V

IC(M•reg
0 (V,W ),k)⊗k L

•
V ,

where L•
V ∈ Db(k-mod) is a finite-dimensional Z-graded k-vector space.

Moreover, L•
V 6= 0 if and only if M•reg

0 (V,W ) 6= ∅;

(3) The closure inclusion M•reg
0 (V,W ) ⊂ M•reg

0 (V ′,W ) between non-empty

strata implies YWA−V ≥ YWA−V ′
.

Proof. See [32, Section 14.3] for (1), (2), and [32, Section 3.3] for (3). □

The next theorem describes the stratification {M•reg
0 (V,W )}V in terms of the

algebra Λ.

Theorem 4.11 (Keller-Scherotzke [29]). Let Q be a Dynkin quiver of type g. There
exists a canonical δ-functor ΦQ : Λ-mod → DQ such that ΦQ(Sx) ∼= HQ(x) ∈ DQ

for each x ∈ ∆0 and satisfies the following properties:

(1) Two representations M1,M2 ∈ repW (Λ) = M•
0(W ) belong to a common

stratum M•reg
0 (V,W ) if and only if we have ΦQ(M1) ∼= ΦQ(M2);

(2) If we write ΦQ(M) ∼=
⊕

x∈∆0
HQ(x)

⊕mx for M ∈ M•reg
0 (V,W ), we have

YWA−V =
∏

x∈∆0
Y mx
x ∈M+.

Proof. See [29, Theorem 2.7] for (1), and [29, Lemma 4.14] for (2). □

We refer to the above δ-functor ΦQ : Λ-mod → DQ as the stratification functor.
For a concrete construction of ΦQ, see [29, Sections 4 and 5].

5. A geometric proof of the denominator formula

In this section, we give a proof of Theorem 3.9, which is equivalent to our main
theorem (= Theorem 2.10). We also describe a structure of the tensor product
module Vi(a)⊗ Vj(b) when Rij has a simple pole at z2/z1 = b/a in Section 5.2 .

5.1. Proof of Theorem 3.9. For x = (i, p), y = (j, r) ∈ ∆0, we set

V (x, y) := Vi(q
p)⊗ Vj(qr) = L(Yx)⊗ L(Yy),

V̂ (x, y) := O⊗k[z±1
1 ,z±1

2 ]

(
Vi[z

±1
1 ]⊗ Vj [z±1

2 ]
)
,

where O := k[[z1 − qp, z2 − qr]]. We have V (x, y) ∼= V̂ (x, y)/mV̂ (x, y) as Uq(Lg)-

modules, where m ⊂ O is the maximal ideal. Since the module Vi[z
±1
1 ] ⊗ Vj [z±1

2 ]

is free over k[z±1
1 , z±1

2 ], the module V̂ (x, y) is free over O. We denote the image of
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the vector vi ⊗ vj under the natural homomorphism Vi[z
±1
1 ] ⊗ Vj [z±1

2 ] → V (x, y)

(resp. Vi[z
±1
1 ]⊗ Vj [z±1

2 ]→ V̂ (x, y)) by vx,y (resp. v̂x,y).
Let K be the fraction field of O. We set

V̂ (x, y)K := K⊗O V̂ (x, y) = K⊗k[z±1
1 ,z±1

2 ] (Vi[z
±1
1 ]⊗ Vj [z±1

2 ]).

We can naturally regard V̂ (x, y) as a submodule of V̂ (x, y)K. The normalized R-
matrix Rij : Vi[z

±1
1 ] ⊗ Vj [z±1

2 ] → k(z2/z1) ⊗k[(z2/z1)±1]

(
Vj [z

±1
2 ]⊗ Vi[z±1

1 ]
)
induces

a unique Uq(Lg)⊗K-homomorphism

R̂x,y : V̂ (x, y)K → V̂ (y, x)K

characterized by the property R̂x,y(v̂x,y) = v̂y,x. Since the Uq(Lg) ⊗ K-modules

V̂ (x, y)K and V̂ (y, x)K are irreducible (see [24, Lemma 8.1] for example), the ho-

momorphism R̂x,y is an isomorphism, and we have

(5.1) HomUq(Lg)⊗K

(
V̂ (x, y)K, V̂ (y, x)K

)
= KR̂x,y.

Let dx,y := dimExt1DQ
(HQ(y), HQ(x)), where Q is a Dynkin quiver of type g. If

r ≤ p, we have dx,y = 0 by Proposition 3.8. On the other hand, we know that
dij(q

r/qp) 6= 0 for r ≤ p by Theorem 2.8. Therefore, to prove Theorem 3.9, we may
assume that r > p. Then, it suffices to verify the following two properties:

(z2/z1 − qr/qp)dx,y R̂x,y

(
V̂ (x, y)

)
⊂ V̂ (y, x),(5.2)

(z2/z1 − qr/qp)dx,y R̂x,y

(
V̂ (x, y)

)
6⊂ mV̂ (y, x).(5.3)

We prove these properties by using geometry of the graded quiver varieties.
Let W = Wx ⊕Wy be the ∆0-graded vector space supported on {x, y} ⊂ ∆0

satisfying dimWx = dimWy = 1. In this case, we have GW = GL(Wx)×GL(Wy) =

(C×)2. In what follows, we identify the completed representation ring R̂(GW )k with
the ring O by the isomorphism

(5.4) R̂(GW )k ∼= O, [Wx]↔ q−pz1, [Wy]↔ q−rz2,

where [Wx] and [Wy] denote the classes of the natural 1-dimensional representations
of GW = GL(Wx)×GL(Wy). By Corollary 4.8, the graded quiver variety M•

0(W ) is
identified with the affine space E = Cdx,y of dimension dx,y as a GW -variety. Here

the action of the group GW = (C×)2 on E is given by (s1, s2) · e = s1s
−1
2 e, where

(s1, s2) ∈ (C×)2 and e ∈ E. Let ι : {0} ↪→ E denote the inclusion of the origin.
From the morphisms π• : M•(W ) → M•

0(W ) = E, id : E → E and ι : {0} → E,
we make the fiber products M•(W ) ×E E ⊂ M•(W ) × E and M•(W ) ×E {0} ⊂
M•(W )×{0}. The convolution product makes the completed equivariant K-groups

K̂GW (M•(W )×EE)k and K̂
GW (M•(W )×E{0})k into left K̂GW (Z•(W ))k-modules.

Via the completed Nakajima homomorphism Ψ̂W : Uq(Lg)→ K̂GW (Z•(W ))k, they
are regarded as left Uq(Lg)-modules.

Lemma 5.1. There are isomorphisms of Uq(Lg)⊗O-modules

K̂GW (M•(W )×E E)k ∼= V̂ (x, y),(5.5)

K̂GW (M•(W )×E {0})k ∼= V̂ (y, x),(5.6)

under which the class [O{0̂}] of the structure sheaf of {0̂} ⊂M•(W ) corresponds to

the vectors v̂x,y and v̂y,x respectively.
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Proof. Define the 1-parameter subgroups λx,y : C× → GW and λy,x : C× → GW

by λx,y(t) := (t, 1) and λy,x(t) := (1, t) respectively. Since λx,y(t) · e = te and
λy,x(t) · e = t−1e for any point e ∈ E = M•

0(W ), we have

M•(W )×E E =
{
m ∈M•(W )

∣∣∣ lim
t→0

λx,y(t)π
•(m) = 0

}
,

M•(W )×E {0} =
{
m ∈M•(W )

∣∣∣ lim
t→0

λy,x(t)π
•(m) = 0

}
.

From these descriptions, we see that they coincide with the TW -fixed loci of the
tensor product varieties introduced by Nakajima [33]. More precisely, they are

Z̃(Wx;Wy)
TW and Z̃(Wy;Wx)

TW respectively in the notation loc. cit. Therefore,
we can proceed the similar argument as the proof of [33, Theorem 6.12] in the
rW -adically completed setting to obtain the following isomorphisms of Uq(Lg)⊗O-
modules:

K̂GW (M•(W )×E E)k ∼= K̂GWx (M•(Wx))k⊗̂K̂GWy (M•(Wy))k,

K̂GW (M•(W )×E {0})k ∼= K̂GWy (M•(Wy))k⊗̂K̂GWx (M•(Wx))k,

where K⊗̂K ′ denotes the completion of K ⊗k K
′. On the other hand, there are

isomorphisms K̂GWx (M•(Wx))k ∼= Vi[z
±1
1 ]⊗k[z±1

1 ]k[[z1−qp]] and K̂
GWy (M•(Wy))k ∼=

Vj [z
±1
2 ]⊗k[z±1

2 ] k[[z2− qr]] by Lemma 4.2. Thus we obtain the desired isomorphisms

(5.5) and (5.6). □

Now we consider the completed equivariant K-group K̂GW (E ×E {0})k. Since
E ×E {0} = {0}, this is a free O-module of rank 1 generated by the class [O{0}] of
the structure sheaf. The convolution product with the class [O{0}] from the right

(−) ∗ [O{0}] : K̂
GW (M•(W )×E E)k → K̂GW (M•(W )×E {0})k

is identified via the isomorphisms (5.5) and (5.6) with a Uq(Lg)⊗O-homomorphism

r : V̂ (x, y)→ V̂ (y, x).

By the base change O → K (resp. O → k), the homomorphism r gives rise to

rK ∈ HomUq(Lg)⊗K(V̂ (x, y)K, V̂ (y, x)K) (resp. r̄ ∈ HomUq(Lg)(V (x, y), V (y, x))).
The following two lemmas prove the properties (5.2) and (5.3) respectively, and

hence complete the proof of Theorem 3.9.

Lemma 5.2. Up to k×-multiplication, the homomorphism rK is equal to the ho-

momorphism (z2/z1 − qr/qp)dx,y R̂x,y. In particular, the property (5.2) holds.

Proof. In this proof, we identify V̂ (x, y) and V̂ (y, x) with the completed equivariant
K-groups via the isomorphisms (5.5) and (5.6) respectively. Let us compute the
operator r = (−) ∗ [O{0}] following the definition of the convolution product (4.1).

For any ζ ∈ K̂GW (M•(W )×E E), we have

r(ζ) = p13∗(p
∗
12ζ ⊗L

M•(W )×E×{0} p
∗
23[O{0}])

= p′1∗(ζ ⊗L
M•(W )×E p

′∗
2 [O{0}]),
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where p′1 : M
•(W ) × E → M•(W ) and p′2 : M

•(W ) × E → E are the natural
projections. By the Koszul resolution, we have

[O{0}] =

dx,y∑
k=1

(−1)k
[
∧kT ∗

0E
] [OE ] =

(
1− q−rz2/q

−pz1
)dx,y

[OE ],

where we regard [∧kT ∗
0E] = [∧kE∗] ∈ R(GW ) and used the identification (5.4).

Thus we obtain r(ζ) = (1− q−rz2/q
−pz1)

dx,y p′1∗(ζ). In the special case ζ = [O{0̂}] =

v̂x,y, we have p′1∗[O{0̂}] = [O{0̂}] and hence r(v̂x,y) = (1− q−rz2/q
−pz1)

dx,y v̂y,x.

Thanks to (5.1), we conclude that rK = (1− q−rz2/q
−pz1)

dx,y R̂x,y. □
Lemma 5.3. The homomorphism r̄ is non-zero. In particular, the property (5.3)
holds.

Proof. Applying the base change O → k to the isomorphisms (5.5) and (5.6) in
Lemma 5.1, we obtain

K(M•(W )×E E)k ∼= V (x, y), K(M•(W )×E {0})k ∼= V (y, x).

Here we used the freeness of the equivariantK-groups of the quiver varieties (see [32,
Theorem 7.3.5]). Under these isomorphisms, the homomorphism r̄ : V (x, y) →
V (y, x) is identified with the convolution operation

(−) ∗ [O{0}] : K(M•(W )×E E)k → K(M•(W )×E {0})k.
Here the class [O{0}] 6= 0 is regarded as an element of K(E ×E {0})k = K(pt)k.

Let Db
c(E) denote the bounded derived category of constructible complexes of

k-vector spaces on E. For F ,G ∈ Db
c(E), we denote by Ext∗(F ,G ) the direct sum

of the spaces HomDb
c(E)(F ,G [k]) over k ∈ Z. By the Chern character map (with a

certain modification, see [7, Section 5.11]) and a standard isomorphism explained
in [7, Section 8.6], we obtain the following commutative diagram:

K(M•(W )×E E)k ⊗K(E ×E {0})k
∗ //

∼=
��

K(M•(W )×E {0})k
∼=
��

Ext∗(kE ,L •
W )⊗ Ext∗(k{0},kE)

◦ // Ext∗(k{0},L •
W ),

where L •
W denotes the (derived) proper push-forward along π• of the constant sheaf

on M•(W ). The lower horizontal arrow denotes the Yoneda product (ϕ1, ϕ2) 7→
ϕ1 ◦ϕ2. The vertical arrows are isomorphisms thanks to [32, Theorem 7.4.1]. Note
that the k-vector space Ext∗(k{0},kE) = HomDb

c(E)

(
ι!ι

!kE ,kE
)
is 1-dimensional

and spanned by the adjoint morphism η : ι!ι
!kE → kE . Under the vertical isomor-

phism K(E ×E {0})k ∼= Ext∗(k{0},kE), the class [O{0}] corresponds to the adjoint

morphism η up to k×. Since E = M•
0(W ) is an affine space, there exists a unique

open dense stratum M•reg
0 (V,W ) ⊂ E and the corresponding intersection coho-

mology complex IC(M•reg
0 (V,W ),k) is just a shift of the constant sheaf kE . By

Theorem 4.10 (2), we see that L •
W contains a certain shift of the constant sheaf kE

as a direct summand. This implies that the Yoneda product

(−) ◦ η : Ext∗ (kE ,L •
W )→ Ext∗(k{0},L •

W )

is non-zero because idkE ◦ η = η 6= 0. Thus the homomorphism r̄ = (−) ∗ [O{0}] is
also non-zero. □
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5.2. A remark on the case of simple pole. Let x = (i, p), y = (j, r) ∈ ∆0 and
assume that the normalized R-matrix Rij has a simple pole at z2/z1 = qr/qp. By

Theorem 3.9, this assumption is equivalent to the condition dimExt1DQ
(HQ(y), HQ(x)) =

1 for a Dynkin quiver Q of type g. Therefore there exists the following non-split
exact triangle in DQ:

HQ(x)→
⊕
w∈∆0

HQ(w)
⊕µw → HQ(y)

+1−−→,

where the multiplicities (µw)w∈∆0 are uniquely determined by the pair (x, y) and
independent from the choice of Q. Then we define a dominant monomial m[y,x] ∈
M+ by

(5.7) m[y,x] :=
∏

w∈∆0

Y µw
w .

Proposition 5.4. Let x = (i, p), y = (j, r) ∈ ∆0 and assume that the normalized
R-matrix Rij has a simple pole at z2/z1 = qr/qp. With the above notation, we have
the following non-split short exact sequences in C:

0→ L(YxYy)→ L(Yx)⊗ L(Yy)→ L(m[y,x])→ 0,

0→ L(m[y,x])→ L(Yy)⊗ L(Yx)→ L(YxYy)→ 0.

Proof. As in Section 5.1 above, we consider the graded quiver variety E := M•
0(W )

associated with a ∆0-graded vector space W = Wx ⊕ Wy such that dimWx =
dimWy = 1. By Corollary 4.8, our assumption implies that E is just a 1-dimensional
affine space. Since the action of (s1, s2) ∈ GW = (C×)2 on E is given by the multi-
plication of s1s

−1
2 ∈ C×, there are only two GW -orbits {0} and E\{0}. On the other

hand, E = M•
0(W ) is stratified by the GW -stable subvarieties M•reg

0 (V,W ) and we
know that {0} coincides with the stratum M•reg

0 (0,W ). Therefore there exists a
unique V such that E \ {0} = M•reg

0 (V,W ). Since IC(M•reg
0 (V,W ),k) = kE [1], we

have c(YxYy, YxYyA
−V ) = dim ι!(kE [1]) = 1 by Theorem 4.10 (1) and hence

[L(Yx)⊗ L(Yy)] = [L(YxYy)] + [L(YxYyA
−V )]

in the Grothendieck ring K(C). Then, in view of Theorem 2.7, we have

0→ L(YxYy)→ L(Yx)⊗ L(Yy)→ L(YxYyA
−V )→ 0,

0→ L(YxYyA
−V )→ L(Yy)⊗ L(Yx)→ L(YxYy)→ 0,

which are exact and non-split. It remains to show YxYyA
−V = m[y,x]. Recall that

E = repW (Λ) and pick a Λ-module M corresponding to a point of E \ {0}. Then
there exists a non-split short exact sequence in Λ-mod:

0→ Sx →M → Sy → 0.

By applying the stratifying functor ΦQ : Λ-mod→ DQ in Theorem 4.11, we obtain
an exact triangle in DQ:

(5.8) HQ(x)→ ΦQ(M)→ HQ(y)
+1−−→ .

By Theorem 4.11 (1), we see that the isomorphism class of ΦQ(M) does not depend
on the choice of M ∈ E \ {0} and the exact triangle (5.8) does not split. Thus we
get YxYyA

−V = m[y,x] by Theorem 4.11 (2) and the definition (5.7). □
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6. Generalized quantum affine Schur-Weyl duality

In this section, as an application of our discussion so far, we give a geometric
interpretation of the generalized quantum affine Schur-Weyl duality functor when
it arises from a family of fundamental modules.

6.1. KKK-functors. First, we shall outline the original construction by Kang-
Kashiwara-Kim. Let {(Vj , aj)}j∈J be a family indexed by an arbitrary set J , con-
sisting of pairs of a real simple module Vj ∈ C (i.e. a simple object in C whose tensor
square remains simple) and a non-zero scalar aj ∈ k×. Recall that we have the nor-
malized R-matrix RVi,Vj

and its denominator dVi,Vj
(u) ∈ k[u] for each (i, j) ∈ J2

(cf. Remark 2.6).

Definition 6.1. Given a family {(Vj , aj)}j∈J as above, we define a quiver ΓJ with
(ΓJ)0 := J whose arrow set (ΓJ)1 is determined by the following condition:

#{a ∈ (ΓJ)1 | a′ = j, a′′ = i} = (zero order of dVi,Vj
(u) at u = aj/ai),

for each (i, j) ∈ J2.

The quiver ΓJ has no loops since each Vj is real. Let gJ be the Kac-Moody
algebra associated with the underlying graph of ΓJ and {αJ

j }j∈J its set of sim-

ple roots. We put Q+
J :=

∑
j∈J Z≥0α

J
j . For each β ∈ Q+

J , we denote by HJ(β)
the corresponding quiver Hecke algebra. This is a Z-graded k-algebra defined by
generators and relations (see [20, Section 1.2] for instance). Let HJ(β)-gmod de-
note the category of finite-dimensional graded HJ(β)-modules. The direct sum
HJ -gmod :=

⊕
β∈Q+

J
HJ(β)-gmod carries a structure of a k-linear monoidal cate-

gory with respect to the so-called convolution product, which is an analogue of the
parabolic induction for the affine Hecke algebras.

In the above setting, Kang-Kashiwara-Kim [20] constructed a bimodule

(6.1) Uq(Lg) ↷ V̂⊗β ↶ ĤJ(β)

with some good properties. Here ĤJ(β) denotes the completion of HJ(β) along

the Z-grading. As a left Uq(Lg)-module, V̂⊗β is a direct sum of suitable tensor
products of the completed modules Vj [z

±1]⊗k[z±1] k[[z− aj ]] for various j ∈ J . The
right action of ĤJ(β) is given by an explicit formula involving the normalized R-

matrices RVi,Vj . See [20, Section 3] for details. The assignmentM 7→ V̂⊗β⊗ĤJ (β)
M

combined with the forgetful functor HJ(β)-gmod → ĤJ(β)-mod yields a k-linear
functor HJ(β)-gmod→ C. Summing up over β ∈ Q+

J , we obtain a k-linear monoidal
functor

FJ : HJ -gmod→ C,
which we refer to as the generalized quantum affine Schur-Weyl duality functor, or
simply the KKK-functor associated with the family {(Vj , aj)}j∈J .

6.2. A geometric interpretation. In this subsection, we give a geometric inter-
pretation of the KKK-functor when it arises from a family of fundamental modules.
Namely, we restrict ourselves to the case when Vj ∈ {Vi(1) | i ∈ I} for every j ∈ J .
Furthermore, we focus on the case when the associated quiver ΓJ is connected.
Then, in view of our denominator formula (2.2), we may assume that there exists
an injective map x : J ↪→ ∆0 which determines the family {(Vj , aj)}j∈J by

(Vj , aj) = (Vx1(j)(1), q
x2(j))
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for every j ∈ J , where we write x(j) = (x1(j), x2(j)) ∈ I × Z.
The next lemma is a key for our construction. Recall the quiver Γ from Defini-

tion 4.7.

Lemma 6.2. Under the above assumption, the quiver ΓJ in Definition 6.1 is iden-
tical to the full subquiver Γ|x(J) of the quiver Γ whose vertex set is the image x(J)
of the injective map x : J ↪→ ∆0 = Γ0.

Proof. This is a consequence of Theorem 3.9. □

In what follows, we often identify a J-graded vector space D =
⊕

j∈J Dj with

the ∆0-graded vector space
⊕

x∈∆0
Dx defined by

Dx :=

{
Dj if x = x(j) with j ∈ J ;
0 if x 6∈ x(J).

Under this convention, we have repD(Γ) = repD(ΓJ) by Lemma 6.2 above.
Now we fix β =

∑
j∈J djα

J
j ∈ Q+

J and a J-graded complex vector space Dβ =⊕
j∈J(Dβ)j such that dim(Dβ)j = dj for each j ∈ J . To simplify the notation,

we set Gβ := GDβ
and Eβ := repDβ

(ΓJ). Let us consider the following two non-
singular Gβ-varieties:

Bβ = {F • = (Dβ = F 0 ⊋ F 1 ⊋ · · · ⊋ F d = 0) | F k is a J-graded subspace of Dβ},

Fβ = {(F •, X) ∈ Bβ × Eβ | X(F k) ⊂ F k for any 1 ≤ k ≤ d},

where d :=
∑

j∈J dj = dimDβ . We denote by µ : Fβ → Eβ the second projection

µ(F •, X) = X. This is a Gβ-equivariant proper morphism since Bβ is a projective
variety. Combined with Corollary 4.8, we have obtained the following diagram

(6.2) M•(Dβ)
π•

−→M•
0(Dβ) ↪→ Eβ

µ←− Fβ

consisting of Gβ-equivariant proper morphisms. Applying the convolution construc-
tion, we get a bimodule

(6.3) KGβ (Z•(Dβ))k ↷ KGβ (M•(Dβ)×Eβ
Fβ)k ↶ KGβ (Zβ)k,

where we set Z•(Dβ) := M•(Dβ)×Eβ
M•(Dβ) and Zβ := Fβ ×Eβ

Fβ .

For each β ∈ Q+
J , we denote by ExtkGβ

(F ,G ) the k-th Ext-space in the Gβ-
equivariant bounded derived category of complexes of k-sheaves on Eβ and define

Ext∗Gβ
(−,−) :=

⊕
k∈Z

ExtkGβ
(−,−), Ext∗Gβ

(−,−)∧ :=
∏
k∈Z

ExtkGβ
(−,−).

Let Lβ denote the push-forward of the constant perverse k-sheaf on the smooth
variety Fβ along the Gβ-equivariant proper morphism µβ : Fβ → Eβ . The following
theorem establishes a geometric realization of the quiver Hecke algebra HJ(β).

Theorem 6.3 (Varagnolo-Vasserot [40, Theorem 3.6]). There is an isomorphism

(6.4) HJ(β) ∼= Ext∗Gβ
(Lβ ,Lβ)

of Z-graded k-algebras.

After completing the above isomorphism (6.4), we obtain

(6.5) ĤJ(β) ∼= Ext∗Gβ
(Lβ ,Lβ)

∧ ∼= K̂Gβ (Zβ)k,
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where the second isomorphism is given by the equivariant Chern character map
(see [12, Corollary 3.9] for details).

Now we give a geometric interpretation of the bimodule V̂⊗β .

Theorem 6.4. With the above notation, there exists an isomorphism

V̂⊗β ∼= K̂Gβ (M•(Dβ)×Eβ
Fβ)k

which makes the following diagram commute

Uq(Lg) //

Ψ̂Dβ

��

End
(
V̂⊗β

)
∼=
��

ĤJ(β)
opoo

∼=(6.5)

��
K̂Gβ (Z•(Dβ))k // End

(
K̂Gβ (M•(Dβ)×Eβ

Fβ)k

)
K̂Gβ (Zβ)

op
k ,

oo

where the first and second rows denote the structure homomorphisms of the bimod-
ules (6.1) and (6.3) respectively.

We omit a proof because one can prove the assertion along the same lines as the
proof of [12, Theorem 1.1], which is a spacial case (see Example 6.5 below).

Example 6.5. Let Q be a Dynkin quiver of type g. We take J = I and define
an injective map x : J = I ↪→ ∆0 by x(i) := H−1

Q (Si) for each i ∈ I. This is the

case Kang-Kashiwara-Kim considered in [19]. Then, we have ΓJ = Q and hence
gJ = g. Moreover the embedding M•

0(D) ↪→ repD(Q) in Corollary 4.8 becomes
an isomorphism for any I-graded vector space D (see [18, Theorem 9.11]). Theo-
rem 6.4 for this special case was established in [12]. In this case, we can further
prove (see [11, 12]) that the corresponding KKK-functor FJ induces an equiva-

lence of monoidal categories
⊕

β∈Q+ ĤJ(β)-mod ' CQ, where CQ is the monoidal

full subcategory of C introduced by Hernandez-Leclerc [18], consisting of modules
whose composition factors are isomorphic to L(m) for some dominant monomial m
in variables Yx labeled by x ∈ ∆0 such that HQ(x) ∈ CQ-mod ⊂ DQ.

6.3. Type A subquivers and graded nilpotent orbits. In this subsection, we
study some examples of the KKK-functors when the corresponding graded quiver
varieties M•

0(Dβ) are isomorphic to graded nilpotent orbits of type A.
Let Q be a Dynkin quiver of type g and fix an integer N such that 1 ≤ N − 1 ≤

n. We assume that the full subquiver Q′ of Q supported on the subset I ′ :=
{1, 2, . . . , N − 1} ⊂ I = {1, 2, . . . , n} is of type AN−1 with a monotone orientation,
i.e.

Q′ =

(
1��	�
�� 2��	�
��// 3��	�
��// // N−1��	�
��// )

⊂ Q.

Note that we have a natural fully faithful embedding ε : DQ′ ↪→ DQ of triangulated
categories. We fix a height function ξ as in Section 3.2. The restriction of ξ to the
subset I ′ gives a height function forQ′. With these choices, we have the equivalences
HQ : C(∆) ' ind(DQ) and HQ′ : C(∆′) ' ind(DQ′) in Theorem 3.2, where ∆′ denotes
the counterpart of ∆ for the subquiver Q′.

Let J := Z. With the above notation, we define an injective map x : J ↪→ ∆0 by
x(j) := (H−1

Q ◦ ε ◦ HQ′)(1, ξ1 − 2j + 2) for each j ∈ J , or equivalently, we define

(6.6) x(j) :=

{
H−1
Q (Si[−2k]) if j = i+ kN, 1 ≤ i < N, k ∈ Z;

H−1
Q (Mθ[−2k + 1]) if j = kN, k ∈ Z,
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where θ :=
∑N−1

i=1 αi ∈ R+.

Lemma 6.6. The quiver ΓJ associated with the injective map x : J ↪→ ∆0 given by
(6.6) is equal to the quiver of type A∞ with a monotone orientation, namely

ΓJ =

(
−2��	�
�� −1��	�
��// 0��	�
��// 1��	�
��// 2��	�
��//// //

)
.

Proof. By Lemma 6.2, it suffices to prove that

(6.7) dimExt1DQ
(HQ(x(j)), HQ(x(j

′))) =

{
1 if j′ = j + 1;

0 otherwise.

Using the fully faithful embedding ε : DQ′ ↪→ DQ, we can reduce the situation to the
special case Q′ = Q. In this case, we can easily check (6.7) since the CQ-module
Mθ is a projective cover of the simple module S1 and at the same time it is an
injective hull of the simple module SN−1. □

By Lemma 6.6, the Kac-Moody algebra gJ is of type A∞. Let R+
J denote the set

of positive roots of gJ , which is given by

R+
J = {α(j; `) ∈ Q+

J | j ∈ J, ` ∈ Z≥1}, where α(j; `) :=

ℓ−1∑
k=0

αJ
j+k.

We also consider the subsets

R+
J,N := {α(j;N) | j ∈ J}, R+

J,≤N := {α(j; `) | j ∈ J, 1 ≤ ` ≤ N}.

For a fixed element β =
∑

j∈J djα
J
j ∈ Q+

J , we define a finite set

KP(β) :=
{
ν = (να) ∈ (Z≥0)

R+
J

∣∣∣ ∑α∈R+
J
ναα = β

}
.

An element ν of KP(β) is called a Kostant partition of β. We also consider the
subset

KP≤N (β) := {ν ∈ KP(β) | να = 0 unless α ∈ R+
J,≤N}.

Let Dβ =
⊕

j∈J(Dβ)j be a J-graded vector space such that dim(Dβ)j = dj for
each j ∈ J as in the previous subsection. We set

Eβ := repDβ
(ΓJ) =

∏
j∈J

HomC((Dβ)j , (Dβ)j+1)

and regard it as a Gβ-stable closed subvariety of gl(Dβ). A Gβ-orbit in Eβ can be
realized as a component of a certain C×-fixed locus of a nilpotent orbit of gl(Dβ)
and hence called a graded nilpotent orbit. By Gabriel’s theorem [13], the set of
Gβ-orbits in Eβ is in bijection with the set KP(β). For an element ν ∈ KP(β), the
corresponding Gβ-orbit Oν contains the CΓJ -module

⊕
α∈R+

J
(MJ

α )
⊕να , where MJ

α

denotes the unique indecomposable CΓJ -module of dimension vector α ∈ R+
J .

Let A′ be the quotient of the path algebra CΓJ by the ideal generated by all the
paths of length ≥ N . We consider the Gβ-stable closed subvariety of Eβ

E′
β := repDβ

(A′) = {X ∈ Eβ | XN = 0}.

We can naturally regard the category A′-mod as the full subcategory of CΓJ -mod
consisting of modules isomorphic to direct sums ofMJ

α for various α ∈ R+
J,≤N . Thus

the variety E′
β is a union of Gβ-orbits Oν with ν ∈ KP≤N (β).
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As explained in [17, Chapter II.2.6(a)], the algebra A′ coincides with the repet-
itive algebra of CQ′. Since it is self-injective, the category A′-mod is a Frobenius
category and the set {MJ

α | α ∈ R+
N} forms a complete collection of indecomposable

projective A′-modules. We denote by A′-mod the stable category of A′-mod.

Theorem 6.7 (Happel [17]). There exists a δ-functor Φ′ : A′-mod → DQ′ which
satisfies

Φ′(MJ
α(j;ℓ))

∼=

{
HQ′(`, ξℓ − 2j + 2) if 1 ≤ ` < N ;

0 if ` = N

for each j ∈ J and 1 ≤ ` ≤ N , and induces a triangle equivalence A′-mod ' DQ′ .

Proof. Apply the general theory [17, Theorem II.4.9] of the repetitive algebras. □

To each α ∈ R+
J,≤N , we assign an element x(α) ∈ ∆0 t {0} by

x(α) := (H−1
Q ◦ ε ◦ Φ

′)(MJ
α ).

Note that we have x(αJ
j ) = x(j) for each j ∈ J by definition.

Now we state the main theorem of this subsection.

Theorem 6.8. For any β ∈ Q+
J , the following assertions hold:

(1) The closed embedding M•
0(Dβ) ↪→ Eβ of Corollary 4.8 induces an isomor-

phism of Gβ-varieties

(6.8) M•
0(Dβ) ∼= E′

β .

(2) Under the isomorphism (6.8), each non-empty stratum M•reg
0 (V,Dβ) co-

incides with a single Gβ-orbit Oν associated with the Kostant partition
ν ∈ KP≤N (β) determined by the relation

(6.9) Y DβA−V = mν :=
∏

α∈R+
J,≤N

Y να

x(α),

where we set Yx(α) = Y0 := 1 for α ∈ R+
J,N .

For a proof of Theorem 6.8 (1), we need the following lemma.

Lemma 6.9. We define a subset C ⊂ ∆0 by

(6.10) C := x(J) t {H−1
Q (Si[k]) | i ∈ I \ I ′, k ∈ Z}.

Then the following assertions hold.

(1) The subset C satisfies the condition (R) in Theorem 4.5.
(2) For any i, j ∈ J , we have

(6.11) dim
(
ex(i) · CΓ|C · ex(j)

)
=

{
1 i ≥ j;
0 i < j.

Proof. Let I \ I ′ = I1 t · · · t Ib (b ∈ Z≥0) be a decomposition such that the full
subquiver Q|Ik is a connected component of Q|I\I′ for each 1 ≤ k ≤ b. Since the
Dynkin graph is a tree, there exist unique ik ∈ I ′ and jk ∈ Ik satisfying ik ∼ jk
for each 1 ≤ k ≤ b. After reordering if necessary, we may assume that there exists
0 ≤ b1 ≤ b such that we have ik ← jk for 1 ≤ k ≤ b1 and ik → jk for b1 < k ≤ b.
We put I◦ :=

⊔
1≤k≤b1

Ik and I• :=
⊔

b1<k≤b Ik.
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To verify the assertion (1), it suffices to prove that for any K ∈ indDQ there
exists L ∈ HQ(C) such that HomDQ

(K,L) 6= 0. Since the set HQ(C) is stable under
even degree shifts, we may assume that K ∼= Mα or K ∼= Mα[1] for some α ∈ R+.
WhenK ∼=Mα, we just take a simple quotientMα ↠ Si and find HomDQ

(K,L) 6= 0
with L = Si ∈ HQ(C). When K ∼=Mα[1], we encounter the following two cases.

Case 1: (α,$j) 6= 0 for some j ∈ I◦. In this case, the subspace M ′ :=⊕
i∈I′⊔I• eiMα is a submodule of Mα and the quotient Mα/M

′ is non-zero. There-
fore there is j ∈ I◦ such that HomCQ(Mα/M

′, Sj) 6= 0. This implies that HomDQ
(K,L) 6=

0 with L = Sj [1] ∈ HQ(C).
Case 2: (α,$j) = 0 for all j ∈ I◦. In this case, Mα can be regarded as a

representation of the full subquiver Q|I′⊔I• . First, we assume (α,$N−1) 6= 0.
Then we have HomCQ(Mα,Mθ) 6= 0 because Mθ is an injective hull of the simple
module SN−1 in the category (CQ|I′⊔I•)-mod. Thus we obtain HomDQ

(K,L) 6= 0
with L = Mθ[1] ∈ HQ(C). Next, we assume (α,$N−1) = 0 and (α,$i) 6= 0
for some 1 ≤ i < N − 1. Let us take such an i as large as possible. Then we
see that α′ := α + αi+1 is a positive root and there is a non-trivial extension
0 → Si+1 → Mα′ → Mα → 0. Therefore we obtain Ext1CQ(Mα, Si+1) 6= 0. Noting
that i + 1 ∈ I ′, we get HomDQ

(K,L) 6= 0 with L = Si+1[2] ∈ HQ(C). Finally,
we assume (α,$i) = 0 for all i ∈ I ′. Then Mα is supported on I• and hence
HomDQ

(K,L) 6= 0 with L = Sj [1] for some j ∈ I•.
Next we shall prove the assertion (2). We note that the LHS of (6.11) is equal

to the number of (oriented) paths from x(j) to x(i) in the quiver Γ|C . Since ΓJ =
Γ|x(J) ⊂ Γ|C , there is at least one path from x(j) to x(i) when i ≥ j. On the
other hand, we know that the quiver Γ has neither loops nor oriented cycles by
Proposition 3.8. In particular, there are no paths from x(j) to x(i) in Γ|C when
i < j. Thus, we only have to prove that there are no two different paths from x(j)
to x(i) when j < i. To see this, we divide the arrows of the quiver Γ|C into the
following seven types:

(i) the arrows of the subquiver ΓJ = Γ|x(J) ⊂ Γ|C ;
(ii) H−1

Q (Sjk [2`])→ H−1
Q (Sik [2`]) for any 1 ≤ k ≤ b1, ` ∈ Z;

(iii) H−1
Q (Sik [2`])→ H−1

Q (Sjk [2`]) for any b1 < k ≤ b, ` ∈ Z;
(iv) H−1

Q (Sj [`])→ H−1
Q (Sj [`− 1]) for any j ∈ I \ I ′, ` ∈ Z;

(v) H−1
Q (Sj [`])→ H−1

Q (Sj′ [`]) for some j, j′ ∈ Ik, 1 ≤ k ≤ b, ` ∈ Z;
(vi) H−1

Q (Sjk [2`+ 1])→ H−1
Q (Mθ[2`+ 1]) for any 1 ≤ k ≤ b1, ` ∈ Z;

(vii) H−1
Q (Mθ[2`+ 1])→ H−1

Q (Sjk [2`+ 1]) for any b1 < k ≤ b, ` ∈ Z.
A path in Γ|C going out from x(J) should contain an arrow of type (iii) or (vii), and
hence go through a vertex belonging to the set S• := {H−1

Q (Sj [`]) | j ∈ I•, ` ∈ Z}.
On the other hand, a path in Γ|C coming into x(J) should contain an arrow of type
(ii) or (vi), and hence go through a vertex belonging to the set S◦ := {H−1

Q (Sj [`]) |
j ∈ I◦, ` ∈ Z}. However, there are no paths in Γ|C from a vertex of S• to a vertex
of S◦. Therefore there are no paths in Γ|C connecting two different vertices of x(J)
other than the paths in ΓJ . □

Proof of Theorem 6.8 (1). Thanks to Lemma 6.9 (1), we can apply Theorem 4.5
and Remark 4.9 to the algebra ΛC associated with the subset C ⊂ ∆0 given by
(6.10). Thus, there exists an admissible ideal JC of the path algebra CΓ|C such
that ΛC

∼= (CΓ|C)/JC and hence M•
0(Dβ) = repDβ

(ΛC) ∼= repDβ
((CΓ|C)/JC).
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Now, we need to prove repDβ
((CΓ|C)/JC) = E′

β . Thanks to Lemma 6.9 (2), it

suffices to show that ex(j+N)(JC)ex(j) 6= 0 and ex(j+i)(JC)ex(j) = 0 for any j ∈ J
and 1 ≤ i < N . By Theorem 4.5, these conditions can be verified by checking the
following two homological properties:

Ext2DQ
(HQ(x(j)), HQ(x(j +N))) 6= 0,(6.12)

Ext2DQ
(HQ(x(j)), HQ(x(j + i))) = 0(6.13)

for all j ∈ J and 1 ≤ i < N . The property (6.12) follows because we have
HQ(x(j + N)) = HQ(x(j))[−2] by definition. We can prove the property (6.13)
easily by using the fact that Mθ is both projective and injective in the subcategory
CQ′-mod ⊂ CQ-mod. □

For a proof of Theorem 6.8 (2), we need the following lemma.

Lemma 6.10. Let `′, `′′ be two positive integers such that ` := `′ + `′′ ≤ N . Fix
j ∈ J and set α′ := α(j; `′), α′′ := α(j + `′; `′′), α := α(j; `′ + `′′) = α′ + α′′. Then,
there is an injective Uq(Lg)-homomorphism

L(Yx(α)) ↪→ L(Yx(α′))⊗ L(Yx(α′′)).

Proof. Under the assumption, the functor ε ◦ Φ′ : A′-mod → DQ sends a non-split
short exact sequence 0 → MJ

α′′ → MJ
α → MJ

α′ → 0 in A′-mod to a non-split exact

triangle HQ(x(α
′′)) → HQ(x(α)) → HQ(x(α

′))
+1−−→ in DQ, where we understand

HQ(x(α)) = 0 when α ∈ R+
J,N , or equivalently ` = N . Moreover, it induces an

isomorphism of 1-dimensional vector spaces:

Ext1A′(MJ
α′ ,MJ

α′′) ∼= Ext1DQ
(HQ(x(α

′)), HQ(x(α
′′))).

Applying Proposition 5.4, we obtain a short exact sequence in C:
0→ L(m[x(α′),x(α′′)])→ L(Yx(α′))⊗ L(Yx(α′′))→ L(Yx(α′)Yx(α′′))→ 0

with m[x(α′),x(α′′)] = Yx(α). □
Proof of Theorem 6.8 (2). First, we note that the assignment KP≤N (β) 3 ν 7→
mν ∈M+ is injective for each fixed element β ∈ Q+

J .
Since a non-empty stratum M•reg

0 (V,Dβ) is Gβ-stable, it is a union of Gβ-orbits.
In particular, the number of non-empty strata M•reg

0 (V,Dβ) is less than or equal
to the number of Gβ-orbits in E′

β , which is #KP≤N (β). On the other hand, we

apply Lemma 6.10 repeatedly to find that c(Y Dβ ,mν) 6= 0 for all ν ∈ KP≤N (β).
By Theorem 4.10 (1), this implies that the number of non-empty strata is not less
than #KP≤N (β). Therefore each non-empty stratum consists of a single Gβ-orbit.

We shall prove the relation (6.9). Recall the stratifying functor ΦQ : Λ-mod →
DQ in Theorem 4.11. Thanks to Theorem 6.8 (1), we can identify the category
A′-mod with the full subcategory of Λ-mod consisting of modules supported on the
subset x(J) ⊂ ∆0. By Theorem 4.11 (2), the relation (6.9) holds if and only if there
is an isomorphism ⊕

α∈R+
J,≤N

ΦQ(M
J
α )

⊕να ∼=
⊕

α∈R+
J,≤N

(ε ◦ Φ′)(MJ
α )

⊕να .

Thus, it suffices to prove the relation (6.9) for the special case when β is a pos-
itive root α ∈ R+

J,≤N and ν is the Kostant partition δ(α) ∈ KP≤N (α) given by

δ(α)α′ = δα,α′ for each α′ ∈ R+
J,≤N . Now we concentrate on this special case. As
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in the previous paragraph, we have c(Y Dα , Yx(α)) 6= 0 and hence there is a non-

empty stratum M•reg
0 (V,Dα) such that Y DαA−V = Yx(α). Note that Yx(α) is a

minimal element ofM+ with respect to the partial ordering ≤, which implies that
M•reg

0 (V,Dα) is a maximal stratum with respect to the closure ordering by The-
orem 4.10 (3). On the other hand, E′

α is an affine space and Oδ(α) is the unique

open dense Gα-orbit of E
′
α. Therefore we have M•reg

0 (V,Dα) = Oδ(α). □
Let Lβ be the push-forward of the constant perverse k-sheaf along the proper

morphism µβ : Fβ → Eβ as in the previous subsection. By the decomposition
theorem, we have

(6.14) Lβ
∼=

⊕
ν∈KP(β)

IC(Oν ,k)⊗k Lν ,

where each Lν ∈ Db(k-mod) is a finite-dimensional Z-graded k-vector space which
is self-dual. Via the isomorphism (6.4), each vector space Lν is equipped with
a structure of graded HJ(β)-module. It is known that we have Lν 6= 0 for all
ν ∈ KP(β) and the set {Lν | ν ∈ KP(β)} forms a complete collection of self-dual
simple objects in the category HJ(β)-gmod (see [28, Corollary 2.8] for instance).

On the Uq(Lg)-side, we have the following homomorphisms of k-algebras

Uq(Lg)
Ψ̂Dβ−−−→ K̂Gβ (Z•(Dβ))k ∼= Ext∗Gβ

(L •
β ,L

•
β )

∧,

where L •
β is the push-forward of the constant k-sheaf on M•(Dβ) along the Gβ-

equivariant proper morphism π• : M•(Dβ) → M•
0(Dβ) = E′

β (see [12, Corollary

3.16]). By Theorem 4.10 (2) and Theorem 6.8 (2), the complex L •
β decomposes as:

(6.15) L •
β
∼=

⊕
ν∈KP≤N (β)

IC(Oν ,k)⊗k L
•
ν ,

where each L•
ν is a non-zero finite-dimensional Z-graded k-vector space, which has a

natural structure of a simple module over the algebra Ext∗Gβ
(L •

β ,L
•
β )

∧. Moreover,

by [32, Theorem 14.3.2(3)] and the relation (6.9), we have (Ψ̂Dβ
)∗(L•

ν)
∼= L(mν) as

Uq(Lg)-modules.
Let us consider a natural bimodule given by the Yoneda products:

(6.16) Ext∗Gβ
(L •

β ,L
•
β ) ↷ Ext∗Gβ

(Lβ ,L
•
β ) ↶ Ext∗Gβ

(Lβ ,Lβ).

Comparing the decompositions (6.14) and (6.15), we see that the functor

Ext∗Gβ
(Lβ ,Lβ)-gmod→ Ext∗Gβ

(L •
β ,L

•
β )-gmod

induced from the bimodule (6.16) sends the simple module Lν to the simple module
L•
ν if ν ∈ KP≤N (β), or zero otherwise (see [15, Theorem 6.8] for a detailed expla-

nation). Moreover, after the completion, the bimodule (6.16) gets identified with
the bimodule (6.3), i.e. we have the following commutative diagram

K̂Gβ (Z•(Dβ))k //

∼=

��

End
(
K̂Gβ (M•(Dβ)×Eβ

Fβ)k

)
∼=
��

K̂Gβ (Zβ)
op
k

oo

∼=

��
Ext∗Gβ

(L •
β ,L

•
β )

∧ // End
(
Ext∗Gβ

(Lβ ,L •
β )

∧
)

Ext∗Gβ
(Lβ ,Lβ)

∧op.oo

Combining the above discussion with Theorem 6.4, we obtain the following.
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Corollary 6.11. The KKK-functor FJ : HJ -gmod→ C associated with the injec-
tive map x : J ↪→ ∆0 given by (6.6)satisfies

FJ(Lν) ∼=

{
L(mν) if ν ∈ KP≤N (β);

0 otherwise,

for each β ∈ Q+
J and ν ∈ KP(β).

We define a category CDQ′ as the full subcategory of C consisting of modules

whose composition factors are isomorphic to L(m) for some dominant monomial
m in variables Yx labeled by x ∈ ∆0 such that HQ(x) ∈ DQ′ ⊂ DQ. Note that
the above KKK-functor FJ is exact by [20, Theorem 3.8]. By Corollary 6.11, the
image of the functor FJ is contained in the category CDQ′ .

In [20, Section 4], Kang-Kashiwara-Kim introduced a certain localization TN
of the category HJ -gmod for each N ∈ Z≥1. This is a Z-graded k-linear abelian
monoidal category equipped with a canonical quotient functor Ω: HJ -gmod→ TN
characterized by the following universal property. Suppose that A is a k-linear
abelian monoidal category and F : HJ -gmod → A is a k-linear exact monoidal
functor such that

(i) F (Lν) = 0 for any ν ∈ KP(β) \ KP≤N (β);
(ii) F (Lδ(α)) ∼= 1A for any α ∈ R+

J,N . Here 1A denotes the unit object of A;
(iii) F satisfies a certain commutativity condition on the tensoring operations

with the modules {Lδ(α) | α ∈ R+
J,N} as in [20, Proposition A.12].

Then there exists a unique k-linear exact monoidal functor F̃ : TN → A such that

we have F ' F̃ ◦ Ω.
Since the category TN is Z-graded, its Grothendieck ring K(TN ) has a structure

of Z[v±1]-algebra, where the multiplication of v is given by the grading shift functor.
We denote by K(TN )|v=1 the specialization K(TN )/(v − 1)K(TN ).

Corollary 6.12. After a suitable modification of the isomorphism (6.5) for each
β ∈ Q+

J , the above KKK-functor FJ : HJ -gmod→ CDQ′ factors through the localized
category TN and yields a ring isomorphism

K(TN )|v=1
∼= K(CDQ′ ).

Sketch of proof. The functor FJ : HJ -gmod → CDQ′ satisfies the above conditions

(i) and (ii) by Corollary 6.11. By the similar argument as in [25, Theorem 2.6.8],

we can modify the isomorphism ĤJ(β) ∼= K̂Gβ (Zβ)k for each β ∈ Q+
J to make the

functor FJ satisfy the condition (iii) as well. Thus, by the universal property, the
functor FJ factors through the localization TN . By [20, Proposition 4.31], the set
{Ω(Lν) | ν ∈ KP≤N−1(β), β ∈ Q+

J } forms a complete collection of self-dual simple
objects of TN and hence their classes give a Z-basis of K(TN )|v=1. On the other
hand, the set {L(mν) | ν ∈ KP≤N−1(β), β ∈ Q+

J } forms a complete collection of
simple modules of CDQ′ and hence their classes give a Z-basis of K(CDQ′ ). Now
the desired ring isomorphism follows because the functor FJ induces a bijection
between these two bases again by Corollary 6.11. □
Remark 6.13. In the recent paper [26] by Kashiwara-Kim-Oh-Park, it was shown
that the category TN gives a monoidal categorification of a cluster algebra associated
with a certain infinite quiver. Combined with Corollary 6.12, we conclude that the
category CDQ′ also gives a monoidal categorification of the same cluster algebra.
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We finish this subsection with exhibiting a couple of examples of subquivers
Q′ ⊂ Q and the corresponding injective maps x : J ↪→ ∆0.

Example 6.14 (Type An). Consider the following case with N = n+ 1:

Q′ =

(
1��	�
�� 2��	�
��// 3��	�
��// // n��	�
��// ) = Q.

For simplicity, we choose the height function ξ with ξ1 = −2. Then the correspond-
ing injective map x : J = Z ↪→ ∆0 is explicitly given by

x(j) = (1,−2j) for each j ∈ Z.
In this case, the associated functor FJ has been studied in detail by [20, 25, 26].
Moreover, it can be seen as a suitable completion of the usual quantum affine Schur-
Weyl duality between the quantum loop algebra Uq(Lsln+1) and the affine Hecke
algebras of GL’s. Moreover, our geometric interpretation can be obtained from
Ginzburg-Reshetikhin-Vasserot’s geometric interpretation [15].

Example 6.15 (Type Dn). Consider the following case with N = n:

Q′ =

(
1��	�
�� 2��	�
��// // n−2��	�
��// n−1��	�
��// )

⊂ Q =

(
1��	�
�� 2��	�
��// // n−2��	�
��// n−1��	�
��44jjj

n��	�
��**TTT )
.

For simplicity, we choose the height function ξ with ξ1 = −2. Then the correspond-
ing injective map x : J = Z ↪→ ∆0 is explicitly given by

x(i+ kn) = (1,−2i− 2kh) if 1 ≤ i ≤ n− 2,

x(n− 1 + kn) = ((n− 1)∗,−3n+ 4− 2kh),

x(kn) = ((n− 1)∗, n− 2− 2kh)

where k ∈ Z, and h = 2n − 2 is the Coxeter number. Note that (n − 1)∗ = n − 1
when n is even, and (n− 1)∗ = n when n is odd. The associated functor FJ in this
case coincides with the one studied in [26, Section 6.2.4].

Example 6.16 (Type En). For n = 6, 7, 8, consider the following case with N = n:

Q′ =

(
1��	�
�� 2��	�
��// 3��	�
��// // n−1��	�
��// )

⊂ Q =

 1��	�
�� 2��	�
��// 3��	�
��// // n−1��	�
��//
n��	�
����

 .

For simplicity, we choose the height function ξ with ξ1 = −2. Then the correspond-
ing injective map x : J = Z ↪→ ∆0 is explicitly given by

x(i+ kn) =

{
(1,−2i− 2kh) if 0 ≤ i ≤ 3;

((n− 1)∗, n− h− 2i− 2kh) if 4 ≤ i ≤ n− 1,

where k ∈ Z, and h = 12, 18, 30 is the Coxeter number of type E6,7,8 respectively.
Note that (n− 1)∗ = 1 when n = 6, and (n− 1)∗ = n− 1 when n = 7, 8.
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