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Abstract: Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic
inflammation that precedes the onset of multiple secondary complications, including those of the
kidney and the eye. As the leading cause of end stage renal disease and blindness in the working
population, more than ever is there a demand to develop clinical interventions which can both delay
and prevent disease progression. Connexins are membrane bound proteins that can form pores
(hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under patho-
physiological conditions and in doing so release ‘danger signals’ including adenosine triphosphate
into the extracellular environment. Linked to sterile inflammation via activation of the nod-like
receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these
danger signals has met with favourable outcomes in multiple models of disease, including secondary
complications of diabetes. In this review, we provide a comprehensive update on those studies which
document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye
and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels
in these target tissues on tissue health and function.

Keywords: diabetes; complications; diabetic nephropathy; diabetic retinopathy; connexin 43; hemichannels;
hemichannel blockers; inflammation; purinergic; adenosine triphosphate

1. Introduction

Impacting almost 10% of adults, diabetes is a global healthcare concern that affects
an estimated 463 million people worldwide. With the prevalence of diabetes expected
to rise to 700 million people by 2045 [1], it is not the treatment of the disease itself, but
the management of associated secondary complications which poses the greatest threat
to our healthcare system [2]. Disease complications in diabetes can be categorised as
either macrovascular or microvascular, with the former associated with coronary artery
disease [3], peripheral arterial disease [4], and stroke [5], whilst microvascular complica-
tions include nephropathy [6–8], retinopathy [9,10] and impaired wound healing [11,12].
In the early stages of disease progression, management focuses on regulation of blood
pressure and maintenance of good glycaemic control [13]. However, for many, deterioration
of good health is inevitable, with kidney failure, loss of vision or circulatory problems,
contributed to by comorbidities (e.g., hypertension, obesity, cardiovascular disease) and
health inequalities [14]. In the absence of a definitive treatment for these conditions, new
therapeutic approaches are urgently required.

In diabetes, complications develop in response to sustained hyperglycaemia and
low-grade systemic inflammation, the latter of which is heightened in type 2 diabetes melli-
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tus (T2DM), where coupled with obesity, increased adipose tissue secretes inflammatory
mediators that exacerbate a state of pre-existing inflammation [15–18]. There is a strong
association between microvascular complications in patients with T2DM, and individuals
who present with diabetic nephropathy often experience higher incidence of retinopathy
compared to patients without any diabetes-related kidney issues [19–22]. Similarly, in-
dividuals exhibiting diabetic retinopathy appear more susceptible to the onset of kidney
problems [23]. These findings suggest a ‘common pathway’ representative of systemic
microvascular damage and chronic inflammation that, secondary to diabetes, leads to a
progressive loss of tissue function. Recent retinopathy and nephropathy studies strongly
suggest that blocking expression and/or function of small transmembrane proteins called
connexins under pathophysiological conditions, may significantly dampen the inflam-
matory response that drives disease progression across these and other age associated
pathologies, e.g., obesity [24,25], Alzheimer’s disease [26,27] and osteoarthritis [28].

Connexins are a family of membrane bound proteins involved in the transfer of small
molecules and ions between two cells (gap junctions) and between cells and their imme-
diate environment (hemichannels), highlighted in Figure 1. Nomenclature is dictated by
molecular weight [29], with connexin 43 (Cx43) the most abundant in humans [30]. Com-
posed of one intracellular and two extracellular loops, and an N- and C-terminus [31], they
oligomerise into hexameric structures called connexons and are delivered to the plasma
membrane in vesicles that transit along a secretory pathway [32,33]. When neighbour-
ing cells align, connexons dock to form a continuous gap junction, establishing a direct
route for cell-cell communication that allows cells to synchronise their activity [34–36].
Whilst gap junction activity maintains cellular function under physiological conditions
undocked connexons, referred to as hemichannels, are typically linked with pathophysi-
ological stimuli, such as oxidative stress [37] and inflammation [35,38]. Dysregulation of
hemichannel function is associated with chronic diseases, including deafness [39], brain
ischaemia [40] and chronic pain [41,42]. The role of hyperglycaemia in regulating connexin
expression [43,44], gap junction communication [45] and hemichannel activity [46–48] is
well documented [49], and of the 21 isoforms known to be expressed within the human body,
Cx43 has been strongly linked to the pathogenesis of multiple secondary complications
of diabetes [43,50–52]. In this article, we review a role for Cx43 hemichannels in chronic
inflammation and microvascular complications of diabetic nephropathy and retinopathy,
ahead of exploring the therapeutic potential of hemichannel blockers in preventing disease
progression.Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 20 
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Figure 1. A schematic highlighting changes in hemichannel activity in health and diabetes. During
injury, gap junctions break apart. These broken channels undergo endocytosis, assemble into a
double membrane structure termed a connexosome and then experience endosome sorting prior to
transportation to lysosomes for degradation [53]. These events are paralleled by an upregulation
of hemichannel activity and number, leading to an increase in release of molecules, including ATP,
causing downstream inflammation and fibrosis via purinergic signalling.
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2. Targeting Inflammation in Microvascular Complications of Diabetes

Instrumental to the pathogenesis of diabetes and its complications, targeted anti-
inflammatory therapy has been suggested for both prevention and treatment of diabetes
and has been extensively reviewed [54–56]. Known to underpin disease progression
across multiple age associated conditions e.g., diabetes [55], obesity [25] and age-related
macular degeneration [57], recent attention has focussed on the design of pharmacological
compounds that block key inflammatory candidates, such as the nod-like receptor protein 3
(NLRP3) inflammasome (e.g., MCC950) [58], changes in cell phenotype (e.g., senolytics) [59]
or cell function (e.g., sodium-glucose co-transporter-2 inhibitors: SGLT2i) [60–62].

The NLRP3 inflammasome has been referred to as the ‘grumpy old man of inflamma-
tion’ [63] and is linked to a variety of inflammatory conditions including atherosclerosis [64],
Alzheimer’s disease [27], inflammatory bowel disease [65], and non-alcoholic steatohepati-
tis [66]. It is upregulated in immune and epithelial cells across different tissue types, where
activation culminates in secretion of pro-inflammatory mediators, interleukin-1β (IL1β)
and interleukin-18 (IL18). In turn, these activate tumour necrosis factor-alpha (TNFα) and
interleukin-6 (IL6), both of which exhibit increased serum levels with age and disease and
mediate inflammation/fibrosis in multiple secondary complications of diabetes [67–71].
Since chronic inflammatory conditions are amplified and perpetuated by the inflamma-
some pathway, it is not surprising that blocking the NLRP3 inflammasome directly (e.g.,
MCC950) alleviates inflammation across multiple age-associated morbidities [60,68,72].

Despite these encouraging observations, blanket blockade of a complex integral part
of the innate immune response has been met with concern. Activated by both damage-
associated molecular patterns (DAMPs) and pathogen associated molecular patterns
(PAMPs), the NLRP3 inflammasome mediates both sterile and non-sterile inflammation [73].
Consequently, whilst inhibition of NLRP3 inflammasome may protect against sterile inflam-
mation induced by endogenous noxious stimuli, this could render individuals susceptible
to injury where PAMP-associated microbial infection fails to elicit a response [74,75]. Nev-
ertheless, with the NLRP3 having been identified as a key mediator of inflammation in
over 80 different models of injury [76–80], it is not surprising that various compounds have
entered clinical trials, e.g., Inzomelid (NCT04015076), IFM-2427 (DFV890) (NCT04382053)
and Dapansutrile (OLT1177) (NCT04540120) [81]. Despite this, a drug which successfully
targets NLRP3 is yet to reach its primary endpoint, an observation compounded by our lack
of knowledge of its structure and potential binding sites [82]. Consequently, interventions
to target downstream mediators e.g., IL1β and TNFα, have received considerable atten-
tion. Canakinumab (ACZ885, Ilaris) is a recombinant human monoclonal antibody that
selectively inhibits IL1β receptor binding and demonstrated positive primary outcomes
in the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) [83]. It
subsequently became licensed for the treatment of rare inflammatory conditions, includ-
ing juvenile arthritis [84]. However, its efficacy proved disappointing in the treatment of
inflammation in diabetic retinopathy (NCT01589029), Type I Diabetes Mellitus (T1DM)
(NCT00947427, [85]) and atherosclerosis (NCT00900146, [86]), an effect potentially linked to
increased infection rates and sepsis [87]. Similar efforts to target TNFα include compounds
that contain either receptor fusion proteins (etanercept) [88], which suppress the physiolog-
ical response to TNFα, or monoclonal antibodies (golimumab, infliximab, adalimumab and
certolizumab pegol), all of which have met mixed success [89].

Whilst evident that there is much to learn in our quest to develop new interventions
that successfully (a) target sterile inflammation and (b) do so in the absence of serious side
effects, recent FDA approval of SGLT2 inhibitors has perhaps been the most significant
step forward in managing and improving outcomes in patients with nephropathy [90]
and cardiovascular disease [91]. By blocking sodium glucose co-transport and reducing
blood glucose levels, SGLT2i demonstrate improved renal and cardiovascular outcomes
in patients with T2DM and diabetic nephropathy [92–94]. Whilst initial protection is
thought to stem from a decrease in glomerular hyperfiltration, several studies demonstrate
that SGLT2i confer protection via suppression of inflammation and fibrosis, albeit the
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widespread mechanisms remain to be fully elucidated [95–97]. However, with prescription
targeted to individuals with T2DM as opposed to T1DM and potential side effects that in-
clude ketoacidosis [98], increased risk of amputation [99], and increased genitourinary tract
infection [100], SGLT2i are not a one size fits all. As an alternative approach, Cx43 hemichan-
nel blockers are a class of drugs which include Gap19 [101] and Tonabersat [102,103]. They
bind to, and close hemichannels to prevent the release of numerous DAMPs, including ATP
(for a more detailed review of how these peptides work we refer the reader to King et al.
as published in this special issue) [104]. In the presence of DAMPs, the NLRP3 complex
is activated and elicits an inappropriate inflammatory response, stimulating and activat-
ing via local paracrine mediated signalling, both infiltrating immune cells and resident
fibroblasts [50,78,105,106]. On this basis alone, it is not hard to understand why connexin
hemichannel blockers are increasingly championed as an effective therapeutic strategy in
inhibition of sterile inflammation in disease.

3. Cx43 Hemichannel Blockers and Treatment of Inflammation in Diabetes and Its
Secondary Complications

With evidence that Cx43 hemichannel mediated communication contributes to the
pathogenesis and progression of tissue damage in secondary complications of diabetes [49,107,108],
drugs that target Cx43 hemichannels have been identified as potential anti-inflammatory
therapies [109,110]. Compounds of interest include Peptide 5, known to bind to the
second extracellular loop of Cx43 [111]; Gap26, which mimics the first extracellular loop
of Cx43 [112]; and αCT1, a Cx43-based peptide [113]. Their mechanism of action, along
with models in which they have been trialled are summarised in Table 1. These compounds
specifically inhibit Cx43 hemichannel opening [114] and have demonstrated efficacy in
preventing the release of tissue damage inducing signals and thus alleviating downstream
inflammation and fibrosis in secondary complications of diabetes [105], including diabetic
nephropathy [108].

Table 1. Cx43 hemichannel blockers, mechanism of action and models in which they have been
trialled to date.

Hemichannel
Blocker/

Therapeutic Agent

Sequence/
Formula Mechanism of Action Examples of Models Trialled in Clinical

Trials?

Gap19

KQIEIKKFK
Also:

Transactivator of
transcription
(TAT)-Gap19

-YGRKKRRQRRR-
KQIEIKKFK

Xentry (XG19)
-lclrpvGG-KQIEIKKFK

Binds to the intracellular
loop of Cx43, whilst not
affecting gap junction
communication [115].

Exhibits low cell
permeability, so is often
coupled with TAT which

aids transcription or
Xentry which is a cell

penetrating
peptide [116].

Primary mouse
cardiomyocytes [117];

Cerebral ischaemia/injury in
mice [118];

Primary mouse
astrocytes/hippocampal slices

(TAT-Gap19) [115];
Immortalised human retinal

pigment epithelium cells
(ARPE-19)/primary human retinal

microvascular endothelial cells
(hREMC) (XG19) [116];

Isolated rat hepatocytes [119];
Human gingival fibroblasts [120].

None found.

Gap26 VCYDKSFPISHVR

Originally developed to
block gap junction

communication [121].
Now shown to also block

hemichannels, Gap26
binds to the first

extracellular loop of
Cx43 [112].

Isolated pig ventricular
cardiomyocytes [117];

Cultured microglia, astrocytes and
neurons [122].

None found.
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Table 1. Cont.

Hemichannel
Blocker/

Therapeutic Agent

Sequence/
Formula Mechanism of Action Examples of Models Trialled in Clinical

Trials?

Gap27 SRPTEKTIFII

Originally designed for
gap junction

blockade [121], Gap27
can also block

hemichannels by binding
to the second

extracellular loop of
Cx43 [112].

Isolated pig ventricular
cardiomyocytes [117];

Primary human corneal epithelial
cells in vitro, human corneas ex
vivo rat wound healing model

in vivo [123];
Adult keratinocytes, juvenile

foreskin, human neonatal
fibroblasts and adult dermal tissue
as models of wound healing [124].

None found.

Peptide 5 VDCFLSRPTEKT

Binds to the second
extracellular loop of

Cx43, preventing
hemichannel

opening [111].

Human primary proximal tubule
epithelial cells and clonal tubular

kidney epithelial cells [108];
Retinal pigment epithelial

cells [105,125];
Patch-clamp inflammatory model

in mice [102];
Light-damaged albino rat

model [126].

None found

Tonabersat (Xiflam) C20H19ClFNO4

Able to block gap
junctions (at high

concentration), this small
molecule, a benzopyran

derivative can block
Cx43 hemichannels at

lower doses [50].

Human retinal pigment epithelial
cells (ARPE-19) [50]; Rat model of

diabetic retinopathy [127].

Phase II
clinical trials
in migraines-
NCT00311662
NCT00534560
NCT00332007

alpha connexin
carboxyl terminus 1

(αCT1)
Ant-RPRPDDLEI

Binds to the COOH tail
(cytoplasmic terminus) of

Cx43 [113], mediating
phosphorylation of Cx43
at serine 368 [128]. Has

also been shown to affect
gap junction

remodelling [129].

Rat model corneal wound [130];
Beneficial in a randomised control

trial assessing cutaneous
scarring [131];

Human biopsy tissue/rat and
guinea pig scars [132].

Clinical trials
for diabetic

foot ulcers as
‘Grannexin

gel’
Phase I-

NCT02652754
Phase II-

NCT02652572
Terminated at
phase III May

2020
(NCT02667327)–

no safety
concerns

Danegaptide
(GAP-134) C14H17N3O4

Not fully elucidated. As
a gap-junction modifier,

it maintains gap junction
coupling during cellular
stress [133,134], and has

been shown to block
Cx43 hemichannels in

human proximal tubule
epithelial cells [135].

Primary human proximal tubule
epithelial cells [135];

Rat Retinal Endothelial cells
during high glucose stress [134];
Myocardial infarct in pigs [136]

and dogs [137];
Atrial fibrillation models in

dogs [138,139].

Phase II for
myocardial
infarction-

NCT01977755

4. Cx43 Hemichannels and Treatment of Inflammation in Diabetic Kidney Disease

Diabetic nephropathy is widely regarded as a glomerular disease, where proteinuria
is the predominant early clinical marker [140]. Signs of glomerular injury include podocyte
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damage and effacement [141,142], crescent formation [143], basement membrane thicken-
ing [144], macrophage infiltration [145] and inflammation [146]. Early studies evaluating a
link between connexins and glomerular damage observed increased Cx43 expression in
both biopsies from injured human glomeruli and in the nephrotoxic glomerulonephritis
(NTS-GN) murine model of chronic kidney disease [147]. The NTS-GN models exhibits a
similar presentation to the streptozotocin (STZ) mouse model of T1DM, with histological
and functional studies reporting that these mice develop glomerulosclerosis, inflamma-
tion, fibrosis, and albuminuria [148]. In NTS-GN mice, up-regulation of Cx43 occurs via
increased binding of activated protein-1 (AP-1) transcription factors, phosphorylated (p)-
cellular (c) JUN, p-signal transducer, and activator of transcription-1 (STAT1) to the Cx43
promoter [147]. Furthermore, in mice treated with a Cx43 specific antisense oligodeoxynu-
cleotide or in the heterogenous Cx43+/− mouse induced with NTS-GN, proteinuria, blood
urea nitrogen (BUN) and serum creatinine levels are reduced [148]. Similar observations
were also reported in the STZ-induced rat when treated with Cx43 small interfering ri-
bonucleic acid (siRNA) [149]. This protection may stem from impaired autophagy, an
intracellular degradation mechanism which removes/recycles dysfunctional or unneces-
sary cellular components to ensure efficient health and function of the cell [149]. Mediated
through activation of mammalian target of rapamycin (mTOR) signalling, high glucose
treated mouse podocytes (MPC5) in which Cx43 expression was reduced via transient
transfection with siRNA, exhibit reduced mTOR activation, impaired autophagic flux and
decreased podocyte injury [149]. Paracrine mediated purinergic signalling has also been
linked to Cx43 induced podocyte injury, with transforming growth factor beta 1 (TGFβ1)
treated mouse E.11 podocytes, co-incubated with Cx43 specific blocking peptide Gap26
and purinergic receptor blocker suramin, exhibiting attenuated cytoskeletal reorganisation,
improved morphology and a decrease in apoptosis compared to TGFβ1 alone [147].

Although a glomerular disease in origin, advanced stages of nephropathy are charac-
terised by severe tubule interstitial inflammation and fibrosis [150]. Work within our labo-
ratories links altered Cx43 expression to tubule injury in both in vitro [108,135,151,152] and
in vivo [108] models of disease [153]. Initial observations identified an approximate 5-fold
increase in Cx43 expression in biopsy material from individuals with diabetic nephropathy
compared to healthy control [151], whilst paired-patch electrophysiology and ATP biosens-
ing suggested that this increased expression was paralleled by diminished gap-junction
intercellular coupling (GJIC) and increased hemichannel mediated ATP release [151]. With
intercellular adhesion a pre-requisite for gap junction formation, AFM-single cell force
spectroscopy [154] determined that this loss of direct cell coupling paralleled the reduction
of E-Cadherin mediated cell adhesion [155], an effect significantly blunted by co-incubation
with the P2X7 receptor (P2X7R) antagonists Suramin, A438079 or A804598 [108,156]. Pre-
vious studies link P2X7R activation to macrophage and extracellular matrix deposition
in both in vitro models of diabetic kidney disease [108,157] and in STZ-induced diabetic
mice [157], whilst we recently observed increased P2X7R expression in renal biopsy from
people with diabetic nephropathy and in the unilateral ureteral obstruction (UUO) mouse
model [108]. The UUO is a model of advanced interstitial inflammation and fibrosis which
recapitulates late-stage damage observed in the diabetic kidney, irrespective of the ini-
tiating stimuli [158]. It is widely used for mechanistic studies in all forms of advanced
CKD [158]. Despite our knowledge of a role for P2X7R activation in disease pathogenesis,
attempts to target P2X7 have been relatively unsuccessful, potentially due to the genetic
variability of the human P2X7 receptor which can lead to altered pharmacodynamic re-
sponses [159,160]. Consequently, having identified that impaired gap junction coupling is
paralleled by increased hemichannel mediated ATP release [151], combined with evidence
that elevated ATP and sustained P2X7R are linked to onset and progression of inflamma-
tion and fibrosis in multiple tissue types, we assessed a role for both Cx43 and P2X7R
activation in disassembly of the adherens and tight junction complex in both TGFβ1 treated
human primary tubule cells co-incubated with P2X7R inhibitors A438079 and A804598 and
in the Cx43+/− UUO mouse model [108]. Blocking the P2X7R significantly blunted the
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TGFβ1 evoked change in adherens (E-Cadherin, N-Cadherin) and tight junction proteins
(Claudin-2 and Zona Occludins (ZO-1)), whilst restoring both cell adhesion and paracellu-
lar permeability [107]. Not surprisingly, these TGFβ1-induced effects were significantly
diminished when cells were co-incubated with Apyrase, an ATP-diphosphohydrolase that
catalyses the sequential hydrolysis of ATP to ADP, then AMP and adenosine, suggesting a
downstream role for ATP in mediating the actions of TGFβ1. The origin of this signal is
further supported by our recent studies in the Cx43+/− UUO mouse where disassembly of
the adherens (e.g., E-cadherin) and tight (e.g., ZO-1) junction complexes were significantly
blunted as compared to wild-type control [108]. Whilst collectively these studies support a
role for Cx43 and downstream purinergic signaling in tubular injury, understanding how
this protection is conferred is instrumental if wanting to target this communication through
pharmacological intervention.

In contrast to the observations above, Sun et al. recently suggested that Cx43 ex-
pression is downregulated in diabetic kidney disease and that overexpression of Cx43
using short hairpin RNAs attenuates renal fibrosis and reduces epithelial-to-mesenchymal
transition (EMT) in a carboxyl-terminal signal transduction-dependent manner in leptin
receptor-deficient type 2 diabetic (db/db) mice and in rat kidney NRK-52E cells treated
with high (30 mM) glucose [161]. They attributed this non-channel dependent effect to reg-
ulation of the sirtuin-1 hypoxia inducible factor-1alpha (SIRT1-HIF-1A) signalling pathway
and have more recently suggested that the protective effects of Cx43 are associated with
ubiquitin-specific protease 9X (USP9X/FAM) mediated de-ubiquitination [161]. Whilst
the implications of this altered Cx43 expression for cell communication remains to be
reported in these models, combined evidence from other studies suggest that blocking
Cx43 hemichannels through mimetic peptides may represent a novel approach in targeting
inflammation and fibrosis in multiple tissue types [108,113,162,163].

Peptide 5 is a connexin peptidomimetic that mimics a portion of the 2nd extracel-
lular loop of Cx43 [111] and has proven effective in blocking Cx43 hemichannels and
preventing ATP release in multiple models of injury when delivered intraocularly [126],
into cerebrospinal fluid [164] and systemically [165]. Studies confirm target applicabil-
ity and specificity and yield similar and significant benefits across different injury mod-
els [108,126,164–166]. Our recent findings determined that elevated levels of TGFβ1 in-
crease Cx43 hemichannel mediated ATP release [151], an effect which drives P2X7R medi-
ated phenotypic changes linked to initiation of partial EMT in the proximal region of the
kidney [108,164]. Co-incubation of TGFβ1 treated human proximal tubule epithelial cells
(hPTECs) with Peptide 5, successfully blocked hemichannel mediated carboxyfluorescein
dye uptake and real time ATP release, the impact of which was evidenced by restoration of
expression of adherens and tight junction proteins in injured cells [108].

Instrumental to cell adhesion and maintenance of polarity, disassembly of cell junction
complexes is linked to partial EMT, events which predispose inflammation and fibro-
sis [167], the latter of which is contributed to by extracellular matrix (ECM) deposition [152].
With collagen I increased in the interstitium of UUO mice, an effect lessened in the Cx43+/−

model [168], we hypothesized that a modified microenvironment may elicit phenotypic
changes via increased Cx43 mediated hemichannel ATP release. Consequently, we ob-
served that TGFβ1 treated human kidney cells bond with increased affinity to collagen
I via integrin isoform α2β1, an interaction which shifted the cell phenotype to one of
increased expression of integrin linked kinase, N-cadherin, fibronectin and collagen IV as
compared to cells uncoated control. Interestingly, co-incubation of TGFβ1 treated cells
with Peptide 5 significantly blocked the increase in hemichannel mediated dye uptake
and ultimately restored expression of markers of tubular injury to levels representative of
control cells cultured on plastic. Moreover, Peptide 5 blocked TGFβ1 induced secretion of
collagen I [168], corroborating in vivo data in the Cx43+/− mouse [168] and highlighting
the existence of a potential feedback loop in which aberrant Cx43 hemichannel mediated
ATP release increases collagen I secretion and deposition, the latter of which perpetuates
tubular injury via a Cx43 hemichannel mediated mechanism.
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Building on our published observations with Peptide 5, we recently assessed the
efficacy of Danegaptide in conferring protection in an in vitro model of tubular injury. A
Cx43 gap junction modifier [133,134], we reported that Danegaptide was also able to block
hemichannel mediated dye uptake, ATP release and consequently TGFβ1 induced changes
in markers of tubular injury e.g., E-Cadherin and N-Cadherin and fibrosis e.g., collagen-
I, collagen-IV and fibronectin in human primary tubule epithelial cells (hPTECs) [135].
Furthermore, based on evidence that the Cx43+/− UUO mouse presents with decreased
fibroblast activation and diminished macrophage infiltration as compared to wild type
UUO control [168], we employed proteome profiler arrays to screen for the expression pro-
file of 125 inflammatory cytokines in TGFβ1 treated human primary proximal tubule cells
in the presence/absence of Danegaptide [135]. Soluble chemokines, adhesion molecules
and growth factors recruit and activate infiltrating immune cells and resident fibroblasts to
mediate inflammation and fibrosis in the diabetic kidney [135]. However, little is known
about the switch that triggers release of these chemotactic signals or whether blocking
this switch has implications for heterotypic cell communication. Whilst we are yet to fully
understand the role of Cx43 hemichannel activity in these paracrine mediated events, we
observed that Danegaptide significantly blocked Cx43-mediated ATP release in tubular
epithelial cells to negate secretion of many inflammatory mediators, including chemokines,
monocyte chemoattractant protein (MCP1), Regulated upon Activation, Normal T Cells Ex-
pressed and presumably Secreted (RANTES; involved in macrophage infiltration [169,170]),
inflammatory interleukins (IL6 and IL1β) and adipokine adiponectin (associated with
macrophage-to-myofibroblast differentiation [171]). In support of our in vitro data and
Cx43+/− UUO mouse [108], work by Abed et al. demonstrated that the number of primary
monocytes which adhere to an activated mouse endothelial cell monolayer is reduced in
endothelial cells co-incubated with Gap26 [168]. The findings highlight the tantalising ther-
apeutic potential of targeting Cx43 hemichannel activity in diabetic nephropathy and other
forms of CKD. It remains to be resolved how blocking Cx43 confers protection in vivo,
whilst further research is required to assess the efficacy of Cx43 mimetic peptides in a
clinical setting.

5. The Therapeutic Potential of Blocking Cx43 in Diabetic Retinopathy

Diabetic retinopathy affects around one third of people with diabetes and is the pri-
mary contributor to blindness in the working age population [172], often resulting in sight
loss as a consequence of diabetic macular oedema, haemorrhage or retinal detachment [173].
This is due to increased cell apoptosis, vascular permeability and disruption of retinal home-
ostasis [173]. Categorised into two clinical stages of disease, diabetic retinopathy initially
presents as a non-proliferative form, characterised by inflammation, hypertrophy, oedema,
capillary breakdown, ischemia, and loss of microvascular endothelium integrity leading to
abnormal blood-retinal barrier (BRB) permeability [9]. The subsequent decrease in blood
flow and nutrient supply drives progression to the proliferative stage where increased blood
vessel formation leads to haemorrhage and scar tissue formation [9]. These pathologies can
cause detachment of the retina resulting in severe or complete blindness [9].

Loss of vision in retinopathy is associated with breakdown of the retinal pigment
epithelium (RPE), where periods of sustained hyperglycemia drive inflammation and
apoptosis through increased secretion of key inflammatory mediators, growth factors and
hypoxia-inducible factors [174]. This inflammation is believed to actively contribute to
associated damage of the retinal vasculature through its ability to trigger apoptosis of RPE
cells and promotion of retinal neovascularization. Of the main damage inducing molecules
whose activity and expression is known to be upregulated in the diabetic eye, it is the
increased secretion of vascular endothelial growth factor (VEGF) which triggers neovas-
cularisation and onset of the proliferative stage of diabetic retinopathy [175]. Coupled
with the breakdown of tight junctions between cells of the RPE, disruption to the retinal
pigment epithelium allows for these newly developed and fragile blood vessels to push
through and leak into the macula. The resulting macular oedema is one of the greatest
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contributors to sight loss in diabetic retinopathy [176]. Whilst laser treatments [177] and
anti-VEGF injections [178] stabilise blood vessels and prevent further neovascularisation
respectively, targeting upstream of this RPE breakdown and inflammation is a major focus
in the field. Tackling the condition in its early stages, and thus preventing transition of the
non-proliferative to proliferative stage, will not only improve patient outcomes but reduce
the socioeconomic burden of this disease.

In targeting this damage, it is important to understand how it manifests itself. Inter-
estingly, the series of events which drive proliferative diabetic retinopathy are of a similar
aetiology to those which we see in late-stage diabetic kidney disease [23]. As with onset
and progression of tubulointerstitial fibrosis [167], the breakdown of the retinal pigment
epithelium is associated with disassembly of junction proteins, namely ZO-1, E-cadherin,
β-catenin and occludin and ultimately induction of EMT [179]. In fact, EMT of RPE cells is
considered an initiating trigger in the loss of epithelial integrity and is driven by glucose-
evoked changes in TGFβ [180]. Moreover, a recent study by Lyon et al. identified that
inflammation coupled with glycaemic damage mediates EMT of the RPE via aberrant Cx43
mediated hemichannel activity [50], whilst Peptide 5 blocked loss of ZO-1 expression and
restores RPE permeability as measured by transepithelial resistance [125]. These studies
further support the extensive work in the field of connexin biology and ophthalmology,
which in recent years has identified a key pathological role for connexin hemichannels in
ophthalmological disease [47].

Both in vitro [105] and in vivo [181] models of diabetic retinopathy have been used to
evaluate a role for Cx43 mediated communication when treated with IL1ß and TNFα in the
presence of high glucose. Using clonal human retinal pigment epithelial cells (ARPE-19)
and NOD mice, Mugisho et al. demonstrated that these cells exhibit increased expression
of Cx43, an effect exacerbated in the presence of both glucose and inflammation. This
increased Cx43 expression was paralleled by enhanced secretion of pro-inflammatory cy-
tokines (interleukin-6, interleukin-18, monocyte chemoattractant protein-1, and intercellular
adhesion molecule 1), angiogenic promoting VEGF [181] and downstream extracellular ma-
trix protein collagen-IV [125]. Furthermore, with evidence that these cells release elevated
levels of ATP, the authors subsequently determined that these effects were blunted in the
presence of Cx43 hemichannel blocker Peptide 5, whilst exogenous application of ATP and
restoration of the response further corroborated a role for Cx43 in driving these in vitro
observations [105,125]. In vivo Cx43 expression increased in both the Akimba (albeit not
the Akita) mouse, whilst increased expression was also observed in donor retinas with
confirmed diabetic retinopathy compared to age-matched controls [182]. In addition, and
building on their in vitro observations, the team developed an in vivo model of diabetic
retinopathy in which pro-inflammatory cytokines, IL1β and TNFα, were injected into the
vitreous of NOD mice. Results showed that injecting intravitreal cytokines into these mice
induced a host of parameters detrimental to tissue function, including severe vitreous
hyper-reflective foci, vessel dilation, oedema microglia upregulation [183]. With previous
evidence that Peptide 5 was able to prevent Cx43 mediated vascular leakage and retinal
ganglion cell death after retinal ischaemic injury in rats [159], Peptide 5 was administered to
these NOD mice and structural and functional parameters recorded. Injection of Peptide 5
significantly improved vessel dilation and beading, reduced sub-retinal fluid accumulation,
decreased microglial infiltration into the outer nuclear layer, and decreased expression of
both NLRP3 and the adaptor protein ASC, the latter of which suggests a link between Cx43
hemichannels and activation of the inflammasome pathway [182].

Since the NLRP3 inflammasome is an integral mediator of our innate immune response,
the link between aberrant Cx43 hemichannel mediated ATP release and activation of the
NLRP3 inflammasome was further explored in vitro, where NLRP3 complex assembly,
caspase 1 activation and IL1β secretion were blocked in treated ARPE-19 cells co-incubated
with Peptide 5 [105]. Similarly, Cx43 hemichannel blocker, Tonabersat (Xiflam) also pro-
tected against retinal injury by blocking Cx43 mediated ATP release, NLRP3 inflammasome
activation and the release of pro-inflammatory mediators e.g., IL1β, IL6 and VEGF, in both
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high treated ARPE-19 cells [50] and in organotypic human retinal explants [184]. Blockade
of the NLRP3 inflammasome in addition to those events described above dampened the
immune response, reduced aneurysm development and restored cell function. In the
light damaged albino rat model of diabetic retinopathy when treated with either Peptide
5 [126] or Tonabersat [185] the resultant changes in photoreceptor function and vascular
permeability observed were accompanied by a reduced rate of disease progression [185].

Whilst the evidence of a role for Cx43 hemichannels in driving the pathology of di-
abetic retinopathy is undeniable, loss of tissue function in response to altered GJIC has
also been reported. Under conditions of glycaemic injury, Cx43 gap junction coupling
is reduced in retinal capillaries from people with diabetes [185,186], rat microvascular
endothelial cells [187] and in pericytes [188]. Implications for these changes were associ-
ated with endothelial cell apoptosis [187], pericyte death [186,188] and acellular capillary
formation [187]. With evidence that Danegaptide confers protection in in vitro models
of diabetic nephropathy and diabetic retinopathy [135,188], the dipeptide has specifically
been shown to maintain gap junction coupling between endothelial cells despite high
glucose stress, as assessed using scrape load dye transfer. In primary rat retinal endothelial
cells, Danegaptide modulated a high glucose induced increase in apoptosis and cell perme-
ability [188], thus further highlighting the promising effects in regulating Cx43 mediated
communication via modulation of their activity with mimetic peptides.

6. Conclusions

Recent statistics from Eurostat suggest that 28% of Europeans will be aged 65yr and
older by 2060, with estimates predicting the average UK life expectancy of women to be
91yr and men 88yr by 2030 [134]. With the prevalence of T2DM linked exponentially to
the aging process the incidence of diabetes and its secondary complications is expected to
rise. Chronic inflammation is a hallmark of retinopathy [189] and nephropathy [190,191],
with induction of morphological and phenotypic cell changes linked to upstream activation
of the NLRP3 inflammasome [192–199]. In a bid to target chronic inflammation, the
recent field of senolytics and NLRP3 inhibitors have taken centre stage [59,67]. However,
although promising (e.g., Dasatanib & Quercertin [200]), more information about safety,
tolerability and off-target effects of these drugs is required. In addition, targeting the NLRP3
inflammasome (e.g., MCC950 [200]) or downstream IL1β (e.g., Canakinumab [87,200])
has raised concerns over increased susceptibility to pathogenic infection and long-term
side effects. Consequently, treatment of inflammation in progressive nephropathy and
retinopathy remains an unmet need. Connexin hemichannel blockers represent a promising
future therapeutic option in the treatment of nephropathy and retinopathy. Research to date
is persuasive and highlights promising beneficial effects of Cx43 inhibition on inflammation,
tissue integrity and fibrosis [180,201,202]. However, the field requires further research to
determine the effectiveness and efficacy of drugs and the long-term benefits.
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