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Reaction-diffusion systems implemented as dynamical processes on networks have recently re-
newed the interest in their self-organized collective patterns known as Turing patterns. We investi-
gate the influence of network topology on the emerging patterns and their diversity, defined as the
variety of stationary states observed with random initial conditions and the same dynamics. We
show that a seemingly minor change, the removal or rewiring of a single link, can prompt dramatic
changes in pattern diversity. The determinants of such critical occurrences are explored through an
extensive and systematic set of numerical experiments. We identify situations where the topological
sensitivity of the attractor landscape can be predicted without a full simulation of the dynamical
equations, from the spectrum of the graph Laplacian and the linearized dynamics. Unexpectedly,
the main determinant appears to be the degeneracy of the eigenvalues or the growth rate and not
the number of unstable modes.

INTRODUCTION

Turing’s idea [1] of pattern formation through the
interaction of chemical species via nonlinear reaction-
diffusion equations had an enormous impact on the biol-
ogy of morphogenesis [2, 3]. It stood as an emblematic
example of a dissipative structure in physics and chem-
istry [4–6] and offered a mathematical laboratory for the
investigation of spatially extended instabilities [7]. It
continues to serve as a prototypical example in studies
of pattern formation on networks [8].

Indeed [9], in many interesting cases, diffusion acts
along links in a network rather than in a continu-
ous space. Mathematically, this implies swapping the
Laplace operator for the graph Laplacian L in the dif-
fusion terms of the evolution equations (see Methods).
Defining vectors u = (u1...uN ) and v = (v1...vN ) for
the activator and inhibitor species, the generic Turing
reaction-diffusion model on a network of N nodes is thus
written

dui
dt

= f(ui, vi) + ε(Lu)i (1)

dvi
dt

= g(ui, vi) + σε(Lv)i i = 1..N (2)

where ε is the diffusion coefficient of the activator and
σε that of the inhibitor. We assume that the system has
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a uniform equilibrium solution (ū, v̄). A pattern will be
defined as a non-uniform stationary state, reached after
some transients.

Turing understood pattern formation as linear instabil-
ity of the uniform equilibrium solution i.e. when a param-
eter crosses an instability threshold an eigenvector of the
Laplacian operator exhibits exponential growth which
eventually saturates due to nonlinear interactions. In [8]
the authors have shown that this mechanism still applies
for reaction-diffusion dynamics on networks, where the
eigenvectors are now those of the graph Laplacian L.

Since the beginning of the detailed study of complex
networks within statistical physics in the late 1990s and
early 2000s [10–12], a clear roadmap has emerged: from
a topological characterization to the study of dynamical
processes on network and, in this way, the search for uni-
versal relationships between network structure and net-
work function. These investigations have revolutionized
our understanding of complex systems [13–16] and have
established themselves as a novel branch of interdisci-
plinary research.

Among the results in the statistical physics of com-
plex networks the most striking ones are concerned with
the emergence of self-organized, collective patterns in dy-
namics on graphs – with Turing patterns [8] as a promi-
nent example, but also synchronization patterns [17] (see
also [18] for a study of resonance patterns in oscillatory
networks), growth patterns and clusters [19, 20], waves
in networks [21, 22] and many more.

Theoretical studies reveal, how such patterns are en-
hanced by certain architectural features of the network
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[22–24] and transdisciplinary investigations help under-
stand the implications of such patterns for network-like
infrastructures [25–31].

Starting from [8], several subsequent studies focused
on the impact of network features on Turing pattern for-
mation: In [32] the authors discussed how oriented net-
works explain subcritical patterns while [33] studied the
impact of degree fluctuations in the network. Extensions
to pattern formation for FitzHugh-Nagumo dynamics on
networks [34], to predator-prey models [35] and to epi-
demic growth [36] have been presented.

Our study is motivated by an observation for the
Gierer-Meinhardt pattern formation model (see Meth-
ods) on the macaque cortical area network. In this net-
work, nodes are anatomically defined cortical areas of the
macaque brain and links represent experimentally veri-
fied connections among these areas (we only use connec-
tions reported as ’strong’ in [37]). Simulating Turing
patterns on this network architecture we find that for
a fixed set of dynamical parameters and a given graph,
but random initial conditions, a large number of different
patterns emerges. For other parameter values or differ-
ent graphs, the dynamics converge to a single pattern.
Moreover, one can change the pattern forming process
from the former to the latter by small changes in the
graph topology. Figure 1 summarizes this observation.

We study quantitatively how small changes in the
graph topology can create such drastic changes in the
attractor landscape. Numerical investigations were per-
formed for a minimal network model and for random reg-
ular graphs. We identify basic spectral determinants of
pattern diversity. Mainly, highly diverse pattern forma-
tion is observed in degenerate situations, created by al-
most symmetrical network structures or by nearly identi-
cal growth rates of neighboring eigenvectors of the graph
Laplacian. We propose a general scheme for predict-
ing the topological sensitivity of Turing pattern diver-
sity, based on the movement on the dispersion curve of
Laplacian eigenvalues under network perturbations.

METHODS

Network models

For the macaque cortical area network (Fig. 1) each
node represents a cortical area built from the publicly
available database Core-Nets (core-nets.org; see [38, 39])
following a scheme described in [37]. The Turing patterns
obtained on this graph are compared to those obtained
after removal of a link between the primary somatosen-
sory cortex (area 2) and the ventral proisocortical area
ProM (highlighted in red in Fig. 1A). Note that we use
this network only as an illustrative example of the phe-
nomenon of topological sensitivity of Turing patterns. A
detailed analysis of pattern formation on this network
architecture would require a more careful variation of ki-
netic parameters, as well as a stronger emphasis on the

relevance of such results for neuroscience.
The ring graph has nearest neighbor connections and

111 nodes. We attach one end of a shortcut at node
i0 = 1 and the other end to nodes is = 2...N successively.
Random regular graphs with degree k = 4 are generated
for 30 nodes in Fig. 4. Suppl. Fig. S6 shows a random
(Erdős-Rényi network with 30 nodes and 100 links. The
graph Laplacian is defined as L = A−D where A is the
N × N adjacency matrix A. D is the diagonal matrix
whose entries are the degree ki of node i. Since our
networks are undirected, L is a symmetric matrix. L
always has a zero eigenvalue and is negative-semidefinite
(that is Λi ≤ 0) [40]. Eigenvalues are labelled in
decreasing order ΛN ≤ Λ1 ≤ Λ0 = 0. This definition is
consistent with numerical discretization of the Laplace
operator, describing diffusion in a continuum but not
with standard graph theory where the opposite sign
convention is generally adopted (L = D −A).

Pattern formation

The Gierer-Meinhardt model [2] is a generic Turing
model for an activator species u and a inhibitor species
v

∂u
∂t = a− bu+ u2

v + εLu
∂v
∂t = u2 − v + σεLv.

(3)

The reaction part of the dynamics involves two positive
parameters a and b which determine the homogeneous
steady state (ū, v̄) = ((a + 1)/b, (a + 1)2/b2. The
parameter ε is the diffusion coefficient of the activator
and σε is the diffusion coefficient of the inhibitor.

The dispersion relation λ(Λ) describes the functional
dependence of the growth rate λ on the eigenvalues Λ of
the graph Laplacian. We linearize eq. 3 around the ho-
mogeneous steady state and write the solution as a linear
combination of the eigenvectors of the graph Laplacian.
The growth rate for the Laplacian eigenvector VΛ associ-
ated with the eigenvalue Λ is [8]

λ(Λ) = (1/2)[fu + gv + (1 + σ)εΛ +√
4fvgu + (fu − gv + (1− σ)εΛ)2 (4)

where fu = (∂f/∂u)(ū, v̄) is the partial derivative of
f(u, v) at the equilibrium point (ū, v̄). The expression
for the continuum where the eigenmodes are sinusoids
with wave-vector q is recovered by replacing Λ with −q2.

We consider a steady state bifurcation and assume that
λ(Λ) is real, and use σ as a bifurcation parameter. Thus
a bifurcation occurs when the dispersion relation moves
from negative to positive values, indicating a transition
from damped modes to exponentially growing modes.
For the Gierer-Meinhardt system eq. 3, this occurs for

σc =
a+ 1

b(a− 1)2
(a+ 3 + 2

√
2
√
a+ 1). (5)
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FIG. 1. Topological sensitivity of Turing pattern diversity on the macaque cortical area network.
(A) Representation of the macaque cortical area network (see Methods). (B) Example of a pattern arising for the
Gierer-Meinhardt dynamical model from the sixth eigenvector of the Laplacian matrix of the graph, shown
underneath. (C) We arrange the nodes in an arbitrary but fixed way on a circle. The links between the nodes are
shown in blue in the center. Each concentric ring represents a binarized Turing pattern originating from a randomly
chosen initial condition, in total 500 runs (see Methods). The surrounding purple ring shows their average.
Panel (D) shows the same pattern wheel representation after removal of a single link (highlighted in red in (A) and
(C) [upper left quadrant; see the dashed ellipse]).

The dispersion curve is the plot of the growth rate λ as a
function of ln(−Λ) (recall that Laplacian eigenvalues Λ
are all negative), as displayed e.g. in Fig. 3. The struc-
ture of the network is reflected in the discrete sampling
of the horizontal axis by the Laplacian eigenvalues.

Numerical simulations

For a given network and a given set of dynamical pa-
rameters ε, σ, a and b a numerical experiment entails
500 runs in Mathematica using randomly chosen initial
conditions. Since transients appear to decay in less than
500 time steps, the duration of a run was typically 2,000
time steps.

The following parameter selection scheme, which we
call growth-rate degeneracy (GRD), was used in the sim-
ulation: Parameters are chosen such that two succes-

sive eigenvectors have approximately the same positive
growth rate. This is achieved by selecting parameters in
such a way that the maximum of the dispersion relation
at σc is exactly midway between the two corresponding
eigenvalues of the graph Laplacian. To create a positive
growth rate, σ is then increased slightly by an amount
∆σ = 0.02 beyond the instability threshold (see Fig. 4).

Pattern evaluation

The pattern wheel representation of multiple simula-
tions of Turing patterns allows for a visual assessment
of pattern diversity for the same graph and the same
kinetic parameters. Each pattern, characterized through
the asymptotic value of the dynamical variable ui for
each node i is binarized using the average over all
nodes as a threshold, retaining only the information
whether the activator concentration is high or low. The
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pattern with the highest correlation to an unstable
mode serves as the reference pattern. Each simulated
pattern is multiplied by −1, if this increases the visual
agreement to the reference pattern (accounting for the
fact that a reflected pattern is still generated by the
same eigenvector). These aligned and binarized patterns
are plotted around a circular embedding of the graph
under consideration. Averages over these binarized
patterns for each node are then displayed as an outside
ring (outer purple ring in the figures).

A pattern similarity index is developed to quantita-
tively assess the diversity of patterns: Let

u(k) = {u(k)
i (t→∞)}i=1,...,N

denote the pattern observed in the kth simulation run

of a network of N nodes, with u
(k)
i (t → ∞) the asymp-

totic value of the dynamical variable at node i for run k.
We then construct a pattern similarity graph, in which
a node is a pattern u(k) and a link between two patterns
is generated, if the similarity between these patterns ex-
ceeds a threshold θ, leading to the edge set E,

E = {(u(k), u(l)||corr(u(k), u(l))| > θ},

where corr(u(k), u(l)) is the Pearson correlation coefficient
of two patterns u(k) and u(l),

corr(u(k), u(l)) =

N∑
i=1

(u
(k)
i − ū(k))(u

(l)
i − ū(l))

σ(u(k))σ(u(l))
.

Here ū(k) and σ(u(k)) denote the average and the stan-
dard deviation of pattern u(k) over the components i,
respectively. Specifically, an edge is drawn between two
patterns if the absolute value of their Pearson correla-
tion coefficient exceeds θ = 0.9. The pattern similarity
index Π is then defined as the connectivity of this pattern
similarity graph, Π = 2|E|/(N(N − 1)).

The correlation analysis in Figure 2C is based on the
Pearson correlation coefficient Ci between a pattern
and the i-th eigenvector where the index i spans the
set of unstable eigenvectors. The maximum correlation
strength maxi |Ci| determines whether a pattern is
weakly or strongly correlated with a single eigenvector.
Histograms of the correlation strength over 500 pat-
terns generated from random initial conditions reveal
two classes: histograms with a marked peak at 1, or
broad ones. We interpret a histogram with a broad
shape as coming from a pattern that is generated by
multiple modes whereas histograms with a peak near
one represent patterns generated by a single eigenvector.
Similarly, the maximum absolute value of the correlation
coefficient between a pattern and a set of unstable
modes characterizes how well a given pattern agrees
with a single unstable mode, thus offering insight in the
predictability of this pattern by eigenvectors. Across a
whole set of patterns (same parameters, random initial

conditions) the set of these maximal absolute values
of correlation coefficients – the distribution of pattern
predictabilities – is a suitable quantifier of pattern
diversity.

The pattern diversity array shown in Fig. 4 allows to
predict, for a given network, combinations of eigenvectors
and links, where pattern diversity is particularly sensitive
to the addition or removal of a link. The pattern diver-
sity array – with links of the network enumerated on the
horizontal axis and eigenvectors of the network (on which
the parameter tuning scheme is centered) enumerated on
the vertical axis – offers a color-coded representation of
our prediction of changes in pattern diversity for each
combination of an eigenvector and a link, for the GRD
parameter selection scheme described above. Colors cod-
ing is summarized in Fig. 4.

A MINIMAL MODEL: THE RING GRAPH WITH
ONE SHORTCUT

We first investigate the topological sensitivity of Tur-
ing pattern formation in a minimal network model, com-
posed of a ring graph with one moveable shortcut.

Turing pattern diversity changes under small topolog-
ical variations are shown in Figure 2 for a ring with a
single shortcut. A similar model has been introduced in
[41] to study the influence of the topology of the underly-
ing graph on pattern formation by a cellular automaton.
The two pattern wheel representations, Figures 2A and
2B, representing different shortcut positions, show very
different pattern diversity. As this model is very sim-
ple, we can analyze it like a spatially extended system.
Symmetric bifurcation theory [42] states that eigenvalues
of the ring graph Laplacian are degenerate with multi-
plicity 2 and the eigenvectors are sinusoids. Adding a
single shortcut to the ring breaks the symmetry of the
graph and thus the degeneracy of the eigenvalues. Sup-
plementary Figure S1 provides an overview of spectra and
eigenvectors for the ring graph and a ring graph with one
shortcut.

As a consequence of the shortcut-induced symmetry
breaking, one of the degenerate eigenvalues is indepen-
dent of the shortcut leading to the same sinusoidal pat-
tern as for the ring graph. The other eigenvalue changes.

Figure 2C shows that the other eigenvalue moves, re-
turning periodically to the degenerate situation, as the
shortcut is moved around the ring graph.

Since changing the graph does not change the disper-
sion relation λ(Λ) (i.e. the expression of the growth rate
λ of an eigenmode as a function of the eigenvalue Λ, see
Methods), the interval on the dispersion relation that
leads to growing patterns is unaffected. Thus, we can
set the dynamical parameters in such a way, that some
eigenvectors of the Laplacian lead to growing pattern for
all shortcut positions while other eigenvectors correspond
to eigenvalues moving in and out of this interval, as in-
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FIG. 2. Topological sensitivity of Turing pattern diversity on the ring graph with one shortcut.
(A) Pattern wheel representation for a ring graph of N = 111 nodes with a shortcut from node 1 to node 58. A
global attraction to a single pattern independent of the initial condition is observed. (B) Same as (A), but for a
shortcut from node 1 to node 68; now each observed pattern depends on the specific initial condition. (C) Evolution
of eigenvalues for the ring graph with one shortcut as a function of the shortcut position (i.e., the endpoint of the
shortcut, the starting point being kept fixed). Note that only eigenvalues which are unstable for some shortcut
position are shown. (D) Top panel: Pattern similarity index (see Methods) as a function of the shortcut position.
Bottom panel: Pattern predictability distributions (see Methods), depicting the correlation between patterns and
unstable eigenvectors. The two shortcut positions for (A) and (B) are highlighted as dashed lines. The distribution
of pattern predictability is shown as a sequence of box plots (white lines in the middle of the red bars indicating the
median; size of the bar are the 25% and 75% quantiles; error bars (’whiskers’) are the range of values covered with
the exception of outliers, which are shown as additional light-red points).

dicated by blue (growing pattern) and red dots (stable
homogeneous solution). Supplementary Figure S2 illus-
trates the movement of eigenvalues as a function of the
shortcut position (Fig. 2C) via snapshots of the disper-
sion relation (see also Supplementary Movie 1). All of
these findings can be analytically shown using an exten-
sion of the interlacing theorem [43, 44] and linear opera-
tor theory for spatially extended systems (see Appendix
A).

The impact of the changes in the spectrum of the
graph Laplacian on pattern diversity is measured in
Fig. 2D. The top panel presents the similarity measure
of the set of patterns observed for 500 random initial
conditions as a function of the shortcut position. An al-

ternative visualization is presented in the bottom panel,
summarizing as a box-plot the correlation between the
unstable eigenvectors and the patterns obtained by nu-
merically solving the Turing dynamical system starting
from randomly chosen initial conditions. Further anal-
ysis (see Appendix) shows that the shortcut position in
Fig. 2(B) corresponds to almost exactly one wavelength
of the pattern (within limits of the discretization due
to the finite number of nodes) and hence does not
break the rotational symmetry of the ring graph (more
detail in Suppl. Figs. S3 and S4). As a result there is
a free phase leading to a low pattern similarity and low
pattern predictability. For shortcut position (A) the
spectrum has a large gap between the central mode on
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the dispersion relation (the eigenvalue with the largest
growth rate) and the neighboring unstable modes. In
fact, although the top three eigenvalues are unstable and
very close, since their growth rates are very weak, the
central mode is very far from being degenerate and thus
dominates the pattern formation (see also Suppl. Fig. S4,
panels A and B). As a result, pattern similarity between
patterns is high and the resulting pattern is almost
deterministically predictable. Note that in this case
four eigenvectors of the graph Laplacian are unstable
whereas in shortcut position B only three are unstable
suggesting that the driver of pattern diversity is not
the number of unstable modes but the gap between
the dominant mode and the neighboring modes. As
a result, topological sensitivity of pattern diversity
depends on the changes in the eigenvalue spectrum with
eigenvalue degeneracy at maximal growth rate being
most susceptible to topological changes. Suppl. Figs. S3
and S4 show additional quantitative details. Specifically,
Suppl. Fig. S3 panel D shows high pattern diversity
without an eigenvalue degeneracy. Instead the growth
rate of two neighboring eigenvectors are very similar.
This suggests that there may be a second mechanism
involved in the generation and destruction of a high
diversity of pattern which we call growth rate degeneracy.

PATTERN DIVERSITY ON RANDOM GRAPHS

Next, we explore the topological sensitivity of Turing
pattern formation and the role of growth rate degeneracy
(GRD) for random regular graphs. In random regular
graphs, all nodes have the same degree but are otherwise
randomly connected.

Emergence of a Turing pattern on a random regular
graph follows the paradigm established for the minimal
model: For a single unstable mode of a dispersion rela-
tion, starting from random initial conditions the asymp-
totic pattern agrees well with the unstable eigenvector.

No analytic results can be formulated for random reg-
ular graphs. However we developed predictive criteria
for pattern diversity and for topological sensitivity based
on the spectrum of the Laplacian. They have been val-
idated in a large numerical experiment. Figure 3 shows
the experimental setup: We adjust the dynamical param-
eters such that the growth rate for an eigenvector ek is
the same as for the adjacent eigenvector ek+1. Since the
dispersion relation is locally quadratic, this is achieved
by putting its maximum exactly in the middle between
two neighboring eigenvalues of the Laplacian. We call
this the GRDON parameter selection scheme (GRD in
the original network). The GRDPN parameter selection
scheme generates the reverse changes: we select dynami-
cal parameters such that the maximum of the dispersion
relation is between two eigenvalues of the perturbed net-
work, i.e. after the deletion of a link in the original graph.

The GRDON parameter selection scheme is designed

to search for cases, where link removal decreases pat-
tern diversity (as we start from a situation – growth
rate degeneracy – predicted to favor pattern diversity).
In order to systematically search for situations, where
link removal can increase pattern diversity, we need to
start from a non-degenerate setup and arrive at an ap-
proximate growth rate degeneracy. The purpose of the
GRDPN scheme is to systematically search for such sit-
uations, as by construction upon link removal we arrive
at an approximate growth rate degeneracy.

FIG. 3. The dispersion curve for the parameter
selection scheme GRDON. The top panel illustrates the
quantities involved in the predictability criteria. The
variable on the horizontal axis is the eigenvalue of the
network Laplacian displayed in a logarithmic scale,
ln(−Λ). Blue dots indicate the growth rates for the
original network, red dots are the ones after link
deletion. The dashed curve is the dispersion relation for
∆σ = 0. Positive values of ∆σ shift the dispersion
relation upwards, yielding the dispersion relation used
for evaluating pattern diversity (shown as a full line).
Note that λs and λ∗s are meant as distances from zero
and hence are positive.

Figure 3 shows the region of the dispersion relation
near zero growth rate with all unstable modes and adja-
cent stable modes. The relevant measures for prediction
of topological sensitivity are: (i) the growth rate of the
unstable modes for the original network, λu and after
link deletion, λ∗u and (ii) the weakest growth rate of the
stable modes for the original network, λs and after link
deletion, λ∗s.

The relative size of these parameters and the num-
ber of unstable modes before (s) and after (s∗) dropping
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a link suggests to classify the pattern into six different
types of pattern sensitivity, color coded in Fig. 4 with
the formal criteria listed as Boolean expressions. There
are three criteria for high sensitivity of pattern diversity
to topological perturbations: (1) the perturbation should
destroy or establish (approximate) growth rate degener-
acy of the unstable modes; (2) no weakly stable modes
close to the instability threshold and (3) the growth rates
of the (approximately degenerate) unstable modes should
not be too small. The topological perturbations produc-
ing the strongest signals thus trigger a transition from
two unstable modes with degenerate growth rates to a
single unstable mode, while avoiding all interfering fac-
tors (stable modes close to the instability threshold, too
small growth rates of unstable modes). In Fig. 3 the ap-
plicable classification for this specific dispersion relation
is shown, predicting slightly less pattern diversity (color
coded as light blue). Note that our prediction scheme
summarized in Fig. 3 and applied, e.g., in Fig. 4 is a
heuristic derived from studying the influencing factors of
pattern diversity for a large set of numerical examples.
The factor 1/2 in the requirement of a small enough dis-
tance of λ∗u to the maximum of the dispersion relation
has been chosen arbitrarily and a broader study of influ-
encing factors might lead to a refined heuristic.

Figure 4 illustrates the relevance of the classification
scheme for a full analysis of Turing pattern diversity
changes under link removal for a random regular graph of
degree 4, with 28 nodes and 60 links. Panels (A) and (B)
show the change in pattern diversity for a specific pattern
characterized by an unstable eigenvector, upon removal
of a single link in a regular random graph. They are
similar to the ones we showed in Figures 1 and 2 for the
macaque cortical area network and for the ring graphs
with one shortcut. While panels (A) and (B) show a
specific case, panels (C) and (D) analyze the sensitiv-
ity of all possible patterns to the removal of any single
link. Both, the GRDON and GRDPN parameter selec-
tion schemes are run for each eigenvector ek separately.
In this way we explore systematically the whole variety
of situations displaying growth rate degeneracy.

Summarizing Fig. 4 we note that for this choice of the
dispersion relation shift (via the additive constant ∆σ to
the diffusion constant ratio σ, see Methods; see Supple-
mentary Table S1) eigenvectors with low index are not
influenced by the link removal. Low eigenvector indices
correspond by definition to eigenvalues of small absolute
size and we observe sensitivity to link removal in this
regime only for higher values of ∆σ. As discussed, strong
changes in pattern diversity are triggered by a transition
from two unstable modes with degenerate growth rates
to a single unstable mode. We observe that for this pa-
rameter set and for random regular graphs, small eigen-
values of the graph Laplacian do not move much under
link removal, making it unlikely that the associated pat-
terns change stability. While we find this to be true for
most of our parameter sets, we have not explored this in
general for random regular graphs. However, note that

this is also true (and intuitive) for the ring graphs: small
eigenvalues correspond to long wavelength patterns. The
distance between neighboring eigenvalues is much larger
for long wavelengths than for short ones, making them
more robust against perturbations.

We furthermore observe that the eigenvector deter-
mines whether the link removal leads to an increase, a
decrease or no change in the pattern diversity. Specif-
ically, eigenvectors that display growth rate degeneracy
lead to changes of the pattern diversity.

DISCUSSION

Turing patterns in a continuum have been studied in
great detail for many years, specifically their dependence
on the parameters of the pattern-generating reaction dif-
fusion system. Turing patterns on graphs offer a com-
pletely new way to influence the pattern formation by
changing the underlying graph, e.g. adding or subtract-
ing a small number of links. One important feature of
Turing pattern formation on graphs evidenced in our
study is the rarity of the emergence of a unique pat-
tern. Even close to the instability threshold one often
encounters a large number of simultaneously emerging
stable patterns. They manifest themselves as a result
of random sampling of initial conditions, a situation we
call pattern diversity. Our study is a first step towards a
full understanding of the mechanisms that generate such
high diversity of patterns and its changes as the under-
lying graph undergoes small changes in its topology.

Our focus is on patterns determined by the unstable
modes of the linear system, i.e. supercritical bifurcations.
In particular, we do not consider the case of subcritical
bifurcation where we are unable to relate pattern diver-
sity to any topological features of the graph. In the super-
critical case we can separate the influence of the reaction
system from the influence of the underlying graph. The
former is reflected in the dispersion relation determined
by the parameters of the reaction system while the latter
is a reflection of the eigenvalue spectrum of the graph
Laplacian.

Our approach to disentangle the influence of the re-
action parameters from the influence of the graph is
based on the fact that the dispersion relation is locally
quadratic (as in Fig. 3), and its width and location can
only be changed by the reaction parameters. The part
of the dispersion relation that lies above the zero growth
rate determines the potential eigenvalues and associated
eigenvectors that determine the emerging patterns. The
number of eigenvalues and their spacing in this interval
is a characteristic of the underlying graph. In that way
the dispersion relation acts like a magnifying glass on the
eigenvalue spectrum of the graph Laplacian.

Our analysis shows that the spacing of Laplacian eigen-
values and their movement on the dispersion curve un-
der small topological changes of the graph translates into
robustness or sensitivity of pattern diversity. In particu-



8

C

D

A B

Average
(relative)

0
0.2
0.4
0.6
0.8
1.0

Activator con-
centration

high
low

Activator 
concentration

Average
(relative)

FIG. 4. Predicting the impact of topological changes on pattern diversity. (A) Pattern wheel
representation (see Methods) for 500 simulated patterns starting from random initial conditions under the GRD
scheme of kinetic parameter selection (see Methods) for the original random regular graph and eigenvector 16.
(B) Same as (A), but after removal of the link from node 4 to node 22. (C) Pattern diversity array (see Methods)
depicting the expected change in Turing pattern diversity as a function of the deleted link index (horizontal axis)
and the eigenvector label, eigenvectors being numbered at decreasing eigenvalues (vertical axis, recall that
eigenvalues are negative). The parameter constellation investigated in (A) and (B) is highlighted in yellow.
(D) Criteria defining the color code used in the pattern diversity array (C) and the corresponding prediction.

lar, small gaps between the unstable (or nearly unstable)
eigenvalues surrounded by larger gaps can lead to high
pattern diversity, whereas sequences of large gaps tend
to favor a unique pattern.

These results are independent of the specific choice of
the dynamical model or its parameters, as they only rely
on the placement and the corresponding discrete sam-
pling of the dispersion relation by the eigenvalues of the
graph Laplacian. This discrete sampling is the determi-

nant of pattern diversity.

One extreme case is the case of multiplicity of eigen-
values, e.g. due to symmetries, like in the case of a ring
graph. Here the gap between two neighboring eigenval-
ues is zero leading to a continuum of patterns. Reac-
tion parameters have no influence on this feature, but
small changes of the underlying graph generically create
a non-zero gap between the formerly degenerate eigenval-
ues and subsequently reduce the diversity of the emerging
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patterns.
We extend the idea of small spectral gaps to the degen-

eracy of growth rates, i.e., situations where two adjacent
eigenvalues of the graph Laplacian are not necessarily
close in the spectrum but have the same growth rate. In
order to systematically investigate these situations, we
tune the reaction parameters such that the two adjacent
eigenvalues are symmetrically distributed with respect to
the maximum of the dispersion relation. A large num-
ber of numerical experiments for different types of graphs
(small-world graphs [10], i.e., ring graphs with different
numbers of shortcuts, ER graphs [45], random regular
graphs and BA graphs [11]) show that pattern diversity
changes significantly when small changes in the graph
generate or destroy such approximate growth rate de-
generacy.

CONCLUSION

Our study relates pattern forming capacities and spec-
tral properties of networks. The variation in pattern
diversity resulting from a change in network topology
can be predicted by computing the change of the part of
the eigenvalue spectrum of the graph Laplacian that is
sampled by the unstable region of the dispersion curve.
This link between the spectral properties of a graph and
aspects pertaining to the robustness, predictability and
controllability of self-organized patterns opens an avenue
towards a better understanding of systemic vulnerabili-
ties in network-like infrastructures relying on collective
patterns.
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Appendix A: Ring graph with shortcuts

We discuss two ways to generate topological sensitivity
of pattern formation – one related to degenerate eigen-
values of the Laplacian created by symmetries, the other
to degenerate growth rates, generated by two different
but neighboring eigenvalues that are arranged in such a
way that their growth rates are the same. To study the
former, we consider a ring graph with a single shortcut
as a minimal model. It offers the first step from spatially
extended reaction-diffusion systems (here on a ring, as
in the seminal work of Turing) to their counterpart on
networks.

To simplify exposition we focus on a scalar reaction
diffusion equation of the form

∂u

∂t
= f(u) + Lu

where L is the Laplacian of the ring graph of N nodes
and nearest-neighbor links given by

Li,j =

 1 for j = i− 1
1 for j = i+ 1
−2 for j = i

where i and j are integers modulo N . The eigenvalues
of L are Λq = −2(1 − cos((kq)) where kq = 2πq/N for
integer q. They are degenerate, each with multiplicity 2,
and the associated eigenvectors are

Xq(i) = cos(kqi), i = 0...N − 1 and (A1)

Yq(i) = sin(kqi). (A2)

Notice that any linear combination of these two eigen-
vectors (which is still an eigenvector with eigenvalue Λq)
can be written in the amplitude-phase form ũk(i) =
A cos((kqi) + φ), corresponding to the fact that any em-
bedding of the graph on a circle is invariant under the
symmetry group of the circle. Following equivariant bi-
furcation theory [42] the generic steady state bifurcation
can be described by a bifurcation on a 2-dimensional cen-
ter manifold which leads to an invariant circle of fixed
points. If the bifurcation is supercritical then the circle of
fixed points is normally stable and has a zero eigenvalue
in the tangential direction to the circle. Hence for uni-
formly randomly distributed initial conditions we expect
uniform distributions of fixed points on the circle, rep-
resenting patterns with a uniform distribution of phase
shifts. We thus proved that the Gierer-Meinhardt model
on the ring graph has a uniformly distributed ensemble
of patterns around the circle. The average over patterns
obtained with random initial conditions is therefore uni-
form, provided the number of patterns is large enough to
avoid finite-sampling effects.
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Laplacian eigenvalues for the ring graph with one
shortcut

As discussed in the previous section, due to the symme-
try of the ring graph, the eigenvalues Λq of its Laplacian
have multiplicity two. The interlacing theorem [43, 44]
applied to the addition of edges of a graph can be formu-
lated in the following way:
Theorem: Let G be a graph with n vertices and let G∗

be obtained from G by adding an edge joining distinct
vertices of G and let L(G∗), L(G) be the corresponding
Laplacians. Then

Λi−1(L(G∗) ≤ Λi(G) ≤ Λi(G
∗),

for all i = 1, ..., n. Thus, since the addition of an edge
breaks the symmetry of the ring, the eigenvalues are non-
degenerate and the eigenvalues of L(G) interlace with the
eigenvalues of L(G∗). Since our variable on the horizontal
axis for the dispersion curve is ln(−Λ), the eigenvalues of
the ring graph with one shortcut move to the right on the
dispersion curve, relative to the eigenvalues of the ring
graph.

Suppl. Fig. S1 shows the spectrum and a typical eigen-
vector for the ring graph (panel A and C) and the
ring graph with one shortcut (panel B and D), while
Suppl. Fig. S2 and Suppl. Movie 1 show precisely how
changing the shortcut position changes the number and
eigenvalues of the unstable eigenvectors.

For the ring graph, the degenerate eigenvalues corre-
spond to eigenvectors that are generated by even and odd
sinusoidal functions with a free phase parameter. Thus
for each shortcut, we can shift the phase parameter in
such a way that one of the eigenvectors is even and the
other is odd with respect to a reflection at the middle of
the shortcut. Thus a theorem from graph theory called
the edge principle [46, 47] can be used, which states that
if X is eigenvector of the graph Laplacian with eigen-
value Λ satisfying X(i0) = X(is), then the Laplacian of a
graph with the shortcut (i0, is) has also X as an eigenvec-
tor with eigenvalue Λ. Thus for each pair of degenerate
eigenvectors for the ring graph, the even eigenvector will
be also an eigenvector with the same eigenvalue for the
ring graph with a shortcut, i.e. a sinusoid with an appro-
priate phase shift as seen in Suppl. Fig. S1(D) (dashed
line). As the eigenvector is the same, so is the eigen-
value. Hence, for each pair of degenerate eigenvalues of
the Laplacian of the ring graph, one eigenvalue will be an
eigenvalue for the ring graph with a shortcut and, follow-
ing the interlacing theorem, the second one will move to
the right but never cross the next eigenvalue of the ring
graph.

Pattern diversity for the ring graph with one
shortcut

We can recover these graph theoretic results and gen-
erate new insight by performing the analysis for eigenvec-

tors of the Laplacian on the ring graph associated with
the eigenvalue Λq and the wavelength l = N/q and a
shortcut from node i0 to node is. The physical intuition
for the edge principle discussed in the previous section is
the following: A ring graph has sinusoidal eigenvectors.
Any link that connects two nodes exactly one wavelength
apart will have no impact on the eigenvectors. This can
easily be seen when we write out the the expression for
the eigenvalue of the Laplacian for the node i0:∑
j

L0juj = u(i−1)−u(i0) +u(i1)−u(i0) +u(is)−u(i0).

(A3)
When u(i0) = u(is) this expression becomes the same as
in the ring graph, i.e. the shortcut has no influence. It is
easy to see that the same is true for the time evolution
of u(is). Hence, for any eigenvector with a wavelength
that approximately fits into the spacing of the ring graph,
there exist shortcuts that have no influence and therefore
any linear combination of the two eigenvectors of the ring
graph will still be invariant under any phase shift leading
to a uniformly distributed ensemble of patterns around
the circle and thus to maximal pattern diversity.

A generic shortcut cuts the ring into pieces which, as
evidenced by the geometry has a reflection symmetry rel-
ative to a reflection on a line that is perpendicular to the
shortcut through its midpoint. By representation theory
of the Z(2) symmetry we will have an eigenfunction that
is invariant under the reflection, i.e. even and another
one that has a −1 representation, i.e. is an odd function.
This is most easily illustrated for the eigenfunction with
wavelength l = N , i.e. the cosine function cos(2πi/N):
If the shortcut connects node i to node N − i we have
that

cos

(
2π
N − i
N

)
= cos

(
2π(1− 1

N

)
= cos

(
2π

i

N

)
,

i.e. the value of the activator is the same at the endpoints
of the shortcut and thus the eigenfunction is even. Thus
for every shortcut, there is a reflection-symmetric pattern
that is selected by the shortcut as the even eigenfunction
from the continuum of eigenfunctions in the amplitude-
phase form of the ring graph. The associated eigenvalue
is therefore the same as for the ring graph and, for N
even (or N large), the amplitude of the node midway
between the shortcut nodes is a maximum or minimum.

The corresponding second eigenfunction of the ring
graph will be anti-symmetric and thus will have that
u(i0) = −u(is). Inserting this into Eq. (A3) shows that
this function is not an eigenfunction of the ring graph
with a shortcut. Thus the eigenvalue for the antisym-
metric eigenfunction of the ring graph with a shortcut
will move and, for N even (or N large), the amplitude of
the node midway between the shortcut nodes is zero (or
approximately zero).

As we fix i0 and move the endpoint is of the short-
cut from one node to the next, we therefore observe a
splitting of the degenerate eigenvalues of the ring graph
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illustrated in Suppl. Fig. S1. Degenerate eigenvalues cor-
respond to a continuum of patterns, while split eigenval-
ues show a small, finite number of patterns. This fully
explains the diversity of the pattern formation in the ring
graph with one shortcut. Suppl. Fig. S3 on the left panels
shows the position of the eigenvalues on the dispersion
relation as the shortcut moves and on the right panels
shows the corresponding histograms of maximal correla-
tions between the observed patterns in a set of 500 ran-
dom initial conditions and the set of unstable eigenvec-
tors. As the eigenvalues become degenerate (panel C and
E), the growth rate for the associated eigenfunctions are
very close. Hence, we expect that the final pattern is a
linear combination of the two orthogonal eigenfunctions
with about equal contributions. Measuring the correla-
tion of that final pattern with one of the two eigenfunc-
tions will lead to a projection of length 1/

√
2, as one can

see in panels D and F.
Numerical calculations of the anti-symmetric eigenvec-

tor shows, that the eigenvector corresponding to the mov-
ing eigenvalue evidently consists of two parts, each with
the same wavelength but different amplitudes and phases.
This suggests an Ansatz for an eigenfunction that is sinu-
soidal, with the same wavelength everywhere and where
amplitude and phase of the two parts of the eigenfunc-
tions have to be adjusted to satisfy continuity conditions
and the eigenvalue is given by the relationship between
the wavelength and the eigenvalue of the undisturbed
ring graph

Λ = Λq = −2 (1− cos(kq)) . (A4)

Thus, the following calculation creates the eigenvalues
as a function of the shortcuts like in Figure 2C. We
assume without loss of generality that one end of the
shortcut starts at node n = 1 and the shortcut ends
at node y. The symmetry axis related to the Z(2)
symmetry goes through the points i∗ = (1 + y) /2 and
j∗ = (y +N + 1) /2 which are nodes of the ring, if i∗ and
j∗ are integer and otherwise are just coordinates on the
ring. Since we are looking for the odd eigenfunction, we
have u(1) = −u(y). In general for finite number of oscil-
lators our assumption implies that the eigenfunctions are
of the form a sin(k(i− i∗)) on i = 1...y and sin(k(i− j∗))
on i = y...N . We have w.l.o.g. set the amplitude for
the second part of the eigenfunction to one and leave the
amplitude for the first part to be determined.

The eigenvalue of the network Laplacian for the nodes
that are involved with the shortcut at node i = 1 and
i = y can be written as

u(0)− u(1) + u(2)− u(1) + u(y)− u(1) = Λu(1),

u(y − 1)− u(y) + u(y + 1)− u(y) + u(1)− u(y) = Λu(y),

which simplifies to

u(0)− 4u(1) + u(2) = Λu(1). (A5)

Assuming sinusoidal eigenfunctions we can evaluate

node index

ei
ge
nv
al
ue

FIG. 5. Movement of the eigenvalue of the
network Laplacian for a ring graph as a function of
the endpoint of the shortcut. The starting point of the
shortcut is always oscillator 1. The two eigenvalues at
the top and bottom are the ones that do not depend on
the shortcut.

them at these nodes to get:

u(1) = a sin (kq(1− i∗) = −a sin

(
kq

(
y − 1

2

))
u(2) = a sin (kq(2− i∗) = −a sin

(
kq

(
y − 3

2

))
u(y) = a sin (kq(y − i∗)) = a sin

(
kq

(
y − 1

2

))
u(0) = u(N) = sin (k(N − j∗)) = sin

(
kq

(
N − y − 1

2

))
.

Inserting these into Equation (A5) gives

sin

(
kq

(
y + 1−N

2

))
+ a sin

(
kq

(
y − 3

2

))
= (Λ + 4)a sin

(
kq

(
y − 1

2

))
(A6)

for the three unknowns a, k,Λ. Finally there is a conti-
nuity condition, which is that at node i = 1 and at node
i = y the two sinusoidal parts of the eigenvector have to
have the same value. Hence

u(y) = −a sin

(
kq

(
y − 1

2

))
= sin

(
kq

(
N + 1− y

2

))
. (A7)

We can thus solve Equations (A4, A6 and A7) for a, kq,Λ
numerically. Note that these equations have N/2 solu-
tions for kq, corresponding to the number of eigenvalues
for the even eigenmodes of the ring graph. To find a
particular one, we have to restrict the numerical search
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to the interval between two eigenvalues of the ring graph
without a shortcut. Figure 5 shows the movement of an
eigenvalue of the network Laplacian as a function of the
shortcut position.

We can also understand the primary bifurcations of
this 2N -dimensional dynamical system based on the sym-
metries of the eigenfunctions: when we add a shortcut,
we break the Dn rotational symmetry of the ring graph.
However for just one shortcut there is still a reflection
symmetry at the midpoint of the shortcut. Thus we get
an eigenfunction that is even with respect to that symme-
try and one that is odd, corresponding to the two cases
discussed above. The eigenfunction that is odd corre-
sponds to a (−1)-representation of the Z(2) symmetry
leading to pitchfork bifurcations [42]. The Z(2) symme-
try places no restrictions on the bifurcations for the even
eigenfunction. However, since this eigenfunction inherits
the sinusoidal structure of the ring graph, it generates

a (−1)-representation under a translation along the ring
graph by half a wavelength. Hence the primary bifur-
cation for both modes will be pitchfork bifurcations and
thus no subcritical modes will appear in a ring graph
with just one shortcut. This will change as the number
of shortcuts increases [48].

Pattern diversity analysis for the ring graph with
two shortcuts

We observed the same set of phenomena when we add
a second shortcut and move its end while the first short-
cut is kept fixed. Supplementary Figure S5 displays the
predictability scheme (analog of Fig. 4) for the ring graph
with two shortcuts. Note that case A is again close to a
degeneracy and therefore exhibits high pattern diversity.
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[22] P. Moretti and M.-T. Hütt, Link-usage asymmetry and
collective patterns emerging from rich-club organization
of complex networks, PNAS 117, 18332 (2020).

[23] A. Lesne, Complex networks: from graph theory to biol-
ogy, Letters in Mathematical Physics 78, 235 (2006).
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