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Abstract. In information retrieval (IR) systems, trends and users’ in-
terests may change over time, altering either the distribution of requests
or contents to be recommended. Since neural ranking approaches heavily
depend on the training data, it is crucial to understand the transfer ca-
pacity of recent IR approaches to address new domains in the long term.
In this paper, we first propose a dataset based upon the MSMarco corpus
aiming at modeling a long stream of topics as well as IR property-driven
controlled settings. We then in-depth analyze the ability of recent neural
IR models while continually learning those streams. Our empirical study
highlights in which particular cases catastrophic forgetting occurs (e.g.,
level of similarity between tasks, peculiarities on text length, and ways of
learning models) to provide future directions in terms of model design.
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1 Introduction
The information Retrieval (IR) field has seen a keen interest in neural approaches
these last years [27, 14, 24, 12] thanks to recent advances in semantic and lan-
guage understanding. However, these approaches are heavily data dependent,
often leading to specialization for a certain type of corpus [28, 32]. If document
retrieval remains a core task, many challenges revolve around, such as news de-
tection [37], question answering [43] or conversational search [8]. In all these
tasks, users’ needs or document content might evolve through time; leading to
evolving queries and/or documents and shifting the topic distribution at the in-
ference step [3, 26, 37]. It is, therefore, crucial to understand whether IR models
are able to change their ranking abilities to new topics/trends, but also to be still
able to perform on previous topics/trends if these ones remain up to date. Accu-
mulating and preserving knowledge is thus an important feature in IR, allowing
to continuously adapt to new domains or corpora while still being effective on
the old ones. This requirement refers to an emerging research field called Con-
tinual learning [17, 34, 40]. In practice, continual learning proposes to learn all
tasks sequentially by guaranteeing that previous knowledge does not deteriorate
through the learning process; this phenomenon is called catastrophic forgetting.
To solve this issue, one might consider multi-task learning [30] in which models
learn together all the sets of tasks. Another approach would consists in learning
a model for each task, but, in this case, the knowledge is not transferred between



2 Thomas Gerald and Laure Soulier

previous and current tasks. These two last settings are not always realistic in IR,
since they consider that all tasks are available at the training step. In practice,
content and users’ needs may evolve throughout the time [26, 3].

To the best of our knowledge, only one previous work has addressed the con-
tinual learning setting in IR [22], highlighting the small weakness of the studied
neural models to slightly forget knowledge over time. However this work has
two limitations: 1) it only considers few tasks in the stream (2 or 3 successive
datasets) and does not allow to exhibit neural model abilities in the more re-
alistic scenario of long-term topic sequences (i.e., a larger number of users and
topics implying evolving information needs/trends). 2) Although authors in [22]
use datasets of different domains, there is no control of stream properties (e.g.,
language shift [1, 3], information update [26]) allowing to correlate the observed
results with IR realistic settings, as done in [40] for classification tasks.

The objective of this paper is thus to provide a low-level analysis of the learn-
ing behavior of neural ranking models through a continual setting considering
long sequences and IR-driven controlled topic sequences. In this aim, we propose
to study different neural ranking models and to evaluate their abilities to pre-
serve knowledge. To this end, we consider neural rankers successively fined tuned
on each task of the sequence. More particularly, our contribution is threefold:

• We design a corpus derived from the MSMarco Passage ranking dataset
[29] to address long sequences of topics for continual learning and IR-driven
controlled topic sequences (Section 4).

• We compare the different neural ranking models in a long-term continual IR
setting (Section 5.1) and the controlled settings (Section 5.3).

• We in-depth investigate the impact of task similarity level in the continual
setting on the learning behavior of neural ranking models (Section 5.2).

2 Related Works

Neural Information Retrieval. Deep learning algorithms have been introduced
in IR to learn representations of tokens/words/texts as vectors and compare
query and document representations [10, 27, 42, 12, 13, 5]. With the advance of
sequence-to-sequence models, semantic matching models have grown in popu-
larity, particularly due to the design of new mechanisms such the well-known
self-attention in transformer networks [39] or language models such as Bert [6].

Many IR approaches benefit from those advances as CEDR [24] that com-
bines a Bert language model with relevance matching approaches including
KNRM [42] and PACRR [12]. Moreover, recent works addressed ranking with
sequence-to-sequence transformers based approach as the Mono-T5 model [31]
for re-ranking documents returned by a BM25 ranker. Using a weak initial ranker
such as BM25 may be the bottleneck of reaching higher performances, some ap-
proaches are thus reconsidering dense retrieval [14, 15, 7, 44]. All these models
are data-dependent, relying on word/topic/query distribution in the training
dataset and their application to new domains is not always straightforward [28,
32]. While previous works addressed this issue by leveraging for instance fine-
tuning techniques [23, 43], one can wonder whether these models are still effective
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on the word/topic/query distribution of the training dataset. This condition is
particularly crucial for open-domain IR systems (e.g., public search engines or
future conversational search systems) since they should be able to face multiple
users and solve both persistent information needs and event-related ones.

Continual Learning. Continual learning generally defines the setting in which a
model is trained consecutively on a sequence of tasks and need to adapt itself to
new encountered tasks. One main issue of continual learning is that models need
to acquire knowledge throughout the sequence without forgetting the knowledge
learnt on previous tasks (catastrophic forgetting). To solve the catastrophic for-
getting issue, three main categories can be outlined [18]. First, regularisation
approaches continually learn to address new tasks using soft or hard preserva-
tion of weights [17, 21, 41]. For instance, the Elastic Weight Consolidation model
[17] softly updates weights for a new task according to their importance in the
previous one. Second, replay approaches [34, 2, 25] (or rehearsal approaches), re-
play examples of previous tasks while training the model on a new one. Third,
architecture-based approaches [4, 20, 40] rely on the decomposition of the in-
ference function. For instance, new approaches leveraging techniques of neural
architecture search [20, 40] have been proposed.

Recently some works have addressed the continual learning setting for NLP
tasks. LAMOL [38] for continual language modelling, [19] for conversational
systems or [9] for translations tasks. While it exists IR approaches to perform
on different domains such as using batch balanced topics [11], at the best of our
knowledge, only one study addresses IR in the continual setting [22], comparing
neural ranking models on three successive tasks (MSMarco, TREC-Microblog,
and TREC CORD19). Our work follows this line by providing an analysis of the
behavior of neural ranking models on longer sequences of topics. We also design
IR-driven controlled sequences to highlight to what extent neural models face
IR-specific divergences, such as language drift or documents collection update.

3 Research design for continual learning in IR
We address in this paper the following research questions aiming at analyzing
the resilience of IR models to catastrophic forgetting:
• RQ1: How to design a sequence of tasks for continual learning in IR?
• RQ2: What are the performance of neural ranking models while learning long
sequences of topics? Can we perceive signals of catastrophic forgetting?
• RQ3: Does the similarity level of tasks in the sequence impact the model
effectiveness and their robustness to catastrophic forgetting?
•RQ4: How do neural ranking models adapt themselves to queries or documents
distribution shifts?

3.1 Continual learning setting and metrics

We propose a continual learning setting based on long sequences. The latter
consists in fine-tuning a model on different tasks successively. Following [22], we
instantiate tasks by topics/domains, but we rather focus on long sequences of
tasks with the perspective that such setting can be connected with long-term
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trends/changes of user interests. In practice, we consider a sequence of n tasks
S = {T 1, . . . , T i, . . . , T n}, each task T i corresponds to a set of queries and their
associated relevant documents. We suppose that each task relies on different
properties or distributions as in [33]. Neural ranking models are successively
fine-tuned over the long sequence S of topics. The objective is to track each task
and evaluate each of them at different timestep of the sequence (i.e., after the
successive fine-tuning) to measure the model’s abilities to adapt to new tasks
and their resilience to catastrophic forgetting.

In practice, we propose to track in each sequence a subset of 5 randomly
selected tasks (tracking whole tasks throughout the whole sequence is too com-
putationally expensive). For each of these tasks, we will measure at each step
of the topic sequence the MRR@K. To measure the catastrophic forgetting mf
for a given task T i at a training step θj (associated to task T j), we identify the
maximum value obtained by the model along the sequence S and compare its
performances at each training step θj with the maximum value:

mf(i, θj) =

(
max

k∈1,2,...,|S|
score(i, θk)

)
− score(i, θj) (1)

where score(i, θj) refers to a ranking metric for the task T i using the model
obtained training the jth task T j in the sequence. Looking to mf(i, θj) for all j
in the sequence allows observing which tasks have a significant negative transfer
impact on T i (high value) and which have a low negative impact (low value).

3.2 Neural ranking models and learning

We evaluate two different state-of-the-art neural IR models:
• The vanilla Bert[6](noted VBert) estimating a ranking score based on a linear
layer applied on the averaged output of the last layer of the Bert language model.
• The Mono-T5-Ranker [31] (noted MonoT5) based on a T5-base model fine-
tuning and trained to generate a positive/negative token.

Implementation details: All models are trained with Adam optimizer [16],
the optimizer state is not reinitialized for each task of the sequence. Indeed,
re-initializing the optimizer will lead to observe a spike in the loss function
whether addressing a same or a different task due to the state of Adam optimizer
parameters. As previous work in IR [22, 31, 6], we perform sparse retrieval by
re-ranking top-1000 most relevant documents retrieved by the BM25 model [36].

For MonoT5 we start with the t5-base1 model with a learning rate of 10−3
and batch size of 16. For the VBert model2, the batch size is 16 with a learning
rate of 2× 10−5 for Bert parameters and 10−3 for scoring function parameters.

4 MSMarco Continual Learning corpus

Our continual learning framework is based on learning from a long sequence of
tasks. One main difficulty is to create this sequence considering the availability

1 https://huggingface.co/transformers/model doc/t5.html
2 using bert-base-uncased pretrain
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of IR datasets. One method would be to build a sequence of datasets of different
domains as in [22], but the number of datasets adapted to neural IR (with a
sufficiently large number of queries and relevance judgments) is not sufficient for
long sequences setting. We propose to model the task at a lower granularity level,
namely topics, instead of the dataset granularity. In what follows, we present our
methodology for creating long sequences of topics using the MSMarco dataset.
Once this dataset is validated, it serves as a base for designing controlled settings
related to particular IR scenarios (all settings and models are open-sourced 3).

4.1 RQ1: Modeling the long topic sequence
To create the long sequence, we consider the MSMarco dataset [29]. Such dataset
is based on real users’ questions on Bing. Our intuition is that several queries
might deal with the same user’s interest (e.g., “what is the largest source of
freshwater on earth?” or “what is water shortage mitigation”). These groups
of queries denote what we call in the remaining paper topics. To extract top-
ics, we propose a two-step method: extracting clusters from randomly sampled
queries and populating those clusters with queries from the whole dataset. We
use a similarity clustering4 based on query representations obtained using the
sentence-BERT model [35]. The clustering is based on a sample of 50,000 ran-
domly picked queries and estimates the similarity cosine distance according to
a threshold t to build clusters of a minimum size of s. We then populate clus-
ters using other queries from the dataset according to threshold t. Finally, we
produce the sequence of topics by randomly rearranging clusters to avoid bias
of cluster size. Another sequencing method might be envisioned for future work,
for instance considering a temporal feature by comparing topic trends in real
search logs. In practice, the value of the threshold t differs in each step of clus-
tering and populating, leading to the threshold t1 and t2 (with t2 < t1) to obtain
clusters of reasonable size to be used for neural models. Depending on the value
of those hyper-parameters (t1, t2, s), we obtain three datasets of topic sequences
of different sizes (19, 27, and 74), resp. called MS-TS, MS-TM and MS-TL (for
small, medium, large).

Statistics of these three topic sequences are described in Table 1. To build
the train/validation/test sets, we constraint the validation and the test set to be
composed of approximately 40 queries by topic. Notice that we do not use the
original split as it remains difficult to consider enough testing examples falling
into the created topics.

4.2 Evaluating the long topic sequence
To verify the relevance of the clusters, we aim at measuring retrieval evidence
within and between clusters (i.e., queries within clusters might have similar
retrieval evidence and queries between clusters might have different ones). As
retrieval evidence, we use the retrieved documents for each query using the
BM25 model with default parameters 5. Our intuition is that similar queries

3 https://github.com/tgeral68/continual learning of long topic
4 https://www.sbert.net/examples/applications/clustering (fast clustering)
5 Implemented in pyserini: https://github.com/castorini/pyserini
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Table 1: Parameters and statistics of the generated dataset and their inter/intra task
similarity metric (c− score). The intra-score is the mean c− score when comparing a
task with itself, and the inter score when comparing different tasks.

Name t1 s t2 | T | #queries by topics inter intra

MS-TS 0.7 40 0.5 19 3, 650± 1, 812 3.8% 31.4%
MS-TM 0.75 20 0.5 27 3, 030± 1, 723 4.1% 32.1%
MS-TL 0.75 10 0.55 74 1, 260± 633 3.3% 34.6%

MS-RS - - - 19 3, 650± 1, 812 10.3% 10.2%
MS-RM - - - 27 3, 030± 1, 723 9.9% 9.8%
MS-RL - - - 74 1, 260± 633 8.7% 8.8%
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Fig. 1: Matrix of similarities between topics for 8 tasks of MS-S (1a) and MS-RL (1b)
datasets. The c-score (×100) is processed on all topic pairs, a high value (yellow)
denotes the level of retrieved document overlap between queries of topics.

should share retrieved documents (and vice versa). To compare queries within
and between clusters, we randomly select two pools (noted Ai and Bi) of 250
queries within each cluster associated to task T i. Let D

Ai = {Dq|q ∈ Ai} (resp.
DBi = {Dq|q ∈ Bi}) the documents returned by the ranker for the queries in Ai

(resp. Bi).
We thus compute the c − score which measures the ratio of common docu-

ments between two tasks T i, T j (or same task if i = j) as follows:

c− score(T i, T j) =
|DAi ∩DBj |

|DAi |
(2)

This score is then averaged over pairs of topics within the sequence (intra when
comparing topics with their-selves and inter when comparing different topics).

To evaluate our topic sequence methodology, for each of the three datasets we
create a long topic sequence baseline in which clusters are extracted randomly
from the queries of topics based corpora. We obtain three randomized datasets
denoted MS-RS, MS-RM and MS-RL.

Table 1 reports for each of the generated datasets the intra and inter c-scores.
By comparing the inter metric between both corpus settings (around 3/4% for
the clustering-based ones and around 9/10% for randomized ones), one can con-
clude that our long topic sequence includes clusters that are more different than
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the ones created in the randomized corpus. The trend is opposite when look-
ing at the intra, meaning that our sequence relies on clusters gathering similar
queries but dissimilar from each other. This statement is reinforced in Figure 1
which depicts the c − score matrix for all couples (i, j) ∈ {1, 2, . . . , |S|}2 for a
subset of 8 tasks (for clarity) of the MS−S and MS−RS corpora. We observe
that for the randomized matrix (Figure 1(b)), the metric value is relatively uni-
form. In contrast, in the matrix obtained from our long topic sequence based on
clustering (Figure 1(a)), the c-score is very small when computed for different
topic clusters (low inter similarity) and higher in the diagonal line (high intra
similarity).

4.3 IR-driven controlled stream-based scenario

In this section, we focus on local peculiarities of the long topic sequence by
analyzing IR-driven use cases, such as documents or queries distribution shifts.
Typically, the available documents may change over time, or even some can be
outdated (for instance documents relevant at a certain point in time). Also,
it happens that the queries evolve, either by new trends, the emergence of new
domains, or shifts in language formulation. To model those scenarios, we propose
three different short topic streams to fit the local focus. Topics are based on
our long topic sequence S = {T 1, . . . , T i, . . . , T n} built on MSMarco (Section
4.1). For each scenario, we consider an initial setting T init modeling the general
knowledge before analyzing particular settings. In other words, it constitutes the
data used for the pre-training of neural ranking models before fine-tuning on a
specific sequence. The proposed controlled settings are:

– Direct Transfer [40]: The task sequence is (T init, T +
i , T j , T −

i ) where tasks
T +

i and T −
i belong to the topic task T i and have different sizes (| T −

i | ≪
| T +

i |). This setting refers to the case when the same topic comes back in the
stream with new available data (new queries and new relevant documents).

– Information Update: The task sequence is (T init, T ′
i, T

′′
i ) where T ′

i and
T ′′

i have dissimilar document distributions and a similar query distribution.
Intuitively, it can be interpreted as a shift in the required documents, such
as new trends concerning a topic or an update of the document collection.

– Language Drift: The task sequence is (T init, T ∗
i , T

∗∗
i ) where T ∗

i and T ∗∗
i

have similar document distributions and a dissimilar query distribution. This
can correspond to a change of query formulation or focus in a same topic.

To build those sequences, the initial task T init aggregates k different tasks
available in the original sequence topics S. We set k = 5 which is a good balance
between considering enough tasks for the pre-training and considering not too
many tasks to allow an impact of model fine-tuning on our controlled settings.

For the Direct Transfer, we randomly select a set of three topics (metrics
are then averaged), 75% of the queries are used for T +

i and 25% for T −
i . T j is

a topic selected randomly.
For Information Update, we consider that, for persistent queries, rele-

vant documents might evolve. To do so, we randomly select three topics T i. For
each topic T i, we cluster the associated relevant documents using a constrained
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Fig. 2: Both Information Update (IU) and Language Drift (LD) scenarios. The circle
of documents or queries represent the pair of documents or queries of different clusters,
mapped using the closest neighborhood algorithm. This mapping is used to infer query-
relevant documents of different clusters (dotted lines). Solid lines correspond to original
query-relevant documents pairs. The red arrows build the training sets of tasks T ′ and
T ∗ while blue arrows compose the one of tasks T ′′ and T ∗∗.

2-means algorithm6 based on the cosine similarity metric of Sentence Bert em-
beddings (used in the section 4.1). We obtain two document sets Di1 and Di2:
the initial and final information distribution. Since queries in MSMarco passages
have in a vast majority one relevant document7, we can easily obtain the set of
queries Qi1 and Qi2 associated to document sets Di1 and Di2 (see Figure 2(a) -
solid lines being the query-document relevance pairs). To model the information
update, we map documents Di2 relevant for queries in Qi2 (final distribution)
to most similar documents in Di1 (initial distribution) in the embedding space
(circles in Figure 2(a)). The task T ′

i considers the whole set of queries Qi1 and
Qi2 but only the document set Di1 as initial information (red arrows in Fig-
ure 2(a)). The task T ′′

i corresponds to the update of the information (namely,
documents). We thus only consider the query set Qi2 for persistent queries with
the document set Di2 as information update (blue arrows in Figure 2(a)). We
expect that Qi1 performs similarly after information update if models do not
suffer from catastrophic forgetting and that Qi2 improves its performance with
the information update. We also consider the reversed setting in which we first
consider Di2 as the initial information and then update the information with
Di1, Qi1 (persistent queries).

For the Language Drift scenario, we use a similar protocol by clustering
queries instead of documents to obtain the sets of queries Qi1 and Qi2, and
then the associated relevant document sets Di1 and Di2. To model the lan-
guage drift in queries, we consider that one query set will change its query
formulation. To do so, let consider that sets Qi1 and Qi2 reflect resp. the initial
and final language distribution of same information needs, and thus, requiring
same/similar relevant documents. To observe the language drift, we map pairs
of queries (qi1, qi2) ∈ Qi1 × Qi2 according to their similarity in the embedding

6 https://pypi.org/project/k-means-constrained/
7 if not the case, we sample one document to build the query-relevant document pairs
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Model Dataset Learning protocol
Random clustering Multi-task

VBert
SMALL 18.4/19.6 16.3/17.5 18.5/19.7

MEDIUM 17.9/19.0 17.8/18.9 17.5/18.7
LARGE 18.8/19.9 17.3/18.5 18.5/19.7

MonoT5
SMALL 16.1/17.3 13.1/14.4 15.5/16.8

MEDIUM 15.4/16.7 13.4/14.7 15.7/17.1
LARGE 13.9/15.1 13.8/15.1 15.7/17.0

BM25
SMALL 10.8/11.7

MEDIUM 10.5/11.4
LARGE 11.7/12.7

(a) Mean performances on all the tasks reporting
mrr@10/mrr@100 for the different models.
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random and clustering-based large
corpus.

Fig. 3: General performance of neural ranking models on the long topic sequence.

space (circles in Figure 2(b)). Thus, we can associate documents of Di2 (doc-
ument relevant for queries of Qi2) to the query set Qi1: qi1 has two relevant
documents (di1 and di2) (red arrows in Figure 2(b)). The T ∗

i is composed of the
query set Qi1 and the associated relevant documents belong to both Di1 and Di2

(red arrows). The T ∗∗
i is based on the query set Qi2 (new language for similar

information needs) associated to the relevant documents Di2 (blue arrows). We
also consider the reversed setting in which query sets Qi2 and Qi1 are resp. used
for the initial and final language.
For those two last scenarios (information update and language drift), metrics
are respectively averaged over initial and reversed settings.

5 Model performance and learning behavior on long
topic sequences

In this section, we report the experiments on the continual settings proposed
in Section 4. We first analyze the overall retrieval performance of the different
models applied on long topic sequences. We then present a fine-grained analysis
of the different models with a particular focus on catastrophic forgetting regard-
ing the similarity of topics in the sequence. Finally, we analyze specific IR use
cases through our controlled settings.

5.1 RQ2: Performances on the MSMarco long topic sequence

We focus here on the global performance of neural ranking models after hav-
ing successively been fine-tuned on topics in our MSMarco-based long sequence
setting (Table 3a). For comparison, we use different sequence settings (i.e., the
randomized and the topic clustering ones) of different sizes (i.e., small, medium,
and large). We also run the multi-task baseline in which models are trained on
all the tasks of the sequence jointly (without sequence consideration). At a first
glance, we can remark that, in a large majority, neural models after fine-tuning
on random sequences or multi-task learning obtain better results than after the
fine-tuning on our long topic sequences. This can be explained by the fact that,
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within our setting, the topic-driven sequence impacts the learning performance:
a supplementary effort is needed by the model to adapt to new domains, which is
not the case in the random setting. In this latter, the diversity is at the instance
level. This trend is depicted in Figure 3b, highlighting peaks in the clustering-
based setting (blue line) referring to topic/cluster changes. This result confirms
that catastrophic forgetting might occur with neural ranking models.

5.2 Fine-grained analysis

To get a deeper understanding of model behavior, we aim here to analyze the
model performance throughout the learning of the sequence. We are particularly
interested in explaining the possible behavior of catastrophic forgetting according
to the similarity level between tasks in the sequence. For computational reasons,
we were not able to track all tasks throughout the whole sequence, we thus con-
sidered 5 randomly selected tasks (as described in Section 3.1). For each of these
5 tasks T i, we estimate the catastrophic forgetting using the mf score (Equation
1) regarding each task T j of the sequence (with i ̸= j). For the similarity metric,
we use the c− score (Equation 2) computed between both tasks T i and T j . In
Table 4a, we group together similarity by quartiles and estimate the average
of the mf score for tracked tasks in each similarity quartile. We first remark
that the mean similarity values of quartiles are relatively small (except the 4th

quartile), reinforcing the validation of our dataset building methodology. Also,
we observe the following general trends. First, neural ranking models suffer from
catastrophic forgetting (positivemf score), particularly the MonoT5 model. The
difference in terms of model on both the global effectiveness (Figure 3(a)) and
the similarity analysis suggests that MonoT5 is more sensible to new domains
than the VBert model. This can also explain by the difference in the way of up-
dating weights (suggested in the original papers [6, 31]). In VBert, two learning
rates are used: a small one for the Bert model and a larger for the scorer layer;
implying that the gradient descent mainly impacts the scorer. In contrast, the
MonoT5 is learnt using a single learning rate leading to modify the whole model.
Second, more tasks are similar (high c−score), less neural ranking models forget
(low mf). In contrast to continual learning in other application domains [17, 34]
in which fine-tuning models on other tasks always deteriorates task performance,
our analysis suggests that tasks might help each other (particularly when they
are relatively similar), at least in lowering the catastrophic forgetting. Moreover,
as discussed in [10], relevance matching signals play an important role in the
model performance, often more than semantic signals. The task sequence may
lead to a synergic effect to perceive these relevance signals. Figure 4b shows the
VBert performance for three tasks located at different places in the sequence
(circle point). To perceive catastrophic forgetting, we look at one part of the
curve after the point. One can see that task performances increase after their
fine-tuning (higher increase when the task is at the beginning of the sequence),
highlighting this synergic effect. In brief, continual learning in IR differs from
usual classification/generation lifelong learning setting. It is more likely to have
different tasks allowing to “help” each other, either by having closely related
topics or by learning a similar structure in the query-document matching.
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Model Dataset 1st 2nd 3rd 4th

Mean Similarity by quartile
MS-S 1.4 2.6 3.9 13.8
MS-M 1.5 2.8 4.7 15.3

VBert
MS-S 6.3 6.4 5.4 4.6
MS-M 4.2 4.4 5.1 3.8

MonoT5
MS-S 9.2 7.0 6.5 6.3
MS-M 6.5 5.3 6.0 4.5

(a) Meanmf score grouped by similarities between
tasks (mean of 5 selected topics). The results are
averaged according to quartile based on the task
similarity metric. The mean value of grouped sim-
ilarity are reported in the head of the table.
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(b) MRR@10 results for three
tasks tracked along the training se-
quence

Fig. 4: Fine-grained analysis of neural ranking model in the long topic sequence.

DT scenario B

T +
i T j T −

i

MonoT5 26.6 24.9 26.6 27.2
VBert 28.5 26.7 27.3 28.9

(a) MRR@10 for task T i in
the Direct Transfer (DT) sce-
nario. See Section 4.3 for
building T i and T j .

IU LD
T ′

i T ′′
i B T ∗

i T ∗∗
i B

M
o
n
o
tT

5 Qi1Di1 28.15 29.6 - 15.6 23.0 -
Qi2Di2 7.75 26.0 - 16.8 26.5 -

Qi1Di1 ∪Qi2Di2 18.2 27.8 27.2 15.6 23.8 27.2

V
B
e
rt

Qi1Di1 23.7 30.2 - 28.2 30.1 -
Qi2Di2 14.5 31.4 - 25.5 25.5 -

Qi1Di1 ∪Qi2Di2 19.1 30.9 28.9 26.6 27.0 28.9

(b) MRR@10 for the Information Update (IU) and
Language Drift (LD) scenarios. See Section 4.3 for
the explanation of sets.

Fig. 5: Model performances on IR-driven controlled settings. B stands for the baseline.

5.3 RQ3: Behavior on IR-driven controlled settings

In this section we review the different scenario described in the section 4.3:
Direct Transfer (DT), Information Update (IU) and Language Drift (LD).
For all the different settings, we estimate the average metric of the different
tracked tasks after each sequence step.

Table 5a reports the effectiveness of neural models on task T i (T +
i and T −

i be-
ing subsets of T i) after each fine-tuning step in the Direct Transfer scenario.
One can see that fine-tuning on a foreign domain (T 2), the performance of both
models on task T i drop, highlighting a behavior towards catastrophic forgetting.
However, both models are able to slightly adapt their retrieval performance af-
ter the fine-tuning of task T −

i . This final performance is however lower than the
baseline model (training on both T init and T i) and for the VBert model lower
than its initial performance in the beginning of the learning sequence. These
two last statements suggest the ability of neural models to quickly reinject a
part of the retrained knowledge learnt in the early sequence to adapt to new
query/document distributions in the same topic.
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Table 5b reports the average effectiveness metrics for both Information Up-
date (IU) and Language Drift (LD) scenarios on different sets, QikDi (k=1,2)
denoting the sets used to build relevant pairs of query-document (see Section
4.3). In IU scenario, relevant documents of certain queries (Qi2) evolve over time
(Di1 → Di2). For both Qi1Di1 and particularly Qi2Di2 whose queries have en-
countered the information update, evaluation performances increase throughout
the fine-tuning process over the sequence. This denotes the ability of models to
adapt to new document distributions (i.e., new information in documents). The
adaptation is more important for the MonoT5 model (7.75 vs. 26.0 for theQi2Di2

set), probably explained by its better adaptability to new tasks (as discussed in
section 5.2). Interestingly, the performance at the end of the learning sequence
overpasses the result of the baseline (fine-tuning on T i): contrary to the direct
transfer scenario, this setting has introduced pseudo-relevant documents in task
T ′

i which might help in perceiving relevance signals.

For the Language Drift LD scenario, the behavior is relatively similar
in terms of adaptation: performances increase throughout the sequence and
MonoT5 seems more flexible in terms of adaptation. However, it seems more
difficult to sufficiently acquire knowledge to reach the baseline performance (al-
though pseudo-relevant documents have also been introduced). This might be
due to the length of queries, concerned by the distribution drift: when the vo-
cabulary changes in a short text (i.e., queries), it is more difficult to capture
the semantics for the model and to adapt itself in terms of knowledge retention
than when the change is carried out on long texts (i.e., documents as in the
information update).

6 Conclusion and future work

In this paper, we proposed a framework for continual learning based on long
topic sequences and carried out a fined-grained evaluation, observing a catas-
trophic forgetting metric in regards to topic similarity. We also provided specific
stream of tasks, each of them addressing a likely scenario in case of IR continual
learning. Our analysis suggests different design implications for future work: 1)
catastrophic forgetting in IR exists but is low compared to other domains [17,
40], 2) when designing lifelong learning strategy, it is important to care of task
similarity, the place of the task in the learning process and of the type of the
distribution that needs to be transfered (short vs. long texts). We are aware
that results are limited to the experimented models and settings and that much
remains to be accomplish for more generalizable results. But, we believe that our
in-depth analysis of topic similarity and the controlled settings is a step forward
into the understanding of continual IR model learning.
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