N

N
N

HAL

open science

Using the Event Coordination Notation for Validation
Ekkart Kindler, Pétur Ingi Egilsson, Lom Messan Hillah

» To cite this version:

Ekkart Kindler, Pétur Ingi Egilsson, Lom Messan Hillah. Using the Event Coordination Notation for
Validation. Algorithms and Tools for Petri Nets - Proceedings of the Workshop AWPN 2018, Oct

2018, Augsburg, Germany. pp.13-20. hal-03565053

HAL Id: hal-03565053
https://hal.sorbonne-universite.fr /hal-03565053
Submitted on 10 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.sorbonne-universite.fr/hal-03565053
https://hal.archives-ouvertes.fr

Using the Event Coordination Notation for
Validation

Ekkart Kindler!, Pétur Ingi Egilsson!, and Lom Messan Hillah?

! DTU Compute, Technical University of Denmark
2 Univ. Paris Nanterre & Sorbonne Université CNRS, LIP6, Paris

1 Introduction

The Event Coordination Notation (ECNQO) can be used for defining how related
model elements in a system must coordinate their behaviour. It can be used
to model software systems and then generate the code from these models fully
automatically [1]. In a previous study, we demonstrated that a large software
system, a workflow management system, could be modelled by ECNO and then
the code for it could be generated automatically [2, 3].

The ECNO, however, can also be used for rapid prototyping, where the gener-
ated code is just a means to try out specific behaviour; the generated code is not
the final result. Once the prototyping results in the desired behaviour, the sys-
tem is implemented manually; for example, when the code runs in a distributed
way>. In that case, the ECNO model can serve as more than just a prototype
for the final implementation: in the end, we can use the original ECNO model
to validate the final implementation.

This idea first came up when we used ECNO for modelling a large and
distributed banking system [4] for prototyping. It roughly took a day or two
to come up with a first model and play with the automatically generated code.
Initially, we used this model for prototyping only. Later, in his masters’ project,
Egilsson [5] designed and implemented an extension of the ECNO Tool, which
then allowed us to validate an implementation of the banking system against the
ECNO prototype.

This paper discusses this idea of validating manual implementations against
ECNO models and some of its main ingredients. In Sect. 2, we briefly introduce
the core ideas of ECNO by using an example. In Sect. 3, we discuss the state
space of ECNO models. In Sect. 4, we describe traces as an abstraction of the
observed behaviour of the manually implemented system. In Sect. 5, we show
how a trace of the implementation can be validated against the ECNO model
by mapping the trace to the state space of the ECNO model.

2 ECNO by Example

To explain the main idea of ECNO, we use the simple introductory example
from the ECNO report [1]. It models a company in which workers are required

3 Up to now, the ECNO code generator cannot generate such code automatically.

13



to jointly do some jobs. Only if all the workers that are needed for the job are
available, the job can be done. To make things slightly more interesting, we
assume that the workers share cars for coming in for work and for leaving again.
Therefore, the workers sharing the same car will arrive and depart together. And
only when a worker is at work, the worker is available for doing a job.

The underlying structure of this system is modelled as a class diagram in
Fig. 1. The association between classes Worker and Car represent which workers
share the same car. The association between classes Worker and Job represents
which workers are needed for doing a job. A worker can be assigned many jobs
— but a worker can only do one job at a time. Note that a single job may need
more than one worker to participate.

H Setting
0.* 0.* 0.*
car worker job
0.1 0.* 0.* 0.*
B car car passenger H worker needed assigned H Job
= name : EString = name : EString = name : EString
@ createJobs() : Job

Fig. 1. Structural model

Figure 2 shows an object diagram with an example situation of a company
with some workers, jobs and cars and how they are related.

vw:Car bmw:Car

ali:Worker l bert: Worker‘ lcleo Worker‘ l dan:Worker ‘
| abcd:Job |

Fig. 2. Some configuration of a company

For modelling the system’s behaviour, the ECNO distinguishes between the
life cycles of objects and the coordination of the behaviour among the different
objects. For clarity, objects that have a life cycle and for which the ECNO defines
how to coordinate their behaviour are called elements.

14



The basis for defining and coordinating behaviour in ECNO are events. To
this end, the ECNO allows us to define the types of events in the system. In our
workers example, the events are arrive and depart, which mean that the workers
and cars are arriving at or departing from the work site. Moreover, there is the
event doJob, which means that a job is done; and there is an event cancelJob,
which means that an existing job is cancelled.

These events are formally defined in the ECNO coordination diagram of Fig. 3
— shown as rounded rectangles. More importantly, the coordination diagram
defines the coordination of how different elements are supposed to participate in
events together. To this end, it equips some parts of the structural model from
Fig. 1 with some additional annotations, which are explained below.

[I] arrive ] [I] depart | [I] doJob | [I] cancellob |
l J l I lJObZ Job I
[ car « |El worker «|El Job
arrive->ALL
passenger assigned
depart->ALL olob |——"dotob->ONE
arrive->ONE doJob->ALL
iar depart->ONE Teeded

Fig. 3. Coordination diagram

When a Car is ready to participate in an arrive event, the coordination dia-
gram requires that all workers sharing that car participate in this arrive event,
too. To this end, there is a box with label arrive in the Car. This box is called a
coordination set for event arrive of element Car. This coordination set is linked
to the reference passenger with an annotation arrive->ALL. This annotation is
called a coordination annotation and says that for a given car participating in
an arrive event, every passenger (i.e. every worker at the other end of the link
corresponding to passenger in the given situation) must also participate in the
arrive event. Now, for a Worker participating in an arrive event, there is another
coordination set for arrive, which imposes additional requirements of other el-
ements participating. The Worker has a coordination set with a coordination
annotation arrive->ONE linked to reference car. This means that for a Worker
participating in an arrive event, there must be one Car at the end of the link car
that must also participate in that arrive event. This gives us a combination of
different elements participating in different events. Once such a combination of
elements and events meets all the coordination requirements of the coordination
diagram for each event, we call this combination an interaction. An interaction
can be ezecuted, which means that all involved elements execute the associated
events in an atomic way.

15



Now, we assume that all workers have arrived at work and that the con-
figuration is as shown in Fig. 2. This means that, according to their life cycle,
each worker can participate in a doJob event. Let us assume that cleo would
want to participate in a doJob event. Since there is a coordination set for event
doJob for Worker, other elements would be required to participate. The coordi-
nation annotation doJob->ONE would require one of the jobs assigned to cleo to
participate in the doJob event, too. In our example, there are two possibilities:
job acd and abcd. Let us investigate job acd. The coordination set of Job for
event doJob with the coordination annotation doJob->ALL linked to reference
needed, specifies that all workers at the end of the link also need to participate
in the doJob event. For the job acd, this would be the workers ali, cleo, and dan.
The worker cleo is already participating in the doJob event — we started from
there. But, now ali and dan also need to participate. This way, the coordination
diagram makes sure that also all needed workers participate in the doJob event
when the job acd does.

Note that, in our example, all elements participate in the same event. In
general however, there can be more events involved in an interaction, and even
a single element can participate in different events at the same time.

As mentioned before, the coordination diagram defines only the coordination
of the behaviour among different elements. The life cycle for each element is
defined separately: the life cycle defines when an element can participate in
an event. In ECNO, one possibility for defining the life cycle for an element is
through ECNO nets, which are a form of Petri nets. Figures 4 and 5 show the life
cycles of a worker and a car, respectively. We omit the life cycle of the jobs here.
The transitions labelled with the respective events indicate when the element
can participate in which event.

home 1

home
d = depart(); t2 tl a = arrive();
1
work d = depart(); t2 t1 a = arrive();
t3 j = doJob(workers = self());
work
Fig. 4. Life cycle of a Worker Fig. 5. Life cycle of a Car

In this paper, an ECNO model consists of a structural model, the coordina-
tion diagram and the ECNO nets for the life cycles of the elements.

16



3 ECNO State Space

The state space of such an ECNO model, basically, consists of the states, which
represent situations like the one shown in Fig. 2, where additionally for each
element the state of its life cycle of and the value of each of its attributes would
be stored. In our case, the state of the life cycle would be a vector of natural
numbers representing the marking of the resp. ECNO net.

The transitions of the state space would be the interactions. For each in-
teraction in the state space, the involved elements, the links between them and
which events are associated with which elements and links are represented.

Figure 6 shows an abstract representation of a part of the state space of the
example from Sect. 2. The details of the states are not represented in that figure
at all, since the focus of the validation is on the interactions.

State

trigger event

trigger event

doJob

link

ORO

N

— 21

/

trigger event

trigger event

doJob

link

ORO

trigger event

arrive arrive cancelJob
link link — 3 4 — link link 7 link
v v v
State
trigger trigger 4 trigger

trigger trigger

State
9

Fig. 6. Abstract representation of a part of the state space

The ECNO Tool* provides a state space generator, which systematically gen-
erates the state space for an ECNO application starting from some initial con-
figuration. Actually, it is also possible for the user to run the ECNO application
normally and record the fragment of the state space which the application comes
by while running.

* See http://www2.compute.dtu.dk/ ekki/projects/ECNO/

17



4 'Traces

As an abstraction of the behaviour of the implementation of the system, we
use traces. Each trace corresponds to one execution of the system, which is rep-
resented as a sequence diagram showing how the different parts of the system
invoke each other. Figure 7 shows an example of a trace of the final implementa-
tion of our example. This trace corresponds to the workers cleo and dan arriving
at work together and then dan doing job d. The separation of the two steps is
indicated by the green bars, which represent a state in the state space. But the
green bars are actually not part of the trace. They will be computed later when
mapping the trace to the state space.

H bmw : Car cleo : Worker

H dan : Worker

H d:Job H

1: arrive() : l

Fig. 7. Implementation behavior: Traces

Egilsson [5] implemented a tracer that could record a trace in the running
implementation. It basically used AspectJ for recording the relevant method
invocations.

5 Mapping Traces to State Space

The most important part of validating an implementation against an ECNO
model (or actually its state space) is identifying parts of the trace which corre-
spond to an interaction in the state space. These parts will be called segments
of the trace (the parts between the green bars in Fig. 7). The tricky part is that
interactions in ECNO are executed atomically, whereas the segments in traces
are not executed atomically and can actually be intertwined. But, the segments



of the communication in the sequence diagram need to correspond to a complete
interaction in the state space. And the validation consists of computing segments
in traces and mapping them to interactions in the state space.

The mapping algorithm looks for the communication among the same ele-
ments in the trace, which also can be found as a link in an interaction. But,
there can be more than one invocation for one link between these elements in
a trace and the order can be arbitrary. The mapping algorithms starts match-
ing the communication from the beginning of the trace to the interactions in
the state space starting from its initial state. And once all communication for
an interaction is found the segment is created at this point; the end of which
corresponds to the next state. From there, the process continues with a lot of
backtracking for alternative matches.

Egilsson [5] implemented such a mapping algorithm and showed that com-
puting such mappings was feasible for the original banking example. Figure 8
shows the idea of this mapping with a short trace and a small excerpt of the
state space from the original banking example.

| np : NaturalPerson I | ctrl :ATMCon(roIIe

\ \ | L
. \
trigger eyent /l
\\ \ )
\\ insertCard h
A\

—

N insertCard: \
« Transition N

trigger

Fig. 8. Mapping

Of course, there are much more details in the mapping algorithm, which we
cannot discuss here (see Egilsson [5] for more information).

19



6 Conclusion

In this paper, we have discussed the main idea of how to validate the final
implementation of a system against its original ECNO specification. More details
can be found in Egilsson’s master thesis [5]. But even this thesis is just the
beginning, since ECNO has more features which are not yet covered by the
mapper implemented in the master thesis.

References

1. Kindler, E.: Coordinating interactions: The Event Coordination Notation. Technical
Report DTU Compute Technical Report 2014-05, DTU Compute, Kgs. Lyngby,
Denmark (2014)

2. Jepsen, J.: Realizing a workflow engine with the Event Coordination Notation. Mas-
ter’s thesis, Technical University of Denmark, DTU Compute (2013) IMM-M.Sc.-
2013-101.

3. Jepsen, J., Kindler, E.: The Event Coordination Notation: Behaviour modelling
beyond mickey mouse. In Roubtsova, E., McNeile, A., Kindler, E., Gerth, C., eds.:
Behavior Modeling — Foundations and Applications. International Workshops, BM-
FA 2009-2014, Revised Selected Papers. Volume 6368 of LNCS. Springer (2015)

4. The EU FP7 MIDAS project - 318786: Deliverable 5.1: Methods and
tools for the intelligent planning and scheduling of test campaigns,
http://web.itainnova.es/midas/dissemination/public-deliverables /d5-1-methods-
and-tools-for-the-intelligent-planning-and-scheduling-of-test-campaigns/. (2013)

5. Egilsson, P.I.: Model-based software validation: Validating distributed systems
against ECNO specifications. Master’s thesis, Technical University of Denmark,
DTU Compute (2016)

20



