
HAL Id: hal-03566102
https://hal.sorbonne-universite.fr/hal-03566102

Submitted on 11 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

S2H: Hypervisor as a Setter within Virtualized Network
I/O for VM Isolation on Cloud Platform

Ye Yang, Haiyang Jiang, Guangxing Zhang, Xin Wang, Yilong Lv, Xing Li,
Serge Fdida, Gaogang Xie

To cite this version:
Ye Yang, Haiyang Jiang, Guangxing Zhang, Xin Wang, Yilong Lv, et al.. S2H: Hypervisor as a Setter
within Virtualized Network I/O for VM Isolation on Cloud Platform. Computer Networks, 2021, 201,
pp.108577. �10.1016/j.comnet.2021.108577�. �hal-03566102�

https://hal.sorbonne-universite.fr/hal-03566102
https://hal.archives-ouvertes.fr

S2H: Hypervisor as a Setter within Virtualized
Network I/O for VM Isolation on Cloud Platform
Ye Yang, Haiyang Jiang, Guangxing Zhang, Xin Wang, Yilong Lv, Xing Li, Serge Fdida, Gaogang Xie

Abstract—Virtualized Network I/O (VNIO) plays a key role
in providing the network connectivity to cloud services, as it
delivers packets for Virtual Machines (VMs). Existing para-
virtualized solutions accelerate the virtual Switch (vSwitch)
data transfer via memory-sharing mechanism, that unfortunately
impairs the memory isolation barrier among VMs. In this paper,
we categorize existing para-virtualized solutions into two types:
VM to vSwitch (V2S) and vSwitch to VM (S2V), according to
the memory-sharing strategy. We then analyze their individual
VM isolation issues, that is, a malicious VM may access other
ones’ data by exploiting the shared memory. To solve this issue,
we propose a new S2H memory sharing scheme, which shares
the I/O memory from vSwitch to Hypervisor. The S2H scheme
can guarantee both VM isolation and network performance as
the hypervisor acts as a “setter” between VM and vSwitch for
packet delivery. To show that S2H can be implemented easily
and efficiently, we implement the prototype based on the de-
facto para-virtualization standard vHost-User solution. Extensive
experimental results show that S2H not only guarantees the
isolation but also holds the comparable throughput with the same
CPU cores configured, when comparing with the native vHost-
User solution.

Index Terms—Virtualized network I/O, memory isolation,
memory-sharing mechanism, cloud platform.

I. INTRODUCTION

Cloud computing has become a popular paradigm for
service provision, due to its ability of providing flexibility,
dedicated execution and isolation to a vast number of ser-
vices. These benefits are achieved thanks to advanced network
virtualization techniques, which provide each tenant a Virtual
Machines (VM) with its own network topology and traffic
control strategy [1]. The VM is an independent operating
system running inside the hypervisor (also known as Virtual
Machine Monitor, VMM) with isolated running environment,
and can flexibly reuse the resources on the physical server.
To realize network virtualization, a software virtual switch
(vSwitch) is run to provide packet exchange and traffic control

Y. Yang, H. Jiang, G. Zhang are with the State Key Laboratory
of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: yangye@ict.ac.cn;
jianghaiyang@ict.ac.cn; guangxing@ict.ac.cn).

X. Wang is with the Department of Electrical and Computer Engi-
neering, Stony Brook University, Stony Brook, NY 11794 USA (e-mail:
x.wang@stonybrook.edu).

Y. Lv and X. Li are with Alibaba Group, Hangzhou 311121, China (e-mail:
lvyilong.lyl@alibaba-inc.com; lixing.lix@alibaba-inc.com).

S. Fdida is with the LIP6 Laboratory, Sorbonne University, 75006 Paris,
France. (e-mail: serge.fdida@sorbonne-universite.fr).

G. Xie is with the Computer Network Information Center, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: xie@cnic.cn).

Y. Yang and G. Xie are also with the School of Computer Science and
Technology, University of Chinese Academy of Sciences, Beijing 100049,
China

 performance
 flexibility

Hypervisor
(VMM)

Host OS

vSwitch

Guest VM

Bypass & DMA

(a) hardware-assistance.

 performance
 flexibility

Hypervisor
(VMM)

vSwitch

Host OS

Guest VM

DMA

Multiple
copying

(b) full-virtualization

 performance
 flexibility

Host OS

Hypervisor
(VMM)

vSwitch

Guest VM

DMA

copying

(c) para-virtualization

Fig. 1. The types of VNIO solutions. Figs. (b) and (c) are both software based
solutions. The arrows represent the packet transferring path. It can be seen that
software-based para-virtualization achieves the balance between performance
and flexibility, and thus has being accepted by the industry. This paper also
focuses on para-virtualized VNIO.

for these high-density deployed VMs. As its most crucial part,
the Virtualized Network I/O (VNIO) technology permits the
delivery of packets through different I/O paths connecting
physical Network Interface Controllers (pNICs) to VMs.

There are mainly two types of VNIO solutions: hardware-
assisted and software-based. Hardware-assisted solutions are
shown in Fig.1(a). They attain “bare-metal” performance by
using Single Root I/O Virtualization (SR-IOV [2]–[4]) that
can bypass the virtualization layer so that multiple VMs
directly access a single pNIC via different Virtual Functions
(VFs)1. However, these solutions lose the flexibility enabled
by virtualization (e.g., memory overcommitment support [5],
VM live migration [6], etc.) and face the risks of I/O channel
attack [7]. For these reasons, hardware-assisted solutions are
not widely adopted in enterprise cloud computing services [8]–
[11].

In contrast, software-based solutions can support full-
virtualization (see Fig.1(b)) and achieve a high-level of flex-
ibility, but at the expensive cost of reducing system perfor-
mance due to multiple times of packet copying. To alleviate
this crucial issue, para-virtualization (see Fig.1(c))is proposed
for reducing times of packet copying and more efficiently
transferring the I/O data, with the sharing of memory between
VMs and vSwitch. Through providing a good trade-off be-
tween performance and flexibility, para-virtualized VNIO has
been supported by all well-known vSwitches [12] and widely
adopted in many real-world cloud platforms, e.g., Google’s

1Virtual function (VF) is a kind of pNIC virtualization technology, details
can be seen on: http://doc.dpdk.org/guides/howto/lm bond virtio sriov.html

2

Andromeda [10] and Alibaba Cloud [11] all adopt virtio based
para-virtualized VNIO [13]. Nonetheless, the shared memory
in para-virtualization goes against strict VM isolation and
creates potential risks, e.g., a malicious tenant may escape
from its private VM environment and gain access to the
shared memory that belongs to other VMs. This isolation
issue significantly challenges the security and stability of cloud
computing services.

In this paper, we categorize existing para-virtualized VNIO
solutions into two types of scheme, i.e., VM to vSwitch (V2S)
and vSwitch to VM (S2V), according to their memory-sharing
mechanisms. In the V2S scheme, VMs share their private
memory with a virtual Switch (vSwitch) process, that launches
several Polling Mode Driver (PMD) threads for the Packet
Delivery (PD) tasks. As the user-space vSwitch process has
the privilege to access all VMs’ whole memory, the isolation
between VMs and the host is broken. On the contrary, in
the S2V scheme, vSwitch allocates a piece of monolithic
I/O memory to share with all VMs and the PD procedure
is completed inside each VM. A malicious VM may cross its
boundary and access other ones’ packets, which violates the
isolation among VMs.

These isolation issues brought by insecure memory-sharing
mechanisms have already been noticed, but the reinforcement
solutions are all at the expense of a significant degradation in
performance. For example, the community has reported a type
of Direct Memory Access (DMA) attack under V2S scheme
[14]–[16], and they proposed a solution called vIOMMU [15],
[17], [18] to restrict the memory access by reinforcing the
address translation procedures. Unfortunately, this solution can
only prevent illegal memory access during PD operations,
and the insecure shared memory still exists. To make matters
worse, the system performance after using vIOMMU will be
severely degraded to ∼20%. Other memory access protection
mechanisms, such as the hardware-based software guard ex-
tensions (SGX) [19], are rarely used in the data path of the
systems and the use case in Network Function Virtualization
(NFV) scenarios has shown that these hardware-based protec-
tion mechanisms also severely reduce performance [20].

To effectively guarantee VM isolation under the premise
of ensuring performance, we propose a new memory-sharing
scheme for para-virtualized VNIO called S2H, which exploits
the hypervisor to transfer I/O data between VMs and vSwitch.
Compared with the S2V and V2S schemes where vSwitch
and VM communicate directly, S2H uses the hypervisor as an
intermediate “setter” 2 that isolates VM and vSwitch. Since
the hypervisor is maintained by the service provider and has
access to the VM memory by default, it is more reliable
to use it for memory sharing and packet delivery. On the
aspect of performance, in order to maintain the advantage
of high throughput brought by memory-sharing, some more
innovations in concurrent memory access and scalability are
required. First, an efficient framework for memory sharing and
access is needed to support the transfer of packets between
vSwitch and a number of hypervisor processes. Second, we

2The “setter” in volleyball sport is responsible for passing the ball, and
we use it here to describe that hypervisor delivers I/O data between VM and
vSwitch.

need to efficiently schedule the concurrent PD procedures,
which are distributed in hypervisor processes, to improve the
VNIO scalability.

This paper is based on the conference version [21] while the
quality is substantially improved. For example, we propose
a more comprehensive of literature review (in Section VII).
Moreover, we put forward a more in-depth discussion on the
memory-sharing mechanisms and security issue in existing
VNIO solutions (in Section II). In addition, we describe
in more detail the design and implementation of S2H, and
improve the scheduling strategy (in Section III and IV). With
these enhancements completed, we open source the code of
S2H on github: https://github.com/ictyangye/secure-vhost.git.
Lastly, we conduct a more thorough experimental evaluation of
our proposed S2H solution. More various scenarios are added
for performance test and comparison (in Section V).

Thus the main contributions of this paper are summarized
as follow:

• We classify the memory-sharing mechanisms of exist-
ing para-virtualized VNIO solutions into S2V and V2S,
and analyze how they violate the memory isolation. To
guarantee the isolation without degrading the system
performance, we propose a new S2H scheme that adopts
hypervisor processes for sharing memory with vSwitch
and completing PD procedures.

• To efficiently deliver packets via the shared host I/O
memory between the vSwitch and hypervisor processes,
we take advantage of the Data Plane Development
Kit (DPDK) memory management in hypervisor pro-
cesses for concurrent memory access, and well design
the conflict-free packet delivery pipeline for high-speed
packet processing.

• To support scalability and run a large number of VMs on
a single server, we propose a “batch-grained” scheduling
strategy, which schedules PD procedures on limited CPU
cores according to batch processing workload instead
of uncontrollable time slices. This kind of scheduling
strategy brings more efficiency and flexibility.

• We implement S2H prototype based on the vHost-User
architecture as it is the de-facto para-virtualization stan-
dard which has been widely adopted in commercial
products. We show that S2H can be simply realized
through adding less than 1000 lines of code to the
existing solutions. Extensive evaluations are conducted
in diversified scenarios and settings including data-path
performance, inter-VM performance, application perfor-
mance, and scalability. The results show that S2H can
achieve comparable throughput with 9% more latency
than those of the native vHost-User architecture, while
effectively guaranteeing VM isolation.

The rest of this paper is organized as follows: Section II
analyzes the memory-sharing mechanisms and their isolation
issues in existing para-virtualized VNIO solutions. In Section
III, we propose the new S2H scheme to resolve these isolation
issues. Section IV elaborates our prototype design and imple-
mentation. The performance of the proposed S2H scheme is
evaluated in Section V. Section VI discusses related technical

3

issues. Related studies are presented in Section VII. Finally,
Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

In the virtualization technology, the software that creates
and runs VMs is called VMM or hypervisor. The host is the
physical server on which a hypervisor runs one or more VMs.
Each VM is called guest VM. Generally, a hypervisor contains
both user-space processes and kernel module. For example, in
the QEMU/Kernel-based Virtual Machine (KVM) [22], [23]
implementation, a hypervisor layer consists of independent
user-space QEMU processes and a KVM module. Each VM
is actually virtual CPU (vCPU) thread(s) launched by the
corresponding QEMU process and interacts with the KVM
module.

VNIO is an important building block of virtualization,
and it is responsible for delivering traffic among VMs and
pNICs. In a full-virtualization VNIO solution, the hypervisor
serves as a dividing layer between the host and the guest
VM. The hypervisor emulates a full function of pNIC, that
can be driven by the native driver in a guest VM. The
full-virtualization is flexible, but the device emulation causes
significant performance overheads [24]. Authors in [25] proved
that optimizing software interrupts for reducing VM-exit in
device emulations can greatly improve the performance of full-
virtualization. So in order to break the bottleneck in device
emulations and software interrupts for better I/O performance,
various para-virtualization solutions are proposed [13].

A. Para-virtualized I/O Data Path

As shown in Fig.2(a), a para-virtualized VNIO solution
consists of two parts: a front-end driver in the guest VM
and a back-end driver in the host. The front-end handles the
virtual device emulation in the guest Operating System (OS),
while back-end performs I/O data transfer between host and
guest VM. In this paper, we focus on the back-end as the I/O
operations mainly happen there.

VM
front-end driver

back-end driver

I/O stack

(a) architecture

pNIC

vSwitch

Hypervisor

VM(guest OS)

Host
OS

I/O memory

I/O memory

PD

(b) data path

Fig. 2. Para-virtualized VNIO

Fig. 2(b) illustrates typical para-virtualized VNIO environ-
ment, with one VM running on the host. As it shows, the
back-end consists of a PD procedure and vSwitch. The PD
procedure exchanges I/O data between the two blocks of I/O
memory residing in the VM and the vSwitch, respectively,
while vSwitch is responsible for forwarding traffic among

virtual and physical ports. For example, if a packet arrives at
a port in the pNIC, the vSwitch component first captures and
holds the packet in the I/O memory (the orange colored block
in Fig. 2(b)). The vSwitch then parses the packet, looks for its
forwarding information and finally notifies the PD procedure
to copy the packet from the host to a particular VM.

It is worth noting that, these two blocks of I/O memory in
Fig. 2(b) belong to different memory spaces, i.e., host memory
space and VM memory space3. When the back-end (vSwitch)
used to run in the kernel-space, it can access VM memory
and do packet copying by default. But in the last decade, to
improve performance, vSwitch has been transferred from the
kernel-space (known as bridge in Linux kernel) to user-space
to exploit high-performance drivers like DPDK and netmap
[26]. As a result, the vSwitch and the VM are isolated from
each other’s memory accesses. To implement the memory
copying operations in the PD procedure, a memory-sharing
mechanism is needed, i.e., either sharing the I/O memory from
vSwitch to VM (S2V), or from VM to vSwitch (V2S), which
introduces isolation issues.

B. Memory-sharing Mechanisms

The shared memory largely boosts the I/O performance, as
the PD procedure can directly access both of the source and
destination memory addresses during memory copying. How-
ever, there is a trade-off between performance and isolation. As
the motivation of this work, we classify and analyze the user-
space memory-sharing mechanisms in para-virtualized VNIO
solutions.

According to Fig. 2, the memory-sharing mechanism con-
sists of two blocks of I/O memory (on VM and host sides),
three participants (VM, hypervisor, and vSwitch), and a PD
procedure. As the PD procedure needs the privilege to access
the I/O memory on both sides, the choice of I/O memory-
sharing schemes depends on the location where the PD pro-
cedure performs, vice versa.

Depending on the locations of the shared memory and
PD procedure, we categorize the existing para-virtualization
solutions into 2 schemes, S2V shown in Fig. 3(a) and V2S
shown in 3(b). In each figure, the PD procedure and three
participants (VM, hypervisor, and vSwitch) are on the left,
while the two blocks of I/O memory are on the right. The
arrow lines present the memory access from the participants
to the I/O memory. In particular, a solid line indicates that
the memory access is granted by default, while a dashed
line indicates that the access is implemented via the memory-
sharing mechanism.

Fig. 3(a) illustrates the V2S scheme, which is followed
by virtio vHost-User [27], Andromeda [10] and ELVIS [8].
Taking the virtio vHost-User solution in QEMU/KVM im-
plementation as an example, VM and QEMU hypervisor are
granted the access to the VM’s own memory, while the
vSwitch is granted the access to the I/O memory on both

3The host memory space here indicates the memory space of vSwitch
process. As the vSwitch is deployed directly on the host OS and we need
to distinguish its memory from VM’s memory, we introduce the concept of
host memory space.

4

sides. For vSwitch, the access to the host side I/O memory
is granted by default, and the one to the VM side I/O memory
is implemented by the V2S memory-sharing mechanism via a
series of mmap() operations. Several threads (one in default,
more with the increase in the VM count or workload) are
created in the vSwitch process to deliver packets for all VMs.

Fig. 3(b) illustrates the S2V scheme, which is followed
by NetVM [28], IVSHMEM [29], [30] and ClickOS [31].
Compared with the V2S scheme in Fig. 3(a), VM is granted
the access to the block of I/O memory on the host side.
Meanwhile, the PD procedure is moved from the host side to
the VM side. Taking the NetVM VNIO solution as an example,
vSwitch allocates a block of memory and shares it with the
VM. A virtual PCI (vPCI) device is created in the VM, and the
device memory is redirected to the block of shared-memory.
Therefore, each VM can complete its PD procedure via the
virtual device.

Hypervisor
process

VM (tenant)

vSwitch

VM side I/O
memory

host side I/O
memory

PD

default memory access
shared-memory access

(a) The V2S scheme

Hypervisor
process

VM (tenant)

vSwitch

VM side I/O
memory

host side I/O
memory

PD

default memory access
shared-memory access

(b) The S2V scheme

Fig. 3. Memory-sharing mechanisms of existing para-virtualization solutions

Both the S2V scheme and the V2S scheme commonly
have the isolation issue either among VMs or between the
VM and the host. The issue is critical in cloud computing
environment, where the per-host VM density is sufficiently
high [32]. Taking the V2S virtio vHost-User as an example,
the shared memory should be ideally restricted within the
I/O memory region in the VM. However, we cannot predict
the I/O memory addresses if they are dynamically allocated
at run-time. As a result, the VM’s whole memory is shared
with vSwitch in the practical usage of virtio. The user-space
vSwitch process, granted the access to all VMs’ whole mem-
ory, can easily become the Achilles’ heel of the mechanism.
Further, existing vSwitch implementations are not reliable.
Open vSwitch (OVS) [33], [34], the most popular vSwitch
project, has security vulnerabilities reported in the Common
Vulnerabilities and Exposures (CVE) database [35], [36]. With
a compromised vSwitch process, hijacker can arbitrarily access
and even overwrite any piece of memory in VMs via I/O
operations. The community has already noticed the security
issue, and a type of Direct Memory Access (DMA) attack
has been reported [14]–[16]. The issue also exists in NetVM
and IVSHMEM S2V schemes. Malicious tenants inside the
VM could rewrite the vPCI device driver or exploit existing
vulnerabilities and software bugs in the driver to access the
host I/O memory without any restrictions [37].

To solve these isolation problems, the current related works
are devoted to simply restrict the memory access under exist-
ing architectures. For example, to reinforce memory address
translation functions, vIOMMU was proposed to prevent DMA
attacks [15], [17], [18]. Unfortunately, these reinforcement
attempts have severely degraded the VNIO performance (to
∼20% of the original performance) and therefore cannot be
adopted. Other memory access protection mechanisms, such
as the hardware-based SGX [19], are rarely used in the data
path of the systems and the practice in NFV scenarios has
shown that these hardware-based protection mechanisms also
severely reduce performance [20].

Rethinking the two schemes shown in Figs. 3(a) and 3(b),
we can conclude that because packets need to be delivered
between vSwitch and VM, it is natural to make them share
memory with each other. But both schemes have isolation
issues and cannot be simply reinforced. It is noteworthy
that, until now the hypervisor has not participated in either
memory-sharing or PD procedure. However, if the hyper-
visor process can complete the PD procedure, it has two
advantages. First, the hypervisor process can access VM’s
whole memory by default without memory-sharing. Taking the
QEMU/KVM virtualization as an example, each time when
booting a VM, a QEMU process needs to be launched with
command line parameters that present the properties of a VM.
These VM properties include the memory size, the devices’
information, etc. The QEMU process then emulates devices
and allocates the memory for the VM according to these
parameters. Therefore, each QEMU can access the memory
of its corresponding VM. The second benefit is, compared
with the uncontrollable behavior inside the individual VMs,
compromising a hypervisor process is known to be much more
difficult as it is typically well maintained and monitored by
the platform provider [38]. This motivates us to re-examine
the existing strategies, and design a new memory-sharing
mechanism and architecture with the use of hypervisor to
facilitate the memory access.

III. THE S2H MEMORY-SHARING SCHEME

We propose a new memory-sharing scheme (see Fig. 4(a))
which shares the host-side I/O memory from vSwitch to
Hypervisor (S2H) process. Significantly different from S2V
and V2S schemes, neither VM nor vSwitch process in the
S2H scheme can access the I/O memory that does not belong
to itself. Instead, the hypervisor is granted to access the blocks
of I/O memory on both sides. Consequently, the PD procedure
is moved to the hypervisor layer, and a hypervisor process
launches a dedicated PD thread for the corresponding VM.

Fig. 4(b) shows the S2H VNIO architecture, where the
hypervisor containing a PD procedure works as a “setter”
between the front-end and the original back-end. If the PD
procedure follows the existing communication protocol, nei-
ther front-end driver nor back-end (the part in vSwitch process)
needs any modification.

A. Isolation and Security
The main goal of this work is to resolve the VM isolation

issues to improve the security of para-virtualized VNIO. We

5

Hypervisor
process

VM (tenant)

vSwitch

VM side I/O
memory

host side I/O
memory

PD

default memory access
shared-memory access

(a) S2H scheme

pNIC

vSwitch

Hypervisor

VM Host
OS

IPC
 based notify

I/O memory

I/O memory

PD

front-end

back-end

(b) S2H VNIO architecture

Fig. 4. The S2H memory-sharing scheme and the VNIO architecture

first analyze the isolation capability of the proposed S2H
scheme from two perspectives, isolation among VMs and
isolation between a VM and the host.

Isolation among VMs: In the S2V scheme, a malicious
tenant could exploit existing vulnerabilities and software bugs
in the vNIC driver to acquire or modify other tenants’ I/O data
via out-of-boundary memory access on the host side. In the
proposed S2H scheme, no I/O memory is directly shared with
the VM. Instead, the PD procedure in the hypervisor works
as a barrier to prevent the unauthorized memory access. As a
result, S2H has better isolation among VMs.

Isolation between VM and host: In the V2S scheme,
taking the virtio vHost-User as an example, the host-side user-
space vSwitch process is granted the access to all VMs’ whole
memory. If a vSwitch process is compromised, a hijacker can
arbitrarily access and even overwrite any piece of memory
in VMs via I/O operations. In contrast, in the proposed S2H
scheme, no I/O memory is shared from VM to the host, so it
has a better isolation between a VM and the host.

TABLE I
THE MEMORY RANGE THAT CAN BE ACCESSED BY VIRTUALIZATION
COMPONENTS. (“VM” IN THE TABLE REPRESENTS ONE VM’S WHOLE
MEMORY, “HOSTBUF” DENOTES HOST-SIDE I/O MEMORY. THE PARTS
HIGHLIGHTED IN ORANGE INDICATE MEMORY ACCESS VIA SHARED

MEMORY.)

schemes
components VM hypervisor vSwitch

V2S VM VM hostbuf+all VMs
S2V VM+hostbuf VM+hostbuf hostbuf
S2H VM VM+hostbuf hostbuf

To illustrate the improved security owing to better memory
isolation, we show the memory range that each component
can access under different memory-sharing mechanisms in
Table I. In the table, we can see the proposed S2H minimizes
the shared memory size. Comparing with the S2V and V2S
schemes, S2H improves the security on two aspects. On the
one hand, according to existing security issues, the most
common DMA attacks [14] and buffer overflow attacks [36],
[39] on VNIO require direct manipulation of sensitive memory
addresses. As the proposed S2H can isolate the memory spaces
of VM and vSwitch, these well-known attack schemes cannot
work. On the other hand, the S2H introduces little security

risks while providing better isolation. Hypervisor is the foun-
dation of the virtualization environment and is commonly
well maintained by service providers. Comparing with VM
operating systems or vSwitch software, the hypervisor is more
secure since its size is relatively small and the exported attack
surfaces for guest domains are considerably less [38]. Last
but not least, in the proposed S2H scheme, we only add the
PD procedure (memory copying workload) to hypervisor. That
means the introduced code is very low and executes as a
separate thread which is independent of the existing code in
hypervisor. So the newly added PD procedure is easy to control
and maintain.

B. Design Challenges

Despite of the potential of providing better isolation and
security, the realization of the proposed S2H scheme faces two
major challenges. First, as a “setter” process between the front-
end driver and the back-end component (vSwitch process), the
PD procedure in the hypervisor adds the overhead to the VNIO
processing. The sharing of memory between the vSwitch pro-
cess and the concurrent hypervisor processes is more complex
and will affect the performance. Secondly, the CPU resources
that can be occupied by PD are very limited. Cloud service
providers prefer to assign most of computing resources to VMs
and leave very few for VNIO processing. In the Google cloud,
no more than two physical CPU cores per physical server are
assigned to the PD procedures [10]. Therefore, efficiency and
scalability are the main design challenges to realize S2H. We
will enhance the efficiency of S2H from two perspectives.

• Sharing memory among concurrent processes. As each
VM has a dedicated PD procedure in its parent hypervisor
process, the shared memory will be accessed by multiple
threads that belong to different processes. The block of
shared memory is divided into small pieces to storing
I/O data and notifications belonging to different VMs,
which are occupied, modified and freed by the concurrent
PD threads and vSwitch processes. We need an efficient
memory sharing framework to deal with the potential
conflicts and contention from concurrent processes.

• Thread scheduling. As PD procedures run concurrently
on limited CPU resources, scheduling these threads with a
granularity of time slice is inefficient and will increase the
competition, as well as context switching [40]. We need
an efficient scheduling mechanism with the granularity
that can be properly set according to the working mode
of PD procedures.

IV. DESIGN AND PROTOTYPING

To address the above challenges of realizing S2H, in this
section, we will elaborate our proposed innovations on efficient
memory sharing among concurrent processes and scalable
scheduling of PD threads. We introduce our designs in the
context of a prototype system. However, our sharing and
scheduling strategies are general and can be used to guide the
design and implementation over other VNIO architectures.

To demonstrate the function and prove its simplicity in
realization, we prototype the S2H system over the vHost-User

6

(V2S) architecture, as it is a state-of-the-art design and has
been widely used in the production environment. The virtio
de-facto standard that vHost-User follows is also supported by
the QEMU/KVM virtualization platform, as well as the kernels
of most operating systems such as Linux and Windows.

In this section, we first introduce the basic vHost-User
platform and our prototype implementation, and then describe
the principles and realization of our proposed memory sharing
and thread scheduling mechanism.

A. vHost-User and Basic Platform

On the vHost-User architecture, the user-space QEMU pro-
cess and the KVM kernel module provide VMs with the virtual
execution environment. A corresponding QEMU process is
created for each VM. OVS [33], [34], [41], as the back-end in
vHost-User, handles the packet classification and forwarding.
For high-speed packet processing, OVS is compiled into the
Data Plane Development Kit (DPDK) framework [42], which
possesses unique features, such as user-space network driver
and efficient memory management. When the OVS-DPDK is
running, it launches one PMD thread by default, to look up
packet destination in flow tables and implement the PD tasks
on all physical and virtual ports. The number of PMD threads
in OVS-DPDK can be increased as the workload goes up, and
each PMD thread must be bound to one dedicated CPU core.

shared memoryisolated memorylegends:

OVS

pNIC port

QEMU process

pkt-bufferVM
memory

virtqueue
RT pkt

vhost port

PD

look-up

PMD
thread

RT

host-buffer pkt

pNIC-ring

(a) vHost-User implementation

OVS

QEMU process

pkt-bufferVM
memory

virtqueue
RT pkt

vhost port

look-upPMD
thread

RT

host-buffer pkt

pNIC-ring

RT

shared-ring

PD
PD thread

pNIC port

(b) S2H prototype implementation

Fig. 5. vHost-User and S2H implementation. The data structures in shadow
(blue) color are allocated as the shared memory. The dashed arrows show
that the descriptors in rings refer to packets in buffers, and the solid arrows
indicate the packet copying paths.

The data exchange of vHost-User architecture is shown
in Fig. 5(a). As a typical V2S scheme, the QEMU process
does not participate in either the memory-sharing or the PD
procedure. On the contrary, OVS is granted the access to
the memory both in the host and in VM. According to the
function, a PD procedure can be divided into two parts: the
notification path for the transmission of packet descriptors and
the data path for packet transmission. There are also two types
of memory infrastructure involved. In the first type, rings are
used to buffer packet descriptors, e.g. the pNIC-ring stores
packet descriptors in the host-side memory and the virtqueue,
as part of virtio standard, stores descriptors on the VM side. As
the second type, packet buffers are applied to store packets on

both the host side and the VM side. The host-buffer is a block
of memory managed by DPDK and used for storing packets
received from all OVS’s ports, while pkt-buffer is allocated by
the VM driver and used for receiving packets from hosts (e.g.
skb buff in Linux kernel).

Both notification path and data path are bidirectional. We
take the traffic-in-VM as an example. After pNIC receives
packets and stores them in the host-buffer with DMA, the
OVS PMD thread can poll the pNIC-rings to access the
packets according to the descriptors. It decides which VM
is the destination based on the matching of the parsed packet
header with the entries in flow table. Then, the PMD thread
finds the available pkt-buffer addresses from virtqueue of the
destination VM and copies packets from the host-buffer to
the pkt-buffer. After the packet copying is completed, the
PMD thread updates the virtqueue of the receiving direction to
notify VM for getting packets. The procedure in the opposite
direction is similar.

B. S2H Prototype

We modify the vHost-User architecture and implement S2H
as shown in Fig. 5(b). The key of S2H architecture is that each
QEMU process acts as a “setter” and runs a PD thread between
the corresponding VM and OVS to provide the VM isolation.
Since each VM has its own QEMU process to complete the PD
procedure, OVS needs to share the memory with all QEMU
processes on this server. To keep the data path unchanged
and avoid additional overhead, we use the host-buffer as the
shared memory, and OVS directly exposes the host-buffer to
all QEMU processes. On the notification path, due to the need
of transmitting packet descriptors between QEMU and OVS, a
pair of separated shared-rings is allocated and shared between
each QEMU and OVS process. Each time when OVS needs to
send packets to VM, its PMD thread only needs to copy the
packet descriptors from pNIC-ring to the particular shared-
rings to be accessed by the corresponding QEMU process,
according to the flow table lookup results.

To efficiently complete tasks on both data path and no-
tification path, we create a dedicated PD thread running in
the polling mode for each QEMU. The major workload of
the PMD thread on each vhost-port in vHost-User solution is
transferred to the PD thread of corresponding QEMU process.
As a result, the data path workload remains about the same as
that there is no extra packet copying added, comparing with
the primitive solution in Fig. 5(a). Meanwhile, as shown in
Fig. 5(b), only one extra packet descriptor copying operation
is added to the PMD thread of OVS on the notification path. As
the descriptor data structure only contains the packet address
information, the increased overhead is negligible. Now we
also take traffic-in-VM as an example. After pNIC receives
packets and stores in the host-buffer via DMA, the OVS PMD
thread can poll the pNIC-rings to get the descriptors for the
access of packets in the host buffer. Then after the flow table
lookup, it copies the packet descriptors from pNIC-rings to
the destination QEMU’s shared-rings and the PMD thread
completes its job. In QEMU, the PD thread polls shared-
rings and obtains packet descriptors pointing to the host-buffer.

7

The following steps are the same as those of in vHost-User—
getting available pkt-buffers, copying packets and updating the
virtqueue.

Compared to the vHost-User, the heaviest workload, packet
copying in the PD procedures, is undertaken by the PD threads
in QEMU processes. The work done by the PMD threads in
OVS is reduced to only the lookup in the flow table and the
copying of packet descriptor. As the workload changes, we
should allocate most of the CPU resources used by the OVS
PMD threads in the native vHost-User to the PD threads of
QEMUs. We also design a thread scheduling mechanism for
these threads to run on limited CPU resources, which will be
described in Section IV-D.

The native vHost-User is modified to prototype the proposed
S2H. We only add less than 1000 lines of codes into QEMU
to implement the PD thread and make few changes to OVS.
As the interface to the virtqueue from the PD thread remains
unchanged from that of vHost-User, the components inside
VM (such as the kernel, VM driver and virtqueue) have no
need to be modified and are compatible with the configurations
in native vHost-User. Though the prototype implementation
is based on QEMU/KVM virtualization platform, S2H can
also be adopted to other virtualization platforms (e.g. Xen,
VMware), as a general VNIO architecture.

C. Memory Sharing with Concurrent Access

As the foundation of VNIO, the shared memory is used to
exchange packets between VMs and the host. For example,
in vHost-User, each VM shares its memory space (blue in
Fig. 5(a)) to the OVS process. It is very efficient and there
is no conflicts during the shared memory access as it is
essentially a single-producer single-consumer (SPSC) issue.
But in S2H, the shared memory (blue in Fig. 5(b)) consists of
two parts: the public host-buffer part and the private shared-
ring part. The public shared host-buffer is a block of memory,
that will be operated (allocate, access and free) by the PD
threads of different QEMU processes and the OVS PMD
thread simultaneously. So it will lead to a multi-producer
multi-consumer (MPMC) issue. For each pair of shared-rings,
it is newly added and only shared privately between the
corresponding QEMU process and the OVS process.

QEMU 1 QEMU 2

OVS-DPDK

allocate

free

mbuf mbuf
T R

shared_ring
(private)

T R

mbuf pool
(public)

write

read

allocate

free write

read

shared_ring
(private)

Fig. 6. Concurrent shared memory access in S2H.

We first introduce how we build these two parts of shared
memory. For the public shared host buffer, as the it is in fact
the mbuf pool managed by OVS-DPDK in the native vHost-
User, we directly let OVS-DPDK share the mbuf pool with

all QEMU processes as shown in Fig. 6. To let these QEMU
processes have access to the mbuf pool, we add “-mem-file
= /path-to-rte config” to the command line parameters for
each QEMU process to find and map the mbuf pool to its
own address space. Once a QEMU process starts and the
initialization is completed, the mbuf pool has been accessible
by to its PD thread. For shared-ring, OVS will create a
separate small piece of memory for each QEMU process.
Then, each QEMU process attaches to this block of private
shared memory. Both types of shared memory are constructed
by calling mmap() functions to map the files into the process
memory space.

To solve the MPMC issue in the public shared host buffer,
we take the advantage of DPDK memory management to make
the PD threads of all QEMU processes access this block of
memory efficiently. As the access to the shared mbuf pool is
in the form of reading or writing packets, we need a unified
memory management and also an efficient conflict-free packet
processing pipeline. As the DPDK memory management is
designed for processing packets in high speed to efficiently
solve the MPMC issue, we implement the same data structures
in QEMU as those in DPDK for access the mbuf pool. With
the same memory management, both QEMU and OVS-DPDK
can allocate or free mbuf (mbuf is a data structure used for
storing single packet, like skb buffer in linux kernel). So we
design a conflict-free packet delivery pipeline as shown in
Fig. 6. The allocation and free of mbuf are performed by the
most suitable process according to the direction of the PD
procedure. For example, the packet sender process (whether it
is OVS-DPDK or QEMU) is responsible for allocating mbuf
from mbuf pool, and the receiver process needs to free it
after fetching the packet. Combined with the efficient DPDK
memory management, packets are able to be transferred among
processes via mbufs at high speed.

In the two kinds of shared memory, host-buffer (mbuf pool)
is consistent with that in vHost-User, but the private shared-
ring is newly added. As an intermediate, temporary storage
area for the transfer of descriptor, its size may affect the S2H
VNIO performance. We construct performance evaluation with
varying traffic loads, and find that when the shared-ring size is
4 times greater than the batch size, the system can completely
deal with traffic bursts and achieve a reasonable performance.
However, if the ring size continues to grow, the throughput
will not rise any more. Thus, we set the shared-ring size to be
4 times of the batch size.

Besides the performance concerns, the shared memory in
S2H also needs to support other features in VNIO like
reconnection and live migration, which are crucial in practical
environment. We propose the following schemes for realizing
these features under our shared memory implementation. For
reconnection, according to the order of shared memory ini-
tialization procedure, we let QEMU processes do the munmap
and free operations on the mbuf pool immediately after OVS
goes down. When the OVS restarts and successfully allocates
the new mbuf pool, then all QEMU processes attach to it again.
For the live migration, because the shared memory is allocated
by OVS, a VM cannot be migrated to another server unless all
the packets in the shared memory are processed. As a result,

8

while(1)
{

copy packets from OVS to VM;
free mbufs;

allocate mbufs;
copy packets from VM to OVS;

}

*The operations ② and ③ need to
enter critical zone.

①
②

③
④

(a) Working mode of PD threads.

PD thread 1

PD thread 2

① ② (be preempted)

(be preempted)
stage 1 stage 3stage 2

wasted time slice!

③ (blocked)

Context switching Context switching

② ③ ④

PD thread 1

PD thread 2

① ② ③ ④

stage 1 stage 2

Context switching

(yield and sleep)

① ② ③ ④

CPU pipeline under default scheduling:

CPU pipeline under “batch-grained” scheduling:

(b) CPU pipeline under default scheduling and “batch-grained” scheduling.

PD3

OVS

PD4 PD2

PD5 PD6 PD1
ready
queue

wake up

PD3 PD4

running

sleeping
queue

priority based
queuing

(c) SLA case.

Fig. 7. The “batch-grained” scheduling. (a) shows the main loop of each PD thread, and (b) uses CPU task pipeline to show the difference between the
default Linux “SCHED OTHER” scheduling policy and “batch-grained” scheduling strategy. Obviously, “batch-grained” scheduling avoids blockage and
brings flexibility. In (c), we use an SLA case to show that “batch-grained” scheduling also brings flexibility and can make complex QoS strategy easily be
implemented in S2H without modifying the architecture, which is not available in vHost-User.

in S2H, before QEMU starts the migration, we need to ensure
that all packets referred in the shared-ring have been delivered
to VM.

D. Scalability Support

Scalability is an important feature of the cloud platform,
which contains two aspects: scalability among VMs and
scalability inside a VM. For cloud service providers, the cost
is one of their biggest concerns. In a multi-tenant scenario,
the biggest scalability issue among VMs is how to use limited
CPU resources to support the PD procedures of a large number
of VMs. For a single VM, how to increase the receiving and
sending queues in vNIC is the key to improve the VM network
performance and achieve the scalability inside the VM.

In native vHost-User, OVS PMD threads naturally support
these two types of scalability. As mentioned before in Section
IV-B, centralized PMD threads poll all the virtqueues of each
VMs in sequence and do PD on the corresponding ports. The
number of PMD threads is equal to the number of CPU cores
that is required to complete PD procedures. For multi-queue,
OVS needs to add multiple virtqueues of a single VM to the
polling queue of the PMD threads. It works well for the two
types of scalability, and the only limitation is that the PDs of
all VMs are executed sequentially and are not flexible enough.

In S2H, the situation is the opposite. As the PD procedures
are distributed in PD threads of different QEMU processes,
it brings the nature of flexibility. The out-of-order execution
of different VMs’ PD procedures can support some SLA and
QoS strategies of service providers that were not available in
traditional architectures. For multi-queue, because the interac-
tion between the PD thread and virtqueue remains the same,
we only need to increase the number of shared-rings to the
same number as virtqueues. But as each VM has a dedicated
PD thread to perform its PD procedure, the number of PD
threads would be relative large. We need to bind multiple PD
threads on limited CPU cores and schedule the PD threads on
the same core to achieve scalability among VMs.

But binding many PD threads on the same CPU core
will bring serious performance issue. By default, these PD
threads bound to the same CPU core are managed under the

Linux scheduling policy “SCHED OTHER”, which is a kind
of completely fair scheduling (CFS) policy. Under the CFS
policy, each PD thread is allocated with a fixed time slice to
run its workload. After the time slice is used up, the core will
be preempted by other PD threads [43]. As the scheduling
granularity is too small, frequent context switching among
different PD threads will result in huge performance overhead.
In addition, PD threads may be preempted when operating
the shared data structure and then lock each other. Usually,
this situation happens when the PD thread enters the critical
zone. For example, as shown in Fig.7(a), allocating and freeing
mbuf requires the threads to enter critical zone, which are
common in the main loop of PD threads. We use the CPU
task pipeline under default scheduling in 7(b) to show this
issue. Each “stage” in this figure represents the time period
of a PD thread occupying the CPU to execute workload until
the context switching. In stage 1, the PD thread 1 is still in
the critical zone when being preempted by PD thread 2. In
stage 2, PD thread 2 will be blocked when it tries to enter the
critical zone to allocate mbufs. As a result, the time slice is
wasted in stage 2. In stage 3, PD thread 1 completes its work
and leaves the critical zone, then PD thread 2 will be able to
continue its workload after it preempts CPU in the next stage.

We propose “batch-grained” scheduling strategy to avoid
blocking and make it more CPU-friendly. For efficiency, the
scheduling granularity needs to be well designed: how long
each PD thread can occupy CPU and when it can yield the
CPU. We use one batch as granularity. First, we set all PD
threads’ scheduling policy to “SCHED FIFO”. Because the
threads under “SCHED FIFO” will not be preempted unless
they yield the CPU by themselves. That gives us the ability
to determine the granularity of the schedule by workload
rather than uncertain time slice. As the main loop of each PD
thread contains polling virtqueue and shared-ring to transfer
one batch of packets, we allow each QEMU’s PD thread to run
one loop before it goes to sleep and yields the CPU for other
threads. The pipeline is shown in Fig. 7(b), it can be seen
this kind of scheduling strategy avoids the blocking caused
by context switching in the critical zones and also makes the
context switching less frequent.

Besides efficiency, the “batch-grained” scheduling also pro-

9

0 1 2 3 4 5
0

20

40

60

80
la

te
n
c
y
 (

u
s
)

time (min)

vHost-User

 S2H
more VMs launched

Fig. 8. Single VM’s latency during different network conditions. After 3 more
VMs are launched and share the same CPU core for PD, the test VM under
vHost-User suffers from 50% higher latency while under S2H it almost keeps
the same.

vide more flexibility that can be used to design more complex
SLA policies. Its details can be found in our another work
[44], [45]. Here we show it can be easily implemented in
S2H without modifying the architecture. The logical is shown
in Fig. 7(c), each PD thread is set with a priority and sleep time
threshold. OVS wakes up the corresponding PD thread based
on the sleep time and whether there are enough packets to
send. But the woken-up PD threads do not immediately occupy
the CPU, they stay in a ready queue based on arrival time and
priority. For example, the orange colored PD thread indicates
that it has higher priority, while the blue color indicates lower
priority. When the PD4 with the highest priority is woken up,
it will be inserted into the head of the ready queue, but the
PD3 with the lowest priority will be placed at the tail. After
the PD thread gets the CPU and completes its job, it will go to
sleep and wait for the OVS to wake up again. The strategy in
this example makes S2H flexible to implement differentiated
latency guarantee. A simple test result is shown in Fig. 8, the
test VM is set with a fixed sleep time threshold and highest
priority. When the background traffic gets larger, the test VM
under S2H can maintain the original latency of 30us, while
the latency under original vHost-User is increased by 50% to
45us.

TABLE II
THE NUMBER OF TIMES OF CONTEXT SWITCHING ON THE PD CORE. NO

PACKET MEANS THE CPU CORE IS DOING CONTINUOUS CONTEXT
SWITCHING. IN THE REMAINING CASES, THE CORE DOES PDS FOR FULL

LOAD.

2VM 4VM 8VM
no packet 1.512M/sec 1.524M/sec 1.454M/sec
64-byte 0.196M/sec 0.206M/sec 0.194M/sec
512-byte 0.045M/sec 0.043M/sec 0.043M/sec

1518-byte 0.017M/sec 0.017M/sec 0.017M/sec

The main overhead of “batch-grained” scheduling comes
from the context switching among PD threads. As the schedul-
ing only changes the order of threads waiting on the PD
cores, it does not affect the processing capacity of the PD
cores itself. It is the context switching in thread scheduling
that affects PD cores processing capacity. We test the context
switching times on a single PD core which serves different
number of VMs with different sizes of packets to show how
it affects on the performance. The results of perf are shown in
table II. The overhead of context switching is independent
of the number of VMs. As the packet size increases, the
effect of context switching becomes smaller. That is because
each context switching only happens after each batch process.

The time used for one context switching is fixed, while the
time used for copying a batch of 1518-byte packets is far
much more than copying a batch of 64-byte packets. So, when
transferring 1518 byte packets, there will be much less number
of times of context switching per second. The worst case
happens when copying 64-byte packets, and nearly 10% of
the CPU is used for context switching, while the rate with
1518-byte packets drops to less than 1%. This overhead is
acceptable for better isolation and flexibility.

In addition to these benefits, there is still a problem that may
occur when we bind so many “SCHED FIFO” scheduled PD
threads to the same CPU core. The core cannot be scheduled
to any other threads with the default scheduling policy, even
they belong to the kernel. For example, some system calls,
like page fault interrupts, would run a small piece of codes on
each core of the physical server platform. This problem can
be easily solved by isolating the PD cores in the grub file.

V. EXPERIMENTAL RESULTS AND EVALUATION

In Section IV, we have illustrated that S2H can provide
two types of isolation — isolation among VMs and isolation
between a VM and the host, which greatly reduces security
risks. As the use of hypervisor and newly added shared-ring
may introduce additional overheads, in this section, we will
evaluate the performance of S2H and compare it with that of
native vHost-User.

The performance evaluation and comparisons are from three
perspectives. As our goal is to measure VNIO performance, we
firstly evaluate and compare the VNIO data path performance
of S2H with that of vHost-User. But considering the PD
capacity in VNIO data path is ultimately reflected in the
application performance inside the VM, so we deploy various
types of applications (e.g., IP lookup, TCP, Nginx and VM-to-
VM communication) inside the VM to compare the application
experience under the two architectures. Besides, to measure
the scalability of single VM and the entire physical server, we
compare the performance in the multi-queue and multi-tenant
scenarios under the two architectures.

In the experimental setup, we use a server with two Xeon
CPU E5-2640 v3 2.60GHz (2x8 cores and 2 logical cores in
each physical core) for running the whole cloud platform for
the two architectures. The other configurations of the server
are as follows: 128GB DDR4 memory at 1866MHz, one Intel
82599ES 10-Gigabit Dual Port NICs, ubuntu 16.04.1 (kernel
4.8.0) as both host OS and guest OS, QEMU 2.10, DPDK
17.11.2 and OVS-2.9.2. Every VM is allocated with 2GB
memory and one logical core for all tests.

We use TestCenter from Spirent [46] as traffic generator
for the test of packet forwarding and use qperf on a di-
rectly connected server with the same configuration for the
evaluation of the TCP performance. In all test scenarios, the
VM configurations in the two architectures are consistent, and
we repeat 10 times of running experiments to eliminate the
accidental errors.

A. VNIO Datapath Performance
We first compare VNIO datapath performance by measuring

forwarding rate of VM on S2H with that of vHost-User. The

10

DPDK driver is used inside a VM to ensure that the VM
internal network processing will not become a bottleneck. To
evaluate the performance of data path with PD running on
a single core on vHost-User, OVS launches a PMD thread,
which is bound to one logical core. For S2H, as the packet
copying by the PD threads in QEMUs take most of the
workload originally taken by the PMD thread on vHost-
User, we also assign them with a logical core. However,
although the OVS PMD thread in S2H only has very lighted
look-up workload, it still needs to consume a little CPU
resources. So in our implementation, S2H requires a little
more CPU resources than vHost-User in any case, because its
architecture decouples flow table lookup and PD procedure.
The experimental configuration follows RFC 2544 [47] —
throughput and latency are evaluated with zero packet loss.
Different sizes of packets (64, 128, 256, 512, 1024, 1518
bytes) are generated by TestCenter and forwarded back via
the VM internal DPDK l2fwd program.

64 128 256 512 1024 1518
0

4

8

12

16

20

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

packet size (Byte)

 vHost-User

 S2H

(a) Throughput. 11% throughput
improvement on average.

64 128 256 512 1024 1518
0

20

40

60

80

L
a
te

n
c
y
 (

u
s
)

packet size (Byte)

 vHost-User

 S2H

(b) Latency. 2–9% latency in-
crease.

Fig. 9. Datapath Performance comparison with different packet sizes. DPDK
l2fwd is used as the forwarding program inside a VM.

Fig. 9(a) shows the datapath throughput of S2H and that of
vHost-User. S2H achieves up to 14% throughput improvement
with 1024-byte packet and 11% average throughput improve-
ment compared to vHost-User. The throughput improvement
of S2H is mainly due to two reasons, 1) a running PD thread
cannot be preempted by any other threads thus avoiding the
overhead due to unnecessary context switching, and 2) the
little CPU resources used by OVS PMD thread undertakes
some flow table lookup workload. In Fig. 9(b), the latency
of S2H increase by 2–9% under different packet sizes, up to
2µs compared to those of vHost-User. The increase of latency
is caused by the additional workload on the notification path.
As mentioned in Section IV, we add one packet descriptor
copying operation during each packet delivery. The increase
of latency is constant and independent of the packet size.

B. Performance of Applications

For a more realistic study, we consider applications and the
kernel protocol stack deployed in the VM of S2H and vHost-
User. The performance of the applications including IP lookup,
TCP, Nginx and VM-to-VM communication are evaluated.

IP lookup. Running Network NFV applications on the
cloud platform is a common trend. To evaluate the per-
formance of NFV in both architectures, we use VM with
DPDK driver to enable high-performance IP lookup. Fig. 10(a)
shows the throughput of IP lookup on S2H and vHost-User,
respectively. S2H achieves up to 20% throughput improvement

64 128 256 512 1024 1518
0

4

8

12

16

20

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

packet size (Byte)

 vHost-User

 S2H

(a) Throughput. 9% throughput
improvement.

64 128 256 512 1024 1518
0

20

40

60

80

L
a
te

n
c
y
 (

u
s
)

packet size (Byte)

 vHost-User

 S2H

(b) Latency. 4–9% latency in-
crease.

Fig. 10. Performance comparison of IP lookup with the varying packet
sizes. SAIL [48] with DPDK driver is used as IP lookup algorithm and FIB
(Forwarding Information Base) contains 600k entries from a real backbone
router.

with 128-byte packet and 9% for average improvement com-
pared to that using vHost-User. Fig. 10(b) shows the latency
of IP lookup in S2H and vHost-User. The latency of S2H
are 4–9% higher than that of vHost-User. The performance
differences in the two implementations is caused, similarly,
by CPU resources and the operations of shared-ring on S2H,
as illustrated in VNIO datapath performance. There is a 10–
15% decline of throughput compared to that on the datapath
due to the workload of IP lookup in VMs.

64 128 256 512 1024 1518
0.0

1.5

3.0

4.5

6.0

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

packet size (Byte)

 vHost-User

 S2H

(a) TCP bandwidth.

64 128 256 512 1024 1518
0

20

40

60

80

L
a
te

n
c
y
 (

u
s
)

packet size (Byte)

 vHost-User

 S2H

(b) TCP latency.

Fig. 11. VM’s TCP bandwidth and latency comparison. Linux kernel driver
are used inside the VM.

TCP stream. TCP performance is an important indicator
to measure the stability of VNIO. TCP bandwidth and latency
are tested by qperf [49]. The qperf client runs in a VM and the
qperf server runs in another direct-connected physical server.
Fig. 11(a) shows the TCP bandwidth of S2H and vHost-User.
S2H achieves up to 4% throughput improvement with 128-byte
packet and 2% improvement on average compared to vHost-
User. Fig. 11(b) shows the latency of TCP packet transmission
by VM using S2H and vHost-User. The latency is relatively
stable and almost the same in the two implementations, as
the performance in this case is mainly affected by packet
processing in the VM kernel protocol stack.

64 128 256 512 1024 1518
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

packet size (Byte)

 vHost-User

 S2H

(a) VM-to-VM throughput.

64 128 256 512 1024 1518
0

24

48

72

96

120

L
a
te

n
c
y
 (

u
s
)

packet size (Byte)

 vHost-User

 S2H

(b) VM-to-VM latency.

Fig. 12. VM-to-VM performance comparison. The service chain is formed
by two VMs on both S2H and vHost-User.

Nginx. As a high-performance HTTP server and reverse
proxy, Nginx [50] has been widely deployed on the cloud
platform. We further evaluate the performance of Nginx on

11

1 2 4 8 16 32
0.0

0.4

0.8

1.2

1.6

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

VMs

 vHost-User overall S2H overall

 vHost-User per VM S2H per VM

(a) Throughput with 64 Byte

1 2 4 8 16 32
0.0

2.5

5.0

7.5

10.0

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

VMs

 vHost-User overall S2H overall

 vHost-User per VM S2H per VM

(b) Throughput with 512 Byte

1 2 4 8 16 32
0

5

10

15

20

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

VMs

 vHost-User overall S2H overall

 vHost-User per VM S2H per VM

(c) Throughput with 1518 Byte
Fig. 13. Scalability comparison of S2H and vHost-User. Sub-figures (a) to (c) show the overall and per VM throughput of S2H and vHost-User. Both
implementations achieve peak performance with 4 VMs, where S2H achieves 20% more throughput than vHost-User with 1518-byte packets.

S2H and vHost-User. The Nginx 1.10.3 is deployed in one
VM of S2H and vHost-User respectively. We use the Apache
Bench running on another directly connected server to test
the throughput and response time of Nginx on VM for HTTP
requests. The throughput is 9733 responses per second for S2H
and 9431 for vHost-User. The average latency per response is
208ms in S2H and 205ms in vHost-User. The performance of
Nginx application on the two architectures are very close. The
main reason is that the bottleneck appears at the VM kernel
protocol stack and the Nginx application, which are configured
the same for both architectures.

VM-to-VM. VM-to-VM communication is not very com-
mon on cloud tenant platforms. But in some other scenarios
like NFV and distributed computing, VM-to-VM performance
significantly affects the performance of user’s applications. We
test the VM-to-VM performance by using two VMs to form
a service chain. The traffic generated by TestCenter is sent
to one VM (say VM1) through pNIC, and then forwarded
to another VM (say VM2) through DPDK l2fwd program.
Finally, VM2 uses l2fwd program to forward it back to the
TestCenter. As shown in Fig. 12(a), S2H achieves up to 10%
throughput improvement with 128-byte packets and 7% for
the average improvement compared to vHost-User. Due to the
overhead of context switching, the S2H throughput in 64-byte
packets is slightly worse than vHost-User. In Fig. 12(b), the
latency of S2H increases by 22–30% under different packet
sizes. The high latency in S2H VM-to-VM test is caused
by the multiple times of packet descriptor copying during
each packet’s PD procedure and the synchronization overhead
among shared mbuf pool. To alleviate the heavy overhead of
S2H during the VM-to-VM communication, we will use a
VM-to-VM fast-path to bypass the vSwitch and reduce times
of memory copying. We will discuss our strategy in Section
VI.

C. Scalability

Multi-tenant and multi-queue scenarios of S2H are evalu-
ated in this section.

Multi-tenants scalability. Scalability in multi-tenant sce-
nario is evaluated by the network I/O performance with the
growing number of VMs on a physical server. To simulate a
real cloud platform environment, we run up to 32 VMs on a
server. These VMs are all configured with kernel drivers and
set the forwarding rules using iptables [51], which can forward

traffic back to the TestCenter. Two logical cores are assigned
to PD procedures in both architectures to undertake the heavy
packet copying workload.

The results are shown in Fig. 13. S2H achieves good scal-
ability, especially in the case of large packets. Both S2H and
vHost-User achieve the maximum overall throughput when
running 4 VMs, where the throughput of S2H is 25% higher
than that of vHost-User. As shown in the figure, the throughput
per VM and the total throughput decrease with the number
of running VMs being increased to 8 or more due to the
competition of computing, memory and virtual network I/O
resources. This is an inherent issue in OVS and it has nothing
to do with this work.

Comparing these figures, it can be seen that the throughput
of two architectures have different sensitivity with different
packet sizes. The throughput of S2H is slightly worse than
that of vHost-User when delivering 64-byte packets. But as
packet size increases, S2H has an advantage over vHost-User.
When running 8 VMs, S2H’s total throughput is about 40%
higher than that of vHost-User with 1518-byte packets and
20% higher with 512-byte packets. This is caused by the
context switching of PD threads as illustrated in Section IV.

0

4

8

12

16

20

432

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

queue num

 64-Byte

 512-Byte

 1518-Byte

1

(a) Throughput. Each additional
queue increases VNIO throughput
by 0.76 times the throughput of a
single queue.

0

20

40

60

80

la
te

n
c
y
 (

u
s
)

queue num

 64-Byte

 512-Byte

 1518-Byte

1 2 3 4

(b) Latency. The number of queues
has no effect on the latency as
multi-queue does not introduce ad-
ditional overhead.

Fig. 14. Multi-queue performance. Kernel driver and iptables are used for
Network Address Translation (NAT) forwarding inside VM.

Multi-queue scalability. Multi-queue is a crucial feature
to improve the packets processing ability inside a VM. We
evaluate the scalability of multi-queue in the S2H architecture
by continuously adding the number of queues in a single
VM. The PD procedure is bound to one logical core, and the
VM running kernel iptables NAT forwarding is given enough
resources (one core for each queue).

Fig. 14(a) shows the throughput of a single VM with the
number of queues varying from 1 to 4. Each time one more

12

queue is added, the VM throughput increases by an average of
0.76 times of the single queue performance. The throughput
increment decreases as the packet size goes down, for about
0.8 times of the single queue performance with 64-byte packets
and only 0.67 times with 1518-byte packets. This is because
the PD thread has more packets to deliver in one batch as
the number of queues increases, and that greatly reduces the
impact of context switching overhead, especially when the
packet size is small. The latency of the architecture with
different numbers of queues is shown in Fig. 14(b). Since
the multi-queue scheme increases the processing capability of
VM without introducing additional overheads on both data
path and notification path, the latency does not change as the
number of queues increases.

D. Summary of Performance Evaluation

Compared with the native vHost-User, the S2H proto-
type system achieves up to 11% improvement on data path
throughput, but suffers from 2-9% latency increase. These
performance fluctuations are negligible, and has no effect on
the network applications where the processing bottleneck is
inside the VM kernel protocol stack rather than VNIO. S2H
also shows good scalability in multi-tenant scenarios. But as
limited by the context switching overhead, S2H is at a little
performance disadvantage compared to vHost-User in the case
of delivering small packets. So in a word, the S2H prototype is
performance-friendly, which can maintain the high efficiency
as the native vHost-User while guaranteeing memory isolation.

VI. DISCUSSIONS FOR REAL-WORLD DEPLOYMENT

In addition to the implementation challenges mentioned
in Section IV, there are still some practical issues in the
deployment of S2H architecture, such as VM-to-VM fast-path
and adaptation to different virtualization platforms. We discuss
the issues that may encounter in a practical environment in this
section.

VM-to-VM fast-path. The native vHost-User suffers from
the double packet copying during the VM-to-VM communi-
cation. To improve the performance, some radical approaches
have been proposed. In vhost-pci [52]–[54], one VM maps
another VM’s whole memory where it can bypass vSwitch to
directly perform PD between these two VMs. For example,
with the driver modified, one VM can copy packets from
another VM’s buffer to its own buffer. This method, however,
also causes the problem of memory isolation and compatibility.
As shown in Fig.15(a), the VM1 is granted to access VM2
memory for direct PD. But that also makes the tenant in VM1
has the privilege to “legally” access VM2’s whole memory,
which brings significant security issue that we have illustrated
in Section II-B.

For S2H, additional overhead is incurred for VM-to-VM
communication. The CPU cores used for PD need to operate
the newly added shared-rings for several times and suffer
from frequently context switching. Inspired by vhost-pci, we
consider that the S2H design (placing of PD procedure into the
QEMU process) can work well with the idea of building a fast-
path in the VM-to-VM communication. As shown in Fig.15(b),

Host (userspace)
QEMU 1

VM 1

QEMU 2

VM 2VM2 memory
(shared)

PD

illegal access

(a) Vhost-pci fast-path solution.

Host (userspace)
QEMU 1

VM 1
VM2 memory

(shared)
illegal access prevented

PD
QEMU 2

VM 2

(b) S2H VM-to-VM fast-path solution.

Fig. 15. Compared with vhost-pci directly sharing VM2 memory to VM1,
the fast path we designed for S2H uses QEMU to share VM2 memory for
fast PD among VMs achieves higher isolation and security.

the QEMU process of the VM1 can map and access the whole
memory of the VM2. When sending packets, the QEMU1
process directly copies packets from the VM1’s memory to
VM2’s memory. After the packet copying is completed, the
QEMU1 process updates the VM2’s virtqueue to notify VM2
to receive packets.

Compared with vhost-pci, the biggest advantage in our
proposed solution is that the shared VM2 memory is invisible
to VM1. The illegal memory access is not able to achieve
because the memory access from VM1 to VM2 will be isolated
and prevented by the virtualization platform (see the shield
in Fig.15(b)). On the other hand, the security benefits of
using QEMU to perform PD has been discussed in Section
III: the higher privilege and more trusty; the illegal memory
access is much easier to monitor in hypervisor. Therefore, our
proposed fast-path solution for S2H will improve the VM-to-
VM performance by reducing the times of packet copying to
one without leading to the isolation issue.

Adaptation to other platforms. Although the S2H proto-
type system is developed based on QEMU/KVM virtualiza-
tion platform, our proposed memory-sharing mechanism is a
platform-independent general solution. For any virtualization
platforms, the hypervisor can be divided into two parts: the
user-space process and the kernel module. The kernel module
is responsible for virtual memory management(VMM). The
user-space hypervisor process is the corresponding main pro-
cess of each VM on the host OS and can be easily found. No
matter what the virtualization platform is, the key to realize
S2H is to implement PD procedure and shared memory in
the user-space hypervisor process. Taking Xen virtualization
platform as an example, Dom0 in Xen implements the function
similar to the combination of centralized vSwitch and QEMU
process in QEMU/KVM. All of its guest VMs run inside
separate DomU processes which manages vCPUs [60]. So if
we want to adapt S2H design on Xen platform, we can also
place the PD thread inside each DomU process as a separate
thread.

VII. RELATED WORK

VNIO technique is now a hot topic, and a number of
architectures have been proposed. As shown in Table III,

13

TABLE III
RELATED WORKS. BLACK DOTS REPRESENT GOOD, WHILE HOLLOW DOTS DENOTE POOR.

VNIO solutions Memory-sharing mechanism Shared memory location PD location Performance Isolation
vHost-User [27] V2S VM vSwitch • ◦
Andromeda [10] V2S VM vSwitch • ◦

ELVIS [8] V2S VM vSwitch • ◦
Xen1 [55] V2S VM Dom0 • ◦

NetVM [28] S2V vSwitch VM • ◦
IVSHMEM [29], [30] S2V vSwitch VM • ◦

clickOS [31] S2V vSwitch VM • ◦
Xen2 [56] S2V Dom0 VM • ◦
Xen3 [57] V2S VM Dom0 ◦ •

vIOMMU [15], [17] V2S VM vSwitch ◦ •
Zcopy-vhost [58] N/A (page flipping) N/A vSwitch ◦ •
Hyper-switch [59] N/A (kernel-space VNIO) N/A Hypervisor(kernel) ◦ •

existing solutions mostly trade off isolation for improved
performance based on either S2V or V2S memory-sharing
mechanisms. On the contrary, the isolation issue has not been
tackled until recent years. Some solutions were respectively
proposed to resolve the issue in V2S and S2V schemes on
both QEMU/KVM platform [15], [17] and Xen platform [57].

For V2S, existing solutions all adopt the address check-
ing mechanism during the memory access. Authors in [15],
[17], [57] proposed vIOMMU solution, which is an emulated
IOMMU device and can limit the memory accesses within
specific regions during the memory address translation. As
the permission checking procedure requiring frequently inter-
process communication is commonly very time-consuming,
these solutions can even cause the performance loss as high
as 80% [15].

For S2V, some existing works can isolate the host side
shared memory at the VM level. For example, authors in
[28], [37] proposed a scheme to divide shared memory into
separate pieces for each VM to store packets. The hardware
features like VF and flow classification in pNIC are required
to implement such complex DMA operation, so that pNIC can
place packets to different pieces of shared memory according
to their destination VM. This scheme relies too much on
hardware and does not need software vSwitch any more, which
makes it more like hardware-assisted VNIO and inflexible.

How to implement user-space VNIO without shared mem-
ory has also been the focus of some works. Authors in [58]
proposed a VNIO architecture named Zcopy-vhost. Instead of
packet copying, the architecture completes the PD procedure
by Extended Page Table (EPT) page-flipping technique. How-
ever, the architecture also has efficiency issues, as each page-
flipping operation is based on a series of system calls.

The hardware-assisted approach for improving security is
also a trend. The Trusted Execution Environment (TEE), rep-
resented by Intel SGX [19] in x86 and TrustZone [61] in ARM,
encrypts data in memory to improve security. Although these
techniques have not been adopted in VNIO yet, the use case
in NFV scenarios shows that these techniques degraded the
performance by 90% [20]. Besides TEE, Intel also proposed
a low-overhead CPU feature called Memory Protection Keys
(MPK) [62] [19] to restrict the memory pages that one thread
can access for enhancing memory isolation. In this way,
malicious threads cannot access the private memory of other

threads although they are inside the same process. But it has
nothing to do with the isolation issue in S2V and V2S because
the potentially malicious thread is exactly the worker thread
which needs to complete the PD procedure and access the
shared memory. For S2H, MPK can be used to isolate PD
thread in the QEMU process, so that the newly added PD
thread is completely independent of the existing components
in the native QEMU. That will make S2H closer to commercial
deployment.

In addition to these security reinforcement solutions, there
is another work similar to our design that uses hypervisor to
implement PD for VMs. Unlike our focus on isolation, authors
in hyper-switch [59] placed the whole OVS data plane into
the kernel-space part of hypervisor on the Xen platform to
improve the performance of kernel-space VNIO. In terms of
performance, the kernel-space data path in hyper-switch puts
it at a disadvantage to S2H on leveraging the acceleration
of high-performance user-space components. So it is obvious
that the performance of hyper-switch cannot be compared with
the OVS-DPDK accelerated S2H solution [63]. In terms of
isolation and security, placing the whole OVS data plane into
the kernel-space part of the hypervisor really can guarantee
VM memory isolation, but it also introduces a large number
of codes into kernel along with the attack surfaces. Even a
vulnerability in OVS data plane may cause the host OS kernel
to be attacked. Therefore, the scheme in S2H that only puts
the PD procedure as a separate thread into the user-space part
of hypervisor will be more secure and efficient.

In summary, in order to improve the VM isolation, these
existing solutions restrict or remove the memory-sharing
mechanisms. In contrast, we consider the efficient memory-
sharing is critical for the performance. We therefore propose
an S2H solution with a new memory-sharing mechanism that
exploits hypervisor as a barrier for the VM isolation. To
maintain the high performance brought by memory sharing
mechanism, we also use the innovations in concurrent memory
accesses and efficient thread scheduling to reduce the overhead
introduced by S2H.

VIII. CONCLUSIONS

Para-virtualized VNIO is an enabling technology in the
context of cloud computing. Existing para-virtualized VNIO
solutions often pursue the performance at the expensive cost

14

of VM isolation. In this work, we classified existing para-
virtualized solutions into S2V and V2S schemes according
to the memory-sharing mechanism and then analyzed their
isolation issues. To solve this problem, we proposed a new
S2H scheme, which shares the host-side I/O memory to
the hypervisor. In order to adopt the S2H scheme in the
VNIO design, we implemented an efficient shared memory
access which exploits the DPDK memory management to
address the MPMC issue. In addition, we proposed a “batch-
grained” scheduling strategy for PD threads to ensure network
performance in multi-tenant scenarios. We integrated the de-
facto software-based VNIO standard, vHost-User architecture
into our prototype S2H system and evaluated its performance.
The prototype exhibited good trade-off between the isolation
and the performance. It can achieve the VM isolation with
the comparable throughput and less than 9% latency increase
compared to the techniques based on the native vHost-User.
The results also demonstrated the effectiveness of the proposed
concurrent shared memory access and scheduling strategy in
ensuring the scalability.

REFERENCES

[1] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. J. Jackson, A. Lambeth, R. Lenglet,
S. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang,
“Network virtualization in multi-tenant datacenters,” in Proceedings
of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pp. 203–216, USENIX Association, 2014.

[2] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High perfor-
mance network virtualization with SR-IOV,” in Proceedings of the 16th
International Conference on High-performance Computer Architecture
(HPCA), pp. 1–10, IEEE Computer Society, 2010.

[3] R. L. Solomon and T. E. Hoglund, “Paravirtualization acceleration
through single root i/o virtualization,” 2012. US Patent 8,332,849.

[4] M. F. Aris Leivadeas and N. Pitaev, “Analyzing service chaining of
virtualized network functions with SR-IOV,” in Proceedings of the 21st
IEEE International Conference on High Performance Switching and
Routing (HPSR), pp. 1–6, IEEE, 2020.

[5] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman, “Direct device
assignment for untrusted fully-virtualized virtual machines,” 2008.

[6] E. Zhai, G. D. Cummings, and Y. Dong, “Live migration with pass-
through device for linux VM,” in Proceedings of the Ottawa Linux
Symposium (OLS), pp. 261–268, 2008.

[7] R. E. B. Asvija and M. B. Bijoy, “Security in hardware assisted virtu-
alization for cloud computing - state of the art issues and challenges,”
Computer Networks, vol. 151, pp. 68–92, 2019.

[8] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger, and
R. Ladelsky, “Efficient and scalable paravirtual i/o system.,” in Proceed-
ings of the USENIX Annual Technical Conference (ATC), pp. 231–242,
USENIX Association, 2013.

[9] Y. Kuperman, E. Moscovici, J. Nider, R. Ladelsky, A. Gordon, and
D. Tsafrir, “Paravirtual remote I/O,” in Proceedings of the 21st Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 49–65, ACM, 2016.

[10] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs,
D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Docauer, et al.,
“Andromeda: Performance, isolation, and velocity at scale in cloud
network virtualization,” in Proceedings of the 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), USENIX
Association, 2018.

[11] X. Zhang, X. Zheng, Z. Wang, H. Yang, Y. Shen, and X. Long,
“High-density multi-tenant bare-metal cloud,” in Proceedings of the 25th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), p. 483–495, ACM, 2020.

[12] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and
J. Roberts, “Comparing the performance of state-of-the-art software
switches for NFV,” in Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies (CoNEXT),
pp. 68–81, ACM, 2019.

[13] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103,
2008.

[14] “CVE-2018-1059.” https://www.cvedetails.com/cve/CVE-2018-1059/,
2018.

[15] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster, “vIOMMU:
efficient iommu emulation,” in Proceedings of the USENIX Annual
Technical Conference (ATC), pp. 73–86, 2011.

[16] P. Stewin and I. Bystrov, “Understanding DMA malware,” in Proceed-
ings of the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 21–41, Springer, 2012.

[17] P. X. Jason Wang, “Vhost and vIOMMU.” http://www.linux-kvm.
org/images/c/c5/03x07B-Peter Xu and Wei Xu-Vhost with Guest
vIOMMU.pdf, 2016.

[18] E. Auger, “vIOMMU/ARM: full emulation and virtio-iommu
approaches.” https://www.linux-kvm.org/images/8/8e/Viommu arm.pdf,
2017.

[19] Intel, “Intel 64 and IA-32 architectures software developer’s manual,”
Volume 3A: System Programming Guide, Part, vol. 1, no. 64, p. 64, 64.

[20] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-nfv: Securing
nfv states by using sgx,” in Proceedings of the ACM International Work-
shop on Security in Software Defined Networks & Network Function
Virtualization, pp. 45–48, ACM, 2016.

[21] Y. Yang, H. Jiang, Y. Liang, Y. Wu, Y. Lv, X. Li, and G. Xie, “Isolation
guarantee for efficient virtualized network i/o on cloud platform,”
in Proceedings of the 22nd IEEE International Conference on High
Performance Computing and Communications (HPCC), pp. 344–351,
IEEE, 2020.

[22] QEMU, “QEMU: Open source processor emulator.” https://wiki.qemu.
org/Main Page.

[23] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, pp. 225–230, Dttawa, Dntorio, Canada, 2007.

[24] K. H. anel Bourguiba and G. Pujolle, “Packet aggregation based network
I/O virtualization for cloud computing,” Computer Communications,
vol. 35, no. 3, pp. 309–319, 2012.

[25] L. Rizzo, G. Lettieri, and V. Maffione, “Speeding up packet I/O in
virtual machines,” in Proceedings of the Symposium on Architecture
for Networking and Communications Systems (ANCS), pp. 47–58, IEEE
Computer Society, 2013.

[26] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in Proceed-
ings of the USENIX Annual Technical Conference (ATC), pp. 101–112,
USENIX Association, 2012.

[27] openvswitch document, “Dpdk vhost user ports.” https:
//docs.openvswitch.org/en/latest/topics/dpdk/vhost-user/.

[28] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
in Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pp. 445–458, USENIX Association,
2014.

[29] A. C. Macdonell et al., Shared-memory optimizations for virtual ma-
chines. University of Alberta Edmonton, Canada, 2011.

[30] C. MacDonell, “Nahanni, a shared memory interface for kvm.” http:
//www.linux-kvm.org/images/e/e8/0.11.Nahanni-CamMacdonell.pdf,
2021.

[31] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, pp. 459–473, USENIX Association, 2014.

[32] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proceedings of the IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID), pp. 124–131, IEEE, 2009.

[33] “Open vswitch.” http://www.openvswitch.org/.
[34] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, et al., “The design and
implementation of open vswitch,” in Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pp. 117–130, USENIX Association, 2015.

[35] “Openvswitch CVE vulnerability statistics.” https://www.cvedetails.com/
vendor/12098/Openvswitch.html, 2017.

[36] “CVE-2016-2074.” https://www.cvedetails.com/cve/CVE-2016-2074/,
2016.

[37] S. Sreenivasamurthy and E. L. Miller, “SIVSHM: Secure inter-vm shared
memory,” Tech. Rep. UCSC-SSRC-16-01, University of California,
Santa Cruz, May 2016.

15

[38] Y. Cheng, X. Ding, and R. H. Deng, “DriverGuard: Virtualization-based
fine-grained protection on I/O flows,” ACM Transactions on Information
and System Security (TISSEC), vol. 16, no. 2, p. 6, 2013.

[39] “CVE-2019-14835.” https://www.cvedetails.com/cve/
CVE-2019-14835/, 2019.

[40] Z. Wei, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan, and T. Wood,
“Flurries: Countless fine-grained NFs for flexible per-flow customiza-
tion,” in Proceedings of the 12th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), pp. 3–17, ACM,
2016.

[41] J. V. M. Runkai Yang, Xiaolin Chang and V. B. Misic, “Performance
modeling of linux network system with open vswitch,” Peer Peer Netw.
Appl., vol. 13, no. 1, pp. 151–162, 2020.

[42] “Data plane development kit.” https://www.dpdk.org.
[43] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem,

J. Lawall, G. Muller, and J. Sopena, “The battle of the schedulers:
Freebsd ule vs. linux cfs,” tech. rep., 2018.

[44] Y. Ye, J. Haiyang, W. Yulei, L. Yilong, L. Xing, and X. Gaogang,
“C2QoS: CPU-Cycle based network QoS strategy in vswitch of public
cloud,” in Proceedings of the 17th IFIP/IEEE International Symposium
on Integrated Network Management (IM), pp. 438–444, IFIP/IEEE,
2021.

[45] Y. Yang, H. Jiang, Y. Wu, C. Han, Y. Lv, X. Li, B. Yang, S. Fdida, and
G. Xie, “C2QoS: Network QoS guarantee in vswitch through CPU-cycle
management,” Journal Systems Architecture, vol. 116, p. 102148, 2021.

[46] “Spirent testcenter products.” https://www.spirent.com/products/
testcenter.

[47] S. Bradner, “Benchmarking methodology for network interconnect de-
vices,” RFC2544, 1999.

[48] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy, “Guarantee
IP lookup performance with FIB explosion,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 39–50, ACM, 2014.

[49] “qperf.” https://pkgs.org/download/qperf.
[50] “Nginx.” http://nginx.org/.
[51] “iptables.” https://linux.die.net/man/8/iptables.
[52] W. Wang, “Design of vhost-pci.” http://www.linux-kvm.org/images/5/

55/02x07A-Wei Wang-Design of-Vhost-pci.pdf, 2016.
[53] M. A. E. Jun Nakajima, “Scalable and high-performance virtual

switching using pre-switch.” http://schd.ws/hosted files/ons2016/36/
Nakajima and Ergin PreSwitch final.pdf, 2016.

[54] W. Wang, “Github link of vhost-pci.” https://github.com/wei-w-wang/
vhost-pci, 2017.

[55] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” in Proceedings of the USENIX Annual Technical
Conference (ATC), pp. 15–28, USENIX Association, 2006.

[56] J. R. Santos, Y. Turner, G. J. Janakiraman, and I. Pratt, “Bridging the
gap between software and hardware techniques for i/o virtualization.,”
in Proceedings of the USENIX Annual Technical Conference (ATC),
pp. 29–42, USENIX Association, 2008.

[57] K. K. Ram, J. R. Santos, and Y. Turner, “Redesigning xen’s memory
sharing mechanism for safe and efficient I/O virtualization,” in Pro-
ceedings of the 2nd Conference on I/O Virtualization, pp. 1–1, USENIX
Association, 2010.

[58] D. Wang, B. Hua, L. Lu, H. Zhu, and C. Liang, “Zcopy-vhost: Eliminat-
ing packet copying in virtual network I/O,” in Proceedings of the 42nd
IEEE Conference on Local Computer Networks (LCN), pp. 632–639,
IEEE Computer Society, 2017.

[59] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner, “Hyper-switch:
A scalable software virtual switching architecture,” in Proceedings of
the USENIX Annual Technical Conference (ATC), pp. 13–24, USENIX
Association, 2013.

[60] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), pp. 164–177, ACM, 2003.

[61] “TrustZone.” https://developer.arm.com/technologies/trustzone.
[62] P. Soyeon, L. Sangho, X. Wen, M. Hyungon, and K. Taesoo, “libmpk:

Software abstraction for intel memory protection keys (intel MPK),”
in Proceedings of the USENIX Annual Technical Conference (ATC),
pp. 241–254, USENIX Association, 2019.

[63] W. Tu, Y. Wei, G. Antichi, and B. Pfaff, “revisiting the open vswitch
dataplane ten years later,” in Proceedings of the Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pp. 245–257, ACM, 2021.

