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Abstract: In the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic
reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring
via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in
ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process
remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated
microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-
positive carriers around the centrosome. These long carriers are less prone to reach the Golgi
apparatus, and arrival of anterograde cargoes to the Golgi is decreased upon Arp2/3 inhibition. Our
data suggest that Arp2/3-dependent actin polymerization maintains a stable network of acetylated
microtubules, which ensures efficient cargo trafficking at the late stage of ER to Golgi transport.

Keywords: membrane trafficking; Golgi apparatus; RAB1 GTPase; Arp2/3; microtubules

1. Introduction

The implication of the actin cytoskeleton in the secretory pathway was historically
provided by studies that reported perturbations in the kinetics of secretory protein traffic
by actin toxins such as cytochalasin B, latrunculin and botulinum C2 [1–3]. Later on,
many studies illustrated the presence of actin, actin regulators and effectors in the Golgi
area [4–8]. It is now well established that the actin cytoskeleton plays essential roles
in maintaining the Golgi architecture and supporting post-Golgi transport events. For
instance, we showed that actomyosin contributes to the local rigidity of the Golgi complex
and regulates its mechanics [9]. Actin polymerization, together with myosin motors, exert
forces that actively drive membrane deformation and allow the fission of RAB6 positive
transport carriers from trans-Golgi network (TGN) membranes [10]. Arp2/3-dependent
actin polymerization and myosin 1b have been implicated in the budding of clathrin-
and AP1-dependent carriers from TGN membranes [11–14]. In the pre-Golgi stage of
secretory pathway, WHAMM (WASP homolog-associated protein with actin, membranes
and microtubules) associates with membranes of the endoplasmic reticulum (ER)-Golgi
intermediate compartment (IC) (also called ERGIC) and cis-Golgi membranes. WHAMM is
recruited by RAB1, a small GTPase indispensable for ER-to-Golgi transport [15,16], which
modulates its Arp2/3-dependent actin-nucleation activity [17,18]. Recently, actin filaments
defined by tropomyosin Tpm4.2 have also been involved in ER to Golgi trafficking [19].

The IC/ERGIC compartment is a complex membrane system between ER exit sites
(ERES) and the Golgi complex that spans the entire cytoplasm. It is commonly thought to
emerge through clustering and/or fusion of cargo containing vesicles into vesiculotubular
compartments in the vicinity of ERES [20–29]. Time-lapse imaging revealed the existence
of distinct populations of ERGIC characterized by their protein composition and dynamics.
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Cargo receptors such as p58/ERGIC-53 and the KDEL receptors accumulate in station-
ary ERGIC structures and support post-ER sorting processes [30,31]. RAB1 exhibits an
overlapping distribution with ERGIC-53 but also associates with fast-moving anterograde
transport carriers [32,33]. Anterograde delivery of cargoes from ERES to the Golgi is not
a single-step transport step. Time-lapse imaging of ERGIC-53, RAB1, and cargoes, such
as temperature-sensitive mutant G protein from vesicular stomatitis virus (tsO45-VSV-G)
revealed that dynamic elements move along microtubules in a stop-and-go fashion for long
distances, and stop at multiple stationary elements [30,34–36]. In addition, the microtubule
network has been shown to centralize a population of RAB1-positive (RAB1+) membranes
in a compartment located around the centrosome, referred to as the pericentrosomal IC
(pcIC) [36]. This pericentrosomal domain of the IC communicates with the Golgi apparatus
via tubular and vesicular carriers and is in a close relationship with the endocytic recycling
compartment (ERC) [36–38].

In this study, we sought to gain insight into whether and how Arp2/3-dependent actin
polymerization contributes to the operation of the early secretory pathway. We focused
on different steps of anterograde transport using time-lapse imaging and synchronized
cargo release using the RUSH system [39]. We report that Arp2/3 inhibition affects the
organization of acetylated microtubule network around the Golgi, and increased the accu-
mulation of RAB1+ carriers around the centrosome. This led to decreased cargo transport
to the Golgi apparatus, which suggests that efficient cargo trafficking during the last steps
of ER-to-Golgi transport requires stable microtubule architecture supported by the actin
cytoskeleton.

2. Materials and Methods
2.1. Cell Culture and Transfection

HeLa cells and HeLa cells stably expressing RUSH TNFα constructs (KDEL-Streptavidin
and TNFα-SBP-EGFP) were cultured at 37 ◦C with 5% CO2 in DMEM (Gibco high glucose
GlutaMAX™, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% FCS
(Eurobio, Les Ulis, France) and 1 mM sodium pyruvate (Thermo Fisher Scientific).

Transfections with DNA plasmids of GFP-RAB1A (gift from Dr. Jaakko Saraste,
University of Bergen, Bergen, Norway), mCherry-tubulin, and Centrin1-mCherry (gift
from Dr. Manuel Théry, University of Paris, Paris, France) were performed using X-
tremeGENE™ 9 (Roche, Basel, Switzerland) according to manufacturer’s instructions
for 14–24 h. RUSH mannosidase II (ManII) constructs (Ii-Streptavidin and ManII-SBP-
EGFP, gift from Dr. Gaelle Boncompain, Institut Curie, Paris, France) were transfected as
previously described [39].

2.2. Chemical Treatment and Immunofluorescence

Cells were transferred to medium containing 25 mM HEPES and maintained at 37 ◦C
for at least 1 h prior to chemical treatment. They were then treated at 37 ◦C with reagents
indicated in the figure at following concentrations: 0.1% DMSO, 100 µM CK-666 (Sigma-
Aldrich, St. Louis, MO, USA), 100 µM CK-689 (Millipore, Burlington, MA, USA), 2 µM
Tubacin (Sigma-Aldrich). For CK-666 washout experiments, treated cells were transferred
to fresh full medium at 37 ◦C.

For synchronized cargo release experiments, cells expressing RUSH constructs were
treated with DMSO or CK-666 for 30 min at 37 ◦C, followed by addition of biotin at a final
concentration of 40 µM. After 30 min, cells were fixed as described below.

For microtubule depolymerization, cells transfected with RUSH ManII constructs were
maintained at 4 ◦C for 1.5 h and subsequently transferred to 37 ◦C medium containing
10 µM nocodazole. After 30 min, CK-666 or DMSO were added to the medium and
incubated for 30 min, and finally biotin was added 30 min prior to fixation.

All cells were chemically fixed with 4% paraformaldehyde (Electron Microscopy Sci-
ences, Hatfield, PA, USA) in NaHCa buffer (100 mM NaCl, 30 mM HEPES, and 2 mM
CaCl2, pH 7.4) for 20–40 min at room temperature. For tubulin immunolabeling, cells
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were fixed and permeabilized with 100% methanol at −20 ◦C for 6 min. Fixed cells were
washed with PBS, permeabilized with 0.05% saponin or 0.1% TritonX-100 for 15 min and
incubated 1 h with primary antibodies against acetylated tubulin (clone 6-11B-1, Sigma-
Aldrich), ERGIC-53 (a gift from Dr. Jaakko Saraste), Υ-tubulin (a gift from Dr. Michel
Bornens, Institut Curie, Paris, France), GMAP210 (a gift from Dr. Rosa Rios, Universidad de
Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain), giantin (Recombinant Antibody
Platform, Institut Curie, Paris, France), GM130 (610823, BD Biosciences, Lake Franklin, NJ,
USA), mannosidase IA2 (HPA034559, Sigma-Aldrich), mannosidase II (AB3712, Millipore),
RAB1:GTP (Recombinant Antibody Platform, Institut Curie), RAB6:GTP (clone AA2, Adi-
poGen, San Diego, CA, USA), and TGN46 (AbD Serotec AHP500, BioRad, Hercules, CA,
USA). Cells were then incubated 45 min with Alexa Fluor secondary antibodies (Jackson
ImmunoResearch Laboratory, West Grove, PA, USA). Immunostained cells were imaged
with a Nikon Inverted Eclipse Ti-E (Nikon, Tokyo, Japan) with a CSU-X1 spinning disk
confocal unit (Yokogawa, Tokyo, Japan) equipped with a CoolSNAP HQ2 CCD camera
(Photometrics, Tucson, AZ, USA) using CFI Plan Apo VC 60×/1.40 objective or with a
Prime95B Scientific CMOS camera (Photometrics) using CFI Plan Apo 100×/1.40 objective.

2.3. Image Analysis of Chemically Fixed Cells

All images were processed and analyzed using ImageJ (U.S. National Institutes of
Health, Bethesda, MD, USA). All intensity quantifications were performed after subtracting
background intensity.

To estimate ManII-EGFP arrival to the Golgi after cargo release, percentage of EGFP
intensity in the Golgi region was quantified. Cells transfected with RUSH constructs were
fixed 30 min after cargo release and immunolabeled using Giantin and GM130 antibodies.
Confocal Z-stacks were obtained at 0.3 µm step-size and sum intensity projections were
obtained for each channel. The Golgi region was manually selected using Giantin or
GM130 (excluding the tubular elements) labeling, and EGFP intensity in the Golgi region
was quantified. Total EGFP intensity of a cell was quantified within the cell area manually
defined from bright field images.

To estimate the acetylated tubulin level per cell, total intensity of anti-acetylated
tubulin signal in each cell was quantified from sum intensity projections of confocal Z-
stacks obtained at 0.3 µm step-size, and normalized to cell area estimated from Z projection.

2.4. Live-Cell Imaging and Analysis

Cells were cultured and transfected in phenol red-free medium and imaged at 37 ◦C
in a 5% CO2 and humidified air chamber. Time-lapse imaging was performed with a Nikon
Inverted Eclipse Ti-E with a Yokogawa CSU-X1 Spinning disk confocal unit equipped with a
Prime95B Scientific CMOS camera (Photometrics) using CFI Plan Apo 100×/1.40 objective.
Basal side of cells were imaged in all experiments.

The length of tubular GFP-RAB1+ elements before and after CK-666 addition (Figure 3B)
were compared using time-lapse recording of a same cell. Motile tubular RAB1 elements
were manually selected from equal number of frames from recordings before and 10–30 min
after the addition of CK-666 and their length was quantified. To obtain relative distance of
the selected RAB1 element from the Golgi (Figure 3C), a line between centroid of the Golgi
and centroid of a RAB1 element was extended to the cell edge. Ratio of distance between
the Golgi and RAB1 to the distance between the Golgi and cell edge was defined as relative
distance and plotted against length of each carrier.

To obtain length of TNFα-containing carriers during ER-to-Golgi transport, cells stably
expressing RUSH TNFα constructs were treated with DMSO or CK-666 for 30 min prior
to biotin addition. Confocal time-lapse imaging at 0.2 s/frame started ~2 min after cargo
release. Length TNFα tubules were quantified from frames at 3 and 4 min after cargo
release (Figure 5C). To obtain length of nascent TNFα carriers, stationary globular elements
were chosen, and their length were measured from ≥3 consecutive frames after the onset
of directional movement. The average value was used as length.
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2.5. RAB1 Tracking

GFP-RAB1+ elements were manually tracked in the time lapse recordings obtained at
0.2 s/frame using the frames corresponding to 15–23 min after DMSO or CK-666 addition.
RAB1 elements undergoing directional movement for at least ≥25 frames (5 s) were chosen,
and tracking was performed using Manual Tracking plugin in ImageJ (https://biii.eu/
manual-tracking-imagej (accessed on 3 May 2021)). During the ≥5 s tracking, RAB1+
elements moved in stop-and-go fashion. In our recordings, stationary globular RAB1+
elements exhibited saltatory movement at a speed up to 0.11 µm/frame, and therefore
frames scored >0.11 µm/frame was defined as motile and otherwise as pause. Speed of
individual RAB1+ element was determined from the mean value of all the ‘motile’ frames.
To estimate how much RAB1+ carriers approached the destination, the Golgi, net movement
of individual RAB1+ element to the Golgi centroid during 4-s tracking was calculated using
manual tracking data.

2.6. Statistics

Data were statistically analyzed using GraphPad Prism (GraphPad Software; La Jolla,
CA, USA). Data distributions were assumed to be normal for the following tests: unpaired t
test with Welch’s correction for Figures 1B and 4C and Supplementary Figure S2B; one-way
ANOVA Tukey’s multiple comparisons test for Supplementary Figure S1B and Figure 7E;
and unpaired t test with or without Welch’s correction for Figure 4F,I. Data distribution
was assessed by D’Agostino and Pearson test for the following tests. Mann Whitney test
for Figures 3B, 5B,D,F, and 7B; and unpaired t test for Figures 3B and 6B. To assess the
relationship between two variables, Spearman’s correlation test was used for Figure 3C,
and simple linear regression for Figure 4. n.s., not significant; *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001.

3. Results
3.1. Arp2/3 Inhibition Induces an Accumulation of RAB1+ Tubules around the Centrosome

To investigate the role of Arp2/3-dependent actin polymerization in the early secretory
pathway, we first examined the morphology of the RAB1+ compartment in fixed HeLa cells
treated with the Arp2/3 inhibitor CK-666. As shown in Figure 1A, CK-666 induced the ap-
pearance of long endogenous RAB1:GTP+ tubular structures containing the cis-Golgi matrix
protein GM130. In control cells, RAB1+ elements can display a tubular aspect but over 95%
of the tubules were less than 2.6 µm in length (Supplementary Figure S1A). We thus counted
cells that contain tubules of ≥2.6 µm in CK-666-treated cells. As shown in Figure 1B, this
was the case for about 50% of cells. Long tubules were not observed when cells were
incubated with the inactive analog of CK-666, CK-689 (Supplementary Figure S1B). The
CK-666 effect was also reversible as the tubular structures disappeared 30 min after removal
of the drug (Supplementary Figure S1C; Supplementary Video S5).

In addition to RAB1, the GM130+ long tubular structures contained the cis-golgin
GMAP-210 (Figure 1C). ERGIC-53 was also found in these structures but colocalization
between ERGIC-53 and GMAP-210 was only partial, suggesting that only part of the IC is
affected by CK-666 treatment (Supplementary Figure S1D). On the other hand, the CK-666
induced tubules did not contain the Golgi enzymes mannosidase I and II, nor the medial
Golgi matrix protein giantin (Figure 1C). We noticed that CK-666 also induces a tubulation
of TGN membranes defined by RAB6 and TGN-46. However, they are likely of different
origin as RAB6+ and TGN-46+ tubules do not contain GM130 (Figure 1C). This effect of
CK-666 on TGN membranes was not investigated further in this study.

https://biii.eu/manual-tracking-imagej
https://biii.eu/manual-tracking-imagej
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Figure 1. Arp2/3 inhibition induces an accumulation of GM130+ and RAB1+ membrane tubules. (A) 
HeLa cells treated with DMSO or CK-666 were fixed and immunolabeled with anti-GM130 and anti-
RAB1:GTP antibodies. Maximum projections of confocal slices around the Golgi are shown. Scale 
bar: 10 µm. (B) Percentage of cells containing long GM130+ tubules. Raw data and mean ± SD are 
indicated (DMSO, n = 542; CK-666, n = 714 cells); **** p < 0.0001. (C) HeLa cells co-labeled with 
antibody against GM130 and antibodies against markers of cis-, medial, trans-Golgi, and TGN. Max-
imum projections of confocal slices around the Golgi are shown. Scale bar: 10 µm. 

Figure 1. Arp2/3 inhibition induces an accumulation of GM130+ and RAB1+ membrane tubules.
(A) HeLa cells treated with DMSO or CK-666 were fixed and immunolabeled with anti-GM130 and
anti-RAB1:GTP antibodies. Maximum projections of confocal slices around the Golgi are shown.
Scale bar: 10 µm. (B) Percentage of cells containing long GM130+ tubules. Raw data and mean ± SD
are indicated (DMSO, n = 542; CK-666, n = 714 cells); **** p < 0.0001. (C) HeLa cells co-labeled
with antibody against GM130 and antibodies against markers of cis-, medial, trans-Golgi, and TGN.
Maximum projections of confocal slices around the Golgi are shown. Scale bar: 10 µm.
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We next investigated the position of the RAB1/GM130+ long tubules in relation to
that of the centrosome. Cells were divided into two populations, one (population A) in
which the centrosome (labelled with γ-tubulin) is embedded or closely affixed to Golgi
membranes (labelled with GM130), and the other (population B) where the centrosome is
localized away from Golgi membranes (Figure 2) [36]. The treatment with CK-666 did not
change the relative percentage of each population (Supplementary Figure S2A). Very few
RAB1/GM130+ long tubules were observed in control cells from population A (Figure 2A).
After treatment with CK-666, they were observed in about 40% of cells (Figure 2B, Supple-
mentary Figure S2B), a value close to the one found above (Figure 1B), consistent with the
fact that the vast majority of cells belongs to population A. The majority of cells in popula-
tion B already displayed long GM130+ tubules before treatment with CK-666 (Figure 2A,
Supplementary Figure S2B). This percentage slightly increased after addition of the drug,
and the majority of cells now showed prominent accumulation of RAB1/GM130+ long
tubules around the centrosome (Figure 2B, Supplementary Figure S3B).
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GM130 and anti-γ-tubulin antibodies. Maximum projections of confocal slices around the Golgi 
from representative examples are shown. Scale bar: 10 µm. 
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steady state, GFP-RAB1A+ membranes appeared as dynamic pleomorphic structures 
(vesicles and short tubules) animated by bidirectional movement but with a tendency to 
move from the periphery to the cell center (Figure 3A; Supplementary Videos S1 and S2). 
Their average length was comparable to that found in DMSO-treated fixed cells (Supple-
mentary Figure S1A). Following addition of CK-666, long GFP-RAB1A+ tubules started to 
appear around the Golgi and the centrosome after 10–15 min (Figure 3A,B,D; Supplemen-
tary Videos S1–S3). We quantified the length of GFP-RAB1+ tubules as a function of their 
position relative to Golgi membranes and the cell edge. As shown in Figure 3C, the longest 
ones appeared to be more concentrated in the cell center. 

Figure 2. Emergence of CK-666-induced membrane tubules occurring around the centrosome. Cells
were divided into two populations (A,B) based on the position of the centrosome relative to Golgi
membranes. Cells treated with DMSO (A) or CK-666 (B) were fixed and immunolabeled with anti-
GM130 and anti-γ-tubulin antibodies. Maximum projections of confocal slices around the Golgi from
representative examples are shown. Scale bar: 10 µm.

The above results suggest that CK-666-induced tubulation mainly takes place around
the centrosome in the pcIC compartment. The lower percentage of tubules observed in
population A is likely due to the difficulty of visualizing tubules when they are hidden by
Golgi membranes.

3.2. Arp2/3 Inhibition Increases the Length of GFP-RAB1A+ Tubules at the Cell Center

To characterize the nature of the pericentrosomal RAB1+ tubules induced by Arp2/3
inhibition, we investigated their dynamics by time-lapse video-microscopy. Experiments
were performed in cells expressing low levels of GFP-RAB1A in which GFP-RAB1A+ struc-
tures resembled those stained with the anti-RAB1:GTP antibody (endogenous RAB1). We
first monitored changes in GFP-RAB1A before and after CK-666 addition. At steady state,
GFP-RAB1A+ membranes appeared as dynamic pleomorphic structures (vesicles and short
tubules) animated by bidirectional movement but with a tendency to move from the periph-
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ery to the cell center (Figure 3A; Supplementary Videos S1 and S2). Their average length
was comparable to that found in DMSO-treated fixed cells (Supplementary Figure S1A).
Following addition of CK-666, long GFP-RAB1A+ tubules started to appear around the
Golgi and the centrosome after 10–15 min (Figure 3A,B,D; Supplementary Videos S1–S3).
We quantified the length of GFP-RAB1+ tubules as a function of their position relative to
Golgi membranes and the cell edge. As shown in Figure 3C, the longest ones appeared to
be more concentrated in the cell center.
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Scale bar: 5 µm. (B) Quantification of the length of mobile GFP-RAB1+ tubules before and 10–30 min 
after the addition of CK-666. Violin plots of raw data (DMSO, n = 768; CK-666, n = 1002) from four 
cells are indicated with median and quartiles (lines). Mean (dots) and p values of individual cell are 
shown. **** p < 0.0001. (C) Length of GFP-RAB1+ tubules quantified in (B) plotted against their rel-
ative distance from the Golgi. Relative distance = distance (Golgi membranes–RAB1)/distance (Golgi 
membranes–cell edge). (D,E) HeLa cells expressing GFP-RAB1 together with centrin1-mCherry (D) 
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Dynamic GFP-RAB1+ tubules aligned along microtubules and showed extension/re-
traction movements (Figure 3E; Supplementary Video S4). Upon removal of CK-666, they 
continued to show bidirectional movements around the Golgi apparatus but progres-
sively disappeared (Supplementary Video S5). 

3.3. The Length of RAB1+ Tubules Correlates with Their Speed and Ability to Move towards the 
Golgi Apparatus 

Figure 3. Arp2/3 inhibition increases the length of GFP-RAB1+ tubules at the cell center.
(A–C) Length and position of GFP-RAB1+ tubules were monitored in GFP-RAB1 expressing HeLa
cells before and after the addition of CK-666 by live-cell confocal microscopy. (A) Long GFP-RAB1+
tubules appear at the cell center after incubation with CK-666. GFP-RAB1+ tubules in the Golgi area
of the same cell are shown from time-lapse recordings before and 20 min after CK-666 addition; Scale
bar: 5 µm. (B) Quantification of the length of mobile GFP-RAB1+ tubules before and 10–30 min after
the addition of CK-666. Violin plots of raw data (DMSO, n = 768; CK-666, n = 1002) from four cells are
indicated with median and quartiles (lines). Mean (dots) and p values of individual cell are shown.
**** p < 0.0001. (C) Length of GFP-RAB1+ tubules quantified in (B) plotted against their relative
distance from the Golgi. Relative distance = distance (Golgi membranes–RAB1)/distance (Golgi
membranes–cell edge). (D,E) HeLa cells expressing GFP-RAB1 together with centrin1-mCherry
(D) or mCherry-tubulin (E) in the presence of CK-666; Scale bar: 10 µm.
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Dynamic GFP-RAB1+ tubules aligned along microtubules and showed extension/
retraction movements (Figure 3E; Supplementary Video S4). Upon removal of CK-666, they
continued to show bidirectional movements around the Golgi apparatus but progressively
disappeared (Supplementary Video S5).

3.3. The Length of RAB1+ Tubules Correlates with Their Speed and Ability to Move towards the
Golgi Apparatus

We then investigated the relationship between the length of RAB1+ tubules and their
speed using fast imaging (0.2 s intervals). We selected GFP-RAB1+ elements exhibiting
directional movement for 4 s or longer and tracked them manually. The mean speed of
short (<2.6 µm) or long (≥2.6 µm) tubules did not change after incubation with CK-666
(Figure 4B). However, the speed of long tubules was significantly lower than that of short
tubules. This was confirmed by plotting the speed against length, which showed a negative
correlation between the two parameters (Figure 4A,B).

We also evaluated whether a correlation exists between the tubule length and their
ability to move towards the Golgi. For this purpose, we measured the distance between
RAB1+ tubules and Golgi membranes at the beginning and the end of the 4-s tracking
period. As shown in Figure 4D, no correlation between tubule length and the distance
to Golgi membranes was found in control cells. In contrast, a negative correlation was
found in cells treated with CK-666. Finally, we investigated whether Arp2/3 inhibition
affects the stop-and-go movement characteristic of anterograde carriers moving to the
Golgi apparatus [30,40,41]. The percentage of GFP-RAB1+ tubules undergoing pause
events during the tracking period was found to be the same in DMSO and CK-666 treated
cells (Figure 4G,I).

Altogether, the above results suggest that the long CK-666 induced GFP-RAB1+
tubules are less motile and less prone to reach the Golgi membranes than the shorter
ones.

3.4. Arp2/3 Inhibition Decreases the Rate of Cargo Arrival to the Golgi Apparatus without
Affecting the Early Stages of ER-to-Golgi Transport

To investigate the effect of CK-666 on transport, we followed α-mannosidase II (ManII)
coupled to GFP using the RUSH system, which allows to synchronize cargo exit from
the ER [39]. As shown in Supplementary Video S6, the addition of biotin to the culture
medium released GFP-ManII from the ER, which then reached the Golgi complex. In the
majority of control cells, the GFP signal peaked at the Golgi within 30 min after cargo
release. CK-666, added at the same time than biotin, induced the appearance in the Golgi
region of tubular structures containing GFP-ManII and GM130 (Figure 5A). These tubules
were then progressively incorporated into the Golgi membranes (Supplementary Video S6).
The quantification 30 min after biotin addition of the GFP signal in the Golgi region of
CK-666 treated cells showed that the drug inhibits by 25% the Golgi arrival of GFP-ManII
(Figure 5B).

The length of transport carriers was studied using another cargo, TNFα. As for ManII,
CK-666 induced the appearance of long GFP-TNFα tubules in the Golgi region (Figure 5C,D;
Supplementary Video S7). As previously described [28], RAB1 overlapped with the cargo-
containing tubules (Supplementary Figure S3) indicating that RAB1 tubules correspond to
transport intermediates moving from the ERES toward the Golgi. To investigate the effect of
CK-666 at the early stages of ER-to-Golgi transport, cells were recorded at 0.2 s/frame after
the addition of biotin. As shown in Supplementary Video S8, TNFα was observed in vesicles
or very short tubules moving rapidly towards the cell center that likely represent nascent
TNFα carriers. The addition of CK-666 did not significantly modify their morphology
(Figure 5E,F), suggesting that the drug did not affect the early stage of ER-Golgi transport.
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Figure 4. Tracking of GFP-RAB1+ tubules during directional movement from time-lapse confocal
microscopy. Four cells were recorded. (A,B) Mean speed of individual GFP-RAB1+ element during
the entire tracking was quantified and plotted against its length; mean ± SD and linear regression
lines are indicated. (C) Mean speed values obtained in (A,B) are shown for short (<2.6 µm) and
long (≥2.6 µm) GFP-RAB1+ tubules; the lines indicate mean ± SD of speed. (D,E) Distances that
individual RAB1+ structure travels towards or away from Golgi membranes during 4-s tracking
plotted against its length. Positive and negative values indicate that RAB1–Golgi distance decreases
or increases, respectively, after 4-s. Raw data and linear regression lines are indicated. (F) Results
categorized in a same manner as (C). (G,H) Pause was defined as frames ≤ 0.55 µm/s and fraction
of pause during 4-s tracking was plotted against carrier length; raw data and linear regression
lines are indicated. (I) Result categorized in a same manner as (C). n.s. not significant; ** p < 0.01;
**** p < 0.0001.
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Figure 5. Arp2/3 inhibition impairs ER-to-Golgi transport. (A) HeLa cells expressing ManII-SBP-
EGFP were incubated with CK-666 and biotin to induce cargo release; after 30 min, cells were
fixed and immunolabeled; maximum projection of a confocal stack is shown. Scale bar: 10 µm.
(B) Percentage of ManII-SBP-EGFP intensity in the Golgi at 30 min after biotin addition; CK-666
plot shows data of cells that contain long GM130+ tubules; raw data and mean ± SD from three
independent experiments are indicated. (C) Representative images of time-lapse recordings of TNFα-
SBP-EGFP expressing HeLa cells after biotin addition. Scale bar: 10 µm. (D) Length of TNFα- positive
tubules quantified in time-lapse recordings of DMSO- or CK-666-treated cells after biotin addition;
raw data and mean ± SD from three independent experiments are indicated. (E) Onset of directional
movement of TNFα-positive elements captured by confocal microscopy; stationary TNFα+ punctae
(circled) release nascent TNFα carriers (arrowheads); time after biotin addition is indicated in each
frame. Scale bar: 1 µm. (F) Length of nascent TNFα+ carriers quantified in time-lapse recordings of
DMSO- or CK-666-treated cells; raw data and mean ± SD from three independent experiments are
indicated. n.s. not significant; **** p < 0.0001.
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To further investigate the effect of Arp2/3 inhibition, we measured cargo transport in
the absence of microtubules. Microtubules were depolymerized by incubating cells at 4 ◦C
followed by nocodazole treatment [42]. In the absence of microtubules, Golgi membranes
redistribute to ERES but remain competent for transport [43,44]. Accordingly, GFP-ManII
can reach the redistributed Golgi elements following its release from the ER after biotin
addition (Figure 6A). The incubation of nocodazole-treated cells with CK-666 did not affect
ManII transport to the Golgi membranes, a slight increase in its transport kinetics being
even observed (Figure 6B). In addition, no tubular elements containing GFP-ManII and
stained for GM130 were observed.

3.5. Arp2/3 Inhibition Affects Acetylated Microtubule Network around the Golgi Apparatus

Altogether, the above results suggest that CK-666 affects ER-to-Golgi trafficking
around the Golgi in a microtubule-dependent manner. We thus investigated the orga-
nization of the microtubule network in the Golgi area of drug-treated cells. It is known
that microtubules in this region are highly acetylated [45–47]. Consistently, we observed a
dense network of acetylated microtubules around the Golgi in control cells. In contrast,
this network was less dense in CK-666-treated cells (Figure 7A,C), reflecting a decrease
in the total amount of acetylated tubulin (Figure 7B). It was recently reported that CK-
666 induces histone deacetylase 6 (HDAC6)-dependent tubulin deacetylation, possibly
by modulating the available pool of HDAC6 for tubulin [48]. We thus reasoned that the
HDAC6 inhibitor tubacin could abolish the effect of CK-666 on membrane tubulation. This
was indeed the case as no tubular structures positive for GM130 were observed in cells
incubated with both tubacin and CK-666 that now showed dense and uniform acetylated
microtubule throughout the cytoplasm (Figure 7D,E). This suggests that the accumulation
of long RAB1/GM130+ tubules induced by CK-666 is directly linked to a decreased level of
acetylated tubulin in the Golgi area.
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(A) HeLa cells expressing ManII-SBP-EGFP RUSH constructs were incubated in the presence of
nocodazole at 4 ◦C, and then treated with DMSO or CK-666 prior to cargo release. 30 min after
addition of biotin, cells were fixed and immunolabeled. Maximum projections of confocal stacks are
shown. (B) Percentage of ManII-SBP-EGFP in the dispersed Golgi is shown as relative value. Raw
data and mean ± SD from two independent experiments are indicated. * p < 0.05.
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Figure 7. Arp2/3 inhibition induces loss of acetylated microtubules. (A) Maximum projection of
confocal stacks of HeLa cells treated with DMSO or CK-666 immunolabeled with anti-acetylated
tubulin and anti-GMAP210 antibodies; scale bar: 10 µm. (B) Total acetylated tubulin intensity
normalized by cell area measured is shown as relative value to the mean value of the DMSO control.
Raw data and mean ± SD from two independent experiments are indicated. (C) Confocal images
of the centrosome and the Golgi region in CK-666-treated cells. Scale bar: 5 µm. (D) Maximum
projection of confocal stacks of HeLa cells treated with DMSO, CK-666, tubacin or a mixture of both
immunolabeled with anti-GM130 antibody. Inset shows GMAP210 signal at basal side of each cell.
Scale bar: 10 µm. (E) Percentage of cells containing long GM130+ tubules. Raw data and mean ± SD
from three independent experiments are indicated (DMSO, n = 298; CK-666, n = 415; tubacin, n = 312;
tubacin + CK-666, n = 185 cells). ** p < 0.01; **** p < 0.0001.

4. Discussion

ER-to-Golgi transport is thought to occur in two main steps: the formation of mem-
brane carriers, which repeatedly emerge at (or in the vicinity of) the ERES and move toward
the IC/ERGIC compartment; and the movement of cargoes from the IC/ERGIC compart-
ment to cis-Golgi membranes. Whether the IC/ERGIC is a stable or transient compartment
is still a matter of debate [38]. We showed that CK-666 induced the tubulation of RAB1+
positive structures only in the vicinity of the Golgi complex. In addition, the drug does not
alter the morphology of transport carriers containing TNFα, which emerge from the ERES
and continue to move towards the cell center. This suggests that unlike in the formation of
transport carriers from Golgi/TGN or endosomal membranes [10,12–14,49–52], the actin
cytoskeleton does not constitute a major driving force for membrane deformation in the
early secretory pathway.

A main finding of this study is that acute Arp2/3 inhibition impacts the ER-Golgi
transport through loss of acetylated microtubule network organized around the Golgi
complex. The Golgi complex is a microtubule organizing center [46] which nucleates
and stabilizes microtubules at both its cis and trans sides [47,53–55]. At TGN membranes,
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microtubules are nucleated via the microtubule plus-end tracking proteins, CLASPs and
the golgin GCC185 [56]. At the cis side of the Golgi complex, the nucleation machinery
involves AKAP450 and GM130 and loss of AKAP450 greatly reduces acetylated micro-
tubules and impairs directional cell migration and ciliogenesis [47,57]. Unlike TGN-derived
microtubules, which are connected to specific domains of the plasma membrane, including
focal adhesions, and sustain polarized secretion of post-Golgi carriers [58,59], the role of
cis-Golgi-nucleated microtubules in intracellular trafficking has not been established. Based
on our results, we propose that acetylated microtubules assure transport efficiency in the
late stages of ER-to-Golgi transport between IC/ERGIC and cis-Golgi membranes, and
specifically between the pcIC and the Golgi apparatus. However, we do not exclude the
possibility that retrograde transport between Golgi and ER is also perturbed by Arp2/3
inhibition. For instance, impaired recycling of components such as SNAREs required for
the fusion of anterograde transport with cis-Golgi membranes could lead to the appearance
of membrane tubules. Protein kinase A (PKA) activity was also shown to be required for
fission and fusion of Golgi-to-ER retrograde tubules [60]. However, such tubules contain
Giantin and Golgi resident enzymes, which was not observed following Arp2/3 inhibition.

Increased binding in vitro of kinesin-1/KIF5-B and dynein to acetylated microtubules
has been documented [61,62]. In vivo, tubacin treatment of hippocampal neurons enhances
anterograde transport to neurite tips of the kinesin-1 cargo protein JIP-1 [61]. In cortical
neurons, microtubule acetylation stimulates both anterograde and retrograde transport
of BDNF (brain-derived neurotrophic factor)-containing vesicles [62]. This suggests that
in the vicinity of the Golgi complex, acetylated microtubules are preferentially used by
transport vesicles moving toward both + and − ends of microtubules. Both kinesins
(kinesin-1 and 2) and dynein are present at the IC/ERGIC [34,41,63–65]. Thus, a decrease
in tubulin acetylation could thus affect bi-directional movement of RAB1+ positive carriers
between IC/ERGIC and cis-Golgi membranes. Long-lived mechanically stable acetylated
microtubules [66–68] may be important in sustaining stable transport tracks in the region
where multiple transport pathways converge. Interestingly, we found that the speed of
long RAB1+ tubules was significantly lower than that of short tubules. This suggest that
the formation of membrane tubules could be the reflection of a traffic “jam” caused by the
disappearance of acetylated microtubules preferentially used for transport. We provide
evidence in this study that anterograde transport is affected; however, it remains to be
investigated whether retrograde transport between Golgi and the ER is also affected.

The centrosome was recently shown to be able to promote Arp2/3-dependent actin
filament assembly [69]. In addition, actin filaments can regulate microtubule growth at
the centrosome [70]. This suggests that microtubule and actin assembly are functionally
co-regulated in the pericentrosomal region of the cells. Our results illustrate that such
an interplay between the actin and microtubule cytoskeleton is important for ensuring
efficient cargo trafficking at the late stage of ER-to-Golgi transport.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11010015/s1, Figure S1: Effects of CK-666, CK-689 and drug washout on GM130+
membranes.; Figure S2: The emergence of membrane tubules is related to centrosome position.;
Figure S3: RAB1 overlaps with cargo-containing tubules.; Videos S1 and S2: Arp2/3 inhibition
increases the length of GFP-RAB1+ tubules.; Video S3: Long GFP-RAB1+ tubules appear around the
Golgi and the centrosome.; Video S4: Dynamic GFP-RAB1+ tubules aligned along microtubules.;
Video S5: GFP-RAB1+ tubular structures disappear after CK-666 washout.; Video S6: ManII-SBP-
EGFP release after biotin addition.; Video S7: TNFα-SBP-EGFP release after biotin addition.; Video S8:
Movement of nascent TNFα carriers.
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