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ABSTRACT
Polynomial matrices and ideals generated by their minors appear
in various domains such as cryptography, polynomial optimization
and effective algebraic geometry. When the given matrix is symmet-
ric, this additional structure on top of the determinantal structure,
affects computations on the derived ideals. Thus, understanding
the complexity of these computations is important. Moreover, this
study serves as a stepping stone towards further understanding the
effects of structure in determinantal systems, such as those coming
from moment matrices. In this paper, we focus on the Sparse-FGLM
algorithm, the state-of-the-art for changing ordering of Gröbner
bases of zero-dimensional ideals. Under a variant of Fröberg’s con-
jecture, we study its complexity for symmetric determinantal ideals
and identify the gain of exploiting sparsity in the Sparse-FGLM
algorithm compared with the classical FGLM algorithm. For an
𝑛 × 𝑛 symmetric matrix with polynomial entries of degree 𝑑 , we
show that the complexity of Sparse-FGLM for zero-dimensional de-
terminantal ideals obtained from this matrix over that of the FGLM
algorithm is at least 𝑂 (1/𝑑). Moreover, for some specific sizes of
minors, we prove finer results of at least 𝑂 (1/𝑛𝑑) and 𝑂 (1/𝑛3𝑑).
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1 INTRODUCTION
Let K be a field of characteristic 0 and K denote its algebraic clo-
sure. We consider a set of variables 𝒙 = (𝑥1, . . . , 𝑥𝑘 ) and an 𝑛 × 𝑛

symmetric matrix 𝑆 = (𝑓𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 where 𝑓𝑖, 𝑗 ∈ K[𝑥1, . . . , 𝑥𝑘 ] and
𝑓𝑖, 𝑗 = 𝑓𝑗,𝑖 . Given 𝑟 ∈ N, the ideal generated by all (𝑟 + 1)-minors of
𝑆 defines an algebraic subset of K𝑘 at which 𝑆 has rank at most 𝑟 .
We call such an ideal a symmetric determinantal ideal.

Polynomial matrices with special structures such as those above
appear frequently in computer algebra. For example, determinantal
ideals arise in cryptography especially through the Min-Rank prob-
lem (see e.g. [30]). Additionally, critical point methods in effective
algebraic geometry often lead to polynomial systems defined by
minors of Jacobian matrices. Symbolic computation based methods
for semi-definite programming, such as in [20–22, 28], lead to the
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study of rank defects of polynomial matrices, including symmetric
and Hankel ones. In [25, 26], an algorithm for solving paramet-
ric polynomial systems is developed based on parametric Hermite
matrices which are symmetric matrices that encode the numbers
of real/complex solutions to zero-dimensional parametric systems.
Determinantal ideals obtained from those Hermite matrices define
algebraic sets such that the parametric system under study has at
most a given number of distinct complex solutions.

Thus, a task of great importance in the aforementioned works is
to handle computations involving determinantal ideals efficiently
and to understand the complexity of those computations. The Gröb-
ner basis method for computing with ideals is commonly used. The
most efficient Gröbner basis algorithms include the F4/F5 [14, 15],
FGLM [18] and Sparse-FGLM [19] algorithms. In this paper, we
study the complexity of the Sparse-FGLM algorithm [19] on zero-
dimensional ideals generated by minors of symmetric polynomial
matrices. Our main objective is to provide finer complexity esti-
mates for these algorithms on special determinantal ideals com-
pared to already known general complexity results.

Related works. Ideals generated by minors of a matrix whose en-
tries are variables are studied intensively in commutative algebra.
A popular technique in this subject is to use the theory of Gröbner
bases to associate initial ideals of determinantal ideals (w.r.t. a suit-
able ordering) to simplicial complexes. This allows one to make a
connection between determinantal ideals with combinatorial ob-
jects and establish many results using the Stanley-Reisner rings of
those simplicial complexes (see e.g [6, 7, 9, 10, 32]).

In this paper, we aremore interested in the computational aspects
that arise when one considers matrices whose entries are multivari-
ate polynomials. Computing with determinantal ideals generated
by minors of these matrices gives rise to the question of estimating
the complexity of Gröbner basis algorithms, e.g., F4/F5 [14, 15] and
FGLM-like [18, 19] algorithms, to this class of ideals.

Previous works on the complexity of these algorithms depend on
some regularity properties as well as some quantities of the given
ideal that can be read from its Hilbert series. It is well-known that
the practical behavior of Gröbner basis computation depends on the
choice of monomial ordering. While Gröbner bases of lexicographi-
cal orderings provides many information on the solutions to a given
system, algorithms like F4/F5 operate more efficiently for comput-
ing Gröbner bases w.r.t. graded reversed lexicographic (grevlex)
orderings. Hence, a popular strategy for computing lexicographic
Gröbner bases is to start with an easy ordering such as grevlex
and then to apply a change of ordering algorithm. For this second
step, the FGLM algorithm [18] can be used in the zero-dimensional
case. Given a zero-dimensional ideal 𝐼 ⊂ K[𝑥1, . . . , 𝑥𝑘 ] of degree 𝐷 ,
the classical FGLM algorithm is based on linear algebra operations
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in K[𝑥1, . . . , 𝑥𝑘 ]/𝐼 which has the structure of a K-vector space of
dimension 𝐷 . This leads to a complexity of 𝑂 (𝑘𝐷3). However, the
matrices representing linear maps of multiplication in the quotient
ring used by the FGLM algorithm are sparse. In particular, the ma-
jority of the columns of the multiplication matrix 𝑇𝑥𝑘 associated to
the least variable 𝑥𝑘 contain only one entry while the rest are dense.
An improved variant of the FGLM algorithm that exploits this spar-
sity pattern was designed in [19] to obtain a more efficient change
of ordering algorithm with better complexity results. With 𝑁 the
number of non-zero entries of𝑇𝑥𝑘 , the authors of [19] prove, under
some genericity assumptions, the complexity𝑂 (𝑁𝐷 +𝑘𝐷 log(𝐷)2).
Due to the structure of this multiplication matrix, one can bound 𝑁
by𝑚𝐷 , where𝑚 is its number of dense columns. When the input
zero-dimensional system is generic, an asymptotic bound for𝑚 is
given using the knowledge of the Hilbert series of the given system.

Inspired by [19], there have been attempts to study the com-
plexity of the Sparse-FGLM algorithm for systems with special
structures, the main task being to estimate the sparsity of the mul-
tiplication matrices involved. Research in this direction was under-
taken in [4]. Focusing on zero-dimensional ideals defining critical
loci of polynomial maps restricted to algebraic sets, [4] introduces
an explicit formula of the Hilbert series of those given ideals which
significantly simplifies the formula given in [10]. This allows one
to derive a sharp asymptotic bound for the number of non-zero
entries of the multiplication matrix 𝑇𝑥𝑘 , when the number of vari-
ables 𝑘 tends to infinity. Applying this to the complexity result of
the Sparse-FGLM algorithm allows one to improve the change-of-
ordering complexity estimate for critical loci computation compared
to [16], which relies on the classical FGLM algorithm. Computa-
tional experiments are also provided to support that theoretical
bound. We continue in this direction by considering determinantal
ideals obtained from symmetric matrices.

Main results. Our main result is a complexity analysis of the
Sparse-FGLM algorithm for zero-dimensional symmetric determi-
nantal systems by giving dedicated bounds on the fundamental
parameter𝑚. Consider a symmetric matrix 𝑆 = (𝑠𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 where
𝑠𝑖, 𝑗 are variables and 𝑠𝑖, 𝑗 = 𝑠 𝑗,𝑖 . For any 𝑟 ∈ N, the ideal generated
by all (𝑟 +1)-minors of 𝑆 is denoted by S𝑟 . LetH𝑟 be the numerator
of the Hilbert series of S𝑟 . Then, given 𝑑 ∈ N, let K[𝑥1, . . . , 𝑥𝑘 ]≤𝑑
be the set of polynomials of degree at most 𝑑 in K[𝑥1, . . . , 𝑥𝑘 ] and
𝑆𝑘,𝑑 be the symmetric matrix where we substitute the variables 𝑠𝑖, 𝑗
for polynomials 𝑓𝑖, 𝑗 ∈ K[𝑥1, . . . , 𝑥𝑘 ]≤𝑑 with 𝑘 =

(𝑛−𝑟+1
2

)
.

For sufficiently generic 𝑓𝑖, 𝑗 , we consider the zero-dimensional
ideal S𝑘,𝑑

𝑟 generated by the (𝑟 + 1)-minors of 𝑆𝑘,𝑑 . LetH𝑘,𝑑
𝑟 be the

Hilbert series of S𝑘,𝑑
𝑟 . Our main results rely on some combinatorial

and algebraic conditions on the Hilbert series of S𝑟 and S𝑘,𝑑
𝑟 .

Definition 1. A polynomial
∑𝑛
𝑖=0 𝑎𝑖𝑡

𝑖 with non-negative coefficients
is unimodal if there exists an integer 𝑁 such that

𝑎𝑖 ≤ 𝑎𝑖+1 ≤ 𝑎𝑁 for 𝑖 ≤ 𝑁 and 𝑎𝑁 ≥ 𝑎𝑖 ≥ 𝑎𝑖+1 for 𝑖 ≥ 𝑁 .

Additionally, we require a condition on the cross-sections of the
Hilbert series of S𝑘,𝑑

𝑟 . This conjecture is a determinantal variant of
Fröberg’s well-known conjecture on the shape of the Hilbert series
of ideals generated by generic polynomial sequences.

Conjecture 2.

(1) Given 𝑟 ∈ N, the Hilbert polynomialH𝑟 (𝑡) of the symmetric
determinantal ideal S𝑟 is unimodal.

(2) For 𝑒 ≥ 1, let Q𝑘,𝑑,𝑒
𝑟 be the Hilbert series of the quotient alge-

bra
(
K[𝑥1, . . . , 𝑥𝑘 ]/S𝑘,𝑑

𝑟

)
/
〈
𝑥𝑒
𝑘

〉
. We conjecture that Q𝑘,𝑑,𝑒

𝑟 =[
(1 − 𝑡𝑒 )H𝑘,𝑑

𝑟 (𝑡)
]
+
, where

[
(1 − 𝑡𝑒 )H𝑘,𝑑

𝑟 (𝑡)
]
+
is the series

truncated at its first negative coefficient.

Section 6 refers to our computational database for supporting
this conjecture.

Throughout this paper, the notations ≺grevlex and ≺lex always
denote the grevlex and lexicographic orderings in K[𝑥1, . . . , 𝑥𝑘 ]
with 𝑥1 ≻ · · · ≻ 𝑥𝑘 . We can now state our main results.

Theorem 3. Given 𝑟, 𝑛, 𝑑 ∈ N and 𝑘 =
(𝑛−𝑟+1

2
)
, there exists a non-

empty Zariski-open subset F𝑟 of K[𝑥1, . . . , 𝑥𝑘 ]
𝑛 (𝑛+1)/2
≤𝑑 such that,

when the entries of 𝑆𝑘,𝑑 are taken in F𝑟 , the following holds:
The ideal S𝑘,𝑑

𝑟 is a zero-dimensional ideal. Assume that Conjec-
ture 2 holds and that a reduced Gröbner basis of S𝑘,𝑑

𝑟 w.r.t. ≺grevlex
is known. Then, the matrix 𝑇𝑥𝑘 of multiplication by 𝑥𝑘 can be con-
structed without any arithmetic operations. Moreover, the number of
dense columns of 𝑇𝑥𝑘 is equal to the largest coefficient of the Hilbert
series of S𝑘,𝑑

𝑟 .

Through the Sparse-FGLM algorithm [19], Theorem 3 leads di-
rectly to a complexity result for the change-of-ordering to a ≺lex
Gröbner basis for symmetric determinantal ideals.

Theorem 4. Given 𝑟, 𝑛, 𝑑 ∈ N and 𝑘 =
(𝑛−𝑟+1

2
)
, we consider the

matrix 𝑆𝑘,𝑑 with entries taken in the Zariski-open set F𝑟 defined in
Theorem 3. Assume that Conjecture 2 holds and the reduced Gröbner
basis of S𝑘,𝑑

𝑟 w.r.t. ≺grevlex is known. Then as 𝑑 → ∞, the Sparse-

FGLM algorithm computes a ≺lex Gröbner basis of S𝑘,𝑑
𝑟 within

𝑂

(
𝑚H𝑘,𝑑

𝑟 (1)2
)
= 𝑂

(
𝑚𝑑2𝑘H𝑟 (1)2

)
= 𝑂

©­«𝑚𝑑2𝑘
(
𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) )2ª®¬
arithmetic operations in K where𝑚 is the number of dense columns
of the multiplication matrix 𝑇𝑥𝑘 . Moreover, as 𝑑 → ∞,𝑚 is bounded
above by

𝑑𝑘−1H𝑟 (1) =
√︂

6
𝑘𝜋

𝑑𝑘−1
𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) .
Our results provide dedicated estimates of the complexity of the

Sparse-FGLM algorithm for symmetric determinantal ideals. This
new complexity result is finer than previous results that do not take
the specific structure into account. Moreover, we focus on three
special cases in particular, 𝑟 = 𝑛 − 2, 𝑟 = 𝑛 − 3 and 𝑟 = 1. In these
cases, the Hilbert series is known [7, 9]. This allows us to provide
sharper complexity results by analyzing the largest coefficients
of these Hilbert series. To illustrate this result, we provide some
numerical results to compare this theoretical bound with the actual
number of dense columns that is observed in practice.

Organization of the paper. In Section 2, we recall some basic no-
tions and known results for determinantal ideals that will be used
further. The transition from variable matrices to polynomial matri-
ces is described in Section 3. There, we prove some properties that



relate the largest coefficient of the Hilbert series to the complexity
of the Sparse-FGLM algorithm applied to symmetric determinantal
ideals. Using these properties, in Section 4 we asymptotically bound
said complexity, with sharper estimates in some special cases. Based
on our findings, we touch on topics for further study, including
triangular and moment matrices, in Section 5. Finally, in Section 6,
experiments are provided to support our asymptotic bounds.

2 PRELIMINARIES
In this section, we recall some properties of determinantal systems
associated to symmetric matrices. In Section 3, we show that these
properties can be transferred to determinantal ideals generated by
polynomial matrices. Under certain hypotheses, these properties
serve as main ingredients for our complexity estimate of the Sparse-
FGLM algorithm for symmetric determinantal ideals in Section 4.

Firstly, we investigatematrices whose entries are variables before
transitioning to the zero-dimensional setting. Hence, consider a
symmetric matrix 𝑆 = (𝑠𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 where 𝑠𝑖, 𝑗 are variables and
𝑠𝑖, 𝑗 = 𝑠 𝑗,𝑖 . Let 𝒔 = (𝑠1,1, 𝑠2,1, 𝑠2,2, . . . , 𝑠𝑛,1, . . . , 𝑠𝑛,𝑛) be the 𝑛(𝑛 +
1)/2 variables appearing in 𝑆 . In what follows, we work over the
polynomial ring K[𝒔] and denote by K[𝒔]𝑑 the set of polynomials
of degree 𝑑 in K[𝒔] and 0.

Given 𝑟 ∈ N, we denote by S𝑟 the ideal generated by all the
(𝑟 + 1)-minors of 𝑆 . It defines the algebraic set{

𝒔 ∈ K𝑛 (𝑛+1)/2
��� 𝑆 has rank at most 𝑟 at 𝒔

}
.

Let 𝐴𝑟 = K[𝒔]/S𝑟 . The Hilbert series of 𝐴𝑟 is defined to be

HS𝐴𝑟
(𝑡) =

∞∑︁
𝑖=0

dimK K[𝒔]𝑑/(S𝑟 ∩ K[𝒔]𝑑 ) · 𝑡𝑖

where dimK means the dimension as a K-vector space. It is well-
known that HS𝐴𝑟

(𝑡) can be written in the form

HS𝐴𝑟
(𝑡) = H𝑟 (𝑡)

(1 − 𝑡)ℓ

where ℓ is the Krull dimension of𝐴𝑟 andH𝑟 (𝑡) ∈ K[𝑡] is the Hilbert
polynomial of 𝐴𝑟 [12, Theorem 10.2.4] [13, Ch. 8].

By [23], the quotient ring K[𝒔]/S𝑟 is a Cohen-Macaulay normal
domain. Moreover, we have the following properties:

• The Krull dimension ℓ of 𝐴𝑟 is

dim𝐴𝑟 =

(
𝑛 + 1
2

)
−

(
𝑛 − 𝑟 + 1

2

)
=

(2𝑛 + 1 − 𝑟 )𝑟
2 .

• The degree of 𝐴𝑟 , i.e.H𝑟 (1), equals

H𝑟 (1) =
𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) ≤ 𝑛(
𝑛−𝑟+1

2 )

2(
𝑛−𝑟
2 ) ∏𝑛−𝑟−1

𝑖=1 𝑖!
.

In what follows, we require the Hilbert series to have some
combinatorial properties. Note that unimodality (Definition 1) is
not necessarily preserved bymultiplication, for example 𝑓 = 3+𝑡+𝑡2
is unimodal (for 𝑁 = 0) while 𝑓 2 = 9+ 6𝑡 + 7𝑡2 + 2𝑡3 + 𝑡4 is not. This
motivates the following definition.

Definition 5. A polynomial 𝑓 with non-negative coefficients is
strongly unimodal if, for any unimodal polynomial 𝑔, the product
𝑓 𝑔 is unimodal.

In the case of maximal minors, the authors of [4] simplify a
formula given in [10] for the Hilbert series of the ideal generated
by the minors of an 𝑛 × 𝑝 , with 𝑛 ≤ 𝑝 , general variable matrix. The
Hilbert polynomial in this simplified formula,

𝑛−1∑︁
𝑖=0

(
𝑝 − 𝑛 + 𝑖

𝑖

)
𝑡𝑖 ,

is easily seen to be unimodal. This allows one to derive the Hilbert
series of ideals generated by the maximal minors of matrices whose
entries are generic homogeneous polynomials of the same degree 𝑑 .
Using the strong unimodality of 1 + · · · + 𝑡𝑑−1, it is also proved in
[4] that this Hilbert polynomial is also unimodal.

In the case of symmetric matrices, we focus on the following
special cases for which the Hilbert series are known [7, 9]:

• When 𝑟 = 𝑛 − 2, the Hilbert series of S𝑛−2 is

1
(1 − 𝑡)𝑛 (𝑛+1)/2−3

𝑛−2∑︁
𝑖=0

(
𝑖 + 2
2

)
𝑡𝑖 .

• When 𝑟 = 𝑛 − 3, the Hilbert series of S𝑛−3 is symmetric

1
(1 − 𝑡)𝑛 (𝑛+1)/2−6

(
𝑛−3∑︁
𝑖=0

(
𝑖 + 5
5

)
𝑡𝑖 +

𝑛−4∑︁
𝑖=0

(
𝑖 + 5
5

)
𝑡2𝑛−6−𝑖

)
.

• When 𝑟 = 1, the Hilbert series of S1 is

1
(1 − 𝑡)𝑛

⌊ 𝑛2 ⌋∑︁
𝑖=0

(
𝑛

2𝑖

)
𝑡𝑖 .

It is easy to see that these Hilbert polynomials are unimodal. How-
ever, outside of these cases, closed forms of the Hilbert series are
unknown. Although whether the corresponding Hilbert polynomi-
als are unimodal is still an open question, an affirmative answer
can be observed experimentally for generic determinantal systems.
For more detail on supporting this conjecture, see Section 6.

3 THE ZERO-DIMENSIONAL SETTING
As in [4, 16, 17], we are interested in studying the behavior of
Gröbner basis computations for zero-dimensional systems. In this
section, some properties of zero-dimensional ideals generated by
minors of a symmetric polynomial matrix are established.

We denote by K[𝑥1, . . . , 𝑥𝑘 ]≤𝑑 the subset of K[𝑥1, . . . , 𝑥𝑘 ] of
polynomials of degree at most 𝑑 . Let 𝑆𝑘,𝑑 = (𝑓𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 be an 𝑛×𝑛
symmetric matrix with entries in K[𝑥1, . . . , 𝑥𝑘 ]≤𝑑 . Then, for 𝑟 ∈ N,
S𝑘,𝑑
𝑟 denotes the ideal generated by the (𝑟 + 1)-minors of 𝑆𝑘,𝑑 . It is

expected that when the entries of 𝑆𝑘,𝑑 are sufficiently generic, the
ideal S𝑘,𝑑

𝑟 retains some of the structure of S𝑟 defined in Section 2.
Given an ideal 𝐼 ⊂ K[𝑥1, . . . , 𝑥𝑘 ] (not necessarily homogeneous),

let 𝐼h be the homogenized ideal with a new variable 𝑥0. The Hilbert
series of 𝐼 is defined to be the Hilbert series of 𝐼h + ⟨𝑥0⟩, that is the
Hilbert series of the associated graded algebra.

In order to apply the reasoning of [19] to generic symmetric
determinantal ideals we require them to be in shape position. This
means that for a ≺lex ordering with 𝑥𝑘 as the least variable, the ≺lex
Gröbner basis has the structure

{𝑥1 − 𝑔1 (𝑥𝑘 ), . . . , 𝑥𝑘−1 − 𝑔𝑘−1 (𝑥𝑘 ), 𝑔𝑘 (𝑥𝑘 )},
where for 1 ≤ 𝑖 ≤ 𝑘 − 1, deg𝑔𝑖 < deg𝑔𝑘 = 𝐷 , the degree of 𝐼 .



Proposition 6. Let 𝑟, 𝑑 ∈ N, H𝑟 (𝑡) be the Hilbert polynomial of
the ideal S𝑟 and 𝑘 =

(𝑛−𝑟+1
2

)
, the codimension of S𝑟 . There exists

a non-empty Zariski-open subset F𝑟 of K[𝑥1, . . . , 𝑥𝑘 ]
𝑛 (𝑛+1)/2
≤𝑑 such

that if the entries of the matrix 𝑆𝑘,𝑑 are taken in F𝑟 , then the ideal
S𝑘,𝑑
𝑟 is radical and zero-dimensional and its Hilbert series is bounded

above, coefficient-wise, by

H𝑘,𝑑
𝑟 (𝑡) ≔

(
1 + 𝑡 + · · · + 𝑡𝑑−1

)𝑘
H𝑟

(
𝑡𝑑

)
.

Moreover, there exists a non-empty Zariski-open subset O of the set
GL(𝑘,K) of invertible 𝑘 × 𝑘 matrices such that, after applying any
linear change of coordinates𝐴 ∈ O , the idealS𝑘,𝑑

𝑟 is in shape position.

Proof. We start in a homogeneous setting with K[𝑥0, 𝑥1, . . . , 𝑥𝑘 ]𝑑
denoting the subset of homogeneous polynomials of degree 𝑑 in
K[𝑥0, 𝑥1, . . . , 𝑥𝑘 ] together with 0. Let 𝑆 = (𝑠𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 be an 𝑛 × 𝑛

symmetric matrix. Throughout this proof, S𝑟 denotes the ideal
of K[𝒔, 𝑥0, . . . , 𝑥𝑘 ] generated by the (𝑟 + 1)-minors of 𝑆 . By [23],
K[𝒔, 𝑥0, . . . , 𝑥𝑘 ]/S𝑟 is a Cohen-Macaulay ring.

By giving the weighted degrees 𝑑 and 1 for the variables 𝒔 and
𝑥0, . . . , 𝑥𝑘 respectively, the Hilbert series of K[𝒔, 𝑥0, . . . , 𝑥𝑘 ]/S𝑟 is

H̃𝑟 (𝑡) =
H𝑟 (𝑡𝑑 )

(1 − 𝑡)𝑘+1
(
1 − 𝑡𝑑

) (𝑛+12 )−𝑘 .
Let 𝑓 h

𝑖, 𝑗
be the homogenization of 𝑓𝑖, 𝑗 in K[𝑥0, . . . , 𝑥𝑘 ]. We consider

the quasi-homogeneous ideal

𝐽 = S𝑟 +
〈
𝑠𝑖, 𝑗 − 𝑓 h𝑖, 𝑗 |1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

〉
.

Through similar techniques as in [17, Sec. 3 and 4], there exists a
non-empty Zariski-open subset Z of K[𝑥0, . . . , 𝑥𝑘 ]

𝑛 (𝑛+1)/2
𝑑

such
that when the polynomials 𝑓 h

𝑖, 𝑗
lie inZ , the ideals 𝐽 and 𝐽+⟨𝑥0⟩ have

dimension one and zero respectively. Hence, by the unmixedness
theorem [13, Cor. 18.14], the

(𝑛+1
2

)
+ 1 polynomials

𝑠𝑖, 𝑗 − 𝑓 h𝑖, 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and 𝑥0
forms a regular sequence over K[𝒔, 𝑥0, . . . , 𝑥𝑘 ]/S𝑟 . Therefore, the
Hilbert series of the homogenized ideal S𝑘,𝑑,h

𝑟 of S𝑘,𝑑
𝑟 is equal to

H𝑘,𝑑
𝑟 (𝑡) = (1 − 𝑡𝑑 ) (

𝑛+1
2 )H̃𝑟 (𝑡) =

(
1 + · · · + 𝑡𝑑−1

)𝑘
H𝑟

(
𝑡𝑑

)
.

As S𝑘,𝑑,h
𝑟 ⊂ 𝐽 , the Hilbert series of S𝑘,𝑑,h

𝑟 + ⟨𝑥0⟩, which is a poly-
nomial, is bounded coefficient-wise by the Hilbert series of 𝐽 + ⟨𝑥0⟩,
that isH𝑘,𝑑

𝑟 (𝑡). Since the Hilbert series of S𝑘,𝑑,h
𝑟 is also the Hilbert

series of the affine ideal S𝑘,𝑑
𝑟 , we obtain the zero-dimensionality of

S𝑘,𝑑
𝑟 and the bound on the coefficients of its Hilbert series.
Next, we prove that the ideal S𝑘,𝑑

𝑟 is radical. For this, we work
completely with the affine polynomials 𝑓𝑖, 𝑗 . By [6, Theorem 2.9],
there exists a monomial ordering such that the corresponding initial
ideal is generated by squarefree monomials and so, is radical. Thus,
S𝑟 is a radical ideal of codimension

(𝑛−𝑟+1
2

)
. Fixing an 𝑟 -minor

𝔪 of 𝑆 , we consider the set 𝔐 of the
(𝑛−𝑟+1

2
)
(𝑟 + 1)-minors that

contain 𝔪 as a submatrix. As the ideal S𝑟 is radical, so is the ideal
generated by the minors 𝔐. By the exchange lemma [1, Lemma
4], these minors, together with 𝔪 ≠ 0, define the locally closed
algebraic set 𝑉 (S𝑟 ) \𝑉 (𝔪), which has codimension

(𝑛−𝑟+1
2

)
.

We now consider the coefficients of 𝑓𝑖, 𝑗 as new variables 𝒄 in the
space C = K[𝑥1, . . . , 𝑥𝑘 ]

𝑛 (𝑛+1)/2
≤𝑑 . Define the map 𝜑 by

𝜑 : K(
𝑛+1
2 )+𝑘 × C → K

(𝑛−𝑟+12 ) × K(
𝑛+1
2 )

(𝒔, 𝒙, 𝒄) ↦→ (𝔐, 𝑠1,1 − 𝑓1,1, . . . , 𝑠𝑛,𝑛 − 𝑓𝑛,𝑛)
and 𝜑𝒄 denotes the restriction of the map 𝜑 to a given 𝒄 ∈ C . Let
jac𝒔 (𝔐) be the Jacobian matrix of𝔐 w.r.t. 𝒔. Note that the Jacobian
matrix of 𝜑 has the following structure

jac(𝜑) B
[
jac𝒔 (𝔐) 0 0

∗ Id ∗

]
,

where the identity block comes from the derivatives of 𝑠𝑖, 𝑗 − 𝑓𝑖, 𝑗
with respect to the constant coefficients of 𝑓𝑖, 𝑗 .

For any 𝒔 such that 𝔪(𝒔) ≠ 0, jac𝒔 (𝔐), and therefore jac(𝜑),
has maximal rank. Thus, the Jacobian criterion [13, Theorem 16.19]
implies that 0 is a regular value of 𝜑 . By Thom’s weak transversality
theorem [29, Proposition B.3], there exists a Zariski-open dense
subset C𝔪 of C such that for any 𝒄 ∈ C𝔪 , 0 is a regular value of 𝜑𝒄
and the Jacobian matrix of 𝜑𝒄 has maximal rank when 𝔪(𝒔) ≠ 0.

Finally, let F𝑟 be the intersection of Z , identified as a Zariski-
open dense subset of K[𝑥1, . . . , 𝑥𝑘 ]

𝑛 (𝑛+1)/2
≤𝑑 , specializing 𝑥0 to one,

with the sets C𝔪 for all 𝑟 -minors 𝔪 of 𝑆 . For any 𝒄 ∈ F𝑟 , the ideal
S𝑘,𝑑
𝑟 is zero-dimensional and radical as the Jacobian matrix associ-

ated to its defining equations has rank
(𝑛+1
2

)
+

(𝑛−𝑟+1
2

)
. Therefore,

we may apply the shape lemma [2, Proposition 5]. There exists a
Zariski-open dense subset O of GL(𝑘,K) such that for all 𝐴 ∈ O ,
after applying 𝐴, the points of the variety𝑉 (S𝑘,𝑑

𝑟 ) have distinct 𝑥𝑘
coordinates. Thus, the ideal S𝑘,𝑑

𝑟 is in shape position. □

4 ASYMPTOTIC COMPLEXITY
4.1 The general case
Given a Gröbner basis of a zero-dimensional ideal in K[𝑥1, . . . , 𝑥𝑘 ]
w.r.t. an ordering ≺1, the Sparse-FGLM algorithm [19] computes
a Gröbner basis of the same ideal but w.r.t. a target ordering ≺2.
A common change of ordering for practical uses is from a grevlex
ordering to a lexicographic one [11, 16, 17]. In this section, we prove
an asymptotic upper bound on the complexity of this computation
for zero-dimensional symmetric determinantal ideals.

We keep the same setting as in Section 3. Given 𝑛, 𝑟 ∈ N and 𝑘 =(𝑛−𝑟+1
2

)
, we consider an 𝑛 ×𝑛 symmetric matrix 𝑆𝑘,𝑑 whose entries

are taken in F𝑟 ⊂ K[𝑥1, . . . , 𝑥𝑘 ]
𝑛 (𝑛+1)/2
≤𝑑 defined by Proposition 6.

Then, the ideal S𝑘,𝑑
𝑟 is zero-dimensional and in shape position.

Given a zero-dimensional ideal 𝐼 ⊂ K[𝑥1, . . . , 𝑥𝑘 ] of degree𝐷 , let
G be its reduced Gröbner basis w.r.t. the ordering ≺grevlex. It is well
known that K[𝑥1, . . . , 𝑥𝑘 ]/𝐼 is a finite-dimensional vector space
for which the set B of monomials irreducible by G forms a basis.
The multiplications by 𝑥1, . . . , 𝑥𝑘 are linear maps ofK[𝑥1, . . . , 𝑥𝑘 ]/𝐼 ,
whose matrix representations𝑇𝑥1 , . . . ,𝑇𝑥𝑘 inB appear with sparsity.
The Sparse-FGLM algorithm [19] improves upon the classical FGLM
algorithm [18], whose arithmetic complexity is 𝑂 (𝑘𝐷3), by taking
advantage of this sparsity. In [19], the authors also provide a careful
complexity analysis of their algorithm. By assuming the widely
accepted Moreno-Socías conjecture [27, Conjecture 4.1], they show
that the matrix𝑇𝑥𝑘 can be obtained from G without additional cost.



With𝑚 as the number of dense columns of 𝑇𝑥𝑘 , when 𝐼 is in shape
position they bound the complexity of this algorithm by

𝑂

(
𝑚𝐷2 + 𝑘𝐷 log2 𝐷

)
.

This complexity analysis relies on the observation that there are
three possible cases when one multiplies a monomial 𝑏 ∈ B by 𝑥𝑘 :

• 𝑥𝑘 · 𝑏 ∈ B: in this case, the associated column in 𝑇𝑥𝑘 is a
column of the identity matrix (0, . . . , 0, 1, 0, . . . , 0) where the
1 is in the row corresponding to 𝑥𝑘 · 𝑏.

• 𝑥𝑘 · 𝑏 is a leading monomial in G: in this case, the column
is easily obtained from the coefficients of 𝑥𝑘 · 𝑏 − 𝑔 where
𝑔 ∈ G has leading term 𝑥𝑘 · 𝑏.

• Otherwise, the column is non-trivial and requires a normal
form reduction of 𝑥𝑘 · 𝑏 by G to compute its canonical rep-
resentation in B, i.e. the corresponding column in 𝑇𝑥𝑘 .

The most dense columns of the matrix𝑇𝑥𝑘 correspond to the second
and the third cases. Only the third case requires extra computation.
If Moreno-Socías’ conjecture holds, then the third case does not
occur for generic polynomial systems [19]. Thus, the multiplication
matrix 𝑇𝑥𝑘 can be obtained without further computation. In [4], it
is shown that under similar genericity assumptions, the third case
does not occur for critical point systems either. We shall now prove
that the same holds for generic symmetric determinantal ideals.
Proof of Theorem 3. Let𝐴𝑘,𝑑

𝑟 = K[𝑥1, . . . , 𝑥𝑘 ]/S𝑘,𝑑
𝑟 . We shall con-

struct the matrix 𝑇𝑥𝑘 column by column. As in [19], there is a col-
umn for eachmonomial in the basisB of𝐴𝑘,𝑑

𝑟 , given by the ordering
≺grevlex. For a monomial 𝑏 ∈ B, the entries in its corresponding
column are the coefficients of the normal form of 𝑥𝑘 · 𝑏 expressed
in the basis B. By [4, Theorem 1], under Conjecture 2, 𝑥𝑘 · 𝑏 is
either an element of B or a leading monomial of the known grevlex
Gröbner basis G. In the first case, the column corresponding to 𝑏 is
a column of the identity matrix and requires no computation. In the
second case, the column corresponding to 𝑏 can be read from the
coefficients of the polynomial in G for which 𝑥𝑘 · 𝑏 is the leading
monomial. Thus, the number of dense columns equals the number
of polynomials in G whose leading terms are divisible by 𝑥𝑘 .

By [27, Lemma 1.9], the Gröbner basis of S𝑘,𝑑
𝑟 + ⟨𝑥𝑘 ⟩ w.r.t. the

ordering ≺grevlex equals the subset of G containing all polynomials
whose leading term is divisible by 𝑥𝑘 . Hence, the number of dense
columns equals the number of monomials in the basis of𝐴𝑘,𝑑

𝑟 /⟨𝑥𝑘 ⟩,
which is the sum of the coefficients of the corresponding Hilbert
series. By Conjecture 2.2, the Hilbert series 𝐻𝑄1

𝑟,𝑑
of S𝑘,𝑑

𝑟 + ⟨𝑥𝑘 ⟩ is

equal to
[
(1 − 𝑡)H𝑘,𝑑

𝑟

]
+
, whereH𝑘,𝑑

𝑟 is given in Proposition 6.
By Conjecture 2.1, ℎ𝑟 is unimodal, which implies easily that

(1 + · · · + 𝑡𝑑−1)ℎ𝑟 (𝑡𝑑 ) is unimodal. By [4, Lemma 17], 1 + · · · + 𝑡𝑑−1
is a strongly unimodal polynomial. As H𝑘,𝑑

𝑟 is the product of a
unimodal polynomial and (1 + · · · + 𝑡𝑑−1)𝑘−1, it is also unimodal.
Thus, the number of dense columns is equal to Q𝑘,𝑑,1

𝑟 (1) which is
equal to largest coefficient of H𝑘,𝑑

𝑟 . □

Hence, assuming that 𝑘 =
(𝑛−𝑟+1

2
)
and that the entries of 𝑆𝑘,𝑑

are taken from the F𝑟 described in Proposition 6, we study the
asymptotic behavior of the largest coefficient of the Hilbert series
of the zero-dimensional ideal S𝑘,𝑑

𝑟 as 𝑑 tends to infinity.

Lemma 7. Let 𝑘 =
(𝑛−𝑟+1

2
)
. The largest coefficient of

H𝑘,𝑑
𝑟 (𝑡) = (1 + 𝑡 + · · · + 𝑡𝑑−1)𝑘H𝑟 (𝑡)

as 𝑑 → ∞ is bounded above by√︂
6
𝑘𝜋

𝑑𝑘−1H𝑟 (1) =
√︂

6
𝑘𝜋

𝑑𝑘−1
𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) .
Proof. By [19, Corollary 5.10], as 𝑑 → ∞, all the coefficients of(
1 + · · · + 𝑡𝑑−1

)𝑘
are bounded by

√︃
6
𝑘𝜋

𝑑𝑘−1. Substituting this as-
ymptotic formula into the convolution formula for the largest coef-
ficient gives the first result. By [23], we conclude using the equation

H𝑟 (1) =
𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) . □

We now apply Lemma 7 to prove an asymptotic complexity
estimate for the Sparse-FGLM algorithm on generic determinantal
systems (not necessarily those derived from symmetric matrices).
Proof of Theorem 4. By Proposition 6, we apply the shape posi-
tion variant of the Sparse-FGLM algorithm. Then, by Theorem 3,
the multiplication matrix 𝑇𝑥𝑘 can be constructed without any ad-
ditional arithmetic operations and the number of dense columns
𝑚 equals the largest coefficient of the Hilbert series of S𝑘,𝑑

𝑟 . The
dominant term in the complexity is𝑂 (𝑚𝐷2), where 𝐷 is the degree
of S𝑘,𝑑

𝑟 . This degree is given by the evaluation of the Hilbert series
of S𝑘,𝑑

𝑟 at one. By Proposition 6, this Hilbert series is equal to

H𝑘,𝑑
𝑟 (𝑡) =

(
1 + 𝑡 + · · · + 𝑡𝑑−1

)𝑘
H𝑟

(
𝑡𝑑

)
.

By [23], the degree of 𝑆𝑘,𝑑𝑟 is equal to

𝐷 = H𝑘,𝑑
𝑟 (1) = 𝑑𝑘H𝑟 (1) = 𝑑𝑘

𝑛−𝑟−1∏
𝑖=0

(𝑛+𝑖
2𝑖+𝑟

)(2𝑖+1
𝑖

) .
Finally, Lemma 7 implies the bound on𝑚 as 𝑑 → ∞. □

Theorem 4 leads directly to the following corollary.
Corollary 8. The complexity of the Sparse-FGLM algorithm over
that of the FGLM algorithm for generic symmetric determinantal
ideals as 𝑑 → ∞ is at least 𝑂 (1/𝑑).
4.2 Cases 𝑟 = 𝑛 − 2, 𝑟 = 𝑛 − 3 and 𝑟 = 1
Additionally, we treat the cases of 𝑟 = 𝑛 − 2, 𝑟 = 𝑛 − 3 and 𝑟 = 1
separately. With the knowledge on the Hilbert polynomials H𝑛−2,
H𝑛−3 and H1, we know that Conjecture 2.1 holds in these cases.
Furthermore, one can arrive at finer asymptotic estimates on the
largest coefficient. Recall that the codimension of S𝑟 , and hence the
number of variables we consider in the zero-dimensional setting,
equals 3, 6 and

(𝑛
2
)
for 𝑟 = 𝑛 − 2, 𝑟 = 𝑛 − 3 and 𝑟 = 1 respectively.

We start by identifying the largest coefficient ofH3,𝑑
𝑛−2 exactly.

Proposition 9. The largest coefficient of

H3,𝑑
𝑛−2 (𝑡) =

(
1 + 𝑡 + · · · + 𝑡𝑑−1

)3 𝑛−2∑︁
𝑖=0

(
𝑖 + 2
2

)
𝑡𝑖𝑑

is the value of(
𝑛 − 1
2

) (
𝑗 + 1
2

)
+

(
𝑛

2

) ((
𝑑 + 1
2

)
+ 𝑗 (𝑑 − 𝑗 − 1)

)
.



when 𝑗 is any integer that minimizes
��� 2𝑛𝑑−𝑛−22(𝑛+2) − 𝑗

���.
Proof. Note that(

1 + 𝑡 + · · · + 𝑡𝑑−1
) 𝑛−2∑︁
𝑖=0

(
𝑖 + 2
2

)
𝑡𝑖𝑑 =

𝑛−2∑︁
𝑖=0

𝑑−1∑︁
𝑗=0

(
𝑖 + 2
2

)
𝑡𝑖𝑑+𝑗 .

We write these coefficients in the following 𝑑 × ((𝑛 − 2)𝑑 − 1) grid:
𝑡0 · · · 𝑡𝑑−1 · · · · · · · · · · · · 𝑡 (𝑛−1)𝑑−1 · · · 𝑡 (𝑛−2)𝑑−2

1 · · · 1 · · · · · ·
(𝑛
2
)

· · ·
(𝑛
2
)

. .
. ... . .

.
. .
.

. .
.

. .
. ... . .

.

1 · · · 1 · · · · · ·
(𝑛
2
)

· · ·
(𝑛
2
)

The coefficients of
(
1 + 𝑡 + · · · + 𝑡𝑑−1

)2
H𝑛−2 (𝑡) are the sums of

columns of this grid, which are(
𝑖 + 2
2

)
( 𝑗 + 1) +

(
𝑖 + 1
2

)
(𝑑 − 𝑗 − 1) .

Hence, the coefficients of
(
1 + 𝑡 + · · · + 𝑡𝑑−1

)3
H𝑛−2 (𝑡) can be com-

puted by taking the sums of all 𝑑 consecutive columns.
As

(𝑖+2
2
)
is increasing as a sequence in 𝑖 , the largest coefficient

of H3,𝑑
𝑛−2 must be the coefficient of 𝑡𝑛𝑑− 𝑗−2 for some 0 ≤ 𝑗 ≤ 𝑑 − 1.

By a simple calculation, this coefficient can be expressed as(
𝑛 − 1
2

) (
𝑗 + 1
2

)
+

(
𝑛

2

) ((
𝑑 + 1
2

)
+ 𝑗 (𝑑 − 𝑗 − 1)

)
= 𝐶 − (𝑛 − 1) (𝑛 + 2)

16

(
2𝑛𝑑 − 𝑛 − 2

𝑛 + 2 − 2 𝑗
)2

where𝐶 =
(𝑛
2
) (𝑑+1

2
)
+ (𝑛−1) (2𝑛𝑑−𝑛−2)2

16(𝑛+2) does not depend on 𝑗 . Hence,
to identify 𝑗 , we minimize

min
𝑗∈N,0≤ 𝑗≤𝑑−1

����2𝑛𝑑 − 𝑛 − 2
2(𝑛 + 2) − 𝑗

���� .
Let 𝛼 = 2𝑛𝑑−𝑛−2

2(𝑛+2) , which lies in [0, 𝑑 − 1/2) if 𝑛 ≥ 2. Then, to
conclude the proof, we take 𝑗 to be the nearest integer to 𝛼 . □

Recall that 𝐷 denotes the degree of the ideal under study. When
𝑟 = 𝑛−2 we have that𝐷 =

(𝑑+1
3

)
. Since the complexity of the Sparse-

FGLM algorithm over that of the FGLM algorithm is 𝑂
(
𝑚𝐷2

𝑘𝐷3

)
=

𝑂

(
𝑚
𝑘𝐷

)
, Proposition 9 immediately implies the following corollary.

Corollary 10. By the proof of Proposition 9,𝑚 ≤ 𝐶 =
(𝑛
2
) (𝑑+1

2
)
+

(𝑛−1) (2𝑛𝑑−𝑛−2)2
16(𝑛+2) , the complexity of the Sparse-FGLM algorithm over

that of the FGLM algorithm when 𝑟 = 𝑛 − 2 is at least 𝑂
(
1
𝑛𝑑

)
.

Next, we consider 𝑟 = 𝑛 − 3. Notice that the Hilbert polynomial
H𝑛−3 is symmetric, i.e.H𝑛−3 (𝑡) = 𝑡deg(ℎ)H𝑛−3 (1/𝑡). The lemma
below will be useful for proving a finer complexity in this case.

Lemma 11. Let 𝑓 (𝑡) be a unimodal symmetric polynomial. Then

𝑔(𝑡) = (1 + 𝑡 + · · · + 𝑡𝑑−1) 𝑓 (𝑡)
is also unimodal and symmetric. Moreover, the 𝑐 largest coefficients
of 𝑔(𝑡) are combinations of the 𝑑 + 𝑐 − 1 largest coefficients of 𝑓 (𝑡).

As a point of notation, if 𝑓 (𝑡) has fewer than 𝑑 + 𝑐 − 1 coefficients
then we consider all other coefficients to be zero.

Proof. The unimodality of 𝑔 comes from the strong unimodality of
1 + 𝑡 + · · · + 𝑡𝑑−1. The symmetry can be deduced from the equality

𝑡deg(𝑔)𝑔(1/𝑡) =
(
1 + · · · + 𝑡𝑑−1

)
𝑡deg(𝑔) 𝑓 (1/𝑡) = 𝑔(𝑡) .

Note that the coefficient of 𝑡𝑖 in 𝑔 is the sum of the coefficients
of 𝑡𝑖−𝑑+1, . . . , 𝑡𝑖 in 𝑓 . As 𝑓 is unimodal and symmetric, the largest
coefficient of 𝑔 is the sum of the 𝑑 central coefficients of 𝑓 . Since 𝑔
is unimodal and symmetric, the 𝑐 largest coefficients of 𝑔 are con-
secutive and any of them is at most

⌈
𝑐−1
2

⌉
elements away from the

central and thus largest coefficient. Hence, the 𝑐 largest coefficients
of 𝑔 involve only the central 𝑑 + 𝑐 − 1 coefficients of 𝑓 . □

Proposition 12. The largest coefficient of the Hilbert series

H6,𝑑
𝑛−3 (𝑡) =

(
1 + 𝑡 + · · · + 𝑡𝑑−1

)6
H𝑛−3

(
𝑡𝑑

)
as 𝑑 → ∞ is bounded above by((
𝑛 + 2
5

)
+ 2

(
𝑛 + 1
5

)
+ 2

(
𝑛

5

)) √︂
1
𝜋
𝑑5 ≤ 5

(
𝑛 + 2
5

)√︂
1
𝜋
𝑑5 ∈ 𝑂

(
𝑛5𝑑5

)
.

Proof. By Lemma 11, (1 + · · · + 𝑡𝑑−1)6 is unimodal and symmetric.
From observation, H𝑛−3 is also unimodal and symmetric. Thus, by
Lemma 11, the largest coefficient𝑚 ofH6,𝑑

𝑛−3 depends only on the
central 5(𝑑 − 1) + 1 coefficients of (1 + · · · + 𝑡𝑑−1)H𝑛−3 (𝑡𝑑 ). This
number then depends on at most the central 5 coefficients ofH𝑛−3.

By [19, Corollary 5.10], all coefficients of (1 + · · · + 𝑡𝑑−1)6 are at
most

√︃
1
𝜋 𝑑

5. Therefore, by the definition ofH𝑛−3 and its symmetry,
we have that as 𝑑 → ∞,

𝑚 ≤
((
𝑛 + 2
5

)
+ 2

(
𝑛 + 1
5

)
+ 2

(
𝑛

5

)) √︂
1
𝜋
𝑑5 ≤ 5

(
𝑛 + 2
5

)√︂
1
𝜋
𝑑5 . □

When 𝑟 = 𝑛 − 3, the ideal S𝑘,𝑑
𝑛−3 has degree

𝐷 =

((
𝑛 + 2
6

)
+

(
𝑛 + 3
6

))
𝑑6 ∈ 𝑂 (𝑛6𝑑6) .

By Proposition 12, the number of dense columns𝑚 lies in 𝑂 (𝑛5𝑑5)
as 𝑑 → ∞, which implies Corollary 13.

Corollary 13. Let 𝑟 = 𝑛−3. As𝑑 → ∞, the complexity improvement
of the Sparse-FGLM algorithm over that of the FGLM algorithm for

the generic symmetric determinantal ideal 𝑆6,𝑑
𝑛−3 is at least 𝑂

(
1
𝑛𝑑

)
.

Finally, in the case 𝑟 = 1, the number of variables 𝑘 is equal to(𝑛
2
)
. Since this depends on 𝑛, we consider the complexity as 𝑛 → ∞.

Proposition 14. The largest coefficient of

H(𝑛2),𝑑
1 (𝑡) =

(
1 + 𝑡 + · · · + 𝑡𝑑−1

) (𝑛2) ⌊ 𝑛2 ⌋∑︁
𝑖=0

(
𝑛

2𝑖

)
𝑡𝑖𝑑

as 𝑛 → ∞ is at most√︄
6(𝑛

2
)
𝜋 (𝑑2 − 1)

𝑑 (
𝑛
2)2𝑛−1 ∈ 𝑂

(
2𝑛−1
𝑛

𝑑 (
𝑛
2)−1

)
.



Proof. As (1 + · · · + 𝑡𝑑−1) (
𝑛
2) is symmetric and unimodal, its largest

coefficient is central. By an abridged version of [31, Theorem 2],
this largest coefficient is asymptotically equal to√︄

6(𝑛
2
)
𝜋 (𝑑2 − 1)

𝑑 (
𝑛
2)

as 𝑛 → ∞. Then, the largest coefficient ofH(𝑛2),𝑑
1 is at most√︄

6(𝑛
2
)
𝜋 (𝑑2 − 1)

𝑑 (
𝑛
2)

⌊ 𝑛2 ⌋∑︁
𝑖=0

(
𝑛

2𝑖

)
.

The following equality gives the result
⌊ 𝑛2 ⌋∑︁
𝑖=0

(
𝑛

2𝑖

)
=

⌊ 𝑛2 ⌋∑︁
𝑖=0

((
𝑛 − 1
2𝑖 − 1

)
+

(
𝑛 − 1
2𝑖

))
=

𝑛−1∑︁
𝑖=0

(
𝑛 − 1
𝑖

)
= 2𝑛−1 . □

As the degree of S(𝑛2),𝑑
1 is 𝑑 (

𝑛
2)2𝑛−1, by applying Proposition 14

to Theorem 4 we arrive at the following corollary.

Corollary 15. When 𝑟 = 1 the degree of S(𝑛2),𝑑
1 is 𝑑 (

𝑛
2)2𝑛−1. There-

fore, the complexity of the Sparse-FGLM algorithm over that of the
FGLM algorithm as 𝑛 → ∞ is at least

𝑂

(
1

𝑘𝑛𝑑

)
= 𝑂

(
1(𝑛

2
)
𝑛𝑑

)
= 𝑂

(
1

𝑛3𝑑

)
.

Moreover, the bound on𝑚 in Theorem 4 implies that the complexity
gain as 𝑑 → ∞ is also at least

𝑂

(
1

𝑘3/2𝑑

)
= 𝑂

(
1(𝑛

2
)3/2

𝑑

)
= 𝑂

(
1

𝑛3𝑑

)
.

5 PERSPECTIVES
Our results describe the fundamental parameter𝑚, the number of
dense columns of 𝑇𝑥𝑘 . Therefore, while the complexity results in
this article focus on the application to the Sparse-FGLM algorithm,
we can also apply the propositions of Section 4 to the new change-
of-ordering algorithm of [5]. Here, the authors prove a complexity
result, excluding logarithmic factors, of 𝑂̃ (𝑚𝜔−1𝐷), where 𝜔 is the
exponent of the complexity of matrix multiplication. Applying our
estimates for𝑚 leads to even finer complexity results for symmetric
determinantal systems.

The finer complexity results of Section 4 rely primarily on the
knowledge of the Hilbert series of the special cases 𝑟 = 1, 𝑛 − 2 and
𝑛 − 3. Should further cases be explored, we could expect to obtain
stronger results for those cases as well. We would also like to study
more types of matrix structure, such as moment matrices that arise
in tensor decomposition [3] and sums of squares computations for
polynomial optimization [24]. For instance, we discuss the case of
Hankel variable matrices and derive an alternative derivation of
the Hilbert series of S𝑛−2.

Given an 𝑛 × 𝑛 Hankel matrix

𝐶 =


𝑐0 · · · 𝑐𝑛−1
... . .

. ...

𝑐𝑛−1 · · · 𝑐2𝑛−2

 ,
we denote by C𝑟 the ideal generated by all the (𝑟 + 1)-minors of𝐶 .

Lemma 16. Given 𝑟 ∈ N, the Hilbert series of C𝑟 is equal to

1
(1 − 𝑡)2𝑟

𝑟∑︁
𝑖=0

(
2𝑛 − 2𝑟 − 2 + 𝑖

𝑖

)
𝑡𝑖 .

Proof. By [8, Corollary 2.2], C𝑟 coincides with the ideal generated
by (𝑟 + 1)-minors of the (𝑟 + 1) × (2𝑛 − 𝑟 − 1) Hankel matrix

𝐶 = (𝑐𝑖+𝑗 )0≤𝑖≤𝑟,0≤ 𝑗≤2𝑛−𝑟−2

and the codimension of C𝑟 is 2𝑛 − 2𝑟 − 1.
Let𝑀 = (𝑚𝑖, 𝑗 )0≤𝑖≤𝑟,0≤ 𝑗≤2𝑛−𝑟−2 be a general variable matrix of

the same size of 𝐶 and 𝐼 be the ideal generated by all the (𝑟 + 1)-
minors of𝑀 . Hence, the ideal C𝑟 can be identified with

𝐼 +
〈
𝑐𝑖 −𝑚 𝑗,𝑖− 𝑗 , | 0 ≤ 𝑖 ≤ 2𝑛 − 2, 0 ≤ 𝑗 ≤ 𝑖

〉
.

Since K[𝑚0,0, . . . ,𝑚𝑟,2𝑛−𝑟−2]/𝐼 is a Cohen-Macaulay ring of the
same codimension 2𝑛− 2𝑟 − 1 as K[𝑐0, . . . , 𝑐2𝑛−2]/C𝑟 , the unmixed-
ness theorem [13, Cor. 18.14] and [4] give the result. □

The above lemma allows one to study similar problems onHankel
matrices. Furthermore, using the same technique as in Lemma 16
and noting that both C𝑛−2 and S𝑛−2 have codimension three, one
can obtain a different derivation of the Hilbert series of S𝑛−2.

Additionally, we make the following conjecture for triangular
matrices that, as far as we are aware, is new.

Conjecture 17. Let𝑇 be an 𝑛 ×𝑛 triangular variable matrix and
T𝑟 be the ideal generated by its (𝑟 + 1)-minors. Then the Hilbert series
associated to T𝑟 equals the Hilbert series associated to the ideal S𝑟 .

As the proofs in this paper rely solely on the Hilbert series of
the ideal we consider, if Conjecture 17 holds then our results also
hold for ideals generated by minors of triangular matrices.

6 EXPERIMENTS
6.1 Supporting Conjecture 2
This subsection reports on our testing of Conditions 1 and 2 upon
which our main results rely. Firstly, except for the cases 𝑟 ∈ {1, 𝑛 −
2, 𝑛−3} considered in Subsection 4.2, the unimodality of the Hilbert
polynomials of generic symmetric determinantal ideals remains
open in general. Moreover, for non-symmetric determinantal ideals,
while a formula for the Hilbert series is known in the generic
case [17], it is not proven to be unimodal.

Secondly, Condition 2 is not proven in any of the cases we con-
sider. We test this conjecture by computing the leading monomi-
als of the reduced Gröbner basis of a generic symmetric determi-
nantal system 𝐼 with Hilbert series 𝑃 . Adding 𝑥𝑘 gives a Gröb-
ner basis of 𝐼 + ⟨𝑥𝑘 ⟩ w.r.t. the ordering ≺grevlex [27, Lemma 1.9].
Then, we can compute the Hilbert series and compare this to
the formula [(1 − 𝑡𝑒 )𝑃]+ to test Condition 2. The current status
of testing this conjecture can be found at the following website:
https://www-polsys.lip6.fr/~ferguson/conjecture_testing.html.

6.2 Asymptotics in practice
In this subsection, we compare the true density of the multiplica-
tion matrix 𝑇𝑥𝑘 (Actual) against the percentage of dense columns
(Theoretical) and the asymptotic bounds established in Section 4
(Asymptotic), following the notation of [19, Table 2].

We begin with 𝑛 × 𝑛 symmetric matrices with rank at most
𝑟 = 𝑛 − 2. We consider 3 variables and vary the size of the matrix

https://www-polsys.lip6.fr/~ferguson/conjecture_testing.html


and the degree of its entries. When the entries are sufficiently
generic, this construction yields symmetric determinantal ideals of
dimension zero. Figure 1 reports on the density of𝑇𝑥3 obtained from
this setting. Using Proposition 9, we obtain exactly the numbers of
dense columns in the matrices 𝑇𝑥3 of these systems.

0 10 20 300
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15

20

𝑚/𝐷

Actual
Theoretical

Figure 1: Density of 𝑇𝑥3 for S
3,𝑑
𝑛−2 for 𝑑 ∈ {2, . . . , 50}

In Table 1, we analyze the ideal 𝑆6,𝑑
𝑛−3, where we also compare the

matrix density and number of dense columns against the asymp-
totic bound obtained in Proposition 12 (Asymptotic). Additionally,
Figure 2 illustrates how the asymptotic result approaches the true
number of dense columns as the degree 𝑑 increases.

Parameters Degree Matrix Density
(𝑑, 𝑛) 𝐷 Actual Theoretical Asymptotic
(2, 5) 2240 20.23% 21.96% 28.21%
(3, 5) 25515 12.58% 13.96% 18.81%
(2, 6) 7168 17.40% 19.14% 27.71%
(3, 6) 81648 10.89% 12.26% 18.47%
(2, 7) 18816 15.20% 16.96% 26.87%

Table 1: Density of 𝑇𝑥6 for S
6,𝑑
3
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Figure 2: Density of 𝑇𝑥6 for S
6,𝑑
𝑛−3 for 𝑑 ∈ {3, . . . , 50}

Finally, Figure 3 reports on the case 𝑟 = 1 in where we fix 𝑑 = 4
and increase the size of the matrix 𝑛. Here, the Asymptotic curve
comes from Proposition 14.
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Figure 3: Density of 𝑇𝑥 (𝑛2 ) for S
(𝑛2),4
1 for 𝑛 ∈ {4, . . . , 50}
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