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ABSTRACT
Polynomial matrices and ideals generated by their minors appear
in various domains such as cryptography, polynomial optimization
and effective algebraic geometry. When the given matrix is symmet-
ric, this additional structure on top of the determinantal structure,
affects computations on the derived ideals. Thus, understanding
the complexity of these computations is important. Moreover, this
study serves as a stepping stone towards further understanding the
effects of structure in determinantal systems, such as those coming
from moment matrices. In this paper, we focus on the Sparse-FGLM
algorithm, the state-of-the-art for changing ordering of Gröbner
bases of zero-dimensional ideals. Under a variant of Fröberg’s con-
jecture, we study its complexity for symmetric determinantal ideals
and identify the gain of exploiting sparsity in the Sparse-FGLM
algorithm compared with the classical FGLM algorithm. For an
n × n symmetric matrix with polynomial entries of degree d , we
show that the complexity of Sparse-FGLM for zero-dimensional de-
terminantal ideals obtained from this matrix over that of the FGLM
algorithm is at least O(1/d). Moreover, for some specific sizes of
minors, we prove finer results of at least O(1/nd) and O(1/n3d).

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic algo-
rithms; Equation and inequality solving algorithms; • The-
ory of computation → Algebraic complexity theory.
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1 INTRODUCTION
Let K be a field of characteristic 0 and K denote its algebraic clo-
sure. We consider a set of variables x = (x1, . . . ,xk ) and an n × n
symmetric matrix S = (fi, j )1≤i, j≤n where fi, j ∈ K[x1, . . . ,xk ] and
fi, j = fj,i . Given r ∈ N, the ideal generated by all (r + 1)-minors of
S defines an algebraic subset of Kk at which S has rank at most r .
We call such an ideal a symmetric determinantal ideal.

Polynomial matrices with special structures such as those above
appear frequently in computer algebra. For example, determinantal
ideals arise in cryptography especially through the Min-Rank prob-
lem (see e.g. [34]). Additionally, critical point methods in effective
algebraic geometry often lead to polynomial systems defined by
minors of Jacobian matrices. Symbolic computation based methods
for semi-definite programming, such as in [23–25, 31], lead to the
study of rank defects of polynomial matrices, including symmetric
and Hankel ones. In [27, 28], an algorithm for solving paramet-
ric polynomial systems is developed based on parametric Hermite
matrices which are symmetric matrices that encode the numbers
of real/complex solutions to zero-dimensional parametric systems.
Determinantal ideals obtained from those Hermite matrices define
algebraic sets such that the parametric system under study has at
most a given number of distinct complex solutions.

Thus, a task of great importance in the aforementioned works is
to handle computations involving determinantal ideals efficiently
and to understand the complexity of those computations. The Gröb-
ner basis method for computing with ideals is commonly used. The
most efficient Gröbner basis algorithms include the F4/F5 [15, 16],
FGLM [18] and Sparse-FGLM [19] algorithms. In this paper, we
study the complexity of the Sparse-FGLM algorithm [19] on zero-
dimensional ideals generated by minors of symmetric polynomial
matrices. Our main objective is to provide finer complexity esti-
mates for these algorithms on special determinantal ideals com-
pared to already known general complexity results.

Related works. Ideals generated by minors of a matrix whose en-
tries are variables are studied intensively in commutative algebra.
A popular technique in this subject is to use the theory of Gröbner
bases to associate initial ideals of determinantal ideals (w.r.t. a suit-
able ordering) to simplicial complexes. This allows one to make a
connection between determinantal ideals with combinatorial ob-
jects and establish many results using the Stanley-Reisner rings of
those simplicial complexes (see e.g [7, 8, 10, 11, 36]).

In this paper, we aremore interested in the computational aspects
that arise when one considers matrices whose entries are multivari-
ate polynomials. Computing with determinantal ideals generated
by minors of these matrices gives rise to the question of estimating
the complexity of Gröbner basis algorithms, e.g., F4/F5 [15, 16] and
FGLM-like [18, 19] algorithms, to this class of ideals.
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Previous works on the complexity of these algorithms depend on
some regularity properties as well as some quantities of the given
ideal that can be read from its Hilbert series. It is well-known that
the practical behavior of Gröbner basis computation depends on the
choice of monomial ordering. While Gröbner bases of lexicographi-
cal orderings provides many information on the solutions to a given
system, algorithms like F4/F5 operate more efficiently for comput-
ing Gröbner bases w.r.t. graded reversed lexicographic (grevlex)
orderings. Hence, a popular strategy for computing lexicographic
Gröbner bases is to start with an easy ordering such as grevlex
and then to apply a change of ordering algorithm. For this second
step, the FGLM algorithm [18] can be used in the zero-dimensional
case. Given a zero-dimensional ideal I ⊂ K[x1, . . . ,xk ] of degree D,
the classical FGLM algorithm is based on linear algebra operations
in K[x1, . . . ,xk ]/I which has the structure of a K-vector space of
dimension D. This leads to a complexity of O(kD3).

However, the matrices representing linear maps of multiplica-
tion in the quotient ring used by the FGLM algorithm are sparse. In
particular, the majority of the columns of the multiplication matrix
Txk associated to the least variable xk contain only one entry while
the rest are dense. An improved variant of the FGLM algorithm
that exploits this sparsity pattern was designed in [19] to obtain a
more efficient change of ordering algorithm with better complexity
results. With N the number of non-zero entries of Txk , the authors
of [19] prove, under some genericity assumptions, the complexity
O(ND + kD log(D)2). Due to the structure of this multiplication
matrix, one can bound N bymD, wherem is its number of dense
columns. When the input zero-dimensional system is generic, an
asymptotic bound form is given using the knowledge of the Hilbert
series of the given system. Inspired by [19], there have been at-
tempts to study the complexity of the Sparse-FGLM algorithm for
systems with special structures, the main task being to estimate
the sparsity of the multiplication matrices involved. Research in
this direction was undertaken in [5]. Focusing on zero-dimensional
ideals defining critical loci of polynomial maps restricted to alge-
braic sets, [5] introduces an explicit formula of the Hilbert series of
those given ideals which significantly simplifies the formula given
in [11]. This allows one to derive a sharp asymptotic bound for the
number of non-zero entries of the multiplication matrix Txk , when
the number of variables k tends to infinity. Applying this to the
complexity result of the Sparse-FGLM algorithm allows one to im-
prove the change-of-ordering complexity estimate for critical loci
computation compared to [20], which relies on the classical FGLM
algorithm. Computational experiments are also provided to support
that theoretical bound. We continue in this direction by considering
determinantal ideals obtained from symmetric matrices.

Besides the Sparse-FGLM algorithm which exploits the sparsity
of multiplication matrices, other algorithms are also developed us-
ing fast linear algebra techniques to improve the classical FGLM.
In particular, under certain assumptions, [17] and [32] present two
algorithms of complexity respectively Õ(Dω ) and O(nDω log(D))
where ω is the matrix multiplication exponent for changing order-
ing of Gröbner bases. The best known theoretical bound for ω is
2.37286 given in [1]. Comparing the Sparse-FGLM algorithm with
these algorithms requires estimating the parameterm. Moreover, a
bound onm serves independently as an indicator for the sparsity

of Txk and could be useful for any algorithm that relies on this
sparsity (e.g., the algorithm of [6] that improves [17, 32]).

Main results. Our main result is a refined complexity of the
Sparse-FGLM algorithm for zero-dimensional symmetric determi-
nantal systems by bounding the aforementioned parameterm.

We consider a symmetric matrix S = (si, j )1≤i, j≤n where s =
(s1,1, s2,1, s2,2, . . . , sn,1, . . . , sn,n ) are variables. Let K[s]d denote
the set of homogeneous polynomials of degree d in K[s] and 0.

Given r ∈ N, Sr denotes the ideal generated by all (r +1)-minors
of S and Ar = K[s]/Sr . The Hilbert series of Ar is defined as

HSAr (t) =
∞∑
d=0

dimK K[s]d/(Sr ∩ K[s]d ) · td

where dimK means the dimension as a K-vector space. It is well-
known that HSAr (t) can be written in the form

HSAr (t) =
Hr (t)

(1 − t)δ

where δ is the Krull dimension of Ar and Hr (t) ∈ Z[t] such that
Hr (1) , 0 [13, Theorem 10.2.4] [14, Ch. 8]. We call this polynomial
Hr (t) the reduced numerator of HSAr (t).

For d ∈ N and k =
(n−r+1

2
)
, K[x1, . . . ,xk ]≤d denotes the set of

polynomials in K[x1, . . . ,xk ] of degree at most d and Sk,d be the
symmetric matrix where si, j are replaced by fi, j ∈ K[x1, . . . ,xk ]≤d .
For sufficiently generic fi, j , we will prove that the ideal Sk,d

r gen-
erated by the (r + 1)-minors of Sk,d is zero-dimensional.

For any ideal I ⊂ K[x1, . . . ,xk ] (not necessarily homogeneous),
let Ih be the homogenized ideal of I with a new variable x0. The
Hilbert series of K[x1, . . . ,xk ]/I is defined as the Hilbert series of
K[x0, . . . ,xn ]/(Ih + ⟨x0⟩) in the homogeneous setting. Let Sk,d,h

r
be the homogenization of Sk,d

r andH
k,d
r be the Hilbert series of

K[x1, . . . ,xk ]/S
k,d
r . Our main results rely on some conditions on

the Hilbert series associated to Sr and S
k,d
r below.

Definition 1. A polynomial
∑n
i=0 ai t

i with non-negative coefficients
and an > 0 is unimodal if there exists N ∈ N, N ≤ n such that

ai−1 ≤ ai ≤ aN for 1 ≤ i ≤ N ,
aN ≥ ai ≥ ai+1 for N ≤ i ≤ n − 1.

Additionally, we require a condition on the cross-sections of the
Hilbert series of Sk,d

r . This conjecture is a determinantal variant of
Fröberg’s well-known conjecture [22] on the shape of the Hilbert
series of ideals generated by generic polynomial sequences.

Conjecture 2.
(1) Given r ∈ N, the reduced numeratorHr (t) of the Hilbert series

of the symmetric determinantal ideal Sr is unimodal.
(2) For e ≥ 1, let Qk,d,e

r be the Hilbert series of the quotient al-

gebra K[x0, . . . ,xk ]/
(
S
k,d,h
r +

〈
x0,xek

〉)
. We conjecture that

Q
k,d,e
r =

[
(1 − te )Hk,d

r (t)
]
+
, where

[
(1 − te )Hk,d

r (t)
]
+
is

the series truncated at its first non-positive coefficient.

Fröberg’s conjecture and the second part of Conjecture 2 also
relate to the strong Lefschetz property in homogeneous setting. A
graded Artinian algebraA has the strong Lefschetz property if there
exists a linear form ℓ such that the Hilbert series of the quotient



A/⟨ℓe ⟩ is equal to [(1 − te )HSA(t)]+ for any e ≥ 1. We refer the
interested readers to [29] for a survey on this subject.

To support Conjecture 2 , we refer in Section 5 to a computational
database for testing the two conditions in our conjecture.

Throughout this paper, the notations ≺grevlex and ≺lex always
denote the grevlex and lexicographic orderings in K[x1, . . . ,xk ]
with x1 ≻ · · · ≻ xk . We can now state our main results.

Theorem 3. Given r ,n,d ∈ N and k =
(n−r+1

2
)
, there exists a

non-empty Zariski-open subset Fr of K[x1, . . . ,xk ]
n(n+1)/2
≤d such

that, when the entries of Sk,d are taken in Fr , the following holds:
The ideal Sk,d

r is zero-dimensional and radical. When Conjecture 2
holds and a reduced Gröbner basis of Sk,d

r w.r.t. ≺grevlex is known,
the matrix Txk of multiplication by xk can be constructed without
any arithmetic operations. Moreover, the number of dense columns of
Txk equals the largest coefficient of the Hilbert seriesHk,d

r .

Through the Sparse-FGLM algorithm [19], Theorem 3 leads di-
rectly to a complexity result for the change-of-ordering to a ≺lex
Gröbner basis for symmetric determinantal ideals.

Theorem 4. Given r ,n,d ∈ N and k =
(n−r+1

2
)
, we consider the

matrix Sk,d with entries taken in the Zariski-open set Fr defined in
Theorem 3. Assume that Conjecture 2 holds and the reduced Gröbner
basis of Sk,d

r w.r.t. ≺grevlex is known. Then as d → ∞, the Sparse-

FGLM algorithm computes a ≺lex Gröbner basis of S
k,d
r within

O
(
mH

k,d
r (1)2

)
= O

(
md2kHr (1)2

)
= O

©«md2k
(n−r−1∏

i=0

( n+i
2i+r

)(2i+1
i

) )2ª®¬
arithmetic operations in K wherem is the number of dense columns
of the multiplication matrix Txk . Moreover, as d → ∞,m is bounded
above by

dk−1Hr (1) =
√

6
kπ

dk−1
n−r−1∏
i=0

( n+i
2i+r

)(2i+1
i

) .
Our results provide dedicated estimates of the complexity of the

Sparse-FGLM algorithm for symmetric determinantal ideals. This
new complexity result is finer than previous results that do not take
the specific structure into account. Moreover, we focus on three
special cases in particular, r = n − 2, r = n − 3 and r = 1. In these
cases, the Hilbert series is known [8, 10]. This allows us to provide
sharper complexity results by analyzing the largest coefficients
of these Hilbert series. To illustrate this result, we provide some
numerical results to compare this theoretical bound with the actual
number of dense columns that is observed in practice.

Organization of the paper. In Section 2, we recall some basic no-
tions and known results for determinantal ideals that will be used
further. The transition from variable matrices to polynomial matri-
ces is described in Section 3. There, we prove some properties that
relate the largest coefficient of the Hilbert series to the complexity
of the Sparse-FGLM algorithm applied to symmetric determinantal
ideals. Using these properties, in Section 4 we asymptotically bound
said complexity, with sharper estimates in some special cases. Based
on our findings, we touch on topics for further study, including
triangular and moment matrices, in Section 6. Finally, in Section 5,
experiments are provided to support our asymptotic bounds.
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2 PRELIMINARIES
In this section, we recall some properties of determinantal systems
associated to symmetric matrices. In Section 3, we show that these
properties can be transferred to determinantal ideals generated by
polynomial matrices. Under certain hypotheses, these properties
serve as main ingredients for our complexity estimate of the Sparse-
FGLM algorithm for symmetric determinantal ideals in Section 4.

We start with variable matrices before transitioning to the zero-
dimensional setting. As in Section 1, consider a symmetric matrix
S = (si, j )1≤i, j≤n with variables s = (s1,1, s2,1, s2,2, . . . , sn,1, . . . , sn,n ).

For r ∈ N, Sr is the homogeneous ideal generated by all the
(r + 1)-minors of S and Ar = K[s]/Sr . The reduced numerator of
the Hilbert series of Ar is denoted by Hr (t).

By [26], the quotient ring K[s]/Sr is a Cohen-Macaulay normal
domain. Moreover, we have the following properties:

• The Krull dimension ℓ of Ar is

dimAr =

(
n + 1
2

)
−

(
n − r + 1

2

)
=

(2n + 1 − r )r

2
.

• The degree of Ar , i.e.Hr (1), equals

Hr (1) =
n−r−1∏
i=0

( n+i
2i+r

)(2i+1
i

) ≤
n(

n−r+1
2 )

2(
n−r
2 ) ∏n−r−1

i=1 i!
.

Now we discuss some particular cases when the numerator of
the Hilbert series is unimodal (Definition 1). Note that unimodality
is not necessarily preserved by multiplication, for example f =
3+ t + t2 is unimodal (for N = 0) while f 2 = 9+ 6t + 7t2 + 2t3 + t4
is not. This motivates the following definition.

Definition 5. A polynomial f with non-negative coefficients is
strongly unimodal if, for any unimodal polynomial д, the product
f д is unimodal.

For an n × p, with n ≤ p, general variable matrix, the authors
of [5] simplify a formula given in [11] for the Hilbert series of the
ideal generated by its maximal minors. The reduced numerator in
this simplified formula of the Hilbert series,

n−1∑
i=0

(
p − n + i

i

)
t i ,

is easily seen to be unimodal. This allows one to derive the Hilbert
series of ideals generated by the maximal minors of matrices whose
entries are generic homogeneous polynomials of the same degree d .
Using the strong unimodality of 1 + · · · + td−1, it is also proved in
[5] that the corresponding reduced numerator is also unimodal.

In the case of symmetric matrices, we focus on the following
special cases for which the Hilbert series are known [8, 10]:



• When r = n − 2, the Hilbert series of Sn−2 is

1
(1 − t)n(n+1)/2−3

n−2∑
i=0

(
i + 2
2

)
t i .

• When r = n − 3, the Hilbert series of Sn−3 is symmetric

1
(1 − t)n(n+1)/2−6

(n−3∑
i=0

(
i + 5
5

)
t i +

n−4∑
i=0

(
i + 5
5

)
t2n−6−i

)
.

• When r = 1, the Hilbert series of S1 is

1
(1 − t)n

⌊ n2 ⌋∑
i=0

(
n

2i

)
t i .

One can see that the reduced numerators of these Hilbert series are
unimodal. However, except these cases, closed forms of the Hilbert
series are unknown. Although whether all the reduced numerators
are unimodal remains open, an affirmative answer can be observed
experimentally for generic determinantal systems (see Section 5).

3 THE ZERO-DIMENSIONAL SETTING
As in [5, 20, 21], we are interested in studying the behavior of
Gröbner basis computations for zero-dimensional systems. In this
section, some properties of zero-dimensional ideals generated by
minors of a symmetric polynomial matrix are established.

We denote by K[x1, . . . ,xk ]≤d the subset of K[x1, . . . ,xk ] of
polynomials of degree at most d . Let Sk,d = (fi, j )1≤i, j≤n be an
n × n symmetric matrix with entries in K[x1, . . . ,xk ]≤d . Then, for
r ∈ N, Sk,d

r denotes the ideal generated by the (r + 1)-minors of
Sk,d . It is expected that when the entries of Sk,d are sufficiently
generic, the ideal Sk,d

r retains some of the structure of Sr defined
in Section 2.

In order to apply the reasoning of [19] to generic symmetric
determinantal ideals we require them to be in shape position. This
means that for a ≺lex ordering with xk as the least variable, the
≺lex Gröbner basis has the structure

{x1 − д1(xk ), . . . ,xk−1 − дk−1(xk ),дk (xk )},

where for 1 ≤ i ≤ k − 1, degдi < degдk = D, the degree of I .

Proposition 6. Let r ,d ∈ N, Hr (t) be the reduced numerator of
the Hilbert series of the ideal Sr and k =

(n−r+1
2

)
, the codimen-

sion of Sr . There exists a non-empty Zariski-open subset Fr of
K[x1, . . . ,xk ]

n(n+1)/2
≤d such that if the entries of the matrix Sk,d are

taken in Fr , then the ideal Sk,d
r is radical and zero-dimensional and

its Hilbert seriesHk,d
r is equal to(
1 + t + · · · + td−1

)k
Hr

(
td

)
.

Moreover, there exists a non-empty Zariski-open subset O of the set
GL(k,K) of invertible k × k matrices such that, after applying any
linear change of coordinatesA ∈ O , the idealSk,d

r is in shape position.

Proof. We start in a homogeneous setting with K[x0,x1, . . . ,xk ]d
denoting the subset of homogeneous polynomials of degree d in
K[x0,x1, . . . ,xk ] together with 0. Let S = (si, j )1≤i, j≤n be an n × n
symmetric matrix. Throughout this proof, Sr denotes the ideal
of K[s,x0, . . . ,xk ] generated by the (r + 1)-minors of S . By [26],
K[s,x0, . . . ,xk ]/Sr is a Cohen-Macaulay ring.

By giving the weighted degrees d and 1 for the variables s and
x0, . . . ,xk respectively, the Hilbert series of K[s,x0, . . . ,xk ]/Sr is

H̃r
h
(t) =

Hr (t
d )

(1 − t)k+1
(
1 − td

)n(n+1)/2−k .
Assume that fi, j ∈ K[x1, . . . ,xn ]d . Let f hi, j be the homogenization
of fi, j in K[x0, . . . ,xk ]. We consider the quasi-homogeneous ideal

J = Sr +
〈
si, j − f hi, j |1 ≤ i ≤ j ≤ n

〉
.

Through similar techniques as in [21, Sec. 3 and 4], there exists a
non-empty Zariski-open subset Z of K[x0, . . . ,xk ]

n(n+1)/2
d such

that when the polynomials f hi, j lie in Z , the ideals J and J + ⟨x0⟩

have dimension one and zero respectively. Since S
k,d
r is the de-

homogenized ideal of J , it has dimension zero. Moreover, by the
unmixedness theorem [14, Cor. 18.14], then(n+1)/2+1 polynomials

si, j − f hi, j for 1 ≤ i ≤ j ≤ n and x0

forms a regular sequence over K[s,x0, . . . ,xk ]/Sr . Therefore, the
Hilbert series of J + ⟨x0⟩ is equal to

(1 − td )
n(n+1)

2 (1 − t)H̃r
h
(t) =

(
1 + · · · + td−1

)k
Hr

(
td

)
.

Next, we prove that there exists a non-empty Zariski-open subset
J ⊂ K[x0, . . . ,xk ]

n(n+1)/2
d such that, for f hi, j ∈ J , J is radical.

By [7, Theorem 2.9], there exists a monomial ordering ≺ such
that the corresponding initial ideal in≺(Sr ) is generated by square-
free monomials and so, is radical. Thus, Sr is a radical ideal of
codimension

(n−r+1
2

)
. Fixing an r -minor m of S , we consider the

setM of the
(n−r+1

2
)
(r + 1)-minors that contain m as a submatrix.

As the ideal Sr is radical, so is the ideal generated by the minors
M. By the exchange lemma [2, Lemma 4], these minors, together
with m , 0, define the locally closed algebraic set V (Sr ) \ V (m),
which has codimension

(n−r+1
2

)
.

We now consider the coefficients of f hi, j as new variables c in

the space C = K[x0, . . . ,xk ]
n(n+1)/2
d . Define the map φ by

φ : K(
n+1
2 )+k × C → K

(n−r+12 )
× K

(n+12 )

(s,x ,c) 7→ (M, s1,1 − f h1,1, . . . , sn,n − f hn,n )

and φc denotes the restriction of the map φ to a given c ∈ C . Let
jacs (M) be the Jacobian matrix ofM w.r.t. s . Note that the Jacobian
matrix of φ has the following structure

jac(φ) B
[
jacs (M) 0 · · · 0 0

∗ xd0 Id · · · xdk Id · · ·

]
,

where the blocks xdi Id come from the derivatives of si, j − f hi, j w.r.t.
the coefficients of xdi of f hi, j .

For any s such that m(s) , 0, jacs (M), and therefore jac(φ), has
maximal rank over the projective space of (x0, . . . ,xk ). Thus, the
Jacobian criterion [14, Theorem 16.19] implies that 0 is a regular
value of φ. By Thom’s weak transversality theorem [33, Proposition
B.3], there exists a Zariski-open dense subset Cm of C such that for
any c ∈ Cm , 0 is a regular value of φc and the Jacobian matrix of



φc has maximal rank when m(s) , 0 and (x0, . . . ,xk ) , 0, which
means J is radical. By dehomogenizing J , the ideal Sk,d

r is radical.
Now, let Sk,d,h

r be the homogenized ideal of Sk,d
r . The radicality

ofSk,d
r implies thatSk,d,h

r is also radical. As J+⟨x0⟩ has dimension
zero, the projective varietiesV (J ) andV (S

k,d,h
r ) in P(K)k coincide.

Since J is radical, the homogeneous Hilbert’s Nullstellensatz [3,
Corollary 4.80] gives J = I (V (J )) = I (V (S

k,d,h
r )) = S

k,d,h
r . Thus,

the Hilbert series ofSk,d
r equals the Hilbert series of J + ⟨x0⟩ whose

explicit form is already proven above.
Finally, let Fr be the intersection of Z and J , identified as a

Zariski-open dense subset of K[x1, . . . ,xk ]
n(n+1)/2
≤d by specializing

x0 to one, with the sets Cm for all r -minors m of S . For any c ∈

Fr , the ideal Sk,d
r is zero-dimensional and radical as the Jacobian

matrix associated to its defining equations has rank
(n+1

2
)
+

(n−r+1
2

)
.

Therefore, we may apply the shape lemma [4, Proposition 5]. There
exists a Zariski-open dense subset O of GL(k,K) such that for all
A ∈ O , after applying A, the points of the variety V (S

k,d
r ) have

distinct xk coordinates. Thus, the ideal Sk,d
r is in shape position.

□

4 ASYMPTOTIC COMPLEXITY
4.1 The general case
Given a Gröbner basis of a zero-dimensional ideal in K[x1, . . . ,xk ]
w.r.t. an ordering ≺1, the Sparse-FGLM algorithm [19] computes
a Gröbner basis of the same ideal but w.r.t. a target ordering ≺2.
A common change of ordering for practical uses is from a grevlex
ordering to a lexicographic one [12, 20, 21]. In this section, we prove
an asymptotic upper bound on the complexity of this computation
for zero-dimensional symmetric determinantal ideals.

We keep the same setting as in Section 3. Given n, r ∈ N and k =(n−r+1
2

)
, we consider an n×n symmetric matrix Sk,d whose entries

are taken in Fr ⊂ K[x1, . . . ,xk ]
n(n+1)/2
≤d defined by Proposition 6.

Then, the ideal Sk,d
r is zero-dimensional and in shape position.

Given a zero-dimensional ideal I ⊂ K[x1, . . . ,xk ] of degreeD, let
G be its reduced Gröbner basis w.r.t. the ordering ≺grevlex. It is well
known that K[x1, . . . ,xk ]/I is a finite-dimensional vector space for
which the set B of monomials irreducible by G forms a basis. The
multiplications by x1, . . . ,xk are linear maps of K[x1, . . . ,xk ]/I ,
whose matrix representations Tx1 , . . . ,Txk in B appear with spar-
sity. The Sparse-FGLM algorithm [19] improves upon the classical
FGLM algorithm [18], whose arithmetic complexity is O(kD3), by
taking advantage of this sparsity. In [19], the authors also provide
a careful complexity analysis of their algorithm. By assuming the
widely accepted Moreno-Socías conjecture [30, Conjecture 4.1],
they show that the matrix Txk can be obtained from G without ad-
ditional cost. Withm as the number of dense columns ofTxk , when
I is in shape position they bound the complexity of this algorithm
by

O
(
mD2 + kD log2 D

)
.

This complexity analysis relies on the observation that there are
three possible cases when one multiplies a monomial b ∈ B by xk :

• xk · b ∈ B: in this case, the associated column in Txk is
(0, . . . , 0, 1, 0, . . . , 0)where the row of 1 corresponds to xk ·b.

• xk ·b is the leading monomial of some д ∈ G: in this case, the
column is easily obtained from the coefficients of xk · b − д.

• Otherwise, the column is non-trivial and requires a normal
form reduction of xk · b by G to compute its canonical rep-
resentation in B, i.e. the corresponding column in Txk .

The most dense columns of the matrixTxk correspond to the second
and the third cases. Only the third case requires extra computation.
If Moreno-Socías’ conjecture holds, then the third case does not
occur for generic polynomial systems [19]. Thus, the multiplication
matrix Txk can be obtained without further computation. In [5], it
is shown that under similar genericity assumptions, the third case
does not occur for critical point systems either. We shall now prove
that the same holds for generic symmetric determinantal ideals.
Proof of Theorem 3. The existence of the set Fr such that Sk,d

r
is zero-dimensional and radical is given by Proposition 6. By the
first item of Conjecture 2, Hr is unimodal, which then implies that
(1+ · · ·+ td−1)Hr (t

d ) is unimodal. By [5, Lemma 17], 1+ · · ·+ td−1

is a strongly unimodal polynomial. Hence, the Hilbert series Hk,d
r

given in Proposition 6 is also unimodal.
Let Ak,dr = K[x1, . . . ,xk ]/S

k,d
r and S

k,d,h
r be the homogeniza-

tion of Sk,d
r . We shall construct the matrix Txk column by column.

As in [19], the columns are indexed by elements in the basis B of
Ak,dr , given by the ordering ≺grevlex. For any b ∈ B, the entries in
its corresponding column are the coefficients of the normal form of
xk · b expressed in terms of the basis B. By [5, Theorem 1], under
Conjecture 2, xk ·b is either an element of B or a leading monomial
of the known grevlex Gröbner basis G. In the first case, the column
corresponding to b is a column of the identity matrix and requires
no computation. In the second case, the column corresponding to b
can be read from the coefficients of the polynomial in G for which
xk · b is the leading monomial. Thus, there are bijections between
the dense columns ofTk , the polynomials in G whose leading terms
are divisible by xk and then the elements in B which are not di-
visible by xk . The cardinal of the last set equals the dimension of
K[x0, . . . ,xk ]/

(
S
k,d,h
r + ⟨x0,xk ⟩

)
which can be read by evaluating

Q
k,d,1
r (1). When Conjecture 2 holds, similar to [5, Lemma 25], we

deduce that the largest coefficient ofHk,d
r equals Qk,d,1

r (1). □

Hence, assuming thatk =
(n−r+1

2
)
and that the entries of Sk,d are

taken from Fr described in Proposition 6, we study the asymptotic
behavior of the largest coefficient of the Hilbert series of the zero-
dimensional ideal Sk,d

r as d tends to infinity.

Lemma 7. Let k =
(n−r+1

2
)
. The largest coefficient of

H
k,d
r (t) = (1 + t + · · · + td−1)kHr (t)

as d → ∞ is bounded above by

√
6
kπ

dk−1Hr (1) =
√

6
kπ

dk−1
n−r−1∏
i=0

( n+i
2i+r

)(2i+1
i

) .



Proof. By [19, Corollary 5.10], as d → ∞, all the coefficients of(
1 + · · · + td−1

)k
are bounded by

√
6
kπ d

k−1. Substituting this as-
ymptotic formula into the convolution formula for the largest coef-
ficient gives the first result. By [26], we conclude using the equation

Hr (1) =
n−r−1∏
i=0

( n+i
2i+r

)(2i+1
i

) . □

We now apply Lemma 7 to prove Theorem 4 which provides an
asymptotic complexity estimate for the Sparse-FGLM algorithm on
generic symmetric determinantal systems.
Proof of Theorem 4. By Proposition 6, we apply the shape posi-
tion variant of the Sparse-FGLM algorithm. Then, by Theorem 3,
the multiplication matrix Txk can be constructed without any ad-
ditional arithmetic operations and the number of dense columns
m equals the largest coefficient of the Hilbert series of Sk,d

r . The
dominant term in the complexity isO(mD2), where D is the degree
of Sk,d

r . This degree is given by the evaluation of the Hilbert series

H
k,d
r (t) =

(
1 + t + · · · + td−1

)k
Hr

(
td

)
of Sk,d

r at one. By [26], the degree of Sk,dr is equal to

D = H
k,d
r (1) = dkHr (1) = dk

n−r−1∏
i=0

( n+i
2i+r

)(2i+1
i

) .
Finally, Lemma 7 implies the bound onm as d → ∞. □

Corollary 8. The complexity of the Sparse-FGLM algorithm over
that of the FGLM algorithm for generic symmetric determinantal
ideals as d → ∞ is at least O(1/d).

4.2 Cases r = n − 2, r = n − 3 and r = 1
In this subsection, we treat the cases of r = n − 2, r = n − 3 and
r = 1 separately. By taking into account the knowledge on the
corresponding Hilbert series, the first item of Conjecture 2 holds
in these cases. Furthermore, one can arrive at finer asymptotic
estimates on the largest coefficient. Recall that the codimension
of Sr , and hence the number of variables we consider in the zero-
dimensional setting, equals 3, 6 and

(n
2
)
for these cases respectively.

We start by identifying the largest coefficient ofH3,d
n−2 exactly.

Proposition 9. The largest coefficient of

H
3,d
n−2(t) =

(
1 + t + · · · + td−1

)3 n−2∑
i=0

(
i + 2
2

)
t id

is the value of(
n − 1
2

) (
j + 1
2

)
+

(
n

2

) ((
d + 1
2

)
+ j(d − j − 1)

)
.

when j is any integer that minimizes
��� 2nd−n−22(n+2) − j

���.
Proof. Note that(

1 + t + · · · + td−1
) n−2∑
i=0

(
i + 2
2

)
t id =

n−2∑
i=0

d−1∑
j=0

(
i + 2
2

)
t id+j .

We write these coefficients in the following d × ((n − 2)d − 1) grid:

t0 · · · td−1 · · · · · · · · · · · · t (n−1)d−1 · · · t (n−2)d−2

1 · · · 1 · · · · · ·
(n
2
)

· · ·
(n
2
)

. .
. ... . .

.
. .
.
. .
.
. .
. ... . .

.

1 · · · 1 · · · · · ·
(n
2
)

· · ·
(n
2
)

The coefficients of
(
1 + t + · · · + td−1

)2
Hn−2(t) are the sums of

columns of this grid, which are(
i + 2
2

)
(j + 1) +

(
i + 1
2

)
(d − j − 1).

Thus, the coefficients of
(
1 + t + · · · + td−1

)3
Hn−2(t) can be com-

puted by summing all d consecutive columns of the above grid.
As

(i+2
2

)
is increasing as a sequence in i , the largest coefficient

of H3,d
n−2 must be the coefficient of tnd−j−2 for some 0 ≤ j ≤ d − 1.

By a simple calculation, this coefficient can be expressed as(
n − 1
2

) (
j + 1
2

)
+

(
n

2

) ((
d + 1
2

)
+ j(d − j − 1)

)
= C −

(n − 1)(n + 2)
16

(
2nd − n − 2

n + 2
− 2j

)2
where

C =

(
n

2

) (
d + 1
2

)
+
(n − 1)(2nd − n − 2)2

16(n + 2)
does not depend on j. Hence, to identify j, we minimize

min
j ∈N,0≤j≤d−1

����2nd − n − 2
2(n + 2)

− j

���� .
Let α = 2nd−n−2

2(n+2) , which lies in [0,d − 1/2) if n ≥ 2. Then, to
conclude the proof, we take j to be the nearest integer to α . □

Recall that D denotes the degree of the ideal under study. When
r = n−2we have thatD =

(d+1
3

)
. Since the complexity of the Sparse-

FGLM algorithm over that of the FGLM algorithm is O
(
mD2

kD3

)
=

O
(
m
kD

)
, Proposition 9 immediately implies the following corollary.

Corollary 10. By the proof of Proposition 9, we can bound

m ≤ C =

(
n

2

) (
d + 1
2

)
+
(n − 1)(2nd − n − 2)2

16(n + 2)
.

Hence, the complexity of the Sparse-FGLM algorithm over that of the

FGLM algorithm when r = n − 2 is at least O
(

1
nd

)
.

Next, we consider r = n − 3. Notice that the reduced numerator
Hn−3 is symmetric, i.e. Hn−3(t) = tdeg(h)Hn−3(1/t). The lemma
below will be useful for proving a finer complexity in this case.

Lemma 11. Let f (t) be a unimodal symmetric polynomial. Then

д(t) = (1 + t + · · · + td−1)f (t)

is also unimodal and symmetric. Moreover, the c largest coefficients
of д(t) are combinations of the d + c − 1 largest coefficients of f (t).
As a point of notation, if f (t) has fewer than d + c − 1 coefficients
then we consider all other coefficients to be zero.



Proof. First, the unimodality ofд comes from the strong unimodality
of 1+t + · · ·+td−1. The symmetry can be deduced from the equality

tdeg(д)д(1/t) =
(
1 + · · · + td−1

)
tdeg(д) f (1/t) = д(t).

Note that the coefficient of t i in д is the sum of the coefficients of
t i−d+1, . . . , t i in f . As f is unimodal and symmetric, the largest
coefficient of д is the sum of the d central coefficients of f . Since д
is unimodal and symmetric, the c largest coefficients of д are con-
secutive and any of them is at most

⌈ c−1
2

⌉
elements away from the

central and thus largest coefficient. Hence, the c largest coefficients
of д involve only the central d + c − 1 coefficients of f . □

Proposition 12. The largest coefficient of the Hilbert series

H
6,d
n−3(t) =

(
1 + t + · · · + td−1

)6
Hn−3

(
td

)
as d → ∞ is bounded above by((
n + 2
5

)
+ 2

(
n + 1
5

)
+ 2

(
n

5

)) √
1
π
d5 ≤ 5

(
n + 2
5

)√
1
π
d5 ∈ O

(
n5d5

)
.

Proof. By Lemma 11, (1 + · · · + td−1)6 is unimodal and symmetric.
And so isHn−3 from its explicit formula. Thus, by Lemma 11, the
largest coefficientm of the Hilbert series H6,d

n−3, which is actually a
polynomial, depends only on the central 5(d − 1) + 1 coefficients
of (1 + · · · + td−1)Hn−3(td ). This number then depends on at most
the central 5 coefficients of the polynomialHn−3(t).

By [19, Corollary 5.10], all coefficients of (1 + · · · + td−1)6 are at

most
√

1
π d

5. Therefore, by the definition ofHn−3 and its symmetry,
we have that, as d → ∞,

m ≤

((
n + 2
5

)
+ 2

(
n + 1
5

)
+ 2

(
n

5

)) √
1
π
d5 ≤ 5

(
n + 2
5

)√
1
π
d5. □

When r = n − 3, the ideal Sk,d
n−3 has degree

D =

((
n + 2
6

)
+

(
n + 3
6

))
d6 ∈ O(n6d6).

By Proposition 12, the number of dense columnsm lies in O(n5d5)
as d → ∞, which implies Corollary 13.

Corollary 13. Let r = n−3. Asd → ∞, the complexity improvement
of the Sparse-FGLM algorithm over that of the FGLM algorithm for

the generic symmetric determinantal ideal S6,dn−3 is at least O
(

1
nd

)
.

Finally, in the case r = 1, the number of variables k is chosen to
be equal to

(n
2
)
. Since this depends on n, we consider the asymptotic

complexity as n → ∞.

Proposition 14. The largest coefficient of

H
(n2),d
1 (t) =

(
1 + t + · · · + td−1

)(n2) ⌊ n2 ⌋∑
i=0

(
n

2i

)
t id

as n → ∞ is at most√
6(n

2
)
π (d2 − 1)

d(
n
2)2n−1 ∈ O

(
2n−1

n
d(

n
2)−1

)
.

Proof. As (1 + · · · + td−1)(
n
2) is symmetric and unimodal, its largest

coefficient is central. By an abridged version of [35, Theorem 2],
this largest coefficient is asymptotically equal to√

6(n
2
)
π (d2 − 1)

d(
n
2)

as n → ∞. Then, the largest coefficient ofH(n2),d
1 is at most√

6(n
2
)
π (d2 − 1)

d(
n
2)

⌊ n2 ⌋∑
i=0

(
n

2i

)
.

The following equality gives the result

⌊ n2 ⌋∑
i=0

(
n

2i

)
=

⌊ n2 ⌋∑
i=0

((
n − 1
2i − 1

)
+

(
n − 1
2i

))
=

n−1∑
i=0

(
n − 1
i

)
= 2n−1. □

As the degree of S(
n
2),d

1 is d(
n
2)2n−1, by applying Proposition 14

to Theorem 4 we arrive at the following corollary.

Corollary 15. When r = 1 the degree of S(
n
2),d

1 is d(
n
2)2n−1.

Therefore, the complexity of the Sparse-FGLM algorithm over that
of the FGLM algorithm as n → ∞ is at least

O

(
1

knd

)
= O

(
1(n

2
)
nd

)
= O

(
1

n3d

)
.

Moreover, the bound onm in Theorem 4 implies that the complexity
gain as d → ∞ is also at least

O

(
1

k3/2d

)
= O

(
1(n

2
)3/2

d

)
= O

(
1

n3d

)
.

5 EXPERIMENTS
5.1 Supporting Conjecture 2
This subsection reports on our testing of Conjecture 2 upon which
our main results rely. Firstly, except for the cases r ∈ {1,n − 2,n −

3} considered in Subsection 4.2, the unimodality of the Hilbert
polynomials of generic symmetric determinantal ideals remains
open in general. Moreover, for non-symmetric determinantal ideals,
while a formula for the Hilbert series is known in the generic
case [21], it is not proven to be unimodal.

Secondly, the second item of Conjecture 2 is not proven in any
of the cases we consider. We test this conjecture by computing the
leading monomials of the reduced Gröbner basis of a generic sym-
metric determinantal system I with Hilbert series P . Homogenizing
this Gröbner basis, we obtain a Gröbner basis of the homogenized
ideal Ih w.r.t. the ≺grevlex ordering where x1 ≻ · · · xk ≻ x0. Fi-
nally, adding ⟨x0,xk ⟩ gives a Gröbner basis of Ih + ⟨x0,xk ⟩ w.r.t.
the ≺grevlex ordering with x1 ≻ · · · ≻ xk ≻ x0 [30, Lemma 1.9].
Then, we can compute the Hilbert series and compare this to the
formula [(1 − te )P]+ to test the second item. The current status
of testing this conjecture can be found at the following website:
https://www-polsys.lip6.fr/~ferguson/conjecture_testing.html.

https://www-polsys.lip6.fr/~ferguson/conjecture_testing.html


5.2 Asymptotics in practice
In this subsection, we compare the true density of the multiplica-
tion matrix Txk (Actual) against the percentage of dense columns
(Theoretical) and the asymptotic bounds established in Section 4
(Asymptotic), following the notation of [19, Table 2].

We begin with n × n symmetric matrices with rank at most
r = n − 2. We consider 3 variables and vary the size of the matrix
and the degree of its entries. When the entries are sufficiently
generic, this construction yields symmetric determinantal ideals
of dimension zero. Figure 1 reports on the exact numbers of dense
columns in the matrices Tx3 using Proposition 9.

0 10 20 30
0

5

10

15

20

m/D

Actual
Theoretical

Figure 1: Density of Tx3 for S
3,d
n−2 for d ∈ {2, . . . , 50}

In Table 1, we analyze the ideal S6,dn−3, where we also compare the
matrix density and number of dense columns against the asymp-
totic bound obtained in Proposition 12 (Asymptotic). Additionally,
Figure 2 illustrates how the asymptotic result approaches the true
number of dense columns as the degree d increases.

Parameters Degree Matrix Density
(d, n) D Actual Theoretical Asymptotic
(2, 5) 2240 20.23% 21.96% 28.21%
(3, 5) 25515 12.58% 13.96% 18.81%
(2, 6) 7168 17.40% 19.14% 27.71%
(3, 6) 81648 10.89% 12.26% 18.47%
(2, 7) 18816 15.20% 16.96% 26.87%

Table 1: Density of Tx6 for S
6,d
3

0 10 20 30 40 50
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Figure 2: Density of Tx6 for S
6,d
n−3 for d ∈ {3, . . . , 50}

Finally, Figure 3 reports on the case r = 1 in where we fix d = 4
and increase the size of the matrix n. Here, the Asymptotic curve
comes from Proposition 14.
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0

5

10

15

m/D

Asymptotic
Theoretical

Figure 3: Density of Tx(n2) for S
(n2),4
1 for n ∈ {4, . . . , 50}

6 PERSPECTIVES
Our results describe the fundamental parameterm, the number of
dense columns of Txk . Therefore, while the complexity results in
this article focus on the application to the Sparse-FGLM algorithm,
we can also apply the propositions of Section 4 to the new change-
of-ordering algorithm of [6]. There, the authors prove a complexity
result, excluding logarithmic factors, of Õ(mω−1D), where ω is the
exponent of the complexity of matrix multiplication. Applying our
estimates form leads to even finer complexity results for symmet-
ric determinantal systems. Our bound onm enables more precise
comparison of this new algorithm in [6] with the existing algo-
rithms based on fast linear algebra [17, 32] whose complexities lie
in Õ(Dω ).

The finer complexity results of Section 4 rely primarily on the
knowledge of the Hilbert series of the special cases r = 1,n − 2
and n − 3. Should further cases be explored, we could expect to
obtain stronger results for those cases as well. We would also like
to study more types of matrix structure such as moment matrices.
For instance, we discuss the case of Hankel variable matrices and
derive an alternative derivation of the Hilbert series of Sn−2.

Let n ∈ N, c0, . . . , c2n−2 be new variables and C be the Hankel
matrix

C =


c0 · · · cn−1
... . .

. ...

cn−1 · · · c2n−2

 .
We denote by Cr the ideal generated by all the (r + 1)-minors ofC .

Lemma 16. Given r ∈ N, the Hilbert series of Cr is equal to

1
(1 − t)2r

r∑
i=0

(
2n − 2r − 2 + i

i

)
t i .

Proof. By [9, Corollary 2.2], Cr coincides with the ideal generated
by (r + 1)-minors of the (r + 1) × (2n − r − 1) Hankel matrix

C = (ci+j )0≤i≤r,0≤j≤2n−r−2

and the codimension of Cr is 2n − 2r − 1.
LetM = (mi, j )0≤i≤r,0≤j≤2n−r−2 be a general variable matrix of

the same size of C and I be the ideal generated by all the (r + 1)-
minors ofM . Hence, the ideal Cr can be identified with

I +
〈
ci −mj,i−j , | 0 ≤ i ≤ 2n − 2, 0 ≤ j ≤ i

〉
.

Since K[m0,0, . . . ,mr,2n−r−2]/I is a Cohen-Macaulay ring of the
same codimension 2n− 2r − 1 as K[c0, . . . , c2n−2]/Cr , the unmixed-
ness theorem [14, Cor. 18.14] and [5] give the result. □



The above lemma allows one to study similar problems onHankel
matrices. Furthermore, using the same technique as in Lemma 16
and noting that both Cn−2 and Sn−2 have codimension three, one
can obtain a different derivation of the Hilbert series of Sn−2.

Additionally, we make the following conjecture for triangular
matrices that, as far as we are aware, is new.

Conjecture 17. LetT be an n ×n triangular variable matrix and
Tr be the ideal generated by its (r + 1)-minors. Then the Hilbert series
associated to Tr equals the Hilbert series associated to the ideal Sr .

As the proofs in this paper rely solely on the Hilbert series of
the ideal we consider, if Conjecture 17 holds then our results also
hold for ideals generated by minors of triangular matrices.
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