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We present a theory of active, permeating, polar gels, based on a two-fluid model. An active
relative force between the gel components creates a steady-state current. We analyze its stability,
while considering two polar coupling terms to the relative current: a permeation-deformation term,
which describes network deformation by the solvent flow, and a permeation-alignment term, which
describes the alignment of the polarization field by the network deformation and flow. Novel insta-
bility mechanisms emerge at finite wave vectors, suggesting the formation of periodic domains and
mesophases. Our results can be used to determine the physical conditions required for various types
of multicellular migration across tissues.

Introduction. Active materials are driven out of equi-
librium by a constant consumption of energy at the mi-
croscopic level, which is converted into forces and mo-
tion [1]. These include, among others, biological objects
on different scales, ranging from active motors, to living
cells, and even groups of animals. A useful framework
for the study of active matter is hydrodynamics. Sim-
ilarly to continuum theories of liquid crystals [2], it de-
scribes macroscopic physical properties and flows, relying
on conservation laws and symmetries. It also provides an
efficient language to distinguish between active materi-
als, based on their composition, orientational order, and
rheological properties.

The biological motivation to our physical theory is
multicellular migration. Connective tissues are made of
cells in a complex extracellular environment, which often
has a viscoelastic behavior [4]. Cells may migrate collec-
tively in tissues in a fluid-like manner [3]. We propose
that the tissue can be regarded, therefore, as an active,
permeating, gel with the cells acting as a solvent. We
further focus on a polar solvent, relevant to cells with
spindle-like shapes and a preferred direction. While ac-
tive, permeating, polar gels have been studied in other
contexts in the past [5–9], these studies remain at a gen-
eral level, without interpreting the new Onsager trans-
port coefficients of the theory, or clarifying the nature of
the interaction between the two gel components.

Our new theory is formulated in a systematic way as
a two-fluid model. It identifies the internal forces of
each component and the interaction forces between com-
ponents , which orient the solvent (“permeation align-
ment”) and deform the network (“permeation deforma-
tion”). These mechanisms drive novel, finite-wavelength
instabilities, unique to active, permeating polar gels. Our
theory opens an avenue to study cell-matrix interactions
during multicellular migration .

Theory. We consider a two-component gel, composed
of an active, polar solvent (s) and a viscoelastic network
(n). The polarization field is given by the unit vector
p. The network configuration is described by the left
Cauchy-Green strain tensor B = EET , where E is the
deformation gradient tensor. We consider the network

component to be viscoelastic; elastic at short times and
flowing at long times . It has a volume fraction φ and the
solvent 1− φ. The gel is assumed to be incompressible.

The free-energy of the gel can be decomposed into
F =

∫
dr (fp + fB + fBp + fφ), where fp is the polar-

ization free-energy density, fB is the elastic free-energy
density, fBp is a strain-polarization coupling term, and
fφ is the mixing free-energy density. The polarization
contribution is given by

fp = (1− φ)
2

[
1

2
K (∇p)

2
+Kd∇ · p

]
− 1

2
h‖p

2. (1)

It accounts for distortions of the polarization field around
a fully polarized state [10, 11]. In Eq. (1), K is the Frank
constant in the single-constant approximation and Kd is
a polar splay coefficient, while h‖ is a Lagrange mul-
tiplier to ensure that p2 = 1. The polar splay term,
(1− φ)

2
Kd∇ · p, is the only polar term in the free en-

ergy. It plays an important role in our theory because of
its coupling to the concentration; otherwise, it reduces to
a boundary term. The coupling is considered to scale as
(1− φ)

2
, because the free energy originates from solvent-

solvent interaction.

The gel is active. It is constantly driven out of equi-
librium by the input of a fixed energy-density, ∆µ that
corresponds, for example, to the chemical-potential dif-
ference between ATP and its hydrolysis products [12, 13].

We describe the dynamics of the concentration, polar-
ization, and strain within a hydrodynamic framework.
The network moves with a velocity vn and the solvent
with a velocity vs, corresponding to a center-of-mass
(COM) velocity, v = φvn + (1− φ)vs, and a relative
current, J = φ (1− φ) (vn − vs). We have assumed, for
simplicity, the same molecular mass for both components.

The dynamics of the concentration are determined
from the continuity equation, ∂tφ+∇·(φvn) = 0. For the
polarization and network configuration, we derive in the
Supplemental Material (SM) [14] the following, minimal
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constitutive relations:

(∂t + vs · ∇)p =
1

γ1
h+ p · ∇vs + λJ , (2)

(∂t + vn · ∇)B = −1

τ

∂B

∂σel
: σel +B∇vn + (∇vn)

T
B

+
1

2
ξ (Jp+ pJ) . (3)

In Eq. (2), γ1 is the rotational viscosity, h = −δF/δp
is the solvent orientational field, and the second term
in the right-hand side (RHS) is a convective term [15–
18]. In Eq. (3), τ is a viscoelastic relaxation time and
σel is the elastic (Kirchhoff) stress [16]. It is given by
σel = −2HBB, where HB = −δF/δB is the network
molecular field. The next two terms in Eq. (3) are con-
vective terms [15].

The last terms in RHS of Eqs. (2) and (3) are reactive
couplings allowed by the polar symmetry. We refer to λ
as the permeation-alignment parameter. It couples the
polarization rate with the relative current. We refer to
ξ as the permeation-deformation parameter. It couples
the network strain-rate with the relative current. Both
λ and ξ have units of inverse length. They are central
to our work, and we give a heuristic description of their
roles in Fig. 1a. In the absence of polarization and for a
linear elastic stress-strain relation, Eq. (3) reduces to the
upper-convected Maxwell equation [19].

Onsager’s reciprocal relations infer reciprocal, reactive
couplings involving λ and ξ in the constitutive equation
for the relative current, J . As in the two-fluid model,
friction due to the relative current acts as a relative force
between the components. Therefore, the new permeation
couplings are concurrent with new relative forces between
the gel components [14],

f rel =
1

γ
J − φ (1− φ)

(
λh+ ξHB · p+ ν∆µp

)
. (4)

Here we included an active relative force ∼ ν∆µ, where
ν has units of inverse length, which results in an active
relative current.

Overall, the force-balance equations for the two com-
ponents read

fn − φ∇δP = f rel,

f s − (1− φ)∇δP = −f rel, (5)

where fn and f s are the forces acting on the network and
solvent, respectively, and δP is a pressure difference that
enforces incompressibility [14]. Equation (5) reduces to
a standard two-fluid model [20] in the absence of activ-
ity and polarization. As the new relative forces do not
include any derivatives, as opposed to the stress and pres-
sure terms, they are especially important in the limit of
small wave vectors.

The forces acting on each of the components are [14]

fnα = ∂βσ
el
αβ − φ∂αµ̄−HB

βγ∂αBγβ , (6)

f sα = ∂β
[
2ηsv

s
αβ − hαpβ + (1− φ) ζ∆µQαβ

]
− hβ∂αpβ .

(7)

In Eq. (6), the second term in RHS is the osmotic pres-
sure gradient with µ̄ = δF/δφ being the relative chemi-
cal potential, and the last term originates in the Ericksen
stress of the gel. In Eq. (7), ηs is the solvent viscosity

and vsαβ =
(
∂αv

s
β + ∂βv

s
α

)
/2 is the solvent strain rate.

The next term is the stress due to polarization rotations
and the last term in the parenthesis is an active stress,
proportional to the nematic tensor, Q, and solvent con-
centration. The last term in RHS also originates in the
Ericksen stress. These equations satisfy Onsager reci-
procity with the convective terms in Eqs. (2) and (3).
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FIG. 1: (Color online) Heuristic description of a polar solvent
(green, polarization indicated by a black arrow) and a viscoelas-
tic network (purple). (a) Reactive, polar couplings for J0 < 0;
permeation-deformation coupling, where the network becomes
more aligned (ξ < 0) or less aligned (ξ > 0) with the relative
current and network polarization, and permeation-alignment cou-
pling, where the solvent becomes aligned against (λ < 0) or in the
direction of the relative current (λ > 0). (b) The system is unstable
for ξ = λ = 0 and J0Kd < 0, where the relative current brings the

polar solvent closer together and increases its concentration.

Linear stability analysis. We examine the linear sta-
bility of the steady state with respect to perturbations
with a growth rate s and wave vector q, of the form
exp (st+ iq · r). The steady state is homogeneous, φ =
φ0, p = p0 = x̂, and B = B0, with a relative current
driven by the active relative force, given by J0 = J0 p

0

with J0 = γφ0 (1− φ0) ν∆µ. The system is stable if
Re s < 0 for all the eigenvalues of the linear system.
The details of the analysis are found in the SM [14].
For simplicity and in order to highlight new instabili-
ties that result from the polar couplings, we focus on a
2-dimensional system with wave vectors perpendicular to
the steady-state polarization, q = qŷ [21–23]. We con-
sider the strain free-energy, fB = GφTr (B − lnB) /2,
corresponding to Gaussian polymer chains [24–26], where
Gφ is the shear modulus, and fBp = 0.

In the hydrodynamic limit, we consider small wave vec-
tors and solve for the growth rate up to quadratic order
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in q, s ' s0 + iuq−Dq2, where s0 is a relaxation rate, u
a velocity, and D a diffusion coefficient. In the opposite,
large-q limit, the system is always stable [14].

First, we analyze the stability for λ = ξ = 0. The
uniform steady-state has no deformation (isotropic net-
work), B0

αβ = δαβ . There are two purely hydrodynamic
modes with s0 = 0, which correspond to linear combi-
nations of p1 and φ1 for q = 0. Their velocity is given
by u = ±

√
2J0lp/ [τp (1− φ0)], where lp = K/Kd is a

polarization length-scale, which may be negative, and
τp = l2p/Dp is a relaxation time associated with the angu-

lar diffusion coefficient, Dp = (1− φ0)
2
K/γ1. The veloc-

ity is imaginary for J0Kd < 0, in which case the growth
rate is positive. This instability can be understood in-
tuitively; the polar splay aligns the solvent molecules to-
wards each other, while the active relative current brings
them closer together, as is illustrated in Fig. 1b.

The quadratic correction is given by D =
(Dp +Dφ +Dζ) /2, where Dφ = γφ0 (1− φ0) /χ is the
osmotic diffusion coefficient, with 1/χ = ∂2fφ/∂φ

2 be-
ing the inverse osmotic compressibility. The active term,
Dζ = φ0γζ∆µ/2, originates in the concentration depen-
dence of the active stress. The active stress varies with
the concentration, resulting in a relative current that
modifies the concentration further. For sufficiently nega-
tive active stresses, the quadratic correction vanishes and
then becomes negative. The critical active stress when
this occurs is ζc∆µ = −2 (Dp +Dφ) / (γφ0).

The system is unstable for a combination of an imag-
inary u and negative D, where the growth rate is pos-
itive and increases with q. As the system is stable for
large wavenumbers, this instability persists only up to
a finite q, and there exists a most unstable wave vec-
tor, q∗, with a fastest growth rate, s∗. For an imag-
inary velocity, u = i|u|, and positive quadratic coeffi-
cient, D > 0, they are found analytically as q∗ = |u|/2D
and s∗ = |u|2/4D. If the velocity u is real, a vanish-
ing diffusion constant (D = 0) infers traveling waves
(Hopf bifurcation). Beyond this threshold, for D < 0,
the concentration-polarization instability is oscillating in
time, and the values of q∗ and s∗ can be calculated nu-
merically. The linear stability analysis for ξ = λ = 0
is summarized in Fig. 2a. Note that in the passive limit
(∆µ = 0), the linear term vanishes (u = 0), and the
system is unstable for 4χK2

d > K [11]. We assume that
4χK2

d < K hereafter.

Next, we perform the linear stability analysis for ξ 6= 0
and λ 6= 0. In addition to a polarization-concentration
instability, we demonstrate a possible strain instability.
The eigenvector of this instability reduces to a strain
component for q = 0 (Bxy for ξ 6= 0 and Byy for λ 6= 0),
and its growth rate is s = s0 −Dq2 with s0 < 0. As the
growth rate is negative for both small and large q values
in this case, a numerical calculation of s(q) is required to
verify the instability for intermediate q values.

Permeation deformation (λ = 0, ξ 6= 0). The
permeation-deformation coupling, combined with the ac-
tive relative current, deforms the network in the steady
state, B0

αβ = δαβ+ξJ0τp
0
αp

0
β . The network is more (less)

aligned with the flowing solvent for ξJ0 > 0 (ξJ0 < 0).
The network also expands (contracts) for ξJ0 > 0 (ξJ0 <
0). As Bαβ is a positive-definite tensor, a steady state
exists only for ξJ0τ > −1. We assume a small value of
ξJ0τ and expand our results to linear order in ξ [14].

The permeation-deformation coupling retains the pos-
sible polarization-concentration instability to linear order
in q, with u = ±

√
2 (J0 + Jξ) lp/ [τp (1− φ0)]. Compared

to our previous result, note the additional active relative-
current term, Jξ = ξγφ0 (1− φ0)

2
ζ∆µηn/ [2 (ηs + ηn)],

where ηn = Gφ0τ is the network viscosity. This cur-
rent originates in the active stress, which strains the
network, and induces a relative current due to the
permeation-deformation coupling. An instability occurs
for (J0 + Jξ)Kd < 0.

The diffusion coefficient is given by
D = (Dp +Dφ +Dζ +Dξ) /2, with Dξ =
−2ηsτ lpJξ/ [(1− φ0) (ηs + ηn) τp], it can be either
positive or negative, depending on the sign of JξKd. The
mechanism driving the instability can be understood
by considering a small concentration fluctuation. The
polar-splay term results in a polarization rotation
that strains the network, due to the active stress.
The permeation-deformation coupling then induces a
relative current that modifies the concentration. The
feedback can be either positive or negative.

The permeation-deformation coupling may lead to a
shear-strain instability as well. The shear strain relaxes
at q = 0 with a rate s0 = − (1 + ηn/ηs) /τ . The lin-
ear correction vanishes, while the diffusion coefficient is
given by D = DB −Dξ, where DB = Gγ/ (1− φ0) is the
strain diffusion coefficient, due to permeation. This in-
fers a possible instability for Dξ > DB . The mechanism
driving the instability is as follows: a shear strain in-
duces a relative current, due to permeation deformation
. The resulting concentration gradient rotates the po-
larization due to the polar splay term, and the resulting
active stress shears the network further. This feedback
can be either positive or negative.

The linear stability analysis in the presence of per-
meation deformation is summarized in Fig. 2b. As the
instabilities are mainly related to network deformations,
stability can be achieved by reducing strain. This is pos-
sible either by a strong suppression (large G with fixed
τ) or fast relaxation (small τ for fixed G).
Permeation alignment (ξ = 0, λ 6= 0). We study

the stability up to linear order in λ [14]. The net-
work is isotropic in the steady-state with B0

αβ =
δαβ . The polarization-concentration velocity is u =

±
√

[2lp/τp (1− φ0) + λ (Dφ +Dζ)] J0. The second term
in the parenthesis is independent of polar splay; as the
polarization rotates, it exerts an active relative force,
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FIG. 2: (Color online) Linear stability diagrams for active, permeating, polar gels. Polarization, concentration, and possible strain
instabilities are denoted by p, φ and grey B, respectively. Waves indicate instabilities that oscillate in time. J0 is written in units of
(1− φ0) lp/τp. (a) Stability diagram for ξ = λ = 0. The value 2

(
Dp +Dφ

)
= γφ0∆µ is used. (b) Stability diagram for λ = 0, ξ 6= 0

with Jξ written in units of (1− φ0) lp/τp. The values 1 +
(
Dφ +Dζ

)
/Dp = DB/Dp = 2ηsτ/ (ηs + ηn) τp are used. (c) Stability diagram

for ξ = 0, λ 6= 0 with λ written in units of 1/ (1− φ0) lp. The values Dp = Dφ + Dζ , 4γ1/ (1− φ0) = 3
[
ηs/ (1− φ0)2 + ηn/φ20

]
,

2φ0γ1γ = 3 (1− φ0)) l2p, and τ = 2τp are used.

which leads to a relative current. The permeation-
alignment coupling then rotates the polarization further.
An instability to linear order in q occurs when the argu-
ment of the square root is negative.

The diffusion coefficient is given by
D = (Dp +Dφ +Dζ +Dλ) /2, with Dλ =

2λDφχ
[(
ηs/ (1− φ0)

2
+ ηn/φ

2
0

)
J0 + 2φ0 (1− φ0)

2
Kd

]
.

It can be either positive or negative and includes con-
tributions from two mechanisms: any polarization
fluctuation causes both an active relative force ∼ J0
(first mechanism) and a concentration gradient through
the polar-splay coupling ∼ Kd (second mechanism).
Both induce a relative current that rotates the polariza-
tion, due to the permeation alignment coupling. This
feedback can be either positive or negative.

The permeation-alignment coupling can result in an
instability for the elongation strain, Byy. The growth
rate relaxes for q = 0 as s0 = −1/τ . The linear cor-
rection vanishes, while the diffusion coefficient is given
by D = (1− λτJ0)DB . In order to understand the λ
term, consider a fluctuation in Byy. The resulting stress
induces a relative current that rotates the polarization
by permeation alignment. The active relative force then
modifies the relative current that further strains the net-
work by convection.

The linear stability analysis in the presence of per-
meation alignment is summarized in Fig. 2c. As the in-
stabilities are mainly related to the relative current in
the y-direction, stability can be achieved by lowering the
pressure gradient. This is possible by lowering the solvent
and network viscosities, which induce smaller pressures.

Discussion. In this Letter, we have reported finite-
wavelength instabilities that result from polar couplings
to the relative current between a viscoelastic network and

active, polar fluid. This implies possible mesophases and
periodic domains with continuous flow patterns [11, 28,
29]. The permeation couplings may also modify known
instabilities in ordered, active nematics [17, 18, 22], close
to the isotropic-polar transition [30], and in the shape of
active permeating sheets [31] .

Our theory can be used to describe cell migration in tis-
sue. Cells often migrate collectively in a fluid-like manner
with weak and short-lived mutual adhesions (“multicel-
lular streaming” [3, 32]). In a coarse-grained view, this
can be regarded as permeation of an active, polar fluid
in a viscoelastic network. Our analysis suggests the re-
quired physical conditions for migrating cells to traverse
a tissue homogeneously (a stable, flowing steady-state),
as opposed to migration in strands or local cell move-
ment in confined domains (finite-q instabilities).

The novel ingredients of our theory describe in this
context the forces exerted between cells and, for exam-
ple, the extra-cellular matrix (ECM), including matrix
deformation [33, 34] . The cross-talk between migrating
cells and the ECM is called “dynamic reciprocity”, and it
is considered important to embryonic development, tissue
regeneration, and metastasis [35–37]. Our work thus pro-
vides a new, hydrodynamic framework to describe “dy-
namic reciprocity” during collective migration . We in-
vestigate this application further in a separate study [27].

Acknowledgements. R. M. A. acknowledges support
from Yad Hanadiv through a Rothschild Fellowship and
from ANR Grant No. ANR-18-CE30-0005. We thank
L. Truskinovsky, D. Grossman, Matthieu Piel, Danijela
Vignjevic, and Erik Sahai for fruitful discussions.



5

∗ ram.adar@college-de-france.fr
[1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.

Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev.Mod.
Phys. 85, 1143 (2013).

[2] P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals (Oxford University Press, Oxford, 1993).

[3] V. Hakim and P. Silberzan, Rep. Prog. Phys. 80, 076601
(2017).

[4] I. Levental, P. C. Georges, and P. A. Janmey, Soft Matter
3, 299 (2007).

[5] A. C. Callan-Jones and F. Jülicher, New J. Phys. 13,
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