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This Supplemental Material (SM) provides, in greater detail, the derivation of the dynamic equations and calcula-
tions that are relevant to the linear stability analysis. The outline of the SM is as follows. In Sec. I, Equations (2)-(7)
of the Letter are derived, using the general framework of non-equilibrium thermodynamics. In Sec II, the equations
are written explicitly in terms of the concentration, polarization, and strain variables, and are linearized around the
steady state. Next, in Sec. III, we review the parameters that are used in our theory and relate them to convenient
lengthscales and timescales. Then, we focus on the linear stability analysis. The stability of the system in the large-q
limit is demonstrated in Sec. IV. As part of Sec. V, we detail the approximations used throughout our work. Finally,
in Sec. VI, we analyze the linear stability in the passive case.

I. DERIVATION OF THE DYNAMIC EQUATIONS AND FORCE BALANCE EQUATIONS

In this Section we derive the dynamic equations [Eqs. (2)-(3) in the main text] and force-balance equation [Eqs. (4)-
(7) in the main text] from the general framework of non-equilibrium thermodynamics. First, the free energy production
rate is written in a convenient form, and constitutive relations are written, while respecting Onsager reciprocity. Next,
we demonstrate how these equations can yield a two-fluid model.

A. Derivation of the dynamic equations

The time derivative of the free energy is given by (see similar cases in [1, 2])

Ḟ = −
∫

dr

[
vαβσ

d
αβ + hα

D

Dt
pα +HB

αβ

D

Dt
Bαβ − Jα∂αµ̄+ ∆µr

]
, (S1)

where vαβ = (∂αvβ + ∂βvα) /2 is the center-of-mass (COM) strain rate and σd
αβ is the symmetric, deviatoric stress

tensor. The solvent orientational field is hα = −δF/δpα, while the co-rotational derivative of the polarization is
given by Dpα/Dt = (∂t + vβ∂β) pα + ωαβpβ , with ωαβ = (∂αvβ − ∂βvα) /2 being the COM vorticity tensor. The
network molecular field is HB

αβ = −δF/δBαβ , while the co-rotational derivative of the strain tensor is DBαβ/Dt =

(∂t + vγ∂γ)Bαβ + ωαγBγβ + ωβγBγα. As Bαβ is a symmetric tensor, so is HB
αβ . The relative current between the two

components is Jα = φ (1− φ) (vnα − vsα) , while the relative chemical potential is µ̄ = δF/δφ. Finally, r is the rate
associated with the active consumption of the energy density ∆µ.

The deviatoric stress tensor is related to the total stress tensor, σαβ , by

σd
αβ = σαβ − σaαβ + ρ vαvβ − σEr,s

αβ , (S2)

where σaαβ is the antisymmetric part of the total stress and ρvαvβ is the momentum transfer with ρ being the total
mass density. We neglect this term hereafter. The last term in the equation above is the symmetric part of the
Ericksen stress. The Ericksen stress tensor, σEr

αβ , is given by [3]

σEr
αβ = (f − nsµs − nnµn) δαβ −

∂f

∂ (∂βpγ)
∂αpγ −

∂f

∂ (∂βns)
∂αns −

∂f

∂ (∂βnn)
∂αnn, (S3)

where nn and ns are the network and solvent densities, respectively, and µn and µs are their chemical potentials.
It is customary to consider that the solvent and network components are each convected with their own velocity [4].

We, therefore, rewrite the free-energy production rate of Eq. (S1) in terms of a solvent convected derivative, Ls
t, and

a network convected derivative, Ln
t , defined as

Ls
t pα =

(
∂t + vsβ∂β

)
pα + ωs

αβpβ + νvsαβpβ , (S4)

Ln
tBαβ =

(
∂t + vnγ∂γ

)
Bαβ + ωn

αγBγβ + ωn
βγBγα + ν1

(
vnαγBγβ + vnβγBγα

)
+Aαβ , (S5)
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where ωs
αβ and ωn

αβ are the solvent- and network vorticity tensors, respectively, while vsαβ and vnαβ are the solvent-

and network strain-rate tensors, respectively. The term ν is the solvent shear-alignment parameter and ν1 is (minus)
the network’s slip parameter. The tensor Aαβ accounts for other geometric non-linearities, according to

Aαβ = ν2v
n
γγBαβ + ν3v

n
γγBδδδαβ + ν4Bγγv

n
αβ + ν5v

n
γδBγδδαβ . (S6)

Note that other terms are allowed by the polar symmetry, such as those containing contractions between Qαβ and
either Bαβ or vnαβ . For simplicity, we set ν = ν1 = −1 and Aαβ = 0, such that

Ls
t pα =

(
∂t + vsβ∂β

)
pα − pβ∂βvsα, (S7)

Ln
tBαβ =

(
∂t + vnγ∂γ

)
Bαβ −Bγβ∂γvnα −Bγα∂γvnβ . (S8)

The convected derivatives Ls
t and Ln

t thus reduce to vector and tensor Lie derivatives, respectively [5]. In particular,
Ln
tBαβ is the upper-convected derivative [6]. For ν1 = 1 and Aαβ = 0, the network convected derivative reduces to

the lower-convected derivative.

Inserting the convected derivatives and using integration by parts, Eq. (S1) transforms into

Ḟ = −
∫

dr
[
vαβδσαβ + hαL

s
t pα +HB

αβL
n
tBαβ + ∆µr

+Jα

(
−∂αµ̄+

1

1− φ
(hβ∂αpβ + ∂β (hαpβ)) +

1

φ

(
∂βσ

el
αβ −HB

βγ∂αBβγ
))]

. (S9)

In Eq. (S9), we have defined the stress

δσαβ = σd
αβ −

1

2

(
σel
αβ + σel

βα − hαpβ − hβpα
)
, (S10)

where σel
αβ = −2HB

αγBγβ is the elastic (Kirchhoff) stress [5] and −hαpβ is the stress associated with polarization
rotations. These are the reactive contributions that result from the convected derivatives.

The stress δσαβ includes additional contributions to the deviatoric stress and, namely, the dissipative and active
stress. As the network is viscoelastic, dissipation due to network viscosity is already included in the HB

αβL
n
tBαβ term,

and the viscous contribution to δσαβ originates from the solvent alone. For this reason, it is convenient to rewrite the

free-energy production rate in terms of the solvent strain rate, vsαβ =
(
∂αv

s
β + ∂βv

s
α

)
/2, as

Ḟ = −
∫

dr
[
vsαβδσαβ + hαL

s
t pα +HB

αβL
n
tBαβ + Jαδfα + ∆µr

]
. (S11)

The conjugate of the relative current, δfα, is a force density, given by

δfα =
1

φ

(
∂βσ

el
αβ − φ∂αµ̄−HB

βγ∂αBβγ
)
− 1

1− φ
[∂β (δσαβ − hαpβ)− hβ∂αpβ ] . (S12)

We interpret it below in Sec I B.

The free-energy production rate of Eq. (S11) is written as an integral over pairs of forces and conjugate fluxes. In
each pair, we consider the first variable as the force, and the second as the flux. In particular, the choice of Jα as the
force and of δfα as the flux is in contrast to their physical units. This choice is more convenient, because Jα is more
easily measurable and it appears in convected derivatives.

Our aim is to derive constitutive relations between forces and fluxes in a linear theory, close to equilibrium. Fluxes
are related to forces with the same signature under time-reversal as their conjugate force, by dissipative couplings,
and to forces with opposite signatures by reactive couplings. Reciprocal dissipative couplings are equal and have a
positive contribution to the entropy production, while reciprocal reactive couplings have opposite signs and do not
contribute to the entropy production [7].

We consider for the constitutive relations only the leading, zeroth-order terms in a gradient expansion. There are
fifteen such coupling terms (number of independent terms in a symmetric 5× 5 matrix). One of which, relating r and
∆µ, does not play any role in the dynamics of the gel. Below, we address the remaining terms and explain how we
retain only eight of them. For simplicity, we consider scalar couplings. More complicated tensors, written in terms of
pαpβ and Bαβ are generally applicable.
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The polarization rate and strain rate are given by

Ls
t p

(d)
α =

1

γ1
hα,

Ls
t p

(r)
α = λJα, (S13)

Ln
tB

(d)
αβ = −1

τ

∂Bαβ
∂σel

γη

σel
γη,

Ln
tB

(r)
αβ =

1

2
ξ (Jαpβ + Jβpα) , (S14)

where (d) denotes the dissipative part of the flux and (r) its reactive part. The dissipative, diagonal term in the
polarization rate is written in terms of the angular viscosity, γ1. We have chosen the dissipative couplings to ∆µ and
HB
αβ to be zero. Both these terms are, to linear order, of the form ∼ Bαβpβ (we disregard a term ∆µpα that simply

renormalizes the parallel orientational field, h‖, and has no physical meaning). Such a Bαβpβ term is still possible
in the diagonal coupling to the orientational field hα, due to a free-energy coupling of the form Bαβpαpβ . The same
argument explains why we neglect possible terms ∼ hαpβ or ∼ ∆µpαpβ in the equation for the strain rate. In the
biological context of multicellular migration, the latter corresponds to active matrix remodeling . The dissipative
term in the strain-rate equation is a relaxation term, written in terms of the elastic stress, σel

αβ , and relaxation time,

τ . For the strain energy that we consider in the linear stability, fB = Tr (B − lnB), the relaxation term reduces to
− (Bαβ − δαβ) /τ .

In both the polarization-rate and strain-rate equations, we neglect a possible reactive coupling to the solvent strain-
rate, vsαβ . This is because we have already made our choice of convective terms in the definitions of the derivatives

Ls
t and Ln

t [Eq. (S7)]. We do consider reactive couplings to the relative current, Jα, which are allowed by the polar
symmetry. These are the permeation-alignment and permeation-deformation terms (λ and ξ, respectively).

The fluxes δσαβ and f relα are given by

δσ
(d)
αβ = 2ηsv

s
αβ ,

δσ
(r)
αβ = (1− φ) ζ∆µQαβ , (S15)

δf (d)α =
1

γφ (1− φ)
Jα,

δf (r)α = −
(
λhα + ξHB

αβpβ + ν∆µpα
)
. (S16)

For δσαβ , we consider the dissipative viscous stress, in terms of the solvent viscosity, ηs, and an active, reactive
stress, (1− φ) ζ∆µQαβ , proportional to the solvent concentration. The solvent viscosity also depends on the solvent
concentration. However, as the solvent strain rate vanishes in the steady state and appears only as a first-order
correction term, this concentration dependence does not play a role in the linear theory. It is not taken into account
hereafter. We neglect a possible, dissipative coupling between δσαβ and Jα (or, equivalently, between δfα and vsαβ).

A coupling between these fields is already included in the definition of δfα [Eq. (S12)]. For the force δfα, we consider
a dissipative force due to network-solvent friction, written in terms of the mobility γ. The first two reactive terms are
determined from the reciprocal, reactive couplings in the polarization rate and strain rate. The final reactive term,
ν∆µpα, gives rise to an active force.

These constitutive relations describe the dynamics of the strain and polarization fields, as well as the force-balance
equation on the gel, using ∂βσαβ = 0. Next, we demonstrate how they can be interpreted as a two fluid model,
written in terms of separate force-balance equations for each of the components. Namely, the flux δfα, conjugate to
the relative current, is related to the relative force, f relα between the two components.

B. Interpretation in terms of a two-fluid model

We consider the different contributions to the vanishing total force acting on the gel, ∂βσαβ = 0. It includes the
force resulting from the Ericksen stress [3],

∂βσ
Er
αβ = −ns∂αµs − nn∂αµn − hβ∂αpβ −HB

βγ∂αBβγ

= −∂αδP − φ∂αµ̄− hβ∂αpβ −HB
βγ∂αBβγ , (S17)

where we have made use of the gel incompressibility ns +nn = ρ/m, with m being the molecular mass (assumed equal
for both components), and have denoted δP = ρµs/m. For simple solvents and in the absence of elasticity, for which
the Ericksen stress reduces to (minus) the osmotic pressure, δP = P −Π is the difference between total pressure and
osmotic pressure. The relative chemical potential is µ̄ = ρ (µn − µs) /m.



4

The total force is thus given by

∂βσαβ = ∂βσ
el
αβ − φ∂α (µ̄+ δP )−HB

βγ∂αBβγ

+ ∂β (δσαβ − hαpβ)− (1− φ) ∂αδP − hβ∂αpβ
= 0. (S18)

The first line in the right-hand-side of the equation above is written in terms of network-dependent physical quantities,
and the second line in terms of solvent-dependent ones. They can be interpreted as the force on the network and on
the solvent, respectively, not including relative forces between the two components, which do not contribute to the
total stress, σαβ .

We define

fnα = ∂βσ
el
αβ − φ∂αµ̄−HB

βγ∂αBγβ ,

f sα = ∂β (δσαβ − hαpβ)− hβ∂αpβ . (S19)

The force on the network is fnα − φ∂αδP and the one on the solvent is f sα − (1− φ) ∂αδP . Comparing to Eqs. (S12)
and (S18), We find that,

fnα + f sα − ∂αδP = 0,

1

φ
fnα −

1

1− φ
f sα = δfα. (S20)

A linear combination of these two equations yields

fnα − φ∂αδP = φ (1− φ) δfα,

f sα − (1− φ) ∂αδP = −φ (1− φ) δfα. (S21)

These are the separate force-balance equations for the network and solvent, respectively, in a two-fluid model. It is now
possible to identify the relative force between the two components, φ (1− φ) δfα = f relα . Equation (S21) thus yields
Eq. (5) in the main text. This explains the interpretation of the permeation-deformation and permeation-alignment
couplings, which appeared originally as phenomenological, polar couplings in Eqs. (S13) and (S14), as relative forces
between network and solvent.

In this derivation of the two-fluid model, we have made use of the fact that δσαβ is a stress that originates only
in the solvent, as was chosen in our constitutive relations, δσαβ = 2ηsv

s
αβ + (1− φ) ζ∆µQαβ . This choice neglects

possible network contributions, proportional to HB
αβ and ∆µBαβ . A two-fluid model can be similarly derived when

such network contributions are taken into account, as we demonstrate now.

We write δσαβ = δσs
αβ + δσn

αβ , where δσs
αβ is the solvent contribution and δσn

αβ is the network contribution of the

form δσn
αβ = aHB

αβ + b∆µBαβ . In this case, while Eq. (S11) still holds, δfα is related differently to the relative force.
Following the same arguments as above, we find that

f relα

φ (1− φ)
=

1

φ

[
∂β
(
δσn
αβ + σel

αβ

)
− φ∂αµ̄−HB

βγ∂αBβγ
]
− 1

1− φ
[
∂β
(
δσs
αβ − hαpβ

)
− hβ∂αpβ

]
. (S22)

This yields φ (1− φ) δfα = f relα − ∂βδσn
αβ . Inserting this expression in Eq. (S11) yields

Ḟ = −
∫

dr

[
vsαβ

(
δσs
αβ + δσn

αβ

)
+ hαL

s
t pα +HB

αβL
n
tBαβ +

Jα
φ (1− φ)

(
f relα − ∂βδσn

αβ

)
+ ∆µr

]
. (S23)

This ensures that any choice of δσn
αβ will be incorporated in two constitutive relations, one conjugate to vsαβ and

one conjugate to Jα. In this way, the reciprocal terms will depend consistently on the network strain rate, vnαβ . The

resulting two-fluid model is described by Eq. (S21), with the forces,

fnα = ∂β
(
δσn
αβ + σel

αβ

)
− φ∂αµ̄−HB

βγ∂αBγβ ,

f sα = ∂β
(
δσs
αβ − hαpβ

)
− hβ∂αpβ . (S24)

II. LINEARIZED VERSION OF THE EQUATIONS

In this section we derive the linearized version of the equations, which is used for the linear stability analysis. We
first write the equations in full form, including explicit expressions for the fields that are derived from the free energy.
Then, we solve the steady-state equations, and linearize around the steady-state solutions.
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A. Full form

We consider the free energy of Eq. (1) in the Letter,

F =

∫
dr

[
fφ +

1

2
GφTr (B − lnB) + (1− φ)

2

(
1

2
K (∇p)

2
+Kd∇ · p

)
− 1

2
h‖p

2

]
. (S25)

Here, we have inserted the Flory Gaussian-chain free-energy density, fB = GφTr (B − lnB) /2 and have neglected
the possible strain-polarization coupling, fBp = 0. The resulting solvent orientational field is

hα = − δF
δpα

= ∂β

[
(1− φ)

2
K∂βpα

]
− 2Kd (1− φ) ∂αφ+ h‖pα. (S26)

Note that the polar-splay contribution to the orientational field is via the concentration gradient. Otherwise, this
term can be integrated in the free energy to a boundary term (divergence theorem), which does not contribute to the
orientational field. The network molecular field is given by

HB
αβ = − δF

δBαβ
= −1

2
Gφ
(
δαβ −B−1αβ

)
, (S27)

and the elastic stress is

σel
αβ = −2HB

αγBγβ = Gφ (Bαβ − δαβ) . (S28)

The relative chemical potential reads

µ̄ =
δF

δφ
= µ̄0 (φ) +

1

2
GTr (B − lnB)− 2 (1− φ)

(
1

2
K (∇p)

2
+Kd∇ · p

)
, (S29)

where µ̄0 is derived from the mixing term, µ̄0 = δfφ/δφ − ∂αδfφ/δ∂αφ. Equations (S26)-(S29) relate the fields that
appear in the forces and fluxes of the entropy production to the dynamic fields, φ, pα and Bαβ , whose dynamics we
analyze to linear order.

The concentration fields satisfies the continuity equation,

∂tφ+ ∂α (φvnα) = 0. (S30)

The polarization and strain fields evolve according to Eqs. (2) and (3) in the main text of the Letter, and the velocities
are related to the polarization, strain and concentration from the force-balance equations on the solvent and network
[Eqs. (4)-(7) in the main text].

B. Steady state

We search for a steady-state with homogeneous fields φ = φ0, pα = p0α = δα1, Bαβ = B0
αβ , a zero COM velocity,

vα = 0, and a homogeneous relative current, J0
α = J0p

0
α. As the system is homogeneous, all the gradient terms vanish,

including the convective terms, and forces acting on the network and solvent. The relative current is determined from
frelα = 0.

The relative force depends on the parallel solvent orientational field, h‖. This field is a Lagrange multiplier that

ensures p2 = 1. Its value is determined by projecting the polarization rate equation on the polarization. We find that
h‖ = −γ1λJ0. In addition, the steady-state strain is given by B0

αβ = δαβ + ξτJ0p
0
αp

0
β . As Bαβ is positive definite, this

steady state is possible only for ξτJ0 > −1. The resulting molecular field is H
B (0)
αβ = −Gφ0ξτJ0 (1 + ξτJ0)

−1
p0αp

0
β/2.

The equation frelα p0α = 0 then reduces to

1

γ
J0 − φ0 (1− φ0)

(
−λ2γ1J0 −

1

2
Gφ0ξ

2 τJ0
1 + ξτJ0

+ ν∆µ

)
= 0. (S31)

This is generally a quadratic equation in J0. As our framework is formulated to linear order in J0, we consider small
ξτJ0 and retain only linear terms. This yields the relative current,

J0 = γ̃φ0 (1− φ0) ν∆µ, (S32)

with the renormalized mobility

γ̃ =
γ

1 + γφ0 (1− φ0)
(
λ2γ1 + 1

2ηnξ
2
) , (S33)

where ηn = Gφ0τ is the network viscosity. The mobility is effectively decreased, due to the new, polar, relative forces
between the solvent and network. For simplicity, we consider in our work only linear terms in the new coupling
terms, and neglect, γφ0 (1− φ0)

(
λ2γ1 + 1

2ηnξ
2
)
� 1. In this case, the mobility retains its original value, γ̃ ' γ and
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J0 = γφ0 (1− φ0) ν∆µ. This approximation is re-examined in Sec. V of the SM.

C. Linearized equations

The stability is studied by introducing a small perturbation in the fields at point r and time t with a wave vector
q = qŷ and growth rate s. For simplicity, we focus on a 2-dimensional system,

φ = φ0 + φ1 exp (iqy + st) ,

pα = δα1 + p1δα2 exp (iqy + st) ,

Bxx = 1 + ξτJ0 +B1
xx exp (iqy + st) ,

Bxy = B1
xy exp (iqy + st) ,

Byy = 1 +B1
yy exp (iqy + st) . (S34)

In particular, the correction to the polarization is in the y-direction to preserve p2 = 1 to linear order. The amplitudes
(denoted with superscript 1) are assumed small, and the equations are linearized in these amplitudes. To this linear
order, we consider the following form of the mixing chemical potential,

µ̄1
0 = χ−1

(
1 + l2φq

2
)
φ1, (S35)

where χ−1 = δ2fφ/δφ
2 is the inverse osmotic compressibility, and lφ is a Ginzburg-Landau type correlation length,

which suppresses large-q concentration fluctuations.
The COM velocity and relative current are similarly expanded to linear order, vα = v1α exp (iqy + st) and Jα =

J0p
0
α + J1

α exp (iqy + st) , together with the pressure difference, δP = δP 1 exp (iqy + st) , where the reference pressure
was conveniently taken to be zero. Incompressibility yields v12 = 0. The pressure can then be determined from the
y-component of the force-balance equation on the entire gel,

δP 1 = −2iηsq
J1
y

1− φ0
+

1

2
ζ∆µφ1 + φ0GB

1
yy − φ0

[
−2iKd (1− φ0) qp1 +

1 + l2φq
2

χ
φ1

]
. (S36)

The first term on the RHS originates from the solvent viscosity, the second term is the compressional, active stress in
the y-direction due to concentration variations, the third term is the compressional elastic stress in the y-direction,
and the last two terms are components of the osmotic contribution to the pressure.

The components for the relative current can be found from the network force-balance equation. The x-component
is simpler, because it does not involve pressure terms. We find that

γ−1J1
x = iqGφ0B

1
xy + ν∆µ (1− 2φ0)φ1 − 1

2
ξGφ20 (1− φ0)B1

xx. (S37)

The first term on the RHS is the force exerted by the shear strain. The second term is the correction to the x-
component of the active, relative force, due to concentration fluctuations. The third term is the force due to the
permeation-deformation mechanism. The permeation-alignment mechanism vanishes to linear order in λ.

The y-component of the relative current includes the contribution coming from the pressure. We find that

1

γφ0 (1− φ0)

[
1 + 2γηs

φ0
1− φ0

q2
]
J1
y = λ

[
− (1− φ0)

2
Kq2p1 − 2Kd (1− φ0) iqφ1

]
− 1

2
ξGφ0B

1
xy + ν∆µp1

+ iq

(
GB1

yy −

[
−2iKd (1− φ0) qp1 +

1 + l2φq
2

χ
φ1

]
− 1

2 (1− φ0)
ζ∆µφ1

)
,

(S38)

The coefficient on the LHS originates from the viscous term in the pressure. The first line of the RHS are the relative
forces, including the contributions from permeation alignment (∼ λ), permeation deformation (∼ ξ) and active force
(∼ ν∆µ). The second line of the RHS includes the divergence of the weighted difference between the network stress
and solvent stress [compare with the expression for δ fα in Eq. (S12)].

The x-component of the solvent velocity is found from the x-component of the force-balance equation on the entire
gel, which amounts to equating the shear stress to zero. This yields

vs(1)x =
i

ηsq

[
Gφ0B

1
xy + (1− φ0) ζ∆µp1 + γ1λJ0p

1
]
, (S39)

where the first term on RHS is the elastic shear stress, the second term is the active shear stress to linear order, and
the last term is the stress associated with polarization rotation to linear order.

Substituting the above results for the velocities, as well as the expressions for the chemical potential and orientational
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fields, we obtain linear equations in terms of only the dynamic fields. These equations are

0 =

(
s+

q2

1 + l2ηq
2

(
l2

τφ

(
1 + l2q2

)
+

l2η
4τa

)
+

2λlpl
2
φpq

2

τp (1− φ0)
(
1 + l2ηq

2
))φ1

+

(
iJ0q

1 + l2ηq
2
−

2ilpl
2
φpq

3

τp (1− φ0)
(
1 + l2ηq

2
) − iλl2pl

2
φpq

3

τp
(
1 + l2ηq

2
)) p1 − (1− φ0)

2
φ0l

2
B

τ
(
1 + l2ηq

2
) (

i
φ0
2
ξqB1

xy + q2B1
yy

)
,

0 =

(
iλ

q

1 + l2ηq
2

(
l2

τφ

(
1 + l2q2

)
+

l2η
4τa

)
+

2ilpq

τp (1− φ0)

)
φ1

+

(
s+

l2pq
2

τp
+
λJ0l

2
ηq

2

1 + l2ηq
2

+
2λlpl

2
φpq

2

τp (1− φ0)
(
1 + l2ηq

2
)) p1 − iλ (1− φ0)

2
φ0l

2
B

τ
(
1 + l2ηq

2
) qB1

yy,

0 = −ξ 1− 2φ0
φ0 (1− φ0)

J0φ
1 +

(
s+

1

τ

)
B1
xx −

iφ0 (1− φ0) ξl2Bq

τ
B1
xy,

0 =
i

2
ξ

q

1 + l2ηq
2

(
l2

τφ

(
1 + l2q2

)
+

l2η
4τa

)
φ1 +

(
2λl2φpJ0

l2η (1− φ0)
2 −

ξJ0
2

2 + l2ηq
2

1 + l2ηq
2

+
ξlpl

2
φpq

2

τp (1− φ0)
(
1 + l2ηq

2
) +

1

τa

)
p1

+

[
s+

1

τ

(
1 + 2φ20

l2B
l2η

)
+
l2Bq

2

τ

]
B1
xy + i

l2B
2τ
ξqφ0 (1− φ0)

(
B1
xx −

1− φ0
1 + l2ηq

2
B1
yy

)
,

0 = −

(
4λlpl

2
φpq

2

φ0 (1− φ0) τp
(
1 + l2ηq

2
) +

2

φ0

q2

1 + l2ηq
2

(
l2

τφ

(
1 + l2q2

)
+

l2η
4τa

))
φ1

+

(
2iλl2pl

2
φpq

3

τpφ0
(
1 + l2ηq

2
) − 2iJ0q

φ0
(
1 + l2ηq

2
) +

4ilpl
2
φpq

3

τpφ0 (1− φ0)
(
1 + l2ηq

2
)) p1

+
iξl2Bq

τ
(
1 + l2ηq

2
)φ0 (1− φ0)

2
B1
xy +

[
s+

1

τ
+

2l2Bq
2

τ

(1− φ0)
2

1 + l2ηq
2

]
B1
yy. (S40)

They describe the time evolution of the fields φ1, p1, B1
xx, B1

xy, and B1
yy, respectively. For the sake of brevity, these

equations are written in terms of several lengthscales and timescales that are defined below in Sec. III. The equations

can be written in matrix form as, M · x = 0, where x =
(
φ1, p1, B1

xx, B
1
xy, B

1
yy

)T
is a vector of the perturbed fields,

and M is the dynamic matrix. Within the framework of linear stability, the dispersion relations s(q) are obtained
by solving detM = 0, which is a fifth-order polynomial in s. The system is stable if Re s < 0 for all the eigenvalues.

III. PARAMETERS OF THE THEORY AND NON-DIMENSIONALIZATION

Our theory includes 14 parameters: φ0, lφ, χ, G, Kd, K, τ, γ, γ1, ηs, ξ, λ, ν∆µ, and ζ∆µ. These parameters have
units that combine length, time, and energy. Therefore, from the Buckingham-Pi theorem, there are 11 independent,
dimensionless parameters. It is convenient to introduce the active, relative current, J0 = γφ0 (1− φ0) ν∆µ, and 12
parameters in units of length and time.

These length scales are lφ, lp = K/Kd, 1/ξ, 1/λ, lB =
√
DBτ =

√
Gγτ/ (1− φ0), lφp =

√
γ1γφ0 (1− φ0) and

lη =
√

2γηsφ0/ (1− φ0). lη is proportional to the length over which dissipation due to network-solvent friction
matches the dissipation due to the solvent viscosity. For poroelastic materials, lη is proportional to the mesh size.
lφp is proportional to the length over dissipation due to network-solvent friction matches the dissipation due to the
polar rotational viscosity.

The time scales are τ, τp = l2p/Dp = Kγ1/ [Kd (1− φ0)]
2
, τφ = l2φ/Dφ = χl2φ/ [γφ0 (1− φ0)], and τa =

ηs/ [(1− φ0) ζ∆µ] . The latter is an active time scale, that describes the rate in which the solvent need to be
sheared, so that the viscous stress matches the active stress.

Among the above parameters, some can be negative. These are lp, ξ, λ, J0 (polar terms), and τa. It is possible to
rescale the lengths by lφ and times by τφ. This yields, together with φ0, the 11 desired dimensionless parameters.

The large number of parameters makes the analysis of the system challenging. This is why we have made several
approximations (see Sec. V) and have focused on novel permeation instabilities that arise to linear order in the polar
terms J0, ξ, and λ. Further analysis beyond the scope of our calculation is reserved for future studies. Furthermore,
the 14 above-mentioned quantities are already a reduced number of system parameters. Other relevant quantities
are, for example: additional elastic moduli (corresponding to other Poisson’s ratios and possible nonlinearities),



8

bulk viscoelastic relaxation time and bulk viscosity (taken here as equal to the corresponding shear values), and
configuration-dependent friction coefficients (e.g., γαβ = γδαβ + γQQαβ). We did not retain such quantities for the
purposes of our generic, physical theory. They may be relevant for a quantitative analysis of experiments.

IV. LARGE-WAVENUMBER STABILITY

While our hydrodynamic theory is valid for small q values, we test whether our dynamic variables are stable for
large wavenumbers. We expand the coefficients of the determinant, detM , to highest order in q, and find that

s5 + a2q
2s4 + a4q

4s3 + a6q
6

(
s2 + 2

s

τ
+

1

τ2

)
= 0, (S41)

with the coefficients

a2 =

(
l4φ
l2ητφ

+
l2p
τp

+
l2B
τ

1

1 + λ2l2φp

)
,

a4 =
l4φ
l2ητφ

l2p
τp

+

(
l4φ
l2ητφ

+
l2p
τp

)
l2B
τ

1

1 + λ2l2φp
,

a6 =
1

ττpτφ

1

1 + λ2l2φp

l4φl
2
pl

2
B

l2η
. (S42)

There are two possible types of solutions. First, a relaxation solution s = s0. In this case, only the parenthesis
multiplying q6 is required to vanish. These are the elastic relaxations, s1,2 = −1/τ of the two compressional strains,
Bxx and Byy. This result is related to the fact that we consider osmotic diffusion as the sole origin of strain diffusion.
In this limit, Bxx has a vanishing diffusion coefficient for wave vectors in the y-direction. The diffusion coefficient of
Byy, on the other hand, decays to zero, because the effective mobility coefficient, γ, in the y-direction scales as 1/q2

in this limit, due to solvent compressibility (see Sec. VI).

Another type of solution is diffusion, s = −Dq2. Inserting this solution in the equation, we find that the highest-order
terms scale as q10 and D solves the equation D3 − a2D2 + a4D− a6 = 0. The three solutions are given by D = l2p/τp,

corresponding to rotational diffusion, D = l2B/
[(

1 + λ2l2φp

)
τ
]
, corresponding to shear strain diffusion, and D =

l4φ/
(
l2ητφ

)
. The latter diffusion constant is related to the concentration φ1, but is different than the small-q diffusion

coefficient, l2φ/τφ. The diffusion in this case is not osmotic, but describes mass-conserving compression/dilations in

the y-direction. The local concentration is then given by φ0 + φ1 = 1/v′ ' φ0
(
1−B1

yy/2
)
, where v′ is the volume of

a network element after a B1
yy deformation.

All the growth rates are negative, meaning that the system is stable for large q values. We emphasize that the
theory is hydrodynamic. It was derived from a gradient expansion, and is adequate for small wave vectors. Terms
that we have neglected may become important in the large-q limit. This Section serves only to demonstrate that our
theory is consistent and does not result in large-q instabilities. We make no further predictions in this limit.

V. VALIDITY

The theory depends, as was explained in Sec. III, on 11 dimensionless parameters. For the sake of simplicity, we
perform the analysis to linear order in the permeation-deformation and permeation-alignment parameters (ξ and
λ, respectively). This implies a lengthscale l, such that ξl and λl are considered to be small. For example, the
steady-state relative current, J0 = γφ0 (1− φ0) ν∆µ was derived assuming that γφ0 (1− φ0)

(
λ2γ1 + 1

2ηnξ
2
)
� 1. In

terms of the lengthscales that we have introduced in Sec. III, this condition can be written as

(λlφp)
2

+
1

2
[φ0 (1− φ0) ξlB ]

2 � 1. (S43)

Below we review similar conditions that were used as part of our calculation.
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A. Permeation deformation (ξ 6= 0)

The eigenvector associated with the concentration and polarization variables, which is a linear combination of them
for q = 0, has a dispersion relation s = iuq −Dq2. The velocity, u, to quadratic order in ξ, is given by

u =

√
2

1− φ0
lp
τp

(J0 + Jξ [1− J0ξ (τ + τa)]), (S44)

where

Jξ =
1

2

ξ

τa
[φ0 (1− φ0)]

2 l2B
1 + 2φ2l2B/l

2
η

. (S45)

Therefore, we have considered the limit where |J0ξ (τ + τa)| � 1. The diffusion coefficient, D, to quadratic order in
ξ, reads

D =
1

2
(Dp +Dφ +Dζ) +

1

2
Dξ

[
1 + ξ

(
1− φ0

4

τa
τ

τp
lp

(
l2φ
τφ

+
l2η

4τa

)(
1 + 2φ20

l2B
l2η

)
− J0 (τ + τa)

)]
. (S46)

Therefore, in addition to our previous condition, we require here that∣∣∣∣∣ξ τaτ τplp
(
l2φ
τφ

+
l2η

4τa

)∣∣∣∣∣� 1. (S47)

The eigenvector associated with the shear-strain variable has a dispersion relation s = s0−Dq2. The relaxation time,
up to quadratic order in ξ is given by

s0 = −1

τ

[
1 +

ηn
ηs

+

(
1

2
φ0 (1− φ0) lBξ

)2
]
. (S48)

We have thus considered φ0 (1− φ0) lBξ � 1 (as was required for the steady-state relative current). Note, however,
that this new term demonstrates a new possible mechanism for elastic relaxation through a feedback between the
shear strain and relative current.

The diffusion coefficient, up to quadratic order in ξ, is

D = DB −Dξ

(
1− J0ξ (τ + τa) + ξ

τp
lp

τa
τ2

(
1 + 2φ20

l2B
l2η

)[
1

2

(
1− φ0
φ0

)2

l2η

(
1 + 2φ0

l2B
l2η

)
+ (1− φ0)

τ

4

(
l2φ
τφ

+
l2η

4τa

)])
.

(S49)

Therefore, in addition to our previous conditions, we consider here that

1

2

(
1− φ0
φ0

)2
∣∣∣∣∣ξl2ηlp τaτp

τ2

∣∣∣∣∣� 1. (S50)

The permeation instabilities that we report in the Letter are allowed by these conditions. They can be satisfied
with sufficiently large active stresses, corresponding to small τa and large Jξ and Dξ in absolute values.

B. Permeation alignment (λ 6= 0)

We examine the corrections to our results in the presence of the permeation-alignment coupling, due to higher-order
terms in the parameter, λ. We find that the eigenvector associated with the polarization has a constant growth rate
(∼ q0), which is cubic in λ, s0 = −λ3l2φpJ0. In particular, this leads to an instability for λJ0 < 0. We consider
this term to be negligible, s0τ � 1. In this case, as is presented in the main text, the eigenvector associated with
polarization and concentration has a growth rate s = iuq − Dq2. The velocity, u, is unchanged in this limit. The
diffusion coefficient, however, has a correction

D =
1

2

[(
1 +

1

2
λ2l2φp

)
Dp +Dφ +Dζ +Dλ

]
. (S51)

This correction increases the effective angular diffusion, and can only be stabilizing. It is negligible for λlφp � 1 (as
was required for the steady-state relative current).

This condition also allows for finite λJ0τ , as is required for the possible strain instability in the main text, with
negligible s0τ. The polarization-concentration instability is also allowed by this condition. The velocity u can become
imaginary depending on the sign of lpJ0 and λJ0, and the diffusion coefficient can become negative, for example, for
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sufficiently large elastic modulus, Gχ � 1, such that Dλ is large compared to Dφ in absolute value. Finally, the
diffusion coefficient of Byy has a correction of order s0τ, which is negligible within our limits.

VI. PASSIVE INSTABILITY

In the main text, we have presented active permeation instabilities that occur in the presence of new polar coupling
terms. It is worth noting that a passive, polar gel can also become unstable, even in the absence of the permeation-
alignment and permeation-deformation mechanisms [8, 9]. This instability originates from the coupling between the
polarization and concentration. Its eigenmode is a linear combination of the concentration and polarization for q = 0.
Below, we derive the criterion for this instability from the dynamic equations. This derivation allows to analyze the
effects of the new permeation couplings that are allowed even in the absence of activity, ∆µ = 0. We demonstrate
that the instability criterion is unaffected by the new permeation couplings.

A. Passive instability for λ = ξ = 0

As before, we linearize around the homogeneous steady state in the passive case (with J0 = 0), for a wave-vector
that is perpendicular to the original polarization, and write the equations in Fourier space. First, we ignore the solvent
viscosity and network elasticity. The equations for the polarization and concentration are

sp1 =
1

γ1
h2 = − 1

γ1

[
(1− φ0)

2
Kq2p1 + 2Kd (1− φ0) iqφ1

]
,

sφ1 = −iqJ1
y = −γφ0 (1− φ0) q2

[
χ−1

(
1 + l2φq

2
)
φ1 − 2i (1− φ0)Kdqp

1
]
. (S52)

In terms of the lengthscales and time scales that we have introduced above, these equations are given by

sp1 = − 1

τp

(
l2pq

2p1 +
2i

1− φ0
lpqφ

1

)
,

sφ1 = −q2
[
l2φ
τφ

(
1 + l2φq

2
)
φ1 − 2i

1− φ0
l2φp

lp
τp
qp1

]
. (S53)

This set of linear equations has a non-trivial solution when the determinant of coefficients vanishes,

s2 +

[
l2p
τp

+
l2φ
τφ

(
1 + l2φq

2
)]
q2s+

l2p
τp

[
l2φ
τφ

(
1 + l2φq

2
)
−
(

2

1− φ0

)2 l2φp
τp

]
q4 = 0. (S54)

The linear term in s is always positive. The solution has a positive real part only when the coefficient independent of
s is negative. An instability occurs for (

2

1− φ0

)2 l2φp
τp

>
l2φ
τφ

(
1 + l2φq

2
)
. (S55)

This is equivalent to K < 4K2
dχ/

(
1 + l2φq

2
)
. This mechanism involves only diagonal transport coefficients and

originates only from the concentration-polarization coupling in the free energy.

We now consider the effects of the solvent viscosity and network elasticity. Adding the solvent viscosity merely
renormalizes the friction according to 1/γ →

(
1 + l2ηq

2
)
/γ [see Eq. (S38)]. Network elasticity introduces a network

force due to the elongation stress in the y-direction, iqGφ0B
1
yy. The strain variable, because of the convected derivative,

evolves as (
s+

1

τ

)
B1
yy =

2

φ0
iqJ1

y . (S56)

The new equation for the current is, therefore,

1 +
[
l2η + 2 (1− φ0)

2 l2B
1+sτ

]
q2

γφ0 (1− φ0)
J1
y = −iq

[
l2φ
τφ

(
1 + l2φq

2
)
φ1 − 2i

1− φ0
l2φp

lp
τp
qp1

]
(S57)

The elasticity can be considered as an s-dependent correction to the friction coefficient. Note that, assuming an
instability (s > 0), the new friction coefficient remains positive, and our previous analysis holds with a renormalized

γ. As the instability criterion is independent of γ, it is still given by K < 4K2
dχ/

(
1 + l2φq

2
)
.
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B. Passive instability with permeation alignment (λ 6= 0)

The permeation alignment induces a relative force between the network and solvent, which modifies the relative
current,

J1
y = −iq

[
l2φ
τφ

(
1 + l2φq

2
)
φ1 − 2i

1− φ0
l2φp

lp
τp
qp1

]
− λ

l2φp
τp

(
l2pq

2p1 +
2i

1− φ0
lpqφ

1

)
, (S58)

and enters the polarization-rate equation as sp1 = h1y/γ1 +λJ1
y . The equations for the polarization and concentration

now read

sp1 = −
l2pq

2

τp

[
1 + λ

(
λ+

2

1− φ0
1

lp

)
l2φp

]
p1 −

[
2

1− φ0
(
1 + λ2l2φp

)
+
λl2φ
lp

τp
τφ

(
1 + l2φq

2
)]
i
lp
τp
qφ1,

sφ1 = −
l2φ
τφ
q2

[
1 + l2φq

2 +
2

1− φ0
lpλ

l2φp
l2φ

τφ
τp

]
φ1 +

(
2

1− φ0
+ λlp

)
l2φpi

lp
τp
q3p1. (S59)

A non-trivial solution exists for

s2 +

[
l2p
τp

+
l2φ
τφ

(
1 + l2φq

2
)

+ λ

(
λ+

4

1− φ0
1

lp

)
l2φp

l2p
τp

]
q2s+

l2p
τp

[
l2φ
τφ

(
1 + l2φq

2
)
−
(

2

1− φ0

)2 l2φp
τp

]
q4 = 0. (S60)

The permeation-alignment parameter, λ, enters the equation only in the coefficient of the term linear in s. It can
induce a new instability only if the term linear in s is negative. The minimal value of the coefficient is obtained for
λ = −2/ [(1− φ0) lp] . In this case, the equation reduces to

s2 +

[
l2p
τp

+
l2φ
τφ

(
1 + l2φq

2
)
−
(

2

1− φ0

)2 l2φp
τp

]
q2s+

l2p
τp

[
l2φ
τφ

(
1 + l2φq

2
)
−
(

2

1− φ0

)2 l2φp
τp

]
q4 = 0. (S61)

The coefficient of the term linear in s can become negative only if the constant term in s is itself negative. Therefore,
the criterion for instability is not changed. In this calculation we did not treat the viscosity and elasticity explicitly.
They can be absorbed in γ (and the resulting lengthscales), as was explained above.

C. Passive instability with permeation deformation (ξ 6= 0)

Permeation deformation induces a relative force between the network and solvent, which modifies the relative
current,(

1 +

[
l2η + 2 (1− φ0)

2 l2B
1 + sτ

]
q2
)
J1
y = −iq

[
l2φ
τφ

(
1 + l2φq

2
)
φ1 − 2i

1− φ0
l2φp

lp
τp
qp1

]
− 1

2
ξ [φ0 (1− φ0)]

2 l
2
B

τ
B1
xy. (S62)

Here we treat the viscosity and elasticity explicitly. This is required because the strain evolves differently, due to the
permeation-deformation mechanism. The remaining strains evolve as

(1 + sτ)B1
xy =

1

2
ξτJ1

y + iqτvn(1)x ,

(1 + sτ)B1
xx = ξτJ1

x . (S63)

The relative current in the x-direction is induced by the shear stress and permeation-deformation contribution,
according to

J1
x =

l2B
τ
φ0 (1− φ0)

[
iqB1

xy −
1

2
φ0 (1− φ0) ξB1

xx

]
. (S64)

The solvent velocity in the x-direction is found from the force-balance on the gel in the x-direction. Equating the total

shear stress to zero yields iqηsv
s(1)
x = −Gφ0B1

xy. The network velocity is found from v
n(1)
x = v

s(1)
x + J1

x/ [φ0 (1− φ0)] ,
as

vn(1)x =
l2B
τ

[
iqB1

xy −
1

2
φ0 (1− φ0) ξB1

xx

]
+ 2iφ2

l2B
l2η

1

qτ
B1
xy. (S65)

We can now find the shear strain in terms of the relative current

B1
xy =

1

2
ξτ

(
1 + sτ + 2φ2

l2B
l2η

+
1 + sτ

1 + τ
τξ

+ sτ
l2Bq

2

)−1
J1
y , (S66)
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where τ/τξ = [φ0 (1− φ0) ξlB ]
2
/2. Inserting this back in the equation for the relative current yields

J1
y = −iq

l2φ
τφ

(
1 + l2φq

2
)
φ1 − 2i

1−φ0
l2φp

lp
τp
qp1

1 +
[
l2η + 2 (1− φ0)

2 l2B
1+sτ

]
q2 + 1

2
τ
τξ

(
1 + sτ + 2φ2

l2B
l2η

+ 1+sτ
1+ τ

τξ
+sτ l

2
Bq

2

)−1 . (S67)

Therefore, the permeation-deformation mechanism results in a renormalized s− and q−dependent friction coefficient.
As the new coefficient is positive for s > 0, We can renormalize our lengthscales and timescales, as we have done
above, and obtain the same criterion for instability as in the λ = ξ = 0 case.

We have assumed in our calculations that φ1 and p1 do not vanish. The solution φ1 = 0 and p1 = 0, results in
J1
y = 0, and therefore B1

xy = 0. This infers that B1
xx and B1

yy vanish as well. This shows that our calculation above
holds for any eigenvector of the linear equations.
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