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Simple Summary: Cell surface proteases (so-called ectoproteases) are associated with cancer, and
their targeting may confer valuable options for the improvement of cancer treatment outcome.
Over the past 20 years, the permanent development of a multitude of inhibitors against several
ectoproteases (including DPP4, FAP, APN, ADAM17, MMP2, and MMP9) has made it into clinical
evaluation in haematological and solid tumours. Among them, a few show some efficacy, albeit
limited, to cure cancer in the near future. This Review summarizes the efforts thus far undertaken in
the development of ectoprotease inhibitors and highlights new directions for targeting ectoproteases
as an additional weapon in the fight against cancer.

Abstract: Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-
bound enzymes involved in various physiological and pathological processes. Several members, most
notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation pro-
tein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE),
and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and
have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have
been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target
these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these
compounds did not show the expected results in most cases, the field of ectoprotease inhibitors
is growing. This review summarizes the current knowledge on this subject and highlights the re-
cent development of more effective and selective drugs targeting ectoproteases among which small
molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and
derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the
treatment of cancers.

Keywords: cancer; protease; inhibitor; function; signalling; survival; drug resistance

1. Selection of Literature

The PubMed database (www.ncbi.nlm.nih.gov/pubmed, accessed on 19 December
2021) was employed to select papers for coverage in this review. The search terms
“ectoprotease”, “cell surface protease”, “DPP4/CD26”, “FAP/Seprase”, “APN/CD13”,
“ADAM17/TACE”, “MMP/gelatinase”, “drug”, “inhibitor”, “clinical trial”, “metabolism”,
“tumour”, “microenvironment” were employed for this purpose. Although a few cited ref-
erences were published prior to 2008, the majority of the cited references from the PubMed
database were from 2008 to 2021.

2. Background and Introduction

Ectoproteases have been initially defined as transmembrane proteins with an active
catalytic site exposed to the external surface of the membrane, and are represented by
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peptidases and ADAMs (a disintegrin and metalloprotease family) [1]. The roles of ectopro-
teases within neoplastic sites have been investigated actively. Attention has been peculiarly
focused on dipeptidyl peptidase 4 (DPP4, CD26), fibroblast activation protein alpha (FAP,
Seprase), aminopeptidase N (APN, CD13), and ADAM17 (also known as tumour necrosis
factor-α-converting enzyme/TACE), whose deregulated expression in the tumour microen-
vironment (TME) is correlated with a malignant cancer phenotype (tumour cell growth,
survival, metastasis, and tumour-associated angiogenesis) [2–14] (Figure 1). Through their
enzymatic activities, DPP4, FAP, APN, and ADAM17 mediate the proteolysis of bioactive
peptides and cytokines, components of the extracellular matrix, and transmembrane pro-
teins (receptors and adhesion molecules) [8,10–13,15–22]. Ectoprotease interaction with
their inhibitors or specific monoclonal antibodies (mAbs) has revealed that these ectoen-
zymes regulate intracellular key signalling pathways related to the modulation of major cell
events (proliferation, survival, migration, angiogenesis) [11–13,18,20,22–29] (Figure 1). The
enzymatic activity of DPP4, FAP, APN, and ADAM17, even if it contributes, is not essential
for signal transduction. Indeed, these entities have a short intracytoplasmic tail, and in-
hibitor or mAb binding to the ectoenzyme initiates lateral membrane interactions with trans-
membrane proteins (including β1 integrins) for downstream signalling [14,18,28,30–32].

Today, the ectoproteases can also include proteases localized at the extracellular side
of cell membranes. Two members of secreted matrix metalloproteinases (MMPs), i.e.,
MMP2 (gelatinase A) and MMP9 (gelatinase B) localize at the surface of tumour cells, and
can be encompassed in the group of ectoenzymes [33] (Figure 1). As with DPP4, FAP,
APN, and ADAM17, increased expression of MMP2/9 in TME is often associated with
the development and progression of cancer [33–35], and both MMPs have the ability to
cleave many different targets (extracellular matrix, cytokines, growth factors, chemokines,
and cytokine/growth factor receptors) that in turn modulate key signalling pathways
involved in cell growth, migration, invasion, and angiogenesis [33,36,37] (Figure 1). By
binding to transmembrane proteins (αβ integrins, CD44, EGF receptor/EGFR), MMP2 and
MMP9 directly trigger intracellular signalling pathways that control tumour cell events [33]
(Figure 1). Thus, MMP2 and MMP9 can be considered as ectoproteases.

The structures of these ectoenzymes, as well as their overexpression and roles in cancer,
have been discussed in excellent reviews and will not be detailed here [4,11–13,18,20,23,26,27,33]
(Figure 1). The detrimental roles of these ectoproteases expressed in TME has resulted in
the design and development of a myriad of inhibitors, including small molecular weight
molecules, synthetic peptide-based compounds, as well as mAbs. For an inhibitor to be
clinically successful, it has to be selective for a given enzyme and it needs to accumulate in
cancerous tissues without eliciting adverse effects. These properties make any program
of drug discovery still difficult. Although most inhibitors developed so far against these
ectoproteases showed no or limited anticancer activity in clinical trials, they are, however,
crucial as starting points for designing improved ectoprotease targeting strategies for cancer
therapy. In this Review, we critically summarize what is currently known about ectopro-
tease inhibitors and give an update on the newly developed drug candidates targeting
these enzymes. Figure 2 summarizes the potential impact of drug candidates targeting
tumour-associated ectoproteases on key signalling pathways and cellular processes of
relevance to cancer that may bring a new dimension to the therapeutic approach of cancer.
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Figure 1. Structure, overexpression, and involvement of ectoproteases in cancer. The structures are 
simplified to show the domains of ectoproteases discussed in the text. DPP4, FAP, and APN are 
dimers of two noncovalently associated monomers. ALL, acute lymphoblastic leukaemia; AML, 
acute myeloid leukaemia; CAF, cancer-associated fibroblast; CAT, catalytic site; CLL, chronic lym-
phocytic leukaemia; CML, chronic myeloid leukaemia; CNS, central nervous system; EGFR, epider-
mal growth factor receptor; MDS, myelodysplastic syndrome; PEX, hemopexin domain; PRO, pro-
domain; SCC, squamous cell carcinoma. The catalytic type is mentioned according to The MEROPS 
database of proteolytic enzymes: https://www.ebi.ac.uk/merops/index.shtml (accessed on 16 
December 2016). 

Figure 1. Structure, overexpression, and involvement of ectoproteases in cancer. The structures are
simplified to show the domains of ectoproteases discussed in the text. DPP4, FAP, and APN are
dimers of two noncovalently associated monomers. ALL, acute lymphoblastic leukaemia; AML, acute
myeloid leukaemia; CAF, cancer-associated fibroblast; CAT, catalytic site; CLL, chronic lymphocytic
leukaemia; CML, chronic myeloid leukaemia; CNS, central nervous system; EGFR, epidermal growth
factor receptor; MDS, myelodysplastic syndrome; PEX, hemopexin domain; PRO, prodomain; SCC,
squamous cell carcinoma. The catalytic type is mentioned according to The MEROPS database of
proteolytic enzymes: https://www.ebi.ac.uk/merops/index.shtml (accessed on 16 December 2016).

https://www.ebi.ac.uk/merops/index.shtml
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Figure 2. Cancer-associated ectoproteases as potential drug targets and implications in cancer
therapy. Cancer is supported by a number of biologic hallmark capabilities that enable tumour
development and progression. Ectoproteases participate in cancer by modulating a wide range
of these processes. Drug candidates targeting ectoproteases may elicit antitumour effects (T) in a
context-dependent manner.

3. DPP4/CD26

DPP4 is the best known member of the S9 family of serine proteases, besides DPP8,
DPP9, FAP, and prolyl oligopeptidase [32]. DPP4 exhibits potent postproline dipeptidyl
peptidase activity [32]. Among substrates of DPP4, chemokines are rapidly inactivated by
DPP4, and the field of inhibitor research explored the possibility of therapeutic intervention
to block chemokine processing by DPP4. The first DPP4 inhibitors turned out to be nonse-
lective pan-DPP inhibitors inhibiting FAP, DPP8, and DPP9 [38–40]. Then, more selective
active-site DPP4 inhibitors were designed and tested in patients with type 2 diabetes or
cardiovascular diseases (for review in [41–43]). On the basis of their mode of action, DPP4
inhibitors are covalent (including vildagliptin and saxagliptin) and noncovalent (including
sitagliptin, alogliptin, and linagliptin) inhibitors [44]. These inhibitors were approved by
the U.S. Food and Drug Administration (FDA) and/or the European Medicines Agency
for the treatment of type 2 diabetes [45]. Supported by their excellent safety profile [45],
their effects were evaluated in several xenograft animal models of cancer [46–51]. For
instance, linagliptin suppressed tumour growth in a xenograft mouse model of colorectal
cancer [49]. Sitagliptin had a protective effect in a rat model of colon cancer, reducing
the number of precancerous lesions in sitagliptin-treated animals [46], and it could over-
come tyrosine kinase-inhibitor resistance in renal cell carcinoma spheroid cultures [50].
Sitagliptin treatment reduced melanoma growth in mice as a result of delayed chemokine
processing [52], prolonged survival, and increased CD8+ T cell trafficking in a syngeneic
ovarian cancer mouse model, highlighting the importance of DPP4 in the regulation of the
immune landscape [51]. Two large meta-analyses of clinical trials studying the impact of
alogliptin, linagliptin, saxagliptin, sitagliptin, and vildagliptin in the survival of patients
with lung or colorectal cancer between 2007 and 2013, and prostate, pancreas, or breast
cancer between 2007 and 2015, showed that DPP4 inhibition improved survival in patients
with lung, prostate, and colorectal cancer [53,54]. At the same time, a thorough follow-up of
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long-term DPP4 inhibition remains a valuable preventive measure, as the influence of DPP4
on cancer biology remains complex [55]. Linagliptin and sitagliptin are now tested in phase
I/II clinical trials to treat oesophagogastric and non-small cell lung cancer (Table 1) [56].
These promising findings provide rationale to figure out the potential of DPP4 inhibitors
in combination with checkpoint immunotherapy or chemotherapy. It has to be pointed
that DPP4 can modulate immune effects in a nonenzymatic manner by interacting with
other transmembrane proteins [57] or extracellular adenosine deaminase (ADA) [58]. ADA
catalyzes the irreversible deamination of adenosine and 2′ deoxyadenosine to inosine
and 2′ deoxyinosine, respectively. Adenosine is highly immunosuppressive for most of
immune cells. Adenosine interferes with TCR signalling by binding to the adenosine
receptor 2a expressed on effector T cells [59]. Exogenous ADA bound to T cell surface
DPP4 has the ability to metabolize immunosuppressive adenosine, which ensures T cell
proliferation [60] and to produce a CD3-dependent costimulatory downstream signal for
T cell activation [60,61]. Interaction of the ADA–DPP4 complex on T cells with an ADA-
anchoring protein on dendritic cells results in the production of inflammatory cytokines
by the latter [62]. These effects highlight the importance of adenosine and ADA–DPP4
pathways in the modulation of T cell immune responses. Although caution has to be taken
when targeting DPP4 for the treatment of cancer, DPP4 inhibitors tested in clinic so far have
proved to be safe therapeutics [45], and they deserve further exploration in combination
treatments of cancers with an unmet clinical need.

Apart from catalytic site inhibitors, DPP4 has been clinically targeted by mAbs. The
humanized antibody YS110 was initially developed as a targeted therapy against CD26+

malignancies [63]. It exerts a very effective antitumour effect in renal cancer, malignant
mesothelioma, and malignant lymphoma [63–65]. In phase I/II trials, YS110 led to pro-
longed stable disease and moderate side effects in patients with malignant pleural mesothe-
lioma (MPM) and renal cell carcinoma, suggesting its potential as a better tolerated and
more effective therapy in these cancers [66]. In a recent phase I/II study evaluating YS110 in
patients with advanced MPM, it was generally well tolerated and showed some efficacy as
a salvage therapy in difficult-to-treat patients (Table 1) [67,68]. The YS110-based antibody–
drug conjugate Y-TR1 containing triptolide (TR-1, Nrf2 inhibitor) is in the preclinical
phase [69,70]. The clinical utility of these mAbs deserves future attention.

One recent immunotherapy involves the use of chimeric antigen receptor (CAR)-
T cells, which relies on cytotoxic T cells being modified to express an artifical receptor
targeting cancer-specific surface antigens, and is infused into the patients, where they
recognize and eliminate the tumour [71,72]. CARs, as transmembrane proteins, bind their
cognate targets through their extracellular domain and bear signal transduction capacities
that trigger the cytotoxic functions of host effector T cells [71,72]. DPP4 targeting CAR-T
cells were developed to target DPP4+ leukemic stem cells in chronic myeloid leukaemia
(CML) [73–76]. To broaden the success of CAR-T cell treatment for CML, Zhou et al.
attempted to construct second-generation DPP4 targeting CAR-T cells utilizing 4-1BB
(CD137) as costimulatory domain to target leukaemia stem cells [76,77]. Although limiting
growth tumour progression in a mouse model, anti-DPP4-4-1BB CAR-T cells exhibited
self-antigen-driven fratricide, indicating that a more optimized design or alternative target
is needed [76,77].
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Table 1. Selected results of terminated, completed, ongoing, or recruiting clinical trials with drugs targeting cancer-associated ectoproteases.

Drug Class Main Effect Disease Setting Phase Study Refs.

DPP4/CD26

Linagliptin Small molecule
Inhibiting DPP4 enzymatic activity

thereby protecting chemokine
agonist activity

Oesophagogastric
tumours I/II NCT03281369 EUDRACT

2016-004529-17 (Recruiting)

Non-small cell lung
cancer I/II NCT03337698 EUDRACT

2017-001267-21 (Recruiting)

Sitagliptin Small molecule

Inhibiting DPP4 enzymatic activity
thereby protecting chemokine

agonist activity

Hepatocellular
carcinoma I NCT02650427 EUDRACT

2015-002968-17 (Completed) [56]

Accelerating engraftment in adults
receiving umbilical cord blood

transplantation

Haematological
malignancies I/II NCT01720264

(Completed) [66–68]

YS110 Antibody
Promoting internalization and nuclear
accumulation of DPP4 leading to cell

growth inhibition

Advanced malignant
pleural mesothelioma I/II NCT03177668

(Completed) [67,68]

FAP/Seprase

177Lu-FAP-2286
Peptido-

mimetic (theranostic)
Eliminating FAP+ CAFs and bystander

tumour cells Solid tumours I/II LuMIERE NCT04939610
(Recruiting) [78]

RG7827/RO7122290
Bispecific antibody-

fusion protein
Crosslinking FAP+ cells with 4-1BB+ T

cells leading to T and NK cell activation

Metastatic colorectal
tumour Ib/II NCT04826003 (Recruiting)

[79,80]Advanced solid
tumours Ia/Ib EUDRACT 2017-003961-83

(Completed)

Urothelial carcinoma Ib/II EUDRACT 2017-004634-28
(Ongoing)

RO7300490 Bispecific antibody-
fusion protein

Crosslinking FAP+ cells with CD40+ APCs
leading to APC immune response Solid tumours I NCT04857138 EUDRACT

2020-004489-21 (Recruiting)
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Table 1. Cont.

Drug Class Main Effect Disease Setting Phase Study Refs.

FAP/Seprase

RG7461/RO6874281/
Simlukafusp α

Bispecific antibody-
fusion protein

Crosslinking FAP+ cells with IL2R+ T cells,
leading to T cell immune response

Metastatic/advanced
renal cell carcinoma I NCT03063762 EUDRACT

2016-003528-22 (Completed) [81]

Advanced solid
tumours (breast, head,

and neck)
I NCT02627274 EUDRACT

2015-002251-97 (Completed) [79]

Recurrent/metastatic
cervical squamous cell

tumours
II NCT03386721 EUDRACT

2017-003182-94 (Completed) [82]

Metastatic melanoma I
NCT03875079 EUDRACT

2018-003872-11 (Active, not
recruiting)

Pancreatic tumours Ib/II
NCT03193190 EUDRACT

2016-004126-42 (Active, not
recruiting)

Anti-FAP CAR-T cells CAR-T cells (2nd
generation) Eliminating tumour FAP+ CAFs Malignant pleural

mesothelioma I NCT01722149 (Completed) [83,84]

Autologous
anti-nectin4/anti-FAP

CAR-T cells

CAR-T cells
(4th generation)

Eliminating tumour Nectin4+ cells and
FAP+ CAFs

Nectin4+ advanced
malignant solid

tumours
I NCT03932565 (Recruiting)

NG-641 Bispecific antibody-
fusion oncolytic virus

Eliminating virus-infected tumour cells,
crosslinking FAP+ cells with CD3+ T cells

leading to T cell immune response

Metastatic/
advanced epithelial

tumours
I STAR NCT04053283

(Recruiting)
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Table 1. Cont.

Drug Class Main Effect Disease Setting Phase Study Refs.

APN/CD13

CHR2797/
Tosedostat Small molecule Inhibiting APN enzymatic activity

Advanced pancreatic
ductal

adenocarcinoma
Ib/II NCT02352831 (Terminated) [85]

Myelodysplastic
syndromes II NCT02452346 (Completed) [86]

NGR-TNFα Peptide-based drug Eliminating tumour-associated
vasculature

Primary central
nervous system

lymphoma
II NCT03536039 (Recruiting) [87]

Metastatic/advanced
small cell lung cancer II NCT00483509 (Completed) [88]

Malignant pleural
mesothelioma III NCT01098266 (Completed) [89]

NGR-tTF Peptide-based drug Eliminating tumour-associated
vasculature

Recurrent/refractory
tumours (sarcoma,
melanoma, lung,

colon, liver, thyroid,
lymphoma)

I NCT02902237 (Completed) [90]

J1/Melflufen
Peptide–drug

conjugate

Delivering alkylating melphalan to
tumour cells, leading to tumour cell

elimination

Relapsed refractory
multiple myeloma

I/II

HORIZON NCT02963493
(Completed)

ANCHOR NCT03481556
(Completed)

[91,92]

III OCEAN NCT03151811
(Completed) [92,93]

ADAM17/TACE

INCB7839/
Aderbasib Small molecule Blocking HB-EGF shedding and

EGFR/EGF ligand signalling

Diffuse large B-cell
non-Hodgkin

lymphoma
I/II NCT02141451 (Completed) [94]
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Table 1. Cont.

Drug Class Main Effect Disease Setting Phase Study Refs.

MMP9

GS-5745/
Andecaliximab

Allosteric antibody Inhibiting MMP9 activation and MMP9
activity by binding to (pro)MMP9

Advanced solid
tumours (pancreatic,
non-small cell lung,

colorectal,
oesophagogastric,

breast)

I NCT01803282 (Completed) [95,96]

Oesophagogastric
tumours I/Ib NCT02862535 (Terminated) [97]

III NCT02545504 2015-001526-42
(Completed) [98]

Clinical trial identifiers from Clinicaltrials.gov (accessed on 19 December 2021): NCTxxxxxxxx; EU Clinical Trials Register: 20xx-00xxxx-xx.

Clinicaltrials.gov
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4. FAP

FAP features a unique dual dipeptidyl peptidase and endopeptidase activity, which
distinguishes it from DPP4 and other members of the S9 family [99,100]. The first inhibitors
Glu-boroPro (PT-630) and Val-boroPro (PT-100, talabostat®) target not only FAP, but also
DPP4 and/or DPP8/9 (reviewed in [10,101]). They had no effect on tumour cell growth
in vitro or in immunodeficient mice, suggesting that these inhibitors targeted the immune
system [57,102]. The involvement of the immune system in the antitumour activity of Val-
boroPro was confirmed in mice depleted with CD4+ and/or CD8+ T cells [103]. The parallel
inhibition of DPP4 and/or DPP8/9 by Val-boroPro complicated the proper interpretation
of the results [52,104]. An adaptive phase I trial was developed to define the optimal
dose of Val-BoroPro in children with relapsed or refractory solid tumours [105]. Val-
BoroPro, in combination with cisplatin or docetaxel, reached phase II clinical trials in
lung cancer, metastatic colorectal cancer, and melanoma, however clinical evaluation was
terminated because Val-BoroPro did not improve the clinical activity of conventional
drugs (possibly due to poor patient selection and poor trial design) [106–109]. Instead,
recent research supports DPP9 as the preferred target of Val-boroPro [52,104]. Val-boroPro,
‘’redefined” as DPP8/9 inhibitor BXCL701, is currently being evaluated in combination with
checkpoint inhibitors in metastatic castration-resistant prostate cancer [110–112]. ARI-4175,
a second-generation pan-DPP inhibitor following Val-boroPro, mediates tumour regression
through immune-mediated mechanisms [113]. ARI-4175 treatment induces the marked
regression of well-established lung tumours, both as a single agent and as an adjuvant
to dendritic cell therapy and adoptive cellular therapy [114], and significantly lowers the
total number of macroscopic liver nodules in mouse models of lung cancer [115]. Whether
pan-DPP inhibitors remain suitable candidates for treating certain cancers warrant further
clinical investigation.

Insights into the structural characteristics of the active site and substrate preferences
of FAP led to the development of FAP-specific inhibitors [116,117]. These include (4-
quinolinoyl)glycyl-2-cyanopyrrolidine-based inhibitors [116,117]. One selective FAP in-
hibitor with low nanomolar potency is UAMC-1110 [118]. UAMC-1110 did not affect
tumour growth, nor did it enhance the effect of radiotherapy in a mouse model of pan-
creatic cancer [119]. However, MIP-1232, a UAMC-1110-based probe radiolabeled with
I125, appeared to be highly correlated with tumour tissue imaging [120]. Based on their
selective and strong binding to FAP, a multitude of radiolabeled FAP inhibitors (FAPI) have
been generated and are now widely used in experimental tumour diagnosis (reviewed
in [10,14]). Several FAPI tracers recently entered the clinical phase for pan-tumour imaging,
diagnosis, and staging examinations (Table S1) [121]. To turn the FAPI radiopharmaceuti-
cals into theranostics, the linker region was modified to obtain improved tumour retention
and to allow the use of radionuclides suited for therapy [122]. Probes such as 177Lu-FAP-
2286, 64Cu-FAPI-04, 225Ac-FAPI-04, and RPS-309 were developed as theranostics [123].
First-in-human results of 177Lu-FAP-2286 demonstrate a long retention time in diverse
solid tumours (advanced adenocarcinomas of pancreas, breast, rectum, and ovary) and
acceptable side effects (Table 1) [78]. Prospective clinical studies are warranted.

An alternative FAP-directed cancer therapy consists of FAP-mediated activation of
prodrugs. The specific gly-pro-directed proteolytic activity of FAP has been exploited in
the development of several FAP-activatable prodrugs [124]. Upon cleavage by FAP, the
nontoxic prodrug is activated to a potent toxin that kills both FAP+ and neighbouring
FAP− cells in the tumour [124]. The ERGETGP-S12ADT-activated prodrug generated by
coupling a FAP cleavable peptide to a thapsigargin analogue inhibits tumour growth in
human breast and prostate cancer xenograft models with no associated toxicity [125,126].
Other FAP-targeted prodrugs include compounds based on promelittin [127], emetine [128],
arenobufagin [129], desacetyl-vinblastine [130], or doxorubicin [131]. Unexpectedly, these
promising prodrugs encountered a roadblock in preclinic.
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Another approach aims at the development of mAbs for the selective inhibition of
FAP. The first of them, mAb F19, exhibited a tight selectivity for FAP+ fibroblasts in tumour
tissues [132]. Thereafter, several humanized versions of F19 were developed with limited
or no antitumour activity (reviewed in [10]). Among them, sibrotuzumab was tested
in phase I/II clinical trials in patients with metastatic colorectal cancer, albeit without
therapeutic response, and some patients developed antihuman Abs [133,134]. Thereafter,
FAP Abs have been conjugated with toxins, radioisotopes, immunomodulatory cytokines,
or costimulatory molecules (reviewed in [10,14]). Based on the role of the costimulatory
receptor 4-1BB (CD137, TNFRSF9) in sustaining effective T cell immune responses, a
bispecific FAP antibody-fusion protein combining a trimeric 4-1BB ligand (4-1BBL) and
a Fab moiety recognizing fibroblast FAP was developed [135]. Simultaneous binding of
anti-FAP to CAFs and 4-1BBL to T cells resulted in the clustering and activation of T
and NK cells at the tumour site, thereby leading to potent antitumour activity in mice
xenograft models [135,136]. Anti-FAP-4-1BBL is currently tested in the clinic as single agent
or in combination with cibisatamab (CEA/CD3 bispecific mAb) or atezolizumab (ATZ)
(anti-PD-L1) (Table 1) [79]. First-in-human results confirmed tumour-specific uptake and a
favourable safety profile, which supports further clinical exploration [79,80] (Table 1). A
bispecific FAP-CD40 mAb (RO7300490) applies a similar principle to act as costimulatory
signal for antigen-presenting cell (APC) activation, leading to enhanced T cell priming
and tumour regression in mice xenograft models without clear signs of toxicity [137]. The
FAP-directed CD40 agonist has progressed to clinical trial phase I as a single agent or in
combination with ATZ (Table 1). The tetravalent bispecific mAb RG7386 (RO874813, a
FAP mAb coupled with death receptor 5 (DR5) agonist), which binds FAP+ fibroblasts and
DR5+ tumour cells, induced tumour regression in a colorectal cancer mouse model [138].
Although a phase I clinical trial with RG7386 demonstrated a favourable safety profile
in patients with multiple solid tumour types and antitumour activity in a patient with
non-small cell lung cancer [139,140], its development has been discontinued. A FAP mAb
combined with variant interleukin-2 (IL-2v) (simlukafusp α, SIM) has been developed,
with IL2v binding IL2-Rβγ but not IL2-Rα on T cells [141]. As a result, SIM strongly
activates NK and CD4+/CD8+ T cells, but not Tregs, and therefore may augment activity
of PD-(L)1 inhibitors [141]. SIM entered the clinic as monotherapy, in combination with
ATZ [82], trastuzumab (anti-HER2) or cetuximab (anti-EGFR) [79], ATZ ± bevacizumab
(anti-VEGF) [81,82], or pembrolizumab (anti-PD-1) (Table 1). In phase I studies, SIM
was associated with an acceptable safety profile in patients with advanced solid tumours
(Table 1) [79,81]. In a phase II study, SIM, in combination with ATZ, confirmed the safety
profile in patients with cervical squamous cell carcinoma (Table 1), supporting the further
exploration of SIM with checkpoint inhibition in this patient population [82].

Oncolytic group B adenoviruses have been previously optimized for selective tu-
mour cell infection and stability in blood [142,143]. An interesting FAP-targeting strategy
concerns the recent development of NG-641, a modified variant of the adenovirus enade-
notucirev that encodes a bispecific single-chain diabody (bispecific T cell engager/BiTE)
to simultaneously bind FAP+ CAFs and CD3+ T cells [144]. NG-641 also encodes the
transgenes CXCL9, CXCL10, and IFNα to recruit T cells and enhance the overall immune
response and cancer cell killing [145,146]. In addition to the infection of tumour cells with
the oncolytic virus NG-641, the encoded BiTE should lead to potent T cell activation and
CAF death [144]. This approach yields a multimodal treatment strategy within a single
therapeutic agent. The study of the safety and tolerability of NG-641 in patients with
metastatic or advanced epithelial tumours started in 2020 (Table 1).

As mentioned above for DPP4, several anti-FAP CAR-T models based on MO36 and
F19 mAbs were constructed (reviewed in [10,14]). A blockade of tumour growth by anti-
FAP CAR-T cells was validated in human lung cancer xenografts and syngeneic murine
pancreatic cancers [147]. The high efficacy of combining anti-FAP CAR-T cells with other
immunotherapies (e.g., checkpoint inhibition) was proven by Gulati et al., who achieved
transiently stable disease in a humanized fibrosarcoma mouse model treated with anti-
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FAP (F19 mAb) CAR-T cells in combination with a PD-1-blocking mAb [148]. In a phase
I clinical trial, intra-pleural administration of autologous anti-FAP CAR-T cells to three
patients with malignant pleural mesothelioma was well tolerated without any evidence of
treatment-related toxicity (Table 1) [84]. A Nectin4/FAP-targeted fourth-generation CAR-T
cells (expressing IL7 and CCL19, or IL12) therapy is currently being tested to treat Nectin4+

advanced malignant solid tumours (Table 1).

5. APN/CD13

APN/CD13, as a member of the M1 metallopeptidase family, harbours a Zn2+-binding
motif in its active site [149,150]. The first described natural or synthetic APN inhibitors
exhibited a zinc binding group such as hydroxamate, carboxylate, sulfhydryl, sulfonamide,
and derivatives of phosphoric acid in their moieties [151–154]. However, they lacked tight
specificity by inhibiting other metalloproteases [151]. The best-known example is bestatin
(Ubenimex®), which entered the clinic in the 1990s for the purpose of treating patients with
haematological and solid tumours including acute and chronic leukaemias, lymphomas,
melanoma, lung, bladder, and stomach carcinomas [151–153]. Although bestatin showed
few adverse effects, its survival benefit did not appear significant. Most studies were small
or had few recorded events, and, in several cases, the positive results were restricted to sub-
groups’ analyses (reviewed in [8]). More recently, in an early nonrandomised study, bestatin
was shown to reduce the polyp number in patients with colorectal cancer [155]. Thereafter,
many new APN inhibitors have been designed and synthesized, including derivatives of
3-amino-2-hydroxy-4-phenyl butanoic acid, chloramphenicol amine, 3-phenylpropane-1,
2-diamine, L-lysine, L-arginine, 1, 3, 4-thiadiazole, N-cinnamoyl-L aspartic acid, and cyclic-
imide moieties, most of them being still in the (pre)clinical stage of development [153,156].
The cyclopentyl ester CHR-2797 (tosedostat) [157] was investigated both as a monother-
apy and in combination with other drugs [8]. In phase I/II trials, CHR-2797 was found
safe and effective in relapsed and refractory acute myeloid leukaemia (AML) [158–160].
When combined with low dose cytarabine, decitabine, or azacitidine, CHR-2797 was not
associated with major toxic effects in a small cohort of patients with AML [161,162] or
myelodysplastic syndrome (MDS) [86,161] (Table 1). However, phase II randomised studies
with a large AML sample size demonstrated that the addition of CHR-2797 to standard
chemotherapy negatively affects the therapeutic outcome of AML patients due to more
infection-related deaths [163,164]. With regard to solid tumours, a phase I study of CHR-
2797 monotherapy demonstrated tolerability and preliminary efficacy in a subset of patients
with advanced renal, colorectal, lung, prostate, breast, and pancreatic tumours [165]. A
recent phase Ib/II study combining CHR-2797 with capecitabine in patients with advanced
pancreatic adenocarcinoma displayed tolerable toxicity in a cohort of 16 patients; however,
due to insufficient funding and drug supply from manufacturer, the clinical study was
terminated (Table 1) [85]. These observations of CHR-2797 in solid tumours warrant further
clinical investigation.

Based on its ability to bind to the Asn-Gly-Arg (NGR) motif, APN has proven to
be a key for targeted delivery of chemotherapeutic drugs to APN+ tumour cells and
APN+ tumour-associated endothelium [8,166]. Interestingly, the NGR motif binds to APN
isoforms in tumoural tissues, but not to normal APN-rich tissues [8]. A large variety
of molecules have been coupled to the NGR motif (which can be flanked by two cys-
teine moieties in a circular CNGRC peptide), including cytotoxic agents (doxorubicin, 5′

fluoro-2′-deoxyuridine, 5-fluorouracil, lidamycin), cytokines (TNF-α, IFN-γ), and anti-
angiogenic peptides (endostatin, truncated tissue factor/tTF, D(KLAKLAK)2) [8,166–170].
The NGR-coupled drugs showed antitumour activity in vitro and in preclinical models
of haematological and solid tumours [168–171]. As mentioned above for FAP, preclinical
research developed APN-targeted molecular imaging probes for the noninvasive detection
of angiogenesis in vivo; among them, a dimeric NGR-containing peptide conjugated with
a chelator, and radiolabeled with 64Cu, was shown to be a suitable radioprobe [168,172].
For 10 years, NGR-TNF-α has been tested (both as a single agent and in combination
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with chemotherapy) in several phase I/II clinical trials in patients with advanced solid
tumours (including melanoma, small cell lung cancer, colon, liver, and ovarian carcinomas)
(reviewed in [8,167,169,173]). In phase II/III studies, NGR-TNF-α showed manageable
toxicity and promising activity in primary central nervous system lymphoma [87], small cell
lung cancer [88], and malignant pleural mesothelioma [89] (Table 1). Recently, a prospec-
tive phase I trial with the antiangiogenic drug NGR-tTF was initiated for patients with
recurrent or refractory malignant tumours and lymphomas (Table 1) [90]. These innovative
approaches deserve to be pursued.

Another way of targeting APN is mAbs. APN mAbs (WM15, MY7, and SJ1D1
epitopes) were able to induce in vitro the death of primary AML cells and liver can-
cer stem cells (CSCs), and to slow tumour growth in a xenograft murine model of liver
carcinoma [24,174]. APN mAb TEA1/8 conjugated to the marine compound PM050489
(which binds tubulin and thus impairs microtubule dynamics) exhibited antitumour activ-
ity in APN+-fibrosarcoma xenograft murine models [175]. A bispecific Ab generated by
combining a CD3 Fab (OKT3) and an APN Fab (MY7) reacts with both CD3+ T cells and
APN+ AML cells, leading to the elimination of AML cells by peripheral blood mononuclear
cells [176]. Using a modified approach of CAR-T cells, He et al. constructed a switchable
CAR-T system based on an APN mAb (Nb157) which eliminates primary AML cells in vitro
and in an AML mouse model [177]. As a whole, these approaches suggest that mAbs may
be a therapeutic option in the treatment of APN+ tumours.

An alternative therapeutic strategy exploited the proteolytic activity of APN for the ac-
tivation of prodrugs. In peculiar, the promising activity of the alkylating prodrug melflufen
(J1) is related to the ability of tumour APN to directly turn melflufen (dipeptide consist-
ing of melphalan and p-fluoro-L-phenylalanine) into an active cytotoxic drug, melphalan
(Table 1) [178]. In a phase I/IIa clinical study of solid tumours, clinical activity was sug-
gested in ovarian cancer, but only modest activity in refractory non-small cell lung can-
cer [178]. In phase I/II studies (HORIZON and ANCHOR), melflufen plus dexamethasone
has demonstrated encouraging clinical activity and a manageable safety profile in heavily
pretreated patients with relapsed/refractory multiple myeloma (RRMM) (Table 1) [91,92].
OCEAN, a randomised phase III study, evaluated the efficacy and safety of melflufen +
dexamethasone versus pomalidomide + dexamethasone (Table 1) [92,93]. Melflufen plus
dexamethasone showed clinically meaningful efficacy and a manageable safety profile in
patients with heavily pretreated RRMM, including those with triple class refractory and
extramedullary disease (Table 1) [92].

6. ADAM17/TACE

As with APN, the active site of the metalloprotease ADAM17 is dependent on Zn2+

for its catalytic activity and can bind molecules that have a zinc binding group (such as
hydroxamate, sulfonamide, tartrate, and hydantoin) in their structures. In this context, a
large variety of potential low molecular weight ADAM17 inhibitors have been developed
over the last 20 years [21,179]. Among them, DPC333 (BMS-561392) [180], PF-5480090
(TMI-002, WAY-18022) [181], TMI-005 (apratastat) [182], INCB3619 [183,184], and INCB7839
(aderbasib) [185] have entered phase I/II clinical trials for the management of inflamma-
tory diseases and solid tumours (including breast cancer and non-small cell lung cancer);
however, due to side effects and a lack of selectivity, they had to be withdrawn later
on [13,19,20,167,179]. Indeed, these compounds also inhibit MMP8/13 (for TMI-005 and
PF-5480090) or ADAM10 (for INCB3619 and INCB7839) [19,179]. In 2014, INCB7839 again
entered a phase I/II clinical trial, to be used along with rituximab (anti-CD20) as consolida-
tion therapy after an autologous haematopoietic cell transplant for patients with diffuse
large B cell non-Hodgkin lymphoma (Table 1) (reviewed in [13,179]). The short-term results
suggest its applicability as a relapse-preventing therapy [94].

Several ADAM17 mAbs including D1 (A12) [186,187], A9 (B8) [188], A300E, and re-
lated conjugates [189–191], as well as MEDI3622 [192], have been developed. D1 mAb
binds to the ectodomain outside the catalytic site of ADAM17 [187]. A9 mAb binds
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the ectodomain of ADAM17 and directly causes a conformational change involving the
ADAM17 catalytic site [188]. Both D1 and A9 mAbs exhibit antitumour effects in vari-
ous cancer models including breast, head, neck, and pancreatic cancers [193–195]. The
A300E mAb was initially developed against the disintegrin–EGF-like domain of human
ADAM17 [189]; when conjugated to doxorubicin or Pseudomonas exotoxin, it induces
in vitro death of breast cancer cells in an ADAM17-dependent manner [191]. An A300E-
specific scFv (single-chain variable fragment) was coupled to a CD3-specific scFv to gener-
ate a bispecific T cell engager antibody (A300E-BiTE) which is capable to induce in vitro
the T cell-mediated lysis of prostate cancer cells [190]. The mAb MEDI3622 recognizes a
unique hairpin loop in the ectodomain of the enzyme (and absent in other ADAMs and
MMPs) [186]. By blocking the ADAM17-mediated shedding of HB-EGF (ligand of the EGF
receptor/EGFR), MEDI3622 exhibits antitumour activity in xenograft models of EGFR-
dependent colorectal and oesophageal cancer [192,196,197]. The promising preclinical
efficacy seen with these ADAM17 mAbs supports their further clinical investigation.

The propeptide domain of metalloenzymes including ADAM17 and MMP2/9 is
characterized by an amino acid sequence known as “cysteine switch”, in which the cysteine
residue contains a sulfhydryl group coordinated to the catalytic divalent zinc ion to suppress
the catalytic activity of the MMP [198]. The cleavage of the prodomain leads to the active
form of MMPs [198]. Taking this into account, a recombinant prodomain peptide of
ADAM17 was synthesized and shown to be an effective and highly specific inhibitor of
ADAM17 activity in sepsis and inflammation models [199] and a murine kidney fibrosis
model [200]. Recently, Soto-Gomez et al. [201] have developed a bispecific fusion protein
construct (E0-GS-TPD) consisting of the inhibitory prodomain peptide of ADAM17 fused
to an EGFR-targeting design ankyrin repeat protein, which inhibits the proliferation of lung
cancer cells [201]. The use of such specific proteins could be an innovative strategy for the
treatment of EGFR-dependent cancers.

7. MMP2 and MMP9

Numerous inhibitors of the catalytic activity of MMPs have been developed. Most of
them bind to the Zn2+ ion and the substrate binding pocket and aim to target MMP2 and/or
MMP9 [34,198,202–206]. These inhibitors include the well-known BB-94 (batimastat), BB-
2516 (marimastat), and BAY12-9566 (tanomastat) [34,202,203]. Unfortunately, in phase III
clinical trials, these compounds failed as drugs for the treatment of different types of solid
tumours, due to significant dose-limiting musculoskeletal toxicity and/or lack of selectivity
for individual MMPs [34,204,205,207]. Later on, more selective MMP2 or MMP9 inhibitors
were developed. They included a series of aryl-sulfonamide, aryl-sulfonide, aryl sulfonyl
based-glutamine, aryl carboxamide-based isoglutamine, and biphenyl-substituted lysine
derivatives with affinities in the low nanomolar range. Whether these compounds are
effective in clinic has not been shown to date [207–210].

Therefore, the question remains as to whether the therapeutic targeting of MMP2 and
MMP9 is feasible. In light of the current insights in the nonproteolytic (i.e., outside-in
signalling) roles of (pro)MMP2 and (pro)MMP9 [33], the enzyme inhibitor approach may
no longer be sufficient because it does not affect the interactions of MMP2 and MMP9
with cell surface proteins and consequent signalling. Earlier studies showed that the in-
teraction between (pro)MMP9 and its docking receptors (αβ integrins and CD44) requires
an intact MMP9 hemopexin domain (PEX) [211–213]. In contrast to the highly conserved
MMP catalytic domain, the PEXs are unique to each MMP family member. Taking this
into account, Bjorklund et al. [211], in a pioneering study, developed an inhibitory pep-
tide (ADGACIL WMDDGWCGAAG) that binds selectively to the MMP9 PEX domain
and prevents PEX from binding to αvβ5 integrin; consequently, this peptide prevents
tumour xenograft growth in vivo [211]. Thereafter, two more potent MMP9 PEX inhibitors
have been described [213,214]. They prevent the association of MMP9 with its receptors
(α4β1 integrin/CD44), resulting in the blocking of a downstream signalling pathway re-
quired for MMP9-mediated tumour cell migration in vitro and the inhibition of tumour
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metastasis in xenograft mouse models of lung cancer [213,214]. Scannevin et al. designed
and synthesized a small molecule known as JNJ0966 [N-(2-((2-methoxyphenyl)amino)-
4′-methyl-[4,5′-bithiazol]-2′-yl) acetamide] which prevents the conversion of proMMP9
(latent form) into the catalytically active enzyme [215]. JNJ0966 penetrates the blood–brain
barrier and reduces severity in a mouse experimental autoimmune encephalomyelitis
model [215]. Although these new approaches hold promise due to enhanced selectivity
toward MMP9, the clinical utility of these compounds as therapeutic agents in cancer
remains to be investigated.

Newly designed inhibitors include function-blocking MMP9 mAbs [202,206,216,217].
The first developed mAbs, REGA-3G12 [218,219] and CLAY-001 [220], inhibited the enzy-
matic activity of human MMP9. Their therapeutic efficacy was demonstrated ex vivo in
autoimmune skin cells for REGA-3G12 [218] and in a xenograft model of intestinal fibrosis
for CLAY-001 [220]. Thereafter, two allosteric mouse MMP9 mAbs, AB0041 and AB0046,
were shown to inhibit tumour growth and metastasis in a xenograft model of colorectal
carcinoma [221,222]. A humanized version of AB0041, GS-5745 (andecaliximab) inhibits
MMP9 through two mechanisms: binding to proMMP9 prevents MMP9 activation, whereas
binding to active MMP9 allosterically inhibits enzymatic activity [221,223]. Phase Ib and
II/III trials in patients diagnosed with ulcerative colitis [224,225] and a phase Ib trial on
rheumatoid arthritis patients [226] demonstrated that GS-5745 was safe and well tolerated.
Since then, clinical trials evaluating GS-5745 in combination with anticancer drugs have
been initiated. Phase I studies of GS-5745 as a monotherapy and in combination with
chemotherapy in patients with advanced solid tumours (pancreatic, non-small cell lung,
oesophagogastric, colorectal, and breast cancers) demonstrated encouraging antitumour
activity without added toxicity (Table 1) [95–97]. In a phase III study, the addition of
GS-5745 to mFOLFOX6 (a combination chemotherapy that includes oxaliplatin, leucovorin,
and 5-fluorouracil) in first-line therapy did not improve overall survival in unselected
patients with untreated EGFR2-negative oesophagogastric adenocarcinoma (Table 1) [98].
The efficacy of GS-5745-based MMP9 inhibition, either as a monotherapy or in combination
with chemotherapy, remains to be tested in other tumours.

Remarkably, the progress in the design of specific MMP2 inhibitors has been slower
than for MMP9 [202,205]. A macromolecular inhibitor designed to interact with both the
active site and the PEX of MMP2, linking a MMP2 selective inhibitory peptide (APP-IP, a
β-amyloid precursor protein) to the N-terminus of tissue inhibitor of metalloproteinases-2
(TIMP2), could inhibit fibrosarcoma cell migration [227]. With regard to proMMP2 target-
ing, Sarkar et al. [228] recently developed a cyclic peptide (cy(WPHPY)) which binds to
proMMP2 and disrupts the interaction between proMMP2 and TIMP-2, thereby preventing
TIMP2-mediated proMMP2 activation and inhibiting cell invasion of human melanoma
cells [228]. These MMP2 inhibitors have yet to further prove their clinical efficacy.

8. New Avenues for Ectoproteases in the Context of Cancer Therapy

Recent observations revealed new hallmarks of cancer-associated ectoproteases. This
section highlights (i) the relevance of ectoproteases in cancer stem cells (CSCs) and tumour-
associated extracellular vesicles (EVs) and (ii) the interplay between ectoproteases and
tumour metabolism.

TME is composed of an extracellular matrix, circulating factors (cytokines, growth
factors, chemokines . . . ), and several cell types, including differentiated cancer cells, CSCs,
mesenchymal stem cells, cancer-associated fibroblasts (CAFs), endothelial cells, and im-
mune cells [229–232]. All these components contribute to tumour growth, metastasis,
angiogenesis, resistance to drugs, and escape from immune surveillance [229–231,233].
Such TME heterogeneity hampers effective cancer management in clinical practice, and
novel therapeutic strategies are needed [229]. As discussed in this Review, the inhibitors
developed so far effectively inhibit the activity and/or function of ectoproteases originating
from mature tumour cells, endothelial cells, as well as CAFs and immune cells. Recent stud-
ies have indicated that CSCs express DPP4, APN, ADAM17, and MMP2/9 [12,73,234–240].
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The anti-DPP4 14D10 (YS110 precursor) elicits significant efficacy against MM by impairing
in vitro mature MM cells as well as the stem cell side population in murine xenograft mod-
els [241]. Liver APN+ CSCs are killed in vitro by NGR-lidamycin [170]. Meanwhile, bestatin
and anti-APN WM15 enhance in vitro the hypersensitivity of liver CSCs to 5-fluorouracil
treatment [174]. By inhibiting ADAM17 activity in liver CSCs, the broad-spectrum inhibitor
of metalloenzymes TAPI-2 blocks Notch activation, responsible for a more aggressive
phenotype [238]. CSCs derived from lung adenocarcinoma display high levels of MMP2,
which contribute to highly invasive and migratory cell capabilities [242]. These few exam-
ples emphasize the relevance of ectoprotease inhibitors in targeting and eliminating CSCs.
Moreover, a growing number of studies have revealed the presence of ectoproteases in
EVs derived from TME. EVs are small cell-derived membrane vesicles, produced either
through the endosomal pathway, giving rise to exosomes, or after budding of plasma
membrane, resulting in microvesicles [243–246]. EVs obtained from the serum of can-
cer patients holds promise as diagnostic and prognostic parameters [229,247,248]. EVs
influence tumour growth, metastasis, epithelial-to-mesenchymal transition, and drug resis-
tance [229,247–249]. Exosomes transfer various molecules from tumour cells to immune
cells and neovascular cells, contributing to the escape from immune surveillance and in-
creased angiogenesis, respectively [231,245,246]. DPP4, APN, ADAM17, and MMP2/9 were
recently described in EVs derived from solid and haematological tumours [242,250–257].
For instance, DPP4+ exosomes in AML patients’ plasma suppress the proliferation of nor-
mal haematopoietic progenitor cells, and, diprotin A, by inhibiting DPP4 activity, reverses
the effects of exosome-mediated myelosuppression [251]. The inhibition by sitagliptin
and vildagliptin of exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells
suppresses tumour growth and angiogenesis in vivo [258]. EVs from myeloid tumours
(including AML, CML, MDS, and myeloproliferative neoplasms) contain high levels of
APN [250]. Patients with metastatic colorectal cancer (CRC) express high serum levels
of exosome-derived ADAM17 which contribute to metastasis formation by cleaving E-
cadherin junctions in the subsequent premetastatic niche [242]. Moreover, the interaction
between the integrin α5β1 on CRC cells and its ligand ADAM17 on exosomes mediates the
uptake of exosomes by cancer recipient cells, which can bear relevance during the peritoneal
dissemination of CRC [259]. Enhanced expression of MMP2/9 in exosomes from prostate
cancer is correlated to tumour progression [260]. MMP9+DPP4+ exosomes derived from
glioma are potent inducers of angiogenesis ex vivo through the phenotypic modulation
of endothelial cells [261]. In addition, exosomes carry genetic materials, including DNA,
mRNA, miRNA, long noncoding (lnc) RNA, and circular (cir) RNA [262,263]. Deregulated
miRNA, lncRNA, and cirRNA enhance mRNA expression in human cancers [262,263]. Exo-
somal miRNAs (miR-100-5p and miR-21-5p) derived from prostate CSCs increase MMP2/9
expression and enhance the MMP-mediated migration of tumour cells, contributing to local
invasion and premetastatic niche formation [264]. Exosomes released by liver and lung
tumour cell lines can deliver cir-MMP2 and lnc-MMP2 RNAs to recipient tumour cells,
respectively, leading to increased MMP2 expression and an MMP2-mediated invasion of
tumour cells [265,266]. As a whole, these observations strongly suggest the importance
of ectoproteases in the behaviour of CSCs and EVs. An aera in development concerns
the therapeutic targeting of CSCs [230–232] and EVs [245,247,248]. Thus, ectoproteases
originating from CSCs and EVs represent good target candidates, as their inhibition may
open a window in designing new, effective strategies to eliminate CSCs and EVs derived
from TME.

The second insight that deserves attention concerns the increasing evidence of the
interplay between ectoproteases and tumour cell metabolism. Metabolic reprogramming is
a common phenomenon in haematological and solid tumours. In TME, different cell sub-
populations reprogram their metabolism to survive, proliferate, metastasize, and develop
resistance to cancer therapies [267,268]. Alterations of metabolic pathways include upreg-
ulated glycolysis, glutaminolysis, fatty acid catabolism, and low or impaired oxidative
phosphorylation [267,269]. The production and removal of reactive oxygen species (ROS)
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is involved in glucose and glutamine metabolism, and vice versa [267,269,270]. There is
increasing evidence for a bidirectional link between ectoproteases and tumour metabolism.
For instance, increased expression of APN from liver CSCs promotes cell survival by lim-
iting the increase in ROS [271]. APN-mediated downregulation of ROS levels results in
the inactivation of the MAPK signalling pathway and increased expression of multidrug
resistance-associated proteins (including ABC transporters) [272]. Activation of tyrosine
metabolism by APN in liver CSCs contributes to stem cell maintenance, thus leading to
tumour relapse [273]. Similarly, MMP9 limits ROS accumulation in a model of colon can-
cer [274]. Depletion of FAP+ cells improves the metabolism and functions of CD8+ T cells
within tumours [275,276]. Conversely, the deregulated metabolism pathways can influence
the expression and/or activity of ectoproteases. Hexokinase 2 (HK2) converts glucose to
glucose-6-phosphate, the first committed step in glucose metabolism. HK2 contributes
to ovarian cancer metastasis via a signalling pathway activating MMP9 expression [277].
Similarly, HK2 promotes the metastasis of colon cancer cells in nude mice through MMP2/9
upregulation [278]. Glucose transporter 1 (GLUT1), the main factor of the Warburg effect,
is associated with poor prognosis in many tumours. GLUT1 enhances MMP2 expression
and promotes the proliferation and migration of lung cancer cells [279]. Glutamine and
pyruvate kinase (a key enzyme in the process of glycolysis) regulate migration and the
invasion of ovarian cancer cells through the activation of MMP2/9 [280,281]. Elevated
levels of 12-lipoxygenase (12-LOX) are associated with carcinoma progression and inva-
sion. Overexpression of 12-LOX in prostate cancer cells results in the elevated expression
of MMP9 [282]. By disrupting the cysteine–zinc binding, ROS stimulate the enzymatic
activity of proMMP2/9 [283,284]. Indirectly, ROS mediate the increase in ADAM17 activity
through the activation of the p38 signalling pathway in myeloid cells [285]. As a whole,
these data highlight the link which exists between cancer-associated ectoproteases and
cancer metabolism. Deregulation of metabolic enzymes and their metabolites in TME can
increase the expression and/or function of cancer-associated ectoproteases. Conversely,
ectoproteases can participate in the metabolic reprogramming in TME. Both ectoproteases
and altered metabolism participate in tumour progression. Ongoing pharmacological
approaches aim to exploit glycolytic enzymes in cancer therapy [267,268,286]. Thus, ec-
toproteases may serve as complementary therapeutic targets when aiming to influence
metabolic pathways in cancer.

9. Concluding Remarks and Future Directions

Some of the ectoproteases discussed here are already useful as biomarkers in the iden-
tification of various solid and haematological cancers. For instance, APN is of diagnostic
and/or prognostic relevance for patients with pancreatic, colon, and non-small cell lung
cancer [5,6,9]. DPP4 is reported as a positive prognostic factor in ovarian cancer [287] and
an established marker for diagnosis in cutaneous T cell lymphoma [288]. For the short term,
it can be expected that FAP specific imaging will contribute to a better patient stratification
and follow-up of therapy in several solid tumours [14,289]. We want to emphasize the
importance of these ectoproteases in TME cell populations (including CSCs, differenti-
ated cancer cells, CAFs, etc.) and tumour associated EVs that are promising not only as
biomarkers, but also as therapeutic targets for cancer therapy. The list of ectoproteases as
potential targets for cancer therapy is further expanding, as has already been seen with
other ADAMs (including ADAM8, ADAM10, ADAM28), MT1-MMP/MMP14, the complex
urokinase plasminogen (uPA)/uPAR, and neutral endopeptidase N/CD10 overexpressed
in solid and haematological tumours [19,101,290,291]. Biomarker-guided trial design is
recognized as pivotal in advancing the field of personalized medicine [292,293]. One of
the best examples is breast cancer, where patients with abnormally high levels of HER2
protein in their tumour (HER2+ breast cancer) greatly benefit from combining trastuzumab
(Herceptin®, anti-HER2) with chemotherapy [294]. Ectoproteases may also aid in identify-
ing and developing novel strategies for cancer treatment, including the difficult-to-treat



Cancers 2022, 14, 624 18 of 32

triple-negative breast cancer through the inhibition of ADAM17 or MMP9 [295,296]. This
implies the use of validated ectoprotease inhibitors.

So far, a large panel of biologicals and low molecular weight synthetic and natural
compounds targeting these enzymes have been developed and evaluated (pre)clinically,
as summarized in Figure 3. However, none of them are yet included in the standard of
care treatments of malignancies. Among the number of drugs tested in clinical trials of
solid or haematological tumours (Table 1), only the prodrug Melflufen (activated at the
tumour site by APN) has successfully reached clinical trial phase III in relapsed refractory
MM, which raises hope for this agent. The therapeutic potential of active-site inhibitors of
APN, ADAM17, and MMP2/9 is currently limited, in part due to their lack of appropriate
selectivity. Notwithstanding the ongoing development of more selective and metabolically
stable molecules, targeting the catalytic activity of these ectoproteases remains, however, a
challenge. Recent research efforts have opened up this field by considering ectoproteases
in tumour-targeting strategies such as ectoprotease-targeted prodrugs, where one exploits
the catalytic activity of the ectoprotease or ectoprotease-targeted radiotherapy using high-
affinity small molecules, small molecules blocking exosites of ADAM17, and MMP2/9,
NGR-prodrugs for APN, or mAbs (Table 1) (Figure 3). More advanced ectoprotease-
directed mAb-based therapies include bispecific mAb-fusion proteins and costimulatory
mAb-ligand fusion proteins/oncolytic virus (Table 1) (Figure 3). Similar to the mode of
action of bispecific mAbs that crosslink tumour cells with T cells, CAR-T cells offer a novel
strategy to treat cancer. FAP-targeting CAR-T cells of 2nd and 4th generation were recently
tested in phase I trials of solid tumours (Table 1) (Figure 3). Still, the real added value and
broad applicability of these innovative therapies need to be confirmed in the future.

Cancers 2022, 13, x FOR PEER REVIEW 16 of 29 
 

 

 
Figure 3. Schematic diagram summarizing the panel of drug candidates targeting cancer-associated 
ectoproteases in the context of cancer therapy. 

Even more recently, siRNA therapeutics paved their way to the clinic [297,298]. The 
FDA’s approval of Patisiran for the treatment of hereditary transthyretin amyloidosis is 
the best example of the potential of siRNA therapeutics for treating various diseases 
[297,298]. siRNA molecules are used to block the expression of genes involved in cancer. 
Current efforts are being made on combinations of siRNA and chemotherapeutic drug 
delivery systems for the treatment of multidrug resistant cancers [297]. Numerous studies 
have previously indicated that the above ectoproteases can be “manipulated” by siRNA, 
resulting in both the in vitro and in vivo inhibition of tumour cell growth and migration, 
enhanced sensitivity to chemotherapeutic agents, and enhanced survival of mouse xeno-
graft models of cancer [299–308]. Whether this siRNA strategy opens a new avenue for 
achieving a “knock-out” of cancer-associated ectoproteases is not yet a clinical reality, but 
deserves attention. 

Last, but not least, the importance of metabolic reprogramming in cancer biology is 
being unveiled. Indeed, metabolic changes in cancer cells represent a novel opportunity 
for combination therapy approaches [286]. One important new hallmark of cancer-associ-
ated ectoproteases concerns their participation in tumour metabolic reprogramming and 
vice versa. Cotargeting ectoproteases and glycolytic enzymes may offer new therapeutic 
options to kill cancer cells. 

To conclude, highly selective drugs targeting cancer-associated ectoproteases are 
currently in preclinical and clinical evaluation, and illustrate that this field of research is 
exciting and promising. Integrating the scientific progress and the challenges discussed in 
this Review may further stimulate research in the field of these and other ectoenzymes as 
promising pharmaceutical targets in a combined, personalized approach towards tumour 
elimination. 

Supplementary Materials: Page: 16 
The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Table S1: 
FAP-targeted diagnostic tracers for tumour imaging. 

Figure 3. Schematic diagram summarizing the panel of drug candidates targeting cancer-associated
ectoproteases in the context of cancer therapy.

Even more recently, siRNA therapeutics paved their way to the clinic [297,298]. The
FDA’s approval of Patisiran for the treatment of hereditary transthyretin amyloidosis is the
best example of the potential of siRNA therapeutics for treating various diseases [297,298].
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siRNA molecules are used to block the expression of genes involved in cancer. Current
efforts are being made on combinations of siRNA and chemotherapeutic drug delivery
systems for the treatment of multidrug resistant cancers [297]. Numerous studies have pre-
viously indicated that the above ectoproteases can be “manipulated” by siRNA, resulting in
both the in vitro and in vivo inhibition of tumour cell growth and migration, enhanced sen-
sitivity to chemotherapeutic agents, and enhanced survival of mouse xenograft models of
cancer [299–308]. Whether this siRNA strategy opens a new avenue for achieving a “knock-
out” of cancer-associated ectoproteases is not yet a clinical reality, but deserves attention.

Last, but not least, the importance of metabolic reprogramming in cancer biology is
being unveiled. Indeed, metabolic changes in cancer cells represent a novel opportunity for
combination therapy approaches [286]. One important new hallmark of cancer-associated
ectoproteases concerns their participation in tumour metabolic reprogramming and vice
versa. Cotargeting ectoproteases and glycolytic enzymes may offer new therapeutic options
to kill cancer cells.

To conclude, highly selective drugs targeting cancer-associated ectoproteases are
currently in preclinical and clinical evaluation, and illustrate that this field of research is ex-
citing and promising. Integrating the scientific progress and the challenges discussed
in this Review may further stimulate research in the field of these and other ectoen-
zymes as promising pharmaceutical targets in a combined, personalized approach towards
tumour elimination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14030624/s1, Table S1: FAP-targeted diagnostic tracers
for tumour imaging.
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