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Scaling limits for the random walk penalized by its
range in dimension one

Nicolas Bouchot

July 19, 2022

Abstract
In this article we study a one dimensional model for a polymer in a poor sol-

vent: the random walk on Z penalized by its range. More precisely, we consider a
Gibbs transformation of the law of the simple symmetric random walk by a weight
exp(−hn|Rn|), with |Rn| the number of visited sites and hn a size-dependent pos-
itive parameter. We use gambler’s ruin estimates to obtain exact asymptotics for
the partition function, that enables us to obtain a precise description of trajecto-
ries, in particular scaling limits for the center and the amplitude of the range. A
phase transition for the fluctuations around an optimal amplitude is identified at
hn ≍ n1/4, inherent to the underlying lattice structure.

Keywords: random walk, directed polymer, confined walk, gambler’s ruin
2020 Mathematics subject classification: 60G50, 82B41, 60C05

1 Introduction of the model and main results
Consider a simple symmetric random walk (Sk)k≥0 on Zd, d ≥ 1, starting from 0, with
law denoted P. For h > 0, we define the following Gibbs transformation of P, called the
polymer measure

dPn,h(S) =
1

Zn,h

e−h|Rn(S)|dP(S),

where Rn(S) :=
{
S0, . . . , Sn

}
is the range of the random walk up to time n and | · | is the

cardinal measure. The normalizing quantity

Zn,h = E
[
e−h|Rn(S)|

]
is called the partition function and is such that Pn,h is a probability measure on the space
of trajectories of length n.

In any dimension d ≥ 1, the asymptotics for the log-partition function are known
since Donsker and Varadhan [13]. These asymptotics strongly suggest that a polymer of
length will typically fold in (and fill up) a ball of radius ρ n

1
d+2 for some specific constant

ρ = ρ(d, h). This has been proved by [6] in dimension d = 2, but only much more recently
in dimension d ≥ 3, by Berestycki and Cerf [2] and Ding, Fukushima, Sun and Xu [11].
More precisely, for h = 1 (easily generalized to any h > 0), they prove that there exists a
positive ρd, which only depends on the dimension d, such that for any ε > 0,

lim
n→∞

Pn,1

(
∃x ∈ Rd, B

(
x, (1− ε)ρdn

1
d+2

)
∩ Zd ⊂ Rn ⊂ B

(
x, (1 + ε)ρdn

1
d+2

))
= 1 ,
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where B(x, r) is the d-dimensional Euclidean ball centered at x with radius r.
In dimension d = 1, this is much easier since the range is uniquely determined by

its two endpoints (and always fills completely the one-dimensional ball). This allows for
more explicit calculations using mostly gambler’s ruin estimates. In particular, one easily
derives that n−1/3|Rn| converges to

(
π2

h

)1/3 in Pn,h-probability.

1.1 Outline of the paper

In the rest of the work, we focus only on the case of dimension d = 1. Also, we allow
the penalization intensity to depend on the length of the polymer, meaning h = hn now
depends on n. We exploit gambler’s ruin estimates to their full potential and derive
exact asymptotics for the partition function (not only for the log-partition function).
Afterwards, we will be able to prove a scaling limit (actually we prove a local limit
theorem) for the joint law of the center Wn and the amplitude Tn of the range:

Tn := max
k≤n

Sk −min
k≤n

Sk = |Rn| − 1, Wn :=
Tn
2

+ min
k≤n

Sk =
1

2

(
max
k≤n

Sk +min
k≤n

Sk

)
.

For the sake of the exposition, let us consider the case

lim
n→∞

n−γhn = ĥ ∈ (0,+∞) , for some γ ∈ R . (1.1)

Some results are already presented in [4] which considers a disordered version of the model:

(i) if γ < −1
2

then Pn,hn is close in total variation to P;

(ii) if γ ∈ (−1
2
, 1) then (nπ

2

hn
)−1/3Tn converges to 1 in Pn,hn-probability.

(iii) if γ > 1 then Pn,hn is concentrated on trajectories visiting only two sites.

Since cases (i) and (iii) are degenerate, we focus on the case γ ∈ (−1
2
, 1). In this paper,

we give another proof of the convergence (nπ
2

hn
)−1/3Tn → 1 and we additionally identify

the fluctuations of Tn − (nπ
2

hn
)1/3. We find that a phase transition occurs at γ = 1

4
for the

fluctuations:

(i) if γ < 1
4

then the fluctuations, normalized by ( n
h4
n
)1/6, converge to a Gaussian vari-

able;

(ii) if γ > 1
4

then the range penalization is strong enough to collapse the range on (nπ
2

hn
)1/3

in the sense that the fluctuations live on a finite set (of cardinality 1, sometimes 2).

We will also prove that (nπ
2

hn
)−1/3Wn converges to a random variable with density

π
2
cos(πu)1[− 1

2
, 1
2
](u) with respect to the Lebesgue measure and is independent of the fluc-

tuations. This type of results appears to be folklore for confined polymers, as the density
is the eigenfunction associated with the principal Dirichlet eigenvalue of the Laplacian on
[0, 1] (see e.g. [10, Ch. 8]), but we are not aware of a proof written in detail (at least for
the random walk penalized by its range).
Notations. In the rest of the paper we shall use the standard notations: as x → a, we
write g(x) ∼ f(x) if limx→a

g(x)
f(x)

= 1, g(x) = ō(f(x)) if limx→a
g(x)
f(x)

= 0, g(x) = Ō(f(x)) if
lim supx→a

∣∣ g(x)
f(x)

∣∣ < +∞ and f ≍ g if g(x) = Ō(f(x)) and f(x) = Ō(g(x)).
We also extensively use the following notation: for A an event, we denote

Zn,hn(A) := E
[
e−hn|Rn(S)|1{S∈A}

]
,

so that in particular Pn,hn(A) = 1
Zn,hn

Zn,hn(A).

2



1.2 Main results

The following two theorems summarize our results, the first being the main result regard-
ing the asymptotic behavior of (Tn,Wn) and the second being asymptotics for Zn,hn that
have a use of their own.

We define the following quantities, that will be used throughout the paper:

T ∗
n = T ∗

n(hn) :=

(
nπ2

hn

)1/3

, an = an(hn) :=
1√
3

(
nπ2

h4n

)1/6

=
1√
3nπ2

(T ∗
n)

2. (1.2)

Note that lim
n→∞

an = +∞ if and only if lim
n→∞

n−1/4hn = 0.

Theorem 1.1. • Assume that hn ≥ n−1/2(log n)3/2 and lim
n→∞

n−1/4hn = 0; in other words,

γ ∈ (−1
2
, 1
4
) in (1.1). Then under Pn,hn, we have the following convergence in distribution(

Tn − T ∗
n

an
;
Wn

T ∗
n

)
(d)−−−−→

n→+∞
(T ,W),

where the random variables T and W are independent with T ∼ N (0, 1) and W with
density given by π

2
cos(πu)1[− 1

2
, 1
2
](u).

• Assume that lim
n→∞

n−1/4hn = +∞ and lim
n→∞

n−1hn = 0; in other words, γ ∈ (1
4
, 1)

in (1.1). Denote ton the decimal part of T ∗
n − 2 and define An as {0} if ton <

1
2
, {1} if

ton >
1
2

and {0, 1} if ton = 1
2
. Then we have

lim
n→∞

Pn,hn

(
Tn − ⌊T ∗

n − 2⌋ ̸∈ An

)
= 0.

Also, under Pn,hn we have the convergence in distribution Wn

T ∗
n

(d)−→ W.

Comment. The term an = 1√
3nπ2

(T ∗
n)

2 in Theorem 1.1 arises naturally as a Taylor expan-
sion coefficient in the exponential part of the partition function after injecting gambler’s
ruin formulae, see Section 1.4 below.

The assumption that hn ≥ n−1/2(log n)3/2 is due to technicalities in the proof of
Theorem 1.4 below and gambler’s ruin formulae.

Theorem 1.2. We have the following exact asymptotics:
• Assume that hn ≥ n−1/2(log n)3/2 and lim

n→∞
n−1/4hn = 0; in other words, γ ∈ (−1

2
, 1
4
)

in (1.1). Then, as n→ ∞,

Zn,hn = (1 + ō(1))
16
√
2√

3π

(cosh(hn)− 1

hn

)√
n exp

(
− 3

2
hnT

∗
n

)
.

• Assume that lim
n→∞

n−1/4hn = +∞ and lim
n→∞

n−1hn = 0; in other words, γ ∈ (1
4
, 1)

in (1.1). Denote by ton the decimal part of T ∗
n − 2. Then, as n→ ∞,

Zn,hn =
16

π4/3
(1+1{ton= 1

2})
(cosh(hn)− 1

h
1/3
n

)
n1/3 exp

(
−3

2
hnT

∗
n−Φn(1{

ton≥ 1
2
+ 1

To
n

}) πn

(T ∗
n)

4
(1+ō(1))

)
.

with Φn(t) := 6+ π2

12
+ 3

2

[
1
T o
n
|t− ton|+(t− ton)

2
]
. Note that lim

n→∞
n

(T ∗
n)

4 = +∞ means ō( n
(T ∗

n)
4 )

could still diverge.
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For the sake of completeness, we add the following result concerning the critical case
lim
n→∞

n−1/4hn = ĥ ∈ (0,+∞). We write ςn(t) := 1
T o
n
|t− ton|1{t∈{0,1}} + (t− ton)

2

Proposition 1.3. Suppose that lim
n→∞

n−1/4hn = ĥ ∈ (0,+∞), so in particular we have

limn→∞ an = π1/3
√
3ĥ2/3

=: a. Then, as n→ ∞, we have

Zn,hn = (1 + ō(1))
16

π4/3

(cosh(hn)− 1

h
1/3
n

)
n1/3e−

3
2
hnT ∗

nθn(a), with θn(a) :=
+∞∑

t=−∞

e−
ςn(t)

2a2

(recall that δn = 1{ton≥ 1
2} − ton with ton the decimal part of T ∗

n − 2). Furthermore, for any
integers r ≤ s, as n→ ∞ we have

Pn,hn (r ≤ Tn − ⌊T ∗
n − 2⌋ ≤ s) = (1 + ō(1))

1

θn(a)

s∑
t=r

e−
ςn(t)

2a2 .

1.3 Range’s endpoints and confinement estimates

Let us now state some estimates for the probability that the range of a random walk is
exactly a given interval. The proof is postponed to Section 4 and follows from gambler’s
ruin estimates that can be found in [14, Chap. XIV].

Let x, y be two non-negative integers and denote by Ey
x(n) the following event

Ey
x(n) := {Rn = J−x, yK} =

{
M−

n = −x , M+
n = y

}
,

where we also introduced M−
n := mink≤n Sk, M+

n := maxk≤n Sk, and used the standard
notation Ja, bK = [a, b] ∩ Z. We also define the following function g, that encodes the
exponential decay rate of confinement probabilities inside a strip:

g(T ) := − log cos
(π
T

)
=

π2

2T 2
+

π4

12T 4
+ Ō(T−6) as T → ∞. (1.3)

The main result used in the rest of the paper is the following. It is based on sharp
gambler’s ruin estimates, see Lemmas 4.2-4.3 in Section 4.

Theorem 1.4. We have the following convergence for any positive T = T (n)

lim
n→∞

sup
x,y∈N
x+y=T

∣∣∣∣P (Ey
x(n))

Θn(x, y)
− 1

∣∣∣∣ = 0 (1.4)

Where we defined the function Θn(x, y) for x+ y = T as

Θn(x, y) :=



4

π
sin

(
π(x+ 1)

T

)
e−g(T+2)n if

n

T 3
→ +∞

4

π
(eαπ

2 − 1)

[
eαπ

2

sin

(
π(x+ 1)

T

)
− sin

(πx
T

)]
e−g(T )n if

n

T 3
→ α ∈ (0,+∞)

4π3n2

T 6

[
sin
(πx
T

)
+
T 2

πn

]
e−g(T )n if

n

T 3
→ 0

Comment. For the rest of the paper we will prefer to write P (Ey
x(n)) = (1+ ō(1))Θn(x, y)

with ō(1) uniform in x, y and only depending on T = x+ y, in the sense of (1.4).
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We can summarize these results in a more compact way, if we agree to lose some
precision in the case where x is close to 0 (more precisely if x/T → 0):

P (Ey
x(n)) = ψ

(nπ2

T 3

) [
sin
(πx
T

)
+ ō(1)

]
e−g(T+2)n, with ψ(α) :=

4

π
(1− e−α)2. (1.5)

Here, the ō(1) is uniform in x, y and depends only on T = x + y. To get (1.5), we have
used in particular that g(T + 2)n− g(T )n ∼ 2π2n

T 3 as T → ∞, which converges to 2απ2 if
limn→∞

n
T 3 = α ∈ [0,+∞).

Comment. Whenever x = 0 (or y = 0 using symmetry) we have the same theorem applied
to x = 0 (see Section 4.2.4), except when n

T 3 → 0 in which case

P
(
ET

0 (n)
)
= (1 + ō(1))

4nπ

T 3
sin

(
π

T + 2

)
e−g(T+1)n .

This will not be significant starting from Section 2.2 as it only consists of two not-so-
peculiar range configurations among the many configurations in the partition function.

Let us stress that one easily deduces from Theorem 1.4 the following statement, leading
to the asymptotic independence in Theorem 1.1, as well as the convergence in distribution
of Wn

T ∗
n

to W .

Proposition 1.5. Let (tn)n≥1 be any sequence of integers such that limn→∞ tn = ∞ and
1
4
t2n log tn ≤ n. Then, conditioning on Tn = tn, Wn

tn
converges in distribution to W.

More precisely, we have the following local limit convergence: uniformly for w such that
2w ∈ J−tn, tnK,

P (Wn = w |Tn = tn) =
π

2

[
cos

(
wπ

tn

)
+ ō(1)

]
as n→ ∞.

Note that this proposition allows us to focus our study on Tn instead of (Tn,Wn).

Proof. For −1
2
≤ a ≤ b ≤ 1

2
, we get thanks to (1.5) that

P
(
a ≤ Wn

tn
≤ b ;Tn = tn

)
=

∑
x+y=tn

2atn≤y−x≤2btn

P (Ey
x(n))

=
4

π

(
1− e

−nπ2

t3n

)2
e−g(tn+2)n

∑
2atn≤2w≤2btn

[
cos

(
wπ

tn

)
+ ō(1)

]
,

where we have set w = w(x, y) := y−x
2

. Similarly,

P (Tn = tn) =
4

π

(
1− e

−nπ2

t3n

)2
e−g(tn+2)n

∑
−tn≤2w≤tn

[
cos

(
wπ

tn

)
+ ō(1)

]
.

We therefore end up with

P
(
a ≤ Wn

tn
≤ b

∣∣∣Tn = tn

)
=

∑
atn≤w≤btn

[
cos
(

wπ
tn

)
+ ō(1)

]
∑

−tn≤2w≤tn

[
cos
(

wπ
tn

)
+ ō(1)

] −−−→
n→∞

π

2

ˆ b

a

cos(πu) du ,

and taking a = b = w/tn,

P (Wn = w |Tn = tn) =
cos
(

wπ
tn

)
+ ō(1)∑

−tn≤2w≤tn

[
cos
(

wπ
tn

)
+ ō(1)

] =
π

2

[
cos

(
wπ

tn

)
+ ō(1)

]
.

5



1.4 Some heuristics

Let us present some heuristics for obtaining the asymptotics of the partition function,
and explain how the quantities T ∗

n and an (recall (1.2)) appear. We can decompose the
partition function as

Zn,hn =
∑
x,y≥0

e−hn(T+1)P (Ey
x(n)) ,

where we have set T = T (x, y) = x + y. In view of Theorem 1.4, we have P (Ey
x(n)) =

un(x, y)e
−g(T )n with g(T ) = (1 + ō(1)) π2

2T 2 . Hence, the main contribution to the sum will
come from x, y with T that is close to minimizing the function

φn(T ) := hnT +
nπ2

2T 2
. (1.6)

Then, notice that φn is minimal at T = T ∗
n :=

(
nπ2

hn

)1/3 (recall (1.2)) and that φn(T
∗
n) =

3π1/3

2
n1/3h

2/3
n = 3

2
hnT

∗
n .

Let us now factorize eφn(T ∗
n) (and ehn) in the sum above, to get that

e
3
2
hnT ∗

nehnZn,hn ≈
∑
x,y≥0

un(x, y) exp
(
− (φn(T )− φn(T

∗
n))
)
.

Now, since φ′
n(T

∗
n) = 0, we have φn(T ) ≈ φn(T

∗
n)+(T−T ∗

n)
2φ′′

n(T
∗
n), with φ′′

n(T
∗
n) =

3nπ2

(T ∗
n)

4 =
1
a2n

(recall (1.2)). In the sum above the main contribution therefore comes from values
of T that are such that φn(T )−φn(T

∗
n) is at most of order 1, that is with T −T ∗

n = Ō(an).
Let us stress once more that if lim

n→∞
n−1/4hn = 0 then lim

n→∞
an = +∞, whereas if

lim
n→∞

n−1/4hn = +∞ then lim
n→∞

an = 0. The condition hn ≥ n−1/2(log n)3/2 ensures that
1
4
(T ∗

n)
2 log T ∗

n ≤ n and the condition lim
n→∞

n−1hn = 0 ensures that lim
n→∞

T ∗
n = +∞.

1.5 Further comments on the results

Theorem 1.1 states that asymptotically, the polymer behaves as a random walk whose
range’s size Tn fluctuates around the optimal T ∗

n =
(
nπ2

hn

)1/3. If hnn−1/4 → 0 (weak

penalization), then the fluctuations are Gaussian at a scale an = 1√
3

(
n
h4
n

)1/6. On the other
hand, if hnn−1/4 → ∞ (strong penalization), then the fluctuations vanish and Tn is equal
to either ⌊T ∗

n⌋ − 2 or ⌊T ∗
n⌋ − 1. In both cases, the relative position of the center of the

range is asymptotically independent of its size, with distribution given by the density
π
2
cos(πu)1[− 1

2
, 1
2
](u), conjectured or discussed in previous works (see [10, Theorem 8.3] for

example) but with no concrete proof (to the best of our knowledge).

1.5.1 Continuous analogue of the model

One can easily see the similarities between this polymer model and the study of the
Brownian motion penalized by the amplitude of its trajectory. For a Brownian motion β,
define |CT | := | {βt : t ≤ T} | its amplitude at time T (here | · | is the Lebesgue measure).
Donsker and Varadhan proved in [12] that

lim
T→∞

1

T 1/3
logE

[
e−ν|CT |] = −3

2
(νπ)2/3 .
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Schmock later expanded on this result in [17] and obtained that the associated Gibbs
measures PT,ν(dω) = e−ν|CT |W(dω) (with W the Wiener measure) converge weakly to a
measure P∞,ν given by

P∞,ν(A) =

ˆ cν

0

π

2cν
sin

(
πu

cν

)
Pu−cν ,u(A) du ,

with cν = (π2/ν)1/3, where Pu−cν ,u denotes the path measure of a Brownian taboo process
with taboo set {u− cν , u}. In other words, P∞,ν is a mixture of taboo processes Pu−cν ,u,
which correspond to the actual diffusion process conditioned to stay in an interval of
length cν and upper edge u; additionally, the mixing measure selecting the upper edge u
is identical to W in Theorem 1.1 (if one selects the center of the range rather than the
upper edge). This is therefore completely analogous to our Theorem 1.1.

However, because there is no underlying lattice, the continuous case should not dis-
play a transition for the fluctuations at ν = νT ≍ T 1/4: when limT→∞ T−1/4νT = +∞,
fluctuations become ō(1) but still remain Gaussian after a proper scaling. Let us also
stress that in the continuous case, well-known results such as Lévy triple law (see [16,
Theorem 6.18]) allow for relatively simple computations of the law of the endpoint βT for
a large T conditioning on the range’s endpoints — which Theorem 1.4 does not provide
in our setting, we only get the position of the starting point relative to the range, see
Proposition 1.5. Obtaining a result for the starting and endpoint for our model would
require the joint law of (M−

n ,M
+
n , Sn) or a study based on local times of the polymer,

which are both beyond the scope of this paper.

1.5.2 Other related models

Related models for self-interacting polymers have been studied in the literature these past
years. We mention here two of these models and their recent advancements.

First, one can consider a disordered version of the random walk penalized by its range,
i.e. the case where the penalization by the range is perturbed by a random environment.
Take a collection of i.i.d variables (ωz)z∈Z and consider the random polymer measure

dPω,β
n,h(S) =

1

Zβ,ω
n,h

exp
( ∑

z∈Rn(S)

(
βωz − h

))
dP(S),

in particular Pn,h = Pω,0
n,h. This quenched model was studied in [4, 5, 15], for size-dependent

parameters hn and βn. In dimension d = 1, [4] finds a wide range of behaviors for the
polymer depending on the sign and the growth speed of the parameters hn, βn. However,
several questions remain open, such as determining the location and fluctuations of the
range (in the spirit of Theorem 1.1) in a regime where the range size (properly rescaled)
converges to a non-random quantity — we are currently investigating this question [7].

Another related model is the charged polymer, where charges are attached to the
different monomers and interact with each other, see [10, Chapter 8] for an overview.
Take i.i.d. random variables (ωk)k∈N, and consider the following quenched Gibbs measure
on random walk trajectories

dPω
n,β(S) =

1

Zω
n,β

exp
(
− β

∑
1≤i<j≤n

ωiωj1{Si=Sj}

)
dP(S) .
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Some recent papers [3, 8, 1] are dealing with the annealed version of the model, that
can be written in the following form

dPann
n,β (S) =

1

Zann
n,β

exp
(
−
∑
x∈Zd

gβ(ℓn(x))
)
dP(S),

where ℓn(x) =
∑n

i=1 1{Si=x} is the local time at site x and where gβ is a function that
depends on β and on the distribution of ω. This model has been shown to undergo a
folding/unfolding phase transition, and the case of dimension d = 1 has been investigated
in remarkable detail in [8]. Our model falls in the same class of models: it corresponds to
using the function h1{ℓn(x)>0} instead of the function gβ(ℓn(x)); note that our model also
displays a folding/unfolding transition when h goes from positive to negative values.

Organization of the rest of the paper

The rest of the paper is organized as follows:

• In Section 2 we focus on the case of a “weak” penalization, that is lim
n→∞

n−1/4hn = 0:
we give local asymptotic estimates for the partition function (Lemma 2.1), from
which we deduce the first point of both Theorem 1.2 and Theorem 1.1 (in that
order).

• In Section 3 we treat the case of a “strong” penalization, that is lim inf
n→∞

n−1/4hn > 0:
we modify the arguments of Section 2 to provide local asymptotic estimates for
the partition function (Lemma 2.1). From this, we deduce first the second point
of Theorems 1.1-1.2, i.e. in the case limn→∞ n−1/4hn = +∞, before we turn to the
border case of Proposition 1.3, i.e. limn−1/4hn = ĥ ∈ (0,+∞).

• Finally, in Section 4 we derive sharp gambler’s ruin estimates (see Lemmas 4.2-4.3)
and their consequences for the range of a random walk, that is we prove Theorem 1.4.

2 Weak penalization: the case lim
n→∞

n−1/4hn = 0

2.1 Local asymptotics for the partition function

Our first preliminary result computes the contribution of the partition function from
trajectories with a fixed size of the range Tn, with Tn = T ∗

n + ō(T ∗
n). Recall that T ∗

n :=(
nπ2

hn

)1/3 and an := 1√
3nπ2

(T ∗
n)

2.

Lemma 2.1. Assume that hn ≥ n−1/2(log n)3/2 and that limn→∞ n−1/4hn = 0. Let (εn)n≥1

be any vanishing sequence. Then, for any t ∈ Z and w ∈ 1
2
Z such that |t| ≤ εnT

∗
n and

w − 1
2
(⌊T ∗

n⌋+ t) ∈ 2Z, we have

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)
= ψn ×

(
cos
(πw
T ∗
n

)
+ ō(1)

)
× e

−(1+ō(1)) t2

2a2n , (2.1)

where the ō(1) only depends on εn, and where we have set:

ψn := ψ(hn) exp
(
− hn(T

∗
n + 1)− g(T ∗

n + 2)n
)
, with ψ(α) =

4

π
(1− e−α)2 . (2.2)
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Proof. We have

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)
= e−hn(x+y+1)P (Ey

x(n)) ,

with x + y = ⌊T ∗
n⌋ + t and 1

2
(y − x) = w. Thanks to Theorem 1.4, we can estimate this

term. Indeed, for every x, y such that limn→∞
x+y
T ∗
n

= 1, using (1.5) we have

P (Ey
x(n)) = ψ

( nπ2

(T ∗
n)

3

)(
sin
(πx
T ∗
n

)
+ ō(1)

)
e−g(x+y+2)n , (2.3)

where the ō(1) is uniform in x, y and ψ(α) = 4
π
(1− e−α)2. Note that by the definition of

T ∗
n we have nπ2

(T ∗
n)

3 = hn.
Now, here we have that x = 1

2
(⌊T ∗

n⌋+ t)−w, with 1
2T ∗

n
(⌊T ∗

n⌋+ t) → 1
2
. Hence, we can

write sin(πx
T ∗
n
) = cos(πw

T ∗
n
) + ō(1) in (2.3). Recall the definition (1.6) φn(T ) = hnT + nπ2

2T 2

and write hn(T + 1) + g(T + 2)n = φn(T ) + hn + g̃(T )n, with g̃(T ) = g(T + 2)− π2

2T 2 , to
get that

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t,Wn = w
)

= ψ(hn)
(
cos
(πw
T ∗
n

)
+ ō(1)

)
exp

(
− φn(⌊T ∗

n⌋+ t)− hn − g̃(⌊T ∗
n⌋+ t)n

)
.

(2.4)

We can use that φ′
n(T

∗
n) = 0, φ′′

n(T
∗
n) =

3nπ2

(T ∗
n)

4 = 1/a2n and φ′′′
n (T ) = −12nπ2

T 5 to get that
for any 1

2
T ∗
n ≤ T ≤ 2T ∗

n∣∣∣∣φn(T )− φn(T
∗
n)−

(T − T ∗
n)

2

2a2n

∣∣∣∣ ≤ C
|T − T ∗

n |3n
(T ∗

n)
5

= C ′ |T − T ∗
n |3

T ∗
n a

2
n

.

Hence, using that an → ∞, we get that

φn(⌊T ∗
n⌋+ t) = φn(T

∗
n) + (1 + ō(1))

t2

2a2n
. (2.5)

We can also perform the same expansion for g̃(T ) = g(T +2)− π2

2T 2 , for which g̃′(T ) =
π2

T 3 − π
(T+2)2

tan( π
T+2

):

|g̃(T )− g̃(T ∗
n)| ≤ C

|T − T ∗
n |

(T ∗
n)

4
,

so that, inserting T = ⌊T ∗
n⌋+ t

|g̃(⌊T ∗
n⌋+ t)n− g̃(T ∗

n)n| ≤ C
|t+ δn|
a2n

= ō(1)
t2

a2n
+ ō(1) (2.6)

as n→ ∞, uniformly in t (consider separately the case |t| ≤ an and |t| ≥ an).
All together, plugging (2.5)-(2.6) into (2.4), we end up with the desired result, with

ψn := ψ(hn) exp(−hn−φn(T
∗
n)− g̃(T ∗

n)n) which coincides with the definition (2.2) above.
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2.2 Asymptotics of the partition function

Lemma 2.1 allows us to obtain the correct behavior for the partition function.

Proof of Theorem 1.2. Assume that hn ≥ n−1/2(log n)3/2 and that limn→∞ n−1/4hn = 0,
so in particular an → +∞.

Note that by [4] (or simply using large deviation principles), we have for any ε > 0

lim
n→∞

Pn,hn

(
|Tn − T ∗

n | > εT ∗
n

)
= 0 .

Therefore, one can find some vanishing sequence (εn)n≥0 such that we have the asymptotic
equivalence Zn,hn = (1+ ō(1))Zn,hn(|Tn−T ∗

n | ≤ εnT
∗
n). We therefore only have to estimate

that last partition function. We may decompose it as

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
=

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t ,Wn = w
)
.

Therefore, thanks to Lemma 2.1, using that |t|
a2n

= ō(1) t2

a2n
+ ō(1) as n → ∞ with a ō(1)

uniform in t (since an → ∞), we get that

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
= (1 + ō(1))ψn

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e
−(1+ō(1)) t2

2a2n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
.

Now, as T ∗
n goes to +∞, the internal sum is a Riemann sum: we have, uniformly for

(1− εn)T
∗
n ≤ t ≤ (1 + εn)T

∗
n ,∑

−(T ∗
n+t)≤2w≤T ∗

n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
∼ T ∗

n

ˆ 1
2

− 1
2

cos(πv) dv =
2

π
T ∗
n .

Then, a sum over t remains, which is also a Riemann sum: as an → +∞ and εnT ∗
n/an →

+∞ (T ∗
n/an ≥ (cst.)

√
log n so such sequence (εn) exists), we have

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e
−(1+ō(1)) t2

2a2n ∼ an

ˆ ∞

−∞
e−

u2

2 du =
√
2πan .

All together, we have proved that, as n→ ∞

Zn,hn ∼ 2
√
2√
π
ψnanT

∗
n . (2.7)

Recalling the definition of T ∗
n and an, we have anT ∗

n = π√
3

√
n

hn
. Additionally, recalling the

definition (2.2) of ψn, and using that g(T + 2) = π2

2T 2 − 2π2

T 3 + Ō( 1
T 4 ) as T → ∞, we get

that
ψn = ψ(hn) exp

(
− hnT

∗
n − hn −

nπ2

2(T ∗
n)

2
+

2π2n

(T ∗
n)

3
+ ō(1)

)
,

since limn→∞
n

(T ∗
n)

4 = 0 because limn→∞ n−1/4hn = 0. By the definition of T ∗
n we have

nπ2

(T ∗
n)

3 = hn, we get that ψn ∼ ψ(hn)e
hne−

3
2
hnT ∗

n . Putting all estimates together and noting
that eα(1− e−α)2 = 2(cosh(α)− 1), this concludes the proof.
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Proof of Theorem 1.1. The proof reduces to showing the following Lemma.

Lemma 2.2. Let hn ≥ n−1/2(log n)3/2 be such that lim
n→∞

n−1/4hn = 0. Then, for any
r < s, we have

lim
n→∞

1

ψnanT ∗
n

Zn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s
)
=

2

π

ˆ s

r

e−
u2

2 du ,

where ψn is the sequence that appears in Lemma 2.1.

Indeed, once we have this lemma, in view of the asymptotics (2.7) and Proposition
1.5, we get that for any r < s and any a < b,

Pn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s, a ≤ Wn

T ∗
n

≤ b
)
=

1

Zn,hn

Zn,hn

(
r ≤ |Tn − T ∗

n |
an

≤ s, a ≤ Wn

T ∗
n

≤ b
)

n→∞−−−→
ˆ s

r

1√
2π
e−

u2

2 du

ˆ b

a

π

2
cos(πv)1[− 1

2
, 1
2
]dv ,

which concludes the proof.

Proof of Lemma 2.2. The proof proceeds as for the proof of Theorem 1.2. We can de-
compose the partition function as

⌊san⌋∑
t=⌊ran⌋

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

Zn,hn

(
Tn = ⌊T ∗

n⌋+ t ,Wn = w
)

= (1 + ō(1))ψn

⌊san⌋∑
t=⌊ran⌋

e
−(1+ō(1)) t2

2a2n

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
,

where we have used Lemma 2.1 as above (using that an → ∞).
Again, as T ∗

n goes to +∞, the internal sum is a Riemann sum: we have, uniformly for
⌊T ∗

n⌋+ ⌊ran⌋ ≤ t ≤ ⌊T ∗
n⌋+ ⌊san⌋,

∑
−⌊T ∗

n⌋−t≤2w≤⌊T ∗
n⌋+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
∼ T ∗

n

ˆ 1
2

− 1
2

cos(πv) dv ∼ 2

π
T ∗
n .

Then, the sum over t that remains is also a Riemann sum: as an → +∞, we have

⌊tan⌋∑
t=⌊san⌋

e
−(1+ō(1)) t2

2a2n ∼ an

ˆ t

s

e−
u2

2 du ,

which concludes the proof.
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3 Strong penalization and vanishing fluctuations

3.1 The case lim inf
n→∞

n−1/4hn = +∞

See that the case where an → 0 is much more restrictive to establish an analog of
Lemma 2.1, as Ō(a−2

n ) quantities now bring extremely large contributions to the exponen-
tial part of Zn,hn and slight deviations from the optimal size T ∗

n will be penalized by a large
factor. Indeed, if we are to get a continuity from Theorem 1.1 when lim supn→∞ an <∞,
we want to know the exact asymptotic law of fluctuations without renormalization. We
denote

φ̄n(T ) = hn(T + 1) +
nπ2

2(T + 2)2
(3.1)

and T o
n := argmin φ̄n(T ) the (more exact) optimal amplitude of the range.

Lemma 3.1. Assume that limn→∞ n−1/4hn = +∞ and limn→∞ n−1hn = 0 and let (εn)n≥1

be any vanishing sequence. Then, for any t ∈ Z \ {0, 1} and w ∈ 1
2
Z such that |t| ≤ εnT

o
n

and w − 1
2
(⌊T o

n⌋+ t) ∈ 2Z, we have

Zn,hn

(
Tn = ⌊T ∗

n − 2⌋+ t,Wn = w
)
= ψ̄n ×

(
cos
(πw
T ∗
n

)
+ ō(1)

)
× e

−(1+ō(1))
(t−ton)2

2a2n , (3.2)

where ton := T o
n − ⌊T o

n⌋, ō(1) is a vanishing quantity that depends only on εn and

ψ̄n := ψ(hn) exp
(
− hn(T

∗
n − 1)− g(T ∗

n)n
)
, with ψ(α) =

4

π
(1− e−α)2 . (3.3)

When t ∈ {0, 1} we instead have

Zn,hn

(
Tn = ⌊T ∗

n−2⌋+t,Wn = w
)
= ψ̄n×

(
cos
(πw
T ∗
n

)
+ō(1)

)
×e−(1+ō(1)) 1

2a2n

[
1
To
n
|t−ton|+(t−ton)

2
]
.

(3.4)

Proof. We can perform the same decomposition as in Lemma 2.1 and setting T = ⌊T ∗
n −

2⌋+ t, we arrive at (analogously to (2.4))

Zn,hn

(
Tn = T,Wn = w

)
= ψ(hn)

(
cos
(πw
T

)
+ ō(1)

)
× e−hn(T+1)−g(T+2)n

= ψ(hn)
(
cos
(πw
T

)
+ ō(1)

)
× e−φ̄n(T )−ḡ(T )n

(3.5)

with φ̄n defined above in (3.1) and where ḡ(T ) := π2

T+2
− g(T + 2). One can then easily

check that T o
n = T ∗

n − 2 and that φ̄′′
n(T

o
n) = − 3nπ2

(T o
n+2)4

and φ̄(3)
n (T o

n) =
12nπ2

(T o
n+2)5

, thus∣∣∣∣φ̄n(T )− φ̄n(T
o
n)−

3nπ2

2(T o
n + 2)4

(T − T o
n)

2

∣∣∣∣ ≤ 12nπ2

(T o
n + 2)5

(T − T o
n)

3 = ō(1)
(T − T o

n)
3

a2n
.

Furthermore, the first two orders of the Taylor expansion of ḡ(T ) around T o
n are given by

ḡ(T o
n) + (T − T o

n)

(
π2

(T o
n + 2)3

− π

(T o
n + 2)2

tan
π

T o
n + 2

)
+

(T − T o
n)

2

2

(
− 3π2

(T o
n + 2)4

+
2π

(T o
n + 2)3

tan
π

T o
n + 2

+
π2

(T o
n + 2)4

(
1 + tan2 π

T o
n + 2

))
.
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A Taylor expansion of the tangent leads to the following bound

n|ḡ(T )− ḡ(T o
n)|

≤ |T − T o
n |

nπ3

3(T o
n + 2)5

+ (T − T o
n)

2 nπ3

3(T o
n + 2)6

=
1 + ō(1)

a2nT
o
n

[
|T − T o

n |+ (T − T o
n)

2
]
.

In particular, we get the lemma injecting T = ⌊T ∗
n − 2⌋ + t = T o

n − ton + t in (3.5), using
also that φ̄n(T

o
n) + nḡ(T o

n) = hn(T
∗
n − 1) + ng(T ∗

n) and |T − T o
n | > 1 for t ̸∈ {0, 1}.

Proof of Theorem 1.2. Suppose lim inf
n→∞

n−1/4hn = +∞ then an → 0 and we can’t apply
Riemann summations as in the proof of Theorem 1.2 or Lemma 2.2. However Lemma 3.1
allows to exclude the slightest deviations using a−2

n → ∞ that we use to estimate

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
= (1 + ō(1))ψn

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e
−(1+ō(1))

ςn(t)

2a2n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
,

where we recall wrote ςn(t) := 1
T o
n
|t − ton|1{t∈{0,1}} + (t − ton)

2. As T ∗
n goes to +∞, the

internal sum still is a Riemann sum and thus, uniformly for (1− εn)T
o
n ≤ t ≤ (1 + εn)T

o
n ,∑

−(T ∗
n+t)≤2w≤T ∗

n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
∼ T ∗

n

ˆ 1
2

− 1
2

cos(πv) dv =
2

π
T ∗
n .

Now, for the sum that remains, we factorize by the largest term, attained at t = 0 or
t = 1 depending on ton. Thus denote δ2n = ςn(t) with t = 0 or 1 such that δ2n = ςn(0)∧ςn(1),
meaning δ2n = ςn(1{

ton≥ 1
2
+ 1

To
n

}). We have

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e−(1+ō(1))ςn(t) = e−(1+ō(1))δ2n

(
1 + e

1

2a2n
(δ2n−ςn(1−1{

ton≥ 1
2+ 1

To
n

}))
+

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

t̸=0,1

e
δ2n−

(t−ton)2

2a2n

)
.

(3.6)
First use dominated convergence to get

0 ≤
⌊εnT ∗

n⌋∑
t=−⌊εnT ∗

n⌋
t̸=0,1

e
δ2n−(t−ton)2

2a2n ≤
∑
t∈Z
t̸=0,1

e
− 1

2a2n
(t−1)(t+1−ton) −−−→

n→∞
0 .

Then, note that when ton ̸= 1
2
, the second term of (3.6) goes to 0, whereas when ton = 1

2
it

is equal to 1. Thus we have

Zn,hn =
2

π

(
1 + 1{ton= 1

2}
)
ψ(hn)e

hn− 3
2
hnT ∗

n−
δ2n
2a2n

+ō(a−2
n )

exp

(
g(T ∗

n + 2)n− nπ2

2T ∗
n

− 2

(T ∗
n)

3

)
,

where we recall the definition ψ(a) = 4
π
(1− e−a)2. Note that g(T ∗

n + 2)n− nπ2

2T ∗
n
− 2

(T ∗
n)

3 =

Ō
(

n
(T ∗

n)
4

)
= Ō(a−2

n ) now goes to infinity. We could push the asymptotic expansion to any
arbitrary order, but since we already have the term ō(a−2

n ) = ō( n
(T ∗

n)
4 ), we simply use the

following expansion up to order 4:

g(T ∗
n + 2)n− nπ2

2T ∗
n

− 2

(T ∗
n)

3
= (72 + π2)

nπ2

12(T ∗
n)

4
(1 + ō(1)) .

Using eα(1− e−α)2 = 2(cosh(α)− 1) and writing a−2
n explicitly concludes the proof.
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Proof of Theorem 1.1. The above proof of Theorem 1.2 already shows that

1

Zn,hn

Zn,hn

(
|Tn − ⌊T ∗

n − 2⌋| ∈ {0, 1}
)
−−−→
n→∞

1 .

According to (3.6), the proof only consists of finding which values of t contribute to e−
δ2n
a2n .

By the definition of δn we easily see that if ton <
1
2

it is t = 0, if ton >
1
2

it is t = 1, and
when ton = 1

2
both have the same contribution. This observation leads to defining An as

announced in Theorem 1.1, and Proposition 1.5 completes the proof.

3.2 Case lim
n→∞

n−1/4hn = ĥ: order one fluctuations

Proof of Proposition 1.3. Going back to use Lemma 3.1, we get for any vanishing sequence
(εn)n≥1

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
= (1 + ō(1))ψ̄n

⌊εnT ∗
n⌋+2∑

t=−⌊εnT ∗
n⌋+2

e
−(1+ō(1))

ςn(t)

2a2n

∑
−(T ∗

n+t)≤2w≤T ∗
n+t

w∈ 1
2
(⌊T ∗

n⌋+t)+Z

cos
(πw
T ∗
n

)
.

The internal Riemann sum is dealt with the same method as before, while we can take
the limit for an in the external sum. Thus we have, as n→ ∞

Zn,hn

(
|Tn − T ∗

n | ≤ εnT
∗
n

)
∼ 2

π
T ∗
n ψ̄n

⌊εnT ∗
n⌋∑

t=−⌊εnT ∗
n⌋

e
− ςn(t)

2a2n ,

which clearly gives that Zn,hn ∼ 2
π
ψ̄nT

∗
nθn(a), because we already know that taking εn

going to zero sufficienly slowly we have limn→∞ Pn,hn(|Tn − T ∗
n | > εnTn) = 0.

Moreover, applying again Lemma 3.1, we also get that for any fixed integer t ∈ Z,

Zn,hn

(
Tn = ⌊T ∗

n − 2⌋+ t
)
∼ 2

π
T ∗
n ψ̄ne

− ςn(t)

2a2n ,

using the same calculation as above. This concludes the proof of Proposition 1.3.

4 Range endpoints and gambler’s ruin estimates

4.1 Gambler’s ruin estimates

We consider a band [0, T ] with T some positive integer, and choose a starting point
0 ≤ z ≤ T . We denote τ0 := min{n ≥ 0 , Sn = 0}, resp. τT := min{n ≥ 0 , Sn = T},
the hitting time of the edge at 0, resp. at T . We also denote τ := τ0 ∧ τT . We recall
the formulae of [14, §14.5] for the ruin problem, in the case of a symmetric walk. We use
the notation n↔ z if n− z is even and denote by Pz the law of the simple random walk
starting at z ∈ Z.

Proposition 4.1. For any z ∈ J1, T − 1K and n > 1,

Pz (τ = τ0 = n) =
2

T

∑
1≤k<T/2

cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
1{n↔z} . (4.1)
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By symmetry, we also have Pz (τ = τT = n) = PT−z (τ = τ0 = n):

Pz (τ = τT = n) =
2

T

∑
1≤k<T/2

(−1)k+1 cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
1{n↔T−z} .

(4.2)

Note that if T − z ↔ n↔ z, we have

Pz (τ = n) =
4

T

∑
1≤k<T/4

cosn−1

(
(2k − 1)π

T

)
sin

(
(2k − 1)πz

T

)
sin

(
(2k − 1)π

T

)
.

Let us now give the sharp asymptotic behavior of the probabilities (4.1)-(4.2) above.
Recall the definition (1.3): g(T ) = − log cos( π

T
). By symmetry, we only deal with the case

z ∈ J0, T
2
K.

Lemma 4.2. Suppose that T = T (n) → ∞ as n→ ∞ and that limn→∞
n
T 2 = +∞. Then,

we have the following asymptotics: for all z ∈ J0, T
2
K,

Pz (τ = τ0 = n) =
(
1 + Ō(e−

π2n
T2 )
) 2
T
sin
(zπ
T

)
tan
(π
T

)
e−g(T )n

1{n↔z} , (4.3)

Pz (τ = τT = n) =
(
1 + Ō(e−

π2n
T2 )
) 2
T
sin
(zπ
T

)
tan
(π
T

)
e−g(T )n

1{n↔T−z} . (4.4)

Here, Ō(e−
π2n
T2 ) is uniform in z.

Comment. We recall that equations such as (4.3) are to be understood in the sense that

∃C > 0,∀T = T (n), sup
z∈J0,T

2
K

n↔z

∣∣∣∣∣ Pz (τ = τT = n)
2
T
sin
(
zπ
T

)
tan
(
π
T

)
e−g(T )n

− 1

∣∣∣∣∣ ≤ Ce−
π2n
T2 as n→ ∞.

Proof. The proof is inspired by [9, Appendix B], but we need here a slightly sharper
version. In (4.1) and (4.2) we denote V0 = V0(n, T ) the first term:

V0 =
2

T
cosn−1

(π
T

)
sin
(πz
T

)
sin
(π
T

)
=

2

T
sin
(zπ
T

)
tan
(π
T

)
e−g(T )n .

It remains to control the remaining terms. We let

V1 :=
2

T

∑
2≤k<T/2

cosn−1

(
πk

T

)
sin

(
πkz

T

)
sin

(
πk

T

)
,

and we only need to bound V1/V0. Using the bounds 2
π
x ≤ sin(x) ≤ x for x ∈ [0, π

2
], we

get that
V1
V0

≤ π2

4

∑
2≤k<T/2

k2
(
cos
(
πk
T

)
cos
(
π
T

) )n−1

.

Now, as k
T
→ 0, we have

cos
(
πk
T

)
cos
(
π
T

) = 1− π2(k2 − 1)

2T 2

(
1 + Ō

( k2
T 2

))
.
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Hence, the l.h.s. is bounded by exp(−2π2(k2−1)
5T 2 ) provided that k

T
≤ ε, for some given

ε ∈ (0, 1
2
). If k

T
≥ ε, we can simply bound cos

(
πk
T

)
≤ cos(πε) ≤ e−

1
2
π2ε2 . We therefore get

that V1/V0 is bounded by a constant times∑
2≤k<εT

k2e−
2nπ2(k2−1)

5T2 +
∑

εT≤k<T/2

k2e−
1
2
nπ2ε2 .

For the first sum, we write that it is

e
2π2n
5T2 T 3 × 1

T

∑
2≤k<εT

k2

T 2
e−

2π2nk2

5T2 ≤ e
2π2n
5T2 T 3

ˆ ∞

2/T

x2e−
2π2

5
nx2

dx

= e
2π2n
5T2

T 3

n3/2

ˆ ∞

2
√
n/T

u2e−
2π2

5
u2

dx ≤ C
T 2

n
exp

(
− 7π2n

5T 2

)
,

using that
´∞
v
u2e−

2π2

5
u2
du ∼ (cst.) v e−

2π2

5
v2 as v → ∞. This term is therefore bounded

by a constant times exp(−π2n
T 2 ), as n/T 2 goes to infinity.

For the other sum, we bound it by a constant times

T 3 exp
(
− 1

2
nπ2ε2

)
≤ n3/2 exp

(
− 1

2
nπ2ε2

)
= ō
(
exp

(
− π2n

T 2

))
,

as n
T 2 → +∞ and T → ∞. We have therefore shown that V1/V0 is bounded by a constant

times exp(−π2n
T 2 ), which concludes the proof.

We now obtain an expression for the probability of staying in the band [0, T ], without
touching the border, during a time n≫ T 2.

Lemma 4.3. Assume that T = T (n) → ∞ and that limn→∞
n
T 2 = +∞. Then, we have:

• If T is odd,

Pz (τ > n) =
2

T
sin
(zπ
T

) 1

tan
(

π
2T

)e−ng(T )
(
1 + Ō(e−

π2n
T2 )
)
. (4.5)

• If T is even, letting a = 1{n↔z}

Pz (τ > n) =
4

T
sin
(zπ
T

) cosa
(
π
T

)
sin
(
π
T

) e−ng(T )
(
1 + Ō(e−

π2n
T2 )
)
. (4.6)

In particular, with a Taylor expansion, we get that

fn(z, T ) := Pz (τ > n) =
4

π
sin
(zπ
T

)
e−ng(T )

[
1 + Ō(T−2) + Ō

(
e−

π2n
T2
)]

, (4.7)

and note that if n ≥ 1
4
T 2 log T then e−

π2n
T2 ≤ T− 1

4
π2 ≤ T−2.

Proof. First of all, we write

Pz (τ > n) =
∑
k>n

(
Pz (τ = τ0 = k) + Pz (τ = τT = k)

)
. (4.8)
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When T is odd, then in (4.8), for each k in the sum there is only one term which is
non-zero: applying Lemma 4.2 to estimate that term, we get

Pz (τ > n) =
(
1 + Ō(e−

π2n
T2 )
) 2
T
sin
(zπ
T

)
tan
(π
T

)∑
k>n

e−g(T )k

=
(
1 + Ō(e−

π2n
T2 )
) 2
T
sin
(zπ
T

)
tan
(π
T

)
e−g(T )n cos

(
π
T

)
1− cos

(
π
T

) ,
recalling that e−g(T ) = cos

(
π
T

)
. This gives the desired result since sin(θ)

1−cos(θ)
= 1

tan(θ/2)
.

When T is even, notice that in (4.8), either k ↔ z and then both terms are non-zero
or k ̸↔ z and then both terms are zero. Applying Lemma 4.2, we get

Pz (τ > n) =
(
1 + Ō(e−

π2n
T2 )
) 4
T
sin
(zπ
T

)
tan
(π
T

)∑
k>n

e−g(T )k
1{k↔z} .

To deal with the last sum, denote n∗ = n∗(z) := min{k > n, k ↔ z}: note that n∗ is
equal to n + 1 + a with a = 1{n↔z}. The indices for which the term is not zero can be
written as k = n∗ + 2j and thus∑

k>n

e−g(T )k
1{k↔z} = e−n∗g(T )

∑
j≥0

e−2g(T )j = e−ng(T ) cos1+a
(
π
T

)
1− cos2

(
π
T

) ,
recalling that e−g(T ) = cos

(
π
T

)
. This gives the announced expression.

4.2 Range estimates

Recall the definition of the event Ey
x(n) = {M−

n = −x,M+
n = y} for any two positive

integers x and y (the case where one equals 0 is dealt in Section 4.2.4). We use Lemma 4.3
to estimate P0(E

y
x(n)), i.e. to prove Theorem 1.4. From this point onward, we always

denote T := x + y. Using the spatial invariance of the random walk, we study the
probability starting from x to stay in the strip [0, T ] and to touch both borders before
time n. The symmetry of the walk allows us to assume x ≤ y and 0 ≤ x ≤ T

2
.

We now write the probability of Ey
x(n) as the following differences

P0 (E
y
x(n)) = P0

(
M+

n < y + 1,M−
n = −x

)
− P0

(
M+

n < y,M−
n = −x

)
= P0

(
M+

n < y + 1,M−
n > −x− 1

)
− P0

(
M+

n < y + 1,M−
n > −x

)
−
[
P0

(
M+

n < y,M−
n > −x− 1

)
− P0

(
M+

n < y,M−
n > −x

) ]
.

Then each of those probabilities is of a strict confinement event with different strips widths
and starting points: we get

P0 (E
y
x(n)) = fn(x+ 1, T + 2)− fn(x, T + 1)− fn(x+ 1, T + 1) + fn(x, T ) . (4.9)

We can therefore use Lemma 4.3 to estimate each of these terms. We will find different
asymptotics depending on whether n

T 3 goes to 0 or to +∞ (or converges to a constant).
This ratio is known to be the relevant quantity when studying such constrained random
walk (see [9]). The main reason is that in the expansion (4.7) we have that e−ng(T ) ∼
e−ng(T+1) ∼ e−ng(T+2) if and only if n

T 3 goes to 0 (see below): this case will prove to be
more intricate because of several cancellations in (4.9).
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4.2.1 First case: limn→∞
n
T 3 = +∞

In that case, recalling that e−g(T ) = cos( π
T
) we have

e−g(T+1)n

e−g(T+2)n
=
(
1− (1 + ō(1))

π2

T 3

)n n→∞−−−→ 0 ,
e−g(T )n

e−g(T+2)n
=
(
1− (1 + ō(1))

2π2

T 3

)n n→∞−−−→ 0 .

Therefore, in view of (4.7), we have that fn(x, T + 1), fn(x + 1, T + 1), fn(x, T ) are all
negligible compared to fn(x+ 1, T + 2). Using (4.9), and (4.7), we therefore get that

P0 (E
y
x(n)) = (1 + ō(1))

4

π
sin

(
π(x+ 1)

T

)
e−g(T+2)n , (4.10)

where the ō(1) depends only on T and is uniform in x. Using also that sin(π(x+1)
T+2

) =

(1 + Ō( 1
T
)) sin(π(x+1)

T
) uniformly in x, we get the desired result.

4.2.2 Second case: limn→∞
n
T 3 = α ∈ (0,+∞)

Similarly as above, we have

lim
n→∞

e−g(T+2)n

e−g(T )n
= e2απ

2

, lim
n→∞

e−g(T+1)n

e−g(T )n
= eαπ

2

.

Therefore, using (4.9) and (4.7), we get that

π

4
eg(T )nP0 (E

y
x(n))

= (1 + ō(1))

[
sin

(
π(x+ 1)

T

)
e2απ

2

+ sin
(πx
T

)
−
[
sin

(
π(x+ 1)

T

)
+ sin

(πx
T

)]
eαπ

2

]
where we have used that sin(π(x+1)

T+2
) = (1 + ō(1)) sin(π(x+1)

T
) with ō(1) uniform in x, and

similarly with sin(π(x+1)
T+1

), sin( πx
T+1

). This gives the announced asymptotics.
Let us stress that, in the case where x = Ō(1), we get

P0 (E
y
x(n)) = (1 + ō(1))

4

T
(eαπ

2 − 1)(eαπ
2

(x+ 1)− x)e−g(T )n. (4.11)

If on the other hand we have x→ ∞, then we have

P0 (E
y
x(n)) = (1 + ō(1))

4

π
(eαπ

2 − 1)2 sin
(xπ
T

)
e−g(T )n , (4.12)

and one can also write (eαπ
2 − 1)2 = 4eαπ

2
cosh2(απ2).

4.2.3 Last case: limn→∞
n
T 3 = 0

When limn→∞
n
T 3 = 0, the first order terms all cancel each other and we have to look

further in the asymptotic expansion. We will show that

π

4
P0 (E

y
x(n)) e

g(T+1)n = (1+ō(1))
π4n2

T 6
sin
(π(x+ 1

2
)

T

)
+(1+ō(1))

π3n

T 4

(
1− 2x

T

)
cos
(πx
T

)
.

This proves the desired result since the second term can only be dominant if x/T → 0; it
is actually dominant in particular if x = Ō(1).
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Recalling that limn→∞
n
T 2 = +∞ (in particular n

T 4 = ō( n
2

T 6 )), we have the following
expansions:

e−g(T )n

e−g(T+1)n
= 1− π2n

T 3
+(1+ ō(1))

π4n2

2T 6
,

e−g(T+2)n

e−g(T+1)n
= 1+

π2n

T 3
+(1+ ō(1))

π4n2

2T 6
(1+ ō(1)) .

Hence, from (4.9), using (4.7) (with the fact that n ≥ 1
4
T 2 log T so that Ō

(
e−

π2n
T2
)
=

ō(T−2)) we get

π

4
P0 (E

y
x(n)) e

g(T+1)n =

{
sin
(πx
T

)[
1− π2n

T 3
+ (1 + ō(1))

π4n2

2T 6

]
−
(
sin

(
πx

T + 1

)
+ sin

(
π(x+ 1)

T + 1

))[
1 + Ō(T−2)

]
+ sin

(π(x+ 1)

T + 2

)[
1 +

π2n

T 3
+ (1 + ō(1))

π4n2

2T 6

]}
.

Note that we absorbed all terms Ō(T−2) in the ō( n2

T 6 ), since limn→∞
n
T 2 = +∞. Hence,

we get that

π

4
P0 (E

y
x(n)) e

g(T+1)n = (1 + ō(1))
π4n2

2T 6

(
sin
(πx
T

)
+ sin

(π(x+ 1)

T

))
+ A+B ,

with

A = sin
(xπ
T

)
− 2 sin

(π(x+ 1
2
)

T + 1

)
+ sin

(π(x+ 1)

T + 2

)
,

B =
nπ2

T 3

[
sin
(π(x+ 1)

T + 2

)
− sin

(πx
T

)]
.

Here, for A, we have also used that sin( πx
T+1

) + sin(π(x+1)
T+1

) = 2 sin(
π(x+ 1

2
)

T+1
) cos( π

2(T+1)
) with

cos( π
2(T+1)

) = 1 + Ō(T−2) and absorbed the Ō(T−2) in the ō( n2

T 6 ). We show below that A
is negligible compared to B, so let us start by estimating B.

Term B. Note that setting v := T
2
− x we have

B =
nπ2

T 3

[
cos
( πv

T + 2

)
− cos

(πv
T

)]
.

Using the formula for the difference of cosines, we get that

cos
( πv

T + 2

)
− cos

( πv

T + 1

)
= 2 sin

( πv

2(T + 1)(T + 2)

)
sin
( πv

T + 1

T + 3
2

T + 2

)
= (1 + ō(1))

πv

T 2
sin
(πv
T

)
.

We end up with

B = (1 + ō(1))
nπ3v

T 5
sin
(πv
T

)
.
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Term A. As far as A is concerned, notice that setting v := T
2
− x we have

A = cos
(πv
T

)
− 2 cos

( πv

T + 1

)
+ cos

( πv

T + 2

)
.

Using the formula for the difference of cosines, we get that A/2 is equal to

− sin

(
πv

2T (T + 1)

)
sin

(
πv

T

T + 1
2

T + 1

)
+ sin

(
πv

2(T + 1)(T + 2)

)
sin

(
πv

T

T (T + 3
2
)

(T + 1)(T + 2)

)
=

πv

2T 2

[
sin

(
πv

T

T (T + 3
2
)

(T + 1)(T + 2)

)
− sin

(
πv

T

T + 1
2

T + 1

)]
+ Ō

( v

T 3
sin
(πv
T

))
,

where we have used that sin( πv
2T (T+1)

) = πv
2T 2 (1+Ō(T−1)) and similarly for sin( πv

2(T+1)(T+2)
).

Using the formula for the difference of sines, we get

sin

(
πv

T

T (T + 3
2
)

(T + 1)(T + 2)

)
− sin

(
πv

T

T + 1
2

T + 1

)
= −2 sin

(
πv

2T (T + 2)

)
cos
(πv
T

[
1 + Ō(T−1)

])
.

Hence, we end up with A = Ō( v2

T 4 cos(
πv
T
)) + Ō( v

T 3 sin(
πv
T
)). This is negligible compared

to B, since limn→∞
n
T 2 = +∞.

4.2.4 Estimates for a positive random walk

Note that our estimates need adjustments when x = 0 or x = T . We go back to correct
(4.9) in order to take into account that 0 is the starting point of the walk. We write

P0 (E
y
0 (n)) = P0

(
M−

n > −1,M+
n < y + 1

)
− P0

(
M−

n > −1,M+
n < y

)
= fn(1, T + 2)− fn(1, T + 1)

Note that y = T but we will keep separating the notations y and T . thus, we have

P0 (E
y
0 (n)) =

4

π

[
sin

(
π

T + 2

)
e−g(T+2)n − sin

(
π

T + 1

)
e−g(T+1)n + Ō(T−3)

]
(4.13)

Once again we have different asymptotics depending on the ratio n/T 3 that we rapidly
present in the following

Case n
T 3 → +∞ As previously, e−g(T+2)n is the dominant term and thus

P0 (E
y
0 (n)) =

4

π
(1 + ō(1)) sin

(
π

T + 2

)
e−g(T+2)n, (4.14)

and we get the formula of (4.10) applied to x = 0.

Case n
T 3 → α Factorize by e−g(T )n as in the general case, we thus write

P0 (E
y
0 (n)) =

4

π

[
sin

(
π

T + 2

)
e2απ

2 − sin

(
π

T + 1

)
eαπ

2

+ Ō(T−3)

]
e−g(T )n.

That can we rewritten as

P0 (E
y
0 (n)) =

4

π
(1 + ō(1))eαπ

2

(eαπ
2 − 1) sin

(π
T

)
e−g(T )n,

which is exactly (4.11) taken at x = 0.
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Case n
T 3 → 0 In this case, we again factorize by e−g(T+1)n and write

P0 (E
y
0 (n)) =

4

π

[
sin

(
π

T + 2

)[
1 +

nπ2

T 3
+
n2π4

2T 6
(1 + ō(1))

]
− sin

(
π

T + 1

)
+ Ō(T−3)

]
e−g(T+1)n.

We are left to compare all the terms in this expression :

A = sin

(
π

T + 2

)
− sin

(
π

T + 1

)
= −2 sin

(
π

2(T + 1)(T + 2)

)
cos
( π

2T

)
∼ − π

T 2
,

B =
nπ2

T 3
sin

(
π

T + 2

)
∼ nπ3

T 4
, D =

n2π4

T 6
sin

(
π

T + 2

)
∼ n2π5

T 7
.

See that A≪ B and D ≪ B using both n
T 2 → ∞ and n

T 3 → 0, meaning that

P0 (E
y
0 (n)) =

4nπ

T 3
(1 + ō(1)) sin

(
π

T + 2

)
e−g(T+1)n.
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