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Aromatic residues cluster in the core of folded proteins, where they stabilize the
structure through multiple interactions. Nuclear magnetic resonance (NMR) studies
inthe 1970s showed that aromatic side chains can undergo ring flips—that is, 180°

rotations—despite their role in maintaining the protein fold'>. It was suggested that
large-scale ‘breathing’ motions of the surrounding protein environment would be
necessary to accommodate these ring flipping events'. However, the structural details
of these motions have remained unclear. Here we uncover the structural
rearrangements that accompany ring flipping of aburied tyrosine residue in an SH3
domain. Using NMR, we show that the tyrosine side chain flips to alow-populated,
minor state and, through a proteome-wide sequence analysis, we design mutants that
stabilize this state, which allows us to capture its high-resolution structure by X-ray
crystallography. A void volume is generated around the tyrosine ring during the
structural transition between the major and minor state, and this allows fast flipping
totake place. Our results provide structural insights into the protein breathing
motions that are associated with ring flipping. More generally, our study has
implications for protein design and structure prediction by showing how the local
protein environment influences amino acid side chain conformations and vice versa.

Aromatic residues make up a considerable fraction of the hydrophobic
core of folded proteins, where they stabilize the structure through
CH-mt (refs. *¢), -t (refs. ”®) and cation—t (refs. *'°) interactions as
well as hydrogen bonds. NMR studies in the 1970s demonstrated that
aromatic side chains can undergo ring flips—that is, 180° rotations
of the x, dihedral angle (Cp-Cy axis)—even when engaged in stabiliz-
ing interactions in the hydrophobic core'>. These ring flips require
concerted movements of the surrounding residues (large-amplitude
protein breathing motions), and ring flipping rates as a function of
temperature and pressure have been used to report on these motions
by deriving activation energies and volumes" . However, the struc-
tural details of ring flipping and the associated breathing motions
have remained unknown, probably owing to difficulties in stabilizing
ring flipping transition states or intermediates that are amenable to
structure elucidation.

Here we capture ring flipping events of aburied tyrosine residuein
the SH3 domain of the JNK-interacting protein1(JIP1). We show using
NMR relaxation dispersion that the aromatic ring of this tyrosine
residue populates a minor-state conformation (3%), and we design
single point mutations to stabilize this conformation and capture
its high-resolution structure using X-ray crystallography. The struc-
ture reveals how the intricate network of hydrogen bonds and CH-1t
interactions is rearranged in the minor state. We show how a sub-
stantial void volume is generated around the tyrosinering during the

structural transition from the major to the minor state, which canbe
associated with the breathing motions that allow fast-timescale ring
flipping events to take place. Our results provide structural insights
into aromatic ring flipping and its associated protein breathing
motions.

Protein dynamics induced by a tyrosine residue

The SH3 domain of JIP1 undergoes exchange between two distinct con-
formations, as evidenced by "N NMR relaxation measured at multiple
temperatures (Extended DataFigs.1, 2, Supplementary Discussion).
To analyse the observed dynamics in detail, we acquired N and 'H"
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experi-
ments at 15 °C (refs. %), These experiments quantify the kinetics
of exchange processes and provide the difference in chemical shift
between amajor and aminor state, together with their relative popu-
lations*~%°. The data confirm that exchange contributions to the
transverse relaxation are present for residues within three regions of
the protein (Extended DataFig.1d, e, Supplementary Table1). These
residues are located spatially close to tyrosine 526 (Y526) (Extended
DataFig.1f). Amutation of Y526 to alanine (Y526A) shows no confor-
mational exchange (Extended DataFig.1d, e), and conserves the pro-
tein backbone conformation, as evidenced fromits crystal structure
that we obtained at 1.5-A resolution (Extended Data Fig. 3, Extended
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Fig.1| The side chain conformation of Y526 is determined by steric
interactions with the surrounding amino acids. a, Crystal structure of
wild-type]IP1-SH3, showing the conformation of Y526 and its stabilizing
interactions with H493,V517,Q520 and A541. Dashed linesindicate CH-t
(black) and t-mt (red) interactions. b, Side chain conformation of Y526 in
JIP1-SH3, illustrating the steric interactions between the §, nuclei of the
aromaticring and the backbone. c,PCA of adataset comprising the size of the
aminoacid side chains at positions 493, 517 and 541 within SH3 domains that
containY or F at position 526 (Extended Data Fig. 5b). Two groups are observed,
which correspond to eclipsed (group1) or staggered (group 2) conformations
ofthearomaticring.JIP1-SH3isindicated in blue; POSH-SH3-1and POSH-SH3-4
areindicated ingreen; and SH3 domains for which crystal structures have been
determined previously areshowninred.d, Crystal structure of POSH-SH3-1,
showing astaggered conformation of Y172. e, Unbiased electron density maps
(Fo-Fc) of Y172 and the surrounding residues in POSH-SH3-1.f, Crystal
structure of POSH-SH3-4, showing an eclipsed conformation of F867.

g, Unbiased electron density maps (Fo-Fc) of F867 and the surrounding
residuesin POSH-SH3-4. h, i, Results of the PCA, illustrating the size and nature
oftheresidues thatsurround the aromatic ringin position 526 ingroup1 (h)
and group 2 (i) SH3 domains. The size of the spheresin each positionis
proportional to the average size (n,,) of the amino acid side chain across group
members.

Data Tables 1, 2). These results show that the relaxation dispersion
thataffects around 40% of the residues in the SH3 domain arises from
asingle exchange process, with Y526 being the origin of the observed
exchange.

TheNand'H"relaxation dispersion data were analysed simultane-
ously according to a two-site exchange model in which a highly pop-
ulated major state interconverts with a low-populated minor state
(Extended Data Fig. 4a, b, Supplementary Discussion). The analysis of
the datagives a population of the minor state of pinor = 2.8 + 0.1% and
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anexchange rate constant of ki, = 2,600 + 70 s™. The derived chemical
shiftdifferences, AScpuc, Span arange of 4.7 ppmfor *Nand 1.1 ppm for
HN suggesting that there are substantial structural changes between
the major and the minor state (Extended Data Fig. 4c, d).

The side chain of Y526 is found in an unusual conformation in
the crystal structure (Protein Data Bank (PDB) code 2FPE (ref. ™),
Extended Data Table 1), characterized by a x, dihedral angle of 2°
(Fig.1a). Normally, this eclipsed conformation is energetically unfa-
vourable because of steric interactions with the backbone (Fig. 1b),
and itis rarely found in proteins as x, angles are preferred where
C§,and C8, are staggered with respect to Ca (ref. *2). However, the
eclipsed conformation of the aromatic ring of Y526 is stabilized by
CH-minteractions from V517, Q520 and A541 and by m-Ttinteractions
with H493 (Fig. 1a).

Proteome-wide SH3 sequence analysis

To investigate the contribution from the surrounding residues in
stabilizing the eclipsed conformation of Y526, we analysed the
sequences of all identified human SH3 domains®. We categorized
the sequences according to the identity of the amino acid at the posi-
tion of Y526 inthe JIP1SH3 domain (JIP1-SH3) (Extended Data Fig. 5a),
and we retained the sequences carrying a phenyl-based amino acid
(Tyror Phe) at this position, amounting to 33 SH3 domains. Sequence
alignments reveal a large variation in the size of the amino acids at
positions 493, 517 and 541, whereas at position 520 most sequences
contain Gln, Argor Lys (72%) (Extended Data Fig. 5b, c). To study the
size correlation between the amino acids at positions 493, 517 and
541and theirinfluence on the conformation of the aromatic residue
atposition 526, we carried out a principal component analysis (PCA)
by assigning a size score (n) to each amino acid according to the
number of heavy atoms in their side chains. This analysis reveals
two well-separated groups, with the SH3 domain of JIP1 belonging
togroup1(Fig.1c).Ingroup 2, five SH3 domains are found for which
high-resolution crystal structures are available; these include three
SH3 domains of the sorbin and SH3 domain-containing proteins 1and
2 (SORBS1 and SORBS2)3*, and the SH3 domains of the dedicator of
cytokinesis protein 2 (DOCK2)* and of the tyrosine protein kinase
CSK*¢ (Extended Data Fig. 5b). Notably, all group 2 structures show
afavourable, staggered side chain conformation (of C§,/C8, with
respect to Ca) of the corresponding tyrosine, with the x, dihedral
angleranging from-40°to -64° (Fig. 1c). We therefore hypothesized
that SH3 domains of group 1 have eclipsed conformations, whereas
group 2 have staggered conformations. To test our hypothesis, we
determined two crystal structures of SH3 domains of the scaffold pro-
tein POSH (‘plenty of SH3 domains’), for which the first SH3 domain
belongs to group 2 and the fourth SH3 domain belongs to group 1
(Extended Data Table 2, Fig. 1c). Consistent with the PCA, the crystal
structure of the first SH3 domain of POSH (POSH-SH3-1) shows a stag-
gered conformation of the corresponding tyrosine residue (Y172),
whichis stabilized by CH-minteractions from L163 (position 517) and
T185 (position 541) (Fig.1d, e). POSH-SH3-4 shows a similar structure
to JIP1-SH3, with an eclipsed conformation of the corresponding
phenylalanine residue (F867) stabilized by CH-m interactions from
V858 (position 517), K861 (position 520) and G882 (position 541),
and by -t interactions with H834 (position 493) (Fig. 1f, g). Our
data therefore suggest that the conformation of the aromatic ring
at position 526 is determined by steric interactions dictated by the
size of the surrounding amino acids.

Structure of the minor state

Next, we investigated whether the minor state detected by NMR
corresponds to astaggered conformation of the side chain of Y526.
We sought to stabilize the minor state relative to the major state by
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Fig.2|High-resolution crystal structures of JIP1-SH3 variants. a-d, Crystal
structures showing the conformation of Y526, the corresponding unbiased
electrondensity maps (Fo-Fc) of Y526 and its surrounding residues, and the
Newman projectionalongthe CB-Cybond of Y526 inthe V517L (a), A541L (b),
H493A (c) and V517A (d) variants of JIP1-SH3. Dashed lines indicate CH-1t
(black) and -1t (red) interactions. Residue numbersinredindicate the site of
mutation. The wild-typeJIP1-SH3 structureisshown as areferenceinthe
centre.

introducingsingle point mutations. The PCAsuggests thatastaggered
conformationingroup 2is favoured over an eclipsed conformation
ingroup1whenresidues withlarger side chains are found in position
541, whenisoleucine or leucine are occupying position 517 and when
smaller residues are found in position 493 (Fig. 1h, i). Accordingly,
we designed four different mutants of JIP1-SH3 (H493A, V517A, V517L
and A541L) and obtained their high-resolution structures by X-ray
crystallography (Extended Data Tables 1, 2). Of note, three mutants
(H493A,V517A and A541L) induce a staggered conformation of Y526,
with x, dihedral angles ranging from —41° to -75°, whereas V517L
shows an eclipsed conformation of Y526 and an almost identical
structure to the wild-type protein (Fig. 2, Extended Data Fig. 6a). The
high resolution of these structures, ranging from1.4 to 1.9 A, allows
unambiguous determination of the conformation of Y526 and the
surrounding residues, as demonstrated by their unbiased electron
density maps (Fig. 2).

Structural details of breathing motions

The two variants H493A and V517A show almost identical crystal struc-
tures (Extended Data Fig. 6b) and an equivalent stabilization mecha-
nism of the aromatic ring of Y526. Whereas the wild-type structure
exhibits a classic B-bulge at residue 518 (ref.*), the transition from
the eclipsed to the staggered conformation induces a local inversion
(in-out) atresidues 518-520, whichleads to the formation of a canonical
B-strand, as observed inthe structures of the H493A and V517A variants
(Fig. 3a—c). This transition allows the side chain of L519 to rearrange
and form CH-Ttinteractions with the ring of Y526 (Fig. 2c, d); and, at
the same time, large-scale movements of E518, Q520, E522 and Y524
are observed (Fig. 3a). We note that SH3 domains in both group 1and
group 2 of the PCA show classic 3-bulges at position 518 (Extended
DataFig. 5d), which suggests that the presence of this structural motif

is not determinant of the side chain conformation of the phenyl ring
in position 526.

The A541L mutation also triggers astaggered conformation of Y526
and a rearrangement of the 517-522 region; however, the stabiliza-
tion mechanism of the aromatic ring is different. A looping out of the
B-strand between residues 517 and 522 is observed (Extended Data
Fig. 6¢c-e), which allows the side chain of A521 to reorient and to sta-
bilize the staggered conformation of the ring through CH-t interac-
tions together with L541and V517 (Fig. 2b). At the same time, the side
chains of L519, Q520 and E522 and D523 undergo large-scale move-
ments to accommodate the flipped ring within the pocket (Extended
DataFig. 6¢).

Altogether, the different mutants show that the dynamics of the
region encompassing residues 517-522 are key for the formation of
the minor state. The experimental ®>C chemical shifts for residuesin
thisregion are characteristic of random coil conformations (Extended
Data Fig. 1b) and, compared to other regions of secondary struc-
ture, therelaxation-derived order parameters (5%) are lower (Extended
DataFig.2g) and the crystallographic B-factors are higher. This sup-
portstheideaof the 517-522 region being intrinsically dynamic, with
afluctuating hydrogen-bonding network that is prone to structural
transitions.

Next, we sought to determine which of the two crystal structures
(H493A/V517A-like or A541L-like) best capture the conformation of
the wild-type minor state detected by NMR relaxation dispersion. The
H493A and V517A variants show almost identical crystal structures and
for asubset of residues, the chemical shifts of which are unaffected by
the mutations, theresonances of the two variants fallon astraightline
together withthe resonances of the wild-type protein (Fig. 3d, e). This
suggests that they are in fast-intermediate exchange between two
conformations represented by the crystal structures of the wild-type
protein and of the H493A/V517A variants. In agreement with this,
bothvariants show line broadening and chemical exchange contribu-
tions as detected by ®N and 'H" relaxation dispersion (Extended Data
Figs.7a-c,8a-c). Analysis of these data (Extended Data Figs. 7d, e, 8d, e)
shows that the structural features of the minor state of the wild-type
protein are captured by the H493A/V517A crystal structures, as
shown by the excellent agreement between the A, values for the
wild-type protein and the two variants (Extended DataFigs. 7f, g, 8f, g).
Inaddition, the analysis yields exchange rates between the staggered
(canonical -strand) and the eclipsed (classic 3-bulge) conformation of
kex=2,830+70 s (H493A) and k., = 6,800 + 300 s (V517A), compared
to kg = 2,600 + 70 s determined for the wild-type protein. Finally, the
observable chemical shifts of the two variants (Fig. 3d, e), in conjunc-
tion with analysis of the relaxation dispersion data (Supplementary
Discussion), show that the H493A mutation slightly stabilizes the minor
staterelatively to the major state, whereas the V517A mutation almost
inverts the relative populations of the major and minor states (Fig. 3f).
For completeness, we note that the A541L crystal structure is not rep-
resentative of the minor state conformation (Extended Data Fig. 9),
although it shares structural features that are necessary for fast ring
flipping of Y526 (see below).

Void volume enables ring flipping

Aromatic 'H-C heteronuclear single quantum coherence (HSQC)
spectra show averaging of the NMR signals of the tyrosine €,/¢,
nuclei of Y526 (Fig. 4a, Extended Data Fig. 10a, Supplementary
Fig. 1), which shows that full 180° ring flipping occurs. This poses
the question of the timescale of the full ring flipping and its relation
to the observed minor state. To answer this question, we acquired
L-optimized TROSY-selected aromatic side chain *Ce CPMG (ref. *®)
and on-resonance R,, (ref. *°) relaxation dispersion data of Y526.
These data are entirely explained by the exchange process between
the major and minor state, with a negligible contribution from the
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tothestaggered (grey) conformation of Y526.b, Illustration of the backbone
conformation of the B-sheet formed between the 516-521and 524-529 regions
inthe wild-type (WT) protein (left), and in the H493A (middle) and V517A (right)
variants. Dashed lines indicate hydrogen bonds. ¢, Schematic representation
ofthe conformation of the B-strand encompassing residues 516-521, showing
theorientation of the carbonylgroup (‘out’, carbonyl group surface exposed;
‘in’, carbonyl group pointing towards the B-strand encompassing residues

full ring flipping event (Fig. 4b, c), demonstrating that ring flipping
of Y526 is fast (kg > 50,000 s™) (Supplementary Discussion). This
observation agrees with al-pus molecular dynamics (MD) simulation
that shows several 180°ring flipping events of Y526 (Fig. 4d, Extended
Data Fig.10b, ¢).

During the structural transition between the major and the minor
state (Supplementary Video1),avoid volumeis created around thering
of Y526 that corresponds to a pocket expansion of 65 A% this is mainly
duetothestructuralreorganization oftheside chainof Q520 (Fig. 4e, f).
This cavity expansionisin agreement with previous studies that have
reported activation volumes between 40 and 85 A* for ring flipping
events of aromatic residues in other proteins?**?#%# The expan-
sion is followed by a compaction of the surrounding protein envi-
ronment as the ring becomes stabilized by CH-m interactions from
L519 (Fig. 4e, f).

Collectively, our results are consistent with a model in which fast
protein breathing motions along the structural trajectory between
the major and the minor state generate the necessary void volume for
ring flipping to take place by lowering the energy of the transition state
(Fig.4e-g, Supplementary Video 2). Occasionally, the 3-bulge to -sheet
transition is completed and the aromatic ring becomes trappedin a
staggered conformation that is stabilized by CH-T interactions with
L519—a process that gives rise to the observed relaxation dispersion.
These events are rare and occur on a slow timescale (Figs. 3f, 4g), but
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conformations as determined by relaxation dispersion experiments acquired
atl5°C.

they constitute an important tool for observing the trajectory of the
proteinbreathing motions coupled to aromatic ring flipping. The initial
generation of void volume around thering is almostidentical along the
structural trajectory between the major state (wild type) and the A541L
crystal structure (Extended Data Fig. 6f). Thus, all mutants—including
A541L, whichstabilizes Y526 in a staggered conformation by a different
mechanism—share the sameinitial structural trajectory and report on
identical breathing motions.

Conclusions

Our results provide structural insights into the protein breathing
motions that are associated with aromatic ring flipping. We reveal
how the dynamics of the region encompassing residues 517 to 522 are
key for accommodating the ring flipping process of Y526. Notably, the
transition from the eclipsed, major conformation to the staggered,
minor conformationis associated withastructural change fromarare,
classic 3-bulge to acommon, canonical 3-strand conformation (Sup-
plementary Video1, Fig.3a-c). Breathing motions along the structural
trajectory between the major and the minor state generate the neces-
sary void volume for fast ring flipping of Y526 to take place (Supple-
mentary Video 2). Although a recent NMR study suggested extensive
local unfolding as the source of cavity creation*, our study provides
an alternative view by showing how a substantial void volume can be
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generated through distinct structural rearrangements, while maintain-
ing the overall protein fold.

More generally, our study shows how the local environment in the
protein core canlead to a priori energetically unfavourable confor-
mations of amino acid side chains, and how subtle changes in this
environment can lead to major structural rearrangements to revert
to preferred amino acid conformations. Our results therefore have
implications for protein design and structure prediction, and for

state. f, Surfacerepresentation of JIP1-SH3 in three different states
corresponding to the major state, anintermediate state on the structural
trajectory and the minor state. The Y526 pocket is highlighted in pink (major),
blue (intermediate) and yellow (minor). The rearrangements along the
structural trajectory between the major and the minor state generate a void
volume around Y526, thereby lowering the transition-state energy of ring
flipping. g, lllustration of the protein breathing motions along the structural
trajectory from the major to the minor state. A void volumeis created around
Y526, which allows fast ring flipping to take place. Thering flipping is
occasionally interrupted by trapping of Y526 in astaggered conformation
through formation of CH-trinteractions with L519 enabled by the 3-bulge to
B-sheet transition.

how novel biological functions can be acquired during the course
of evolution; for example, by altering the delicate balance between
hydrogen bonds and CH-m interactions. Finally, the combination
of sensitive NMR methods to detect low-populated states, protein
design using proteome-wide sequence analyses and high-resolution
crystallography could be a strategy to further discover the struc-
tural details of sparsely populated protein states and their link to
function.
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Methods

Expression and purification of JIP1-SH3, POSH-SH3-1and
POSH-SH3-4

JIP1-SH3, corresponding to residues 490-549 of human JIP1 (Uniprot
Q9UQF2), was subclonedintoapET28a vector, and two of the four SH3
domains of the E3 ubiquitin-protein ligase SH3RF1 (Uniprot Q7Z6J0;
also known as ‘plenty of SH3 domains’ (POSH)), SH3-1 (135-194) and
SH3-4 (829-888), were subcloned into a pESPRIT vector*’. The con-
structs therefore contained an N-terminal hexahistidine tag followed by
atobaccoetch virus (TEV) cleavagessite. The final proteins after protease
cleavage contain N-terminal GRR (POSH) or GHM extensions (JIP1).

To obtain unlabelled proteins, Escherichia coli BL21(DE3) cells
transformed with one of the constructs were growninlysogeny broth
(LB) medium at 37 °C until the optical density at 600 nm reached 0.7.
Protein expression was induced by the addition of isopropyl 3-D-
1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. The
cultures were grown for an additional 15 hat 20 °C (POSH-SH3s) or4 hat
37 °C(JIP1-SH3). The cells were collected by centrifugation and frozen
at—-20 °C or—80 °C.Isotopically ®N/C- and ®N-labelled proteins were
produced by growing transformed E. coli BL21(DE3) cells in M9 minimal
medium containing 1g 1™ of ®N-NH,Cl and 2 g I of *C,-D-glucose or
2C,- D-glucose. To obtain ®N-labelled protein with tyrosine residues
site-selectively labelled at the € position with*C, transformed E. coli
BL21(DE3) cells were grown in M9 minimal medium containing1g ™ of
N-NH,CI,2 g 1" of NaH"®*CO, and 2 g I of [2-*C]-glycerol*.

All SH3 domains were purified by Ni affinity chromatography fol-
lowed by size-exclusion chromatography. Cell lysis was carried out
by sonication using purification buffer (POSH: 50 mM Tris pH 7.0/8.0,
500 mM NacCl, 1 mM B-mercaptoethanol; JIP1: 50 mM HEPES pH 7.0,
150 mM NaCl) supplemented with protease inhibitor tablets (Roche).
The washing buffer used for Ni affinity chromatography was the same
as the purification buffer with the addition of 20 mM imidazole. The
elution buffer was the same as the purification buffer with the addition
of 500 mM (POSH) or 300 mM (JIP1) imidazole. Nickel affinity chroma-
tography was followed by cleavage by the TEV protease, a second Ni
affinity column and size-exclusion chromatography on aSuperdex 75
(GE Healthcare). This column was equilibrated with 50 mM HEPES pH
8.0,500 mM NacCl, 2 mM DTT for POSH-SH3-1, 50 mM HEPES pH 7.0,
500 mM NaCl,2 mM DTT for POSH-SH3-4 and 50 mM HEPES pH 7.0,
150 mM NaClfor JIP1-SH3.

Expression and purification of JIP1-SH3 variants

Expression and purification of the JIP1-SH3 variants (Y526A, V517A,
V517L, A541L and H493A) were performed following the same protocol
asforJIP1-SH3, except that the cultures were grown for 15 h after induc-
tionat 20 °C (instead of 4 h at 37 °C).

Thermal stability measurements of JIP1-SH3

The stability of JIP1-SH3 was measured by differential scanning fluor-
imetry using a Prometheus NT.48 (Nanotemper) instrument with the
emission wavelengths set to 330 and 350 nmand an excitation power of
10%.The melting curve for wild-typeJIP1-SH3 was measured at a protein
concentration of 4 mg ml™in 50 mM HEPES, 150 mM NaCl at pH 7.0 by
using Prometheus Standard Capillaries (PR-C002). The temperature
scan rate was fixed at 1°C per min from 20 °C to 95 °C. The melting
temperature (7;,) was calculated from the peak of the first derivative of
theintrinsic protein fluorescenceintensity ratioat 350 nmand 330 nm
throughout the duration of the temperature ramp.

NMR spectral assignment of JIP1-SH3 and its variants

The NMR assignment experiments were acquired in 50 mM HEPES,
150 mM NacCl, pH 7.0 at a protein concentration of 0.94 mM
(JIP1-SH3),1.06 mM (JIP1-SH3(Y526A)),1.10 mM (JIP1-SH3(A541L)),
2mM (JIP1-SH3(V517A)) and 0.90 mM (JIP1-SH3(H493A)). The NMR

spectral assignments of JIP1-SH3 were performed at 25 °C using a set
of BEST-TROSY triple resonance experiments (HNCO, intra-residue
HNCACO,HNCOCA, intra-residue HNCA, HNCOCACB and intra-residue
HNCACB) acquired ata’H frequency of 600 MHz (Bruker, operated with
TopSpin v.3.5)**. The NMR spectral assignments of JIP1-SH3(Y526A)
were obtained at 25 °C at a'H frequency of 700 MHz (Bruker) using
BEST-TROSY HNCO, HNCOCACB and intra-residue HNCACB experi-
ments. The NMR spectral assignments of JIP1-SH3(A541L) (at 25 °C),
JIP1-SH3(V517A) (at 35°C) and JIP1-SH3(H493A) (at 35°C) were
obtained at a'H frequency of 700 MHz (Bruker) using a BEST-TROSY
HNCACB experiment. The spectra were manually peak-picked using
NMRFAM-Sparky* and sequential connectivities were identified manu-
ally or by using the assignment program MARS*®. Secondary structure
propensities were calculated using SSP on the basis of the experimental
Ca and CPB chemical shifts®.

5N relaxation measurements of JIP1-SH3

Measurements of N relaxation rates (R,, R, and heteronuclear NOEs)
of JIP1-SH3 were obtained using standard HSQC-type pulse sequences*®
ata'Hfrequency of 600 MHz (Agilent, operated with VnmrJ v.3.1). The
relaxation rates were measured at four different temperatures: 15, 25,35
and 45 °C. The magnetization decay was sampled at (0,100,200, 400,
600, 800,1,100,1,500 and 1,900) milliseconds (ms) for longitudinal
andat(10,30,50,70,90,130,170, 210 and 250) ms for transverse relaxa-
tion. Technical replicates of one or two of these delays were acquired
to estimate the uncertainty on the relaxation rates using aMonte Carlo
approach. Details of the Lipari-Szabo model free analysis can be found
inthe Supplementary Discussion.

5N and 'H" CPMG relaxation dispersion of JIP1-SH3 and its variants

Al N CPMG relaxation dispersion experiments®* were carried out
at 15 °C using a constant-time relaxation delay of 32 ms with CPMG
frequencies (Vepyc) ranging from 31.25t0 1,000 Hzand a'H decoupling
field of 11 kHz. The 'H" relaxation dispersion experiments were carried
outat15 °Cusing the published pulse sequence” with a constant-time
relaxation delay of 20 ms and CPMG frequencies ranging from 50 to
2,000 Hz. Uncertainties on peak intensities extracted from the relax-
ation dispersion experiments were estimated using the pooled s.d.
calculated from repeat measurements (technical replicates of one to
three vepyg Values), each pool being the set of repeat points per Vepyg
and per peak. Uncertainties on R, values were propagated from the
peakintensity uncertainty using aMonte Carlo approach. The follow-
ing relaxation dispersion experiments were acquired: JIP1-SH3: N
(600 MHz, Agilent), ®N (850 MHz, Bruker), '"H" (600 MHz, Bruker), 'H"
(950 MHz, Bruker);JIP1-SH3(H493A) and JIP1-SH3(V517A): N (600 MHz,
Bruker), ®N (950 MHz, Bruker), *H" (600 MHz, Bruker), 'H" (950
MHz, Bruker); JIP1-SH3(Y526A): ®N (700 MHz, Bruker) and 'H"
(600 MHz, Bruker); JIP1-SH3(A541L): N (700 MHz, Bruker). All relaxa-
tion dispersion data were analysed using the program ChemEx (https://
github.com/gbouvignies/ChemEx)* as describedin the Supplementary
Discussion.

Tyrosine assignments and >C CPMG relaxation dispersion of Y526
The®Ce-"He tyrosine resonances were assigned at 45 °C by acquiring
atwo-dimensional (2D) plane of aBEST-TROSY intra-residue HNCACB
experiment*, an aromatic BEST constant-time 'H-"*C HSQC experi-
ment*°and a (HB)CP(CyC8Ce)He experiment® linking the CP chemical
shifts directly to the He chemical shifts. The spectra were manually
peak-picked using NMRFAM-Sparky* and ®Ce-'He tyrosine resonances
were assigned manually (Supplementary Fig.1). The acquisition of aro-
matic BEST constant-time 'H-">*CHSQC experiments at different tem-
peratures (between 5and 45 °C) enabled the final assignment at 15 °C.

Aromatic L-optimized TROSY-selected C CPMG>® and R,,* relaxa-
tion dispersion experiments were carried out at 15 °C on a1 mM uni-
formly N and site-selective *C-labelled JIP1-SH3 sample in 50 mM
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HEPES, 150 mM NaCl at pH 7.0. CPMG relaxation dispersion experi-
ments were carried out at magnetic field strengths of 600 MHz,
700 MHz and 850 MHz (Bruker) using a constant-time relaxation delay
of 20 ms with CPMG frequencies ranging from 100 to 1,000 Hz. The
R, relaxation dispersion experiment was recorded on-resonance with
Y526 at 700 MHz (Bruker) using B, field strengths ranging from 700
t0 10,000 Hz with a 20 ms relaxation delay. Error bars were derived
from repeat measurements as described above for the N and 'H"
relaxation dispersion experiments. Analysis of the >C data was car-
ried out using ChemEx or using available analytical expressions for
Ry, relaxationin the presence of two-site exchange® (Supplementary
Discussion).

Comparison of JIP1-SH3 to other human SH3 domains

The sequences of 320 human SH3 domains were obtained™®, aligned
using Clustal Omega® and categorized according to the identity of
the amino acid at the position of Y526 in JIP1-SH3. A new alignment
was performed using only the sequences that carry Y or F at this posi-
tion, amounting to a total of 33 human SH3 domains. The sequences
of the SH3 domains of the RIMS-binding proteins 1, 2 and 3 and the
metastasis-associated in colon cancer protein 1 (MACC1) were not
includedinthis alignment, as they contain longer insertions compared
to the JIP1-SH3 sequence. For each SH3 domain, the amino acids cor-
responding to residues 493, 517 and 541 of JIP1-SH3 were assigned a
size score according to the number of heavy atomsin their side chains
(A:1,C:2,D:4,E:5,F:7,G:0,H:6,1: 4,K:5,L:4,M:4,N:4,P:3,Q:5,R: 7,
S:2,T:3,V:3,Y:8,W:10). APCA was carried out to reveal potential
correlations between the sizes of the amino acids in position 493, 517
and 541 using the ClustVis webtool*.

Crystallization of JIP1-SH3 and the variants Y526A, V517A,
V517L, A541L and H493A

JIP1-SH3 and its variants were concentrated to a final concentra-
tion of 20 mg m1™ (JIP1-SH3, JIP1-SH3(V517A), JIP1-SH3(A541L)
and JIP1-SH3(V517L)), 10 mg ml™ (JIP1-SH3(Y526A)) and 4 mg ml™
(JIP1-SH3(H493A)) after size-exclusion chromatography by using
Amicon Ultra-4 3.0-kDa centrifugal filters (Merck). All crystals were
obtained in 0.1 M HEPES pH 7.5, 1-5% PEG 400 and 2-2.5 M ammo-
nium sulfate at 20 °C by the hanging-drop vapour diffusion method
in 24-well plates (Hampton research)®. Drops of 2-3 pl consisting
of 1:1 or 2:1 parts of protein solution and reservoir solution were
vapour-equilibrated against 500 pl of reservoir solution. All crystals
appeared after two days and were collected by transferring them to
amother liquor solution containing 20-30% trehalose, frozen and
keptin liquid nitrogen.

Crystallization of POSH-SH3-1and POSH-SH3-4

Purified POSH-SH3-1and POSH-SH3-4 were directly concentrated after
size-exclusion chromatography to 3.4 and 5.0 mg ml™, respectively,
using Amicon Ultra-4 3.5-kDa centrifugal filters (Merck). Initial crystal-
lization conditions were identified using the high-throughput crystal-
lization platform (EMBL).

The initial condition identified for POSH-SH3-1 was 0.2 M NaF,
20% PEG 3350 from the PEGs-1screen (Qiagen) at4 °C. Needles appeared
after3to7 days. Further optimization was done using the hanging-drop
vapour diffusionmethod at 4 °Cin 24-well plates. Drops of 2 pl consist-
ing of equal parts protein solutionat 2.5 mg ml”and reservoir solution
(0.2 M NaF, 22% PEG 3350) were vapour-equilibrated against 500 pl of
reservoir solution. Hexagonal crystals appeared after three days and
were collected after five days by transferring them to a mother liquor
solution containing 5% ethylene glycol as cryoprotectant, frozen and
keptinliquid nitrogen.

Theinitial screen of POSH-SH3-4 identified two crystallization con-
ditions: 0.1 M MES pH 6.5,25% PEG 3000 (condition 1) and 0.1 M MES
pH 6.5, 25% PEG 4000 (condition 2) from the PEGs-I screen (Qiagen)

at 4 °C. Diffraction-quality needles (condition 1, 0.1 M MES pH 6.5,
26% PEG 3000) or three-dimensional crystals (condition2,0.1 M MES
pH 6.5,23% PEG 4000) were obtained after four days using the same
vapour-diffusion set-up as for POSH-SH3-1. These were collected after
seven days with10% ethylene glycol as cryoprotectant, frozen and kept
inliquid nitrogen.

Structure determination

Crystal diffraction was performed at the ESRF beamlines ID30A, ID23-1,
1D23-2 using the MXCube software’*, at the automated beamline
MASSIF-1%8 or at the Diamond beamlines 104 and 104-1, all equipped
with Pilatus detectors (Dectris). Indexing and integration was per-
formed using the XDS*, the autoProc® or GrenADeS® program suites.
Datareduction for]JIP1-SH3(H493A) was carried out with Pointless and
Aimless®*®*, Molecular replacement of the wild-typeJIP1-SH3 structure
was carried out in Phaser®* using the PDB code 2FPE (chainsA-B) as a
search model. The structures of JIP1-SH3 mutants were obtained by
using our wild-type JIP1-SH3 structure as a search model. The initial
solutions wereimproved through cycles of manual adjustingin Coot®
and refined by using Refmac5%. Aimless, Phaser and Refmac were all
used as programs of the CCP4 suite®’.

Thestructure of POSH-SH3-4 was determined by molecular replace-
ment using a homology model that was built on the basis of the SH3
domain structure of SORBS1 (PDB code: 2LJ1, chain A), which has 45%
sequence identity. The structure of POSH-SH3-1 was determined by
molecular replacement using as a search model the SH3 domain of
humantyrosine protein kinase C-Src (PDB code: 2SRC). Crystallography
applications were compiled and configured by SBGrid®.

Structural trajectory and void volume calculations
Thesstructural trajectory between the major and minor conformation
was generated with Chimera® by morphing between the wild-type
JIP1-SH3 structure (PDB 7NYK) and the structures of the two variants
JIP1-SH3(H493A) (7NYL) and JIP1-SH3(V517A) (7NYM). To calculate
changes in the volume of the Y526 pocket, protons were added to all
structures of the trajectory and Y526 was replaced by glycine to allow
calculation of the complete pocket volume by POVME 3.0 using a dis-
tance cut-offof 1.09 A, corresponding to the van der Waals radius of a
hydrogen atom’™. Asimilar strategy was used to generate the structural
trajectory between the wild-type JIP1-SH3 structure (PDB 7NYK) and
the structure of the JIP1-SH3(A541L) variant (7NYO).

MD simulations of JIP1-SH3

MD simulations were carried out using ACEMD v.3.3.0” and the
Charmm36m force field parameters’. Using VMD”?, coordinates of
the dimer from PDB 2FPE were inserted in the box of dimensions with
aminimum distance of 2 A in each direction between each atom and
any box side. The box was then filled with water molecules and an
amount of Na* and CI” corresponding to [NaCl] = 0.1 M. Electrostatic
interactions were evaluated using Particle-Mesh Ewald (PME) elec-
trostatics with a cut-off distance of 9 A. Van der Waals forces were
calculated with a cut-off of 9 A and a switching function active from
7.5 A to smoothly reduce the potential to zero. An integration step
of 2 fs and holonomic constraints on all hydrogen-heavy atom bond
terms were used. The energy of the system was minimized using
conjugate-gradient minimization for 500 steps. Random velocities
fromaMaxwell distribution with T=298.15 K were assigned to atoms.
Then, the systemwas equilibrated first for 100 psinthe NVE ensemble
and thenfor1nsinthe NPT ensemble. Inthe latter case, temperature
and pressure were controlled using the Langevin thermostat with a
damping constant of 1 ps™ and Berendsen barostat with a relaxation
time of 400 fs, respectively. Finally, a1l ps trajectory was calculated
inthe NVT ensemble using the Langevin thermostat with a damping
constant of 0.1 ps™. Trajectories were processed and analysed using
the MDAnalysis Python package’™.



Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.2|Lipari-Szabo model-free analysis of N relaxation
data of JIP1-SH3. a, Region of the 'H® N HSQC spectrum of JIP1-SH3 at
temperatures ranging from 5to46 °C. b, Experimental *N R, (CPMG) relaxation
ratesata'Hfrequency of 600 MHz and four different temperatures.

¢, Experimental N R, relaxationrates ata'H frequency of 600 MHz and four
different temperatures. d, Experimental {H}-°N heteronuclear NOEs acquired
ata'Hfrequency of 600 MHzand 25 °C.Errorbarsinb-d representone
standard deviation (s.d.) derived from Monte Carlo simulations of
experimental uncertainty. e, Amodel-free analysis of "N R,, R, and
heteronuclear NOEsat 25 °C was carried out providing an axially symmetric
diffusion tensor (Supplementary Discussion). The diffusion tensor is
represented relative to the dimeric structure of JIP1-SH3. Distributions of axis
orientations areshown asred dots and were determined from Monte Carlo

simulations using Tensor2”. f, Angular dependence of the R,/R; ratios relative
to the main axis of the diffusion tensor of JIP1-SH3. Only residues without
exchange contributions to the transverse relaxation and for which the {'H}-*N
NOEisabove 0.7 wereincluded in the analysis. Error bars are centred at
experimental values and were propagated from the experimental uncertainty
onR,andR,.Orange squares are back-calculated values using the optimal
tensor. g, Order parameters, §?, derived from the model-free analysis of the
relaxation dataat25°C.Errorbarsrepresent one standard deviation (s.d.)
derived from Monte Carlo simulations asimplemented in Tensor2.

h, Conformational exchange contributions, Ry, derived from the model-free
analysis of therelaxation dataat25°C. Greenbarsindicateresidues thatare
locatedinthe dimerinterface of the SH3 domainasdetected by the PISA
server’®,
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Extended DataFig.3|Structure and dynamics of the Y526A variant of JIP1-SH3.

a, Comparison of the crystal structure of JIP1-SH3(Y526A) (green) withthe WT
structure (grey) showing an almostidentical backbone conformation of the
two proteins. The zoom highlights aminor structural difference at the level of
thesside chain of Q520 which reorients in the variant to take up the position
normally occupied by Y526 inthe WT protein. b, Superposition of 'H*N HSQC
spectra of JIP1-SH3(Y526A) (red) and JIP1-SH3(WT) (blue) acquired at 25 °C.

¢, ComparisonofdihedralanglesinJIP1-SH3(WT) (grey spheres) and JIP1-
SH3(Y526A) (red lines). Dashed lines correspond to the backbone ¢ angle and
full drawn lines to the backbone  angle. d, Conformational exchange

contributions, Ry, extracted from N CPMG relaxation dispersion dataas the
differencebetween R,.atlow (31 Hz) and high (1kHz) CPMG frequencies. The
exchange contributions are compared for WT JIP1-SH3 (grey, at 600 MHz) and
the Y526A variant (red, at 700 MHz). e, Conformational exchange contributions,
Rey, extracted from'HN CPMG relaxation dispersion data as the difference
betweenR,.satlow (50 Hz) and high (2 kHz) CPMG frequencies. The exchange
contributions are compared for the WTJIP1-SH3 (grey, at 600 MHz) and the
Y526A variant (red, at 600 MHz). f-i, Chemical shift differences between the
Y526A variantand WTJIP1-SH3 for *H™ (f), “N (g), ®Ca (h) and Cp (i).
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a b
w1 E518
V517L j
d
f
180
a
< 160
[
§
3 140
>
B
X
8 120
o
V517A/H493A
100

Structural trajectory

Extended DataFig. 6| Comparison ofthe structures of JIP1-SH3 and
different variants. a, Comparison of the crystal structures of JIP1-SH3(WT)
(grey) andits V517L variant (green). The backbone conformationis entirely
conserved with only minor rearrangements of protein side chains.

b, Comparison ofthe crystal structures of the H493A (grey) and V517A (green)
variants of JIP1-SH3. Structural features are conserved including similar side
chain conformations. ¢, Comparison of the crystal structures of JIPI-SH3(WT)
(grey) and its A541L variant (green) with arrows indicating the major
conformational rearrangements between the WT protein and the variant.

d, lllustration of the backbone conformation of the 3-sheet formed between
the 516-521and 524-529 regionsinthe WT protein (left), and in the AS41L variant
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superimposed and shownin cartoonrepresentation. Theinitial pocket
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Extended DataFig.7| Analysis of CPMG relaxation dispersion dataofthe H493A variant of JIP1-SH3 obtained at two magnetic field strengths
H493A variant of JIP1-SH3. a, Region of the'H"> N HSQC of the H493A variant (red- 600 MHz, blue - 950 MHz) at15 °C. The "N and 'H" data were analysed
atthree differenttemperatures (green-15°C,blue-25°Candred-35°C). simultaneously for all residues according to a two-site exchange model
b, Conformational exchange contributions, Ry, extracted from >N CPMG (full-drawnlinesind and e) using a population of the minor state fixed to 10%.
relaxation dispersion data of the H493A variant as the difference between R, Errorbarsrepresentone standard deviation (s.d.) derived from Monte Carlo
atlow (31Hz) and high (1kHz) CPMG frequencies (600 MHz and 15 °C). simulations of experimental uncertainty. f, g, Comparison of the chemical shift
¢, Conformational exchange contributions, Ry, extracted from 'H" CPMG differences between the major and minor state extracted fromrelaxation
relaxation dispersion data of the H493A variant as the difference between R, dispersion experiments for WTJIP1-SH3 (red) and its H493A variant (blue). Data
atlow (50 Hz) and high (2 kHz) CPMG frequencies (600 MHz and 15 °C). areshown for both N (f) and 'H" (g) chemical shifts.

d, e, Examples of ®N (d) and 'H" (e) CPMG relaxation dispersion profiles of the
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Extended DataFig. 8| Analysis of CPMG relaxationdispersion dataofthe
V517A variant of JIP1-SH3. a, Region of the'H ® N HSQC of the V517A variant at
threedifferenttemperatures (green-15°C, blue-25°Candred-35°C).b,
Conformational exchange contributions, Ry, extracted from >N CPMG
relaxation dispersion data of the V517A variant as the difference between R, at
low (31 Hz) and high (1kHz) CPMG frequencies (600 MHzand 15 °C).c,
Conformational exchange contributions, R;y, extracted from 'HY CPMG
relaxation dispersion data of the V517A variant as the difference between R, at
low (50 Hz) and high (2 kHz) CPMG frequencies (600 MHzand 15°C).d, e,
Examples of *N (d) and 'H" (e) CPMG relaxation dispersion profiles of the V517A
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Sequence JIP1-SH3/JIP1-SH3-V517A

variant of JIP1-SH3 obtained at two magnetic field strengths (red - 600 MHz,
blue - 950 MHz) at15 °C. The "N and 'H" data were analysed simultaneously for
allresidues accordingto atwo-site exchange model (full-drawnlinesindande)
using a population of the minor state fixed to11%. Error bars represent one
standard deviation (s.d.) derived from Monte Carlo simulations of
experimental uncertainty. f,g, Comparison of the chemical shift differences
between the major and minor state extracted from relaxation dispersion
experiments for WTJIP1-SH3 (red) and its V517A variant (blue). Data are shown
forboth N (f) and 'H" (g) chemical shifts.
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Extended DataFig.9|The A541L variant does not capture the structural
details of the minor state detected by CPMG relaxation dispersionin
JIP1-SH3. a, Superposition of 'H®*NHSQC spectra of JIP1-SH3(A541L) (red) and
WT]JIP1-SH3 (blue) acquired at 15 °C. b, Conformational exchange
contributions, Ry, extracted from*N CPMG relaxation dispersion data of the
A541L variant as the difference between R, at low (31 Hz) and high (1 kHz)
CPMG frequencies at 700 MHz and 15 °C. Only modest **N conformational
exchange contributions are observed suggesting that this variant is populating
asingle conformationin solution represented by the determined crystal
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structure.c,d, Comparison of the chemical shift differences between the
major and minor states extracted from relaxation dispersion experiments of
WTJIP1-SH3 (blue) and the chemical shift differences between the observed
chemicalshifts of the A541L variantand WT JIP1-SH3 (red). Data are shown for
5N (¢) and for 'HN (d) nuclei. The poor agreement between the two datasets
show thatthe A541L crystal structure is not representative of the conformation
ofthe minor state detected by NMR relaxation dispersion. e, f, Chemical shift
differencesbetween the A541L variantand WTJIP1-SH3 for *Ca (e) and *CB (f).
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Extended DataFig.10 | The aromaticring of Y526 undergoes fast flipping.
a,'H-"*CHSQC spectraofJIP1-SH3 showing the region of tyrosine epsilon
correlations. Asample of JIP1-SH3 site-selectively labelled at the epsilon
positions was used, and spectraat four different temperatures were acquired
intherange from5to45°C.b, Per-residue root-meansquare fluctuation
(RMSF) of Cacatoms during the MD simulation. ¢, Residue-specific
Ramachandran plots showing the conformational sampling of B-strand

phi (deg)

residues during the MD simulation. The MD values are colour-coded from white
toblackaccording to simulation time. Blue regions indicate the allowed and
marginally allowed regions. Red pointsindicate the starting conformation (one
for each monomer of JIP1-SH3). Panels b and c demonstrate that the protein
maintains astable conformation throughout the MD simulation, while
displaying several180°ring flipping events of Y526 (Fig. 4d).
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Extended Data Table 1| Data collection and refinement statistics for the JIP1-SH3 structures

JIP1-SH3
Wild type*

JIP1-SH3
H493A*

JIP1-SH3
V517A*

JIP1-SH3
V517L"

Data collection

Date

Space group

Cell dimensions (A)
a b, c(A)
aBy(®

Resolution (A)

Rsym

/ol
Completeness (%)
Redundancy

CC (1/2)

Refinement
Resolution (A)
No. reflections
(work/free)
Rwork
Rfree
No. atoms
Protein
lons (PO4% / SO4?)
Water/PEG
B-factors
Protein
lons (PO43 / SO42)
Water/PEG
R.m.s. deviations
Bond lengths (A)
Bond angles (°)

11t Nov 2020
P21 212

71.40, 82.13, 46.85
90.00, 90.00, 90.00
53.88 — 1.36

(1.48 —1.36) +
0.04 (0.47)

9.5 (1.5)

91.8 (52.5)

4.6 (5.6)

99.3 (61.0)

1.45

38196 / 2066
0.159 (0.315)
0.215 (0.376)
2457

2094 [A-D]
363 /-

26.3

37.1/-

0.013
1.689

14t Nov 2020
P24

28.05, 45.55, 46.00
90.00, 104.27, 90.00
45.55 — 1.91
(2.03-1.91) 1

0.19 (1.50)

6.90 (1.18)

96.3 (78.0)

6.4 (4.2)

99.4 (66.6)

1.95
7908 / 403

0.204 (0.328)
0.253 (0.326)
1087

1003 [A-B]

84 /-
33.9
36.0/50.1

0.010
1.688

30t Nov 2020
P21 21 24

33.12, 84.25, 98.31
90.00, 90.00, 90.00
63.97 — 1.45

(1.52 — 1.45)
0.06 (0.64)

7.0 (1.3)

93.9 (47.2)

12.5 (12.9)

98.9 (46.4)

1.45
34511/1815

0.132 (0.159)
0.196 (0.230)
2350

2055 [A-D]
5/—

218/72

211
38.9/-
36.0/58.6

0.012
1.650

20t Nov 2020
c2

78.84, 149.72, 68.09
90.00, 105.83, 90.00
67.66 — 1.96

(1.99 - 1.96) 1

0.06 (2.5)

8.5 (2.4)

98.6 (97.8)

2.7 (2.6)

98.8 (92.2)

1.96
44916/ 2330

0.224 (0.369)
0.281 (0.367)
6856

6219 [A-L]
5/-

580 / 52

38.0
55.5/—
47.1/40.3

0.011
1.657

*Number of crystals for each structure: 1.

tValues in parenthesis are for the highest-resolution shell.



Extended Data Table 2 | Data collection and refinement statistics for the JIP1-SH3 and POSH-SH3 structures

JIP1-SH3

JIP1-SH3

A541L* Y526A* POSH-SH3-1 POSH-SH3-4
Data collection
Date 30t Oct 2020 5th Dec 2020 1st Aug 2019 17t Feb 2020
Space group c2 P21212 P6s2 2 P3221

Cell dimensions (A)
a, b, c (A)
aByC)

Resolution (A)

Rsyrn

/1ol
Completeness (%)
Redundancy

CC (1/2)

Refinement
Resolution (A)
No. reflections
(work/free)
Rwork
Rfree
No. atoms
Protein
lons (PO4% / SO4%)
Water/PEG
B-factors
Protein
lons (PO4% / SO42)
Water/PEG
R.m.s. deviations
Bond lengths (A)
Bond angles (°)

96.09, 67.10, 59.14
90.00, 126.70, 90.00
47.42-1.4
(1.51—1.40) +
0.081 (0.36)

5.5 (1.5)

91.9 (52.1)

5.3 (5.0)

98.2 (74.0)

1.40

39612 /2116
0.194 (0.328)

0.281 (0.408)
2638

2142 [A-D]
522

23.6

M.7/-

0.011
1.666

210.64, 62.49, 87.06

90.00, 90.00, 90.00
49.35 - 1.54
(1.63—1.54)
0.07 (2.1)
11.9 (0.8)
99.9 (98.7)
67.7 (6.4)
99.9 (30.7)

1.54

169316 /1798

0.138 (0.361)
0.179 (0.379)
7091

6129 [A-L]
10/30

915

32.8
88.3/88.1
49.6/-

0.012
1.728

35.96, 35.96, 181.33
90.00, 90.00, 120.00
30.7-1.11
(1.13-1.11) 1

0.01 (0.4)

26.1 (1.4)

93.0 (89.9)

25.4 (1.2)

0.99 (0.57)

1.11

25335 / 1321
0.146 (0.282)

0.177 (0.273)
685

531

139/15

223
32.1/23.6

0.010
1.668

45.52, 45.52, 65.74
90.00, 90.00, 120.00
65.74-1.45
(1.48-1.45)

0.01 (0.7)

23.8 (0.9)

99.9 (99.2)

10.1 (8.5)

0.99 (0.52)

1.45

13727 /716
0.160 (0.489)

0.227 (0.655)
637

531

95/ 11
37.5/51.4
55.9/52.6

0.016
1.900

*Number of crystals for each structure: 1.

tValues in parenthesis are for the highest-resolution shell.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Statistical methods were not used to determine sample size.
Data exclusions  Data were not excluded.

Replication Each crystal structure was solved from a single crystal. All nmr dispersion experiments were performed once with technical replicates as
described in the Methods section.

Randomization  There was no randomized sample allocation in this work. All tested protein designs received identical treatment.

Blinding Blinding is not relevant for structure determination by X-ray crystallography, blinding was not necessary for other methods used in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study

Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XXXXNXNXX s
OoOoooogd

>
Q
=)
e
(D
O
@)
=4
o
=
—
(D
O
@)
=
)
(@]
wv
C
=
=
)
<

1202 Y210\




	Visualizing protein breathing motions associated with aromatic ring flipping

	Protein dynamics induced by a tyrosine residue

	Proteome-wide SH3 sequence analysis

	Structure of the minor state

	Structural details of breathing motions

	Void volume enables ring flipping

	Conclusions

	Online content

	Fig. 1 The side chain conformation of Y526 is determined by steric interactions with the surrounding amino acids.
	Fig. 2 High-resolution crystal structures of JIP1-SH3 variants.
	Fig. 3 Crystal structures capture large-scale protein breathing motions.
	Fig. 4 Void volume creation enables fast aromatic ring flipping of Y526.
	Extended Data Fig. 1 Structural propensities and conformational exchange in JIP1-SH3.
	Extended Data Fig. 2 Lipari–Szabo model-free analysis of 15N relaxation data of JIP1-SH3.
	Extended Data Fig. 3 Structure and dynamics of the Y526A variant of JIP1-SH3.
	Extended Data Fig. 4 Analysis of 15N and 1HN relaxation dispersion data of JIP1-SH3.
	﻿Extended Data Fig. 5 Analysis of the sequence composition of 320 human SH3 domains.
	Extended Data Fig. 6 Comparison of the structures of JIP1-SH3 and different variants.
	Extended Data Fig. 7 Analysis of CPMG relaxation dispersion data of the H493A variant of JIP1-SH3.
	Extended Data Fig. 8 Analysis of CPMG relaxation dispersion data of the V517A variant of JIP1-SH3.
	Extended Data Fig. 9 The A541L variant does not capture the structural details of the minor state detected by CPMG relaxation dispersion in JIP1-SH3.
	Extended Data Fig. 10 The aromatic ring of Y526 undergoes fast flipping.
	Extended Data Table 1 Data collection and refinement statistics for the JIP1-SH3 structures.
	Extended Data Table 2 Data collection and refinement statistics for the JIP1-SH3 and POSH-SH3 structures.




